2014年高考生物全国卷2新课标配答案解析
2014年高考新课标全国2卷生物试题答案及解析
2014年高考理科综合(新课标Ⅱ卷)试题及答案理科综合生物部分一.选择题1.关于细胞的叙述,错误..的是A.植物细胞的胞间连丝具有物质运输的作用B.动物细胞间的黏着性与细胞膜上的糖蛋白有关学科网C.ATP水解释放的能量可用于细胞内的吸能反应D.哺乳动物的细胞可以合成蔗糖,也可以合成乳糖【答案】D【解析】胞间连丝能允许大小分子从中通过具有物质运输和信息交流等作用,细胞癌变时,细胞膜上的糖蛋白等物质减少,黏着性显著降低,细胞的吸能反应一般与ATP水解的反应相联系,蔗糖是植物细胞合成的,动物细胞不能合成。
2.同一动物个体的神经细胞与肌细胞在功能上是不同的,造成这种差异的主要原因是A.二者所处的细胞周期不同 B.二者合成的特定蛋白不同C.二者所含有的基因组不同 D.二者核DNA的复制方式不同【答案】B【解析】神经细胞和肌细胞高度是已分化的细胞,通常不再分裂,无细胞周期,也无DNA复制;不同种类细胞的产生是由于遗传基因的选择性表达,合成了不同的蛋白质;同一个体的体细胞由同一个受精卵分裂、分化而来,基因组相同,核DNA复制方式相同。
3.关于正常情况下组织液生成与回流的叙述,错误..的是A.生成与回流的组织液中氧气的含量相等B.组织液不断生成与回流,并保持动态平衡C.血浆中的有些物质经毛细血管动脉端进入组织液D.组织液中的有些物质经毛细血管静脉端进入血液【答案】A【解析】毛细血管动脉端动脉血中较高浓度O扩散入组织液后进入组织细胞通过有氧呼吸大部2分被消耗,产生较多的CO2,导致毛细血管静脉端回流的组织液O2含量相对较低,CO2含量相对较高。
CO2由毛细血管静脉端扩散进入血液,从而使组织液不断生成与回流,并保持动态平衡。
4.将某植物花冠切成大小和形状相同的细条,分为a、b、c、d、e和f组(每组的细条数相等),取上述6组细条分别置于不同浓度的蔗糖溶液中,浸泡相同时间后测量各组花冠细条的长度,结果如图所示。
假如蔗糖溶液与花冠细胞之间只有水分交换,则A.实验后,a组液泡中的溶质浓度比b组的高B.浸泡导致f组细胞中液泡的失水量小于b组的C.a组细胞放在蔗糖溶液中失水或吸水所耗ATP大于b组D.使细条在浸泡前后长度不变的蔗糖浓度介于0.4~0.5mol﹒L-1之间【答案】D【解析】渗透作用是溶剂分子的扩散,使膜两侧溶质浓度发生变化,而溶质量不会变化。
2014年高考语文全国新课标2卷 答案及解析
2014年普通高等学校招生全国统一考试语文注意事项:1.本试卷分第I卷(阅读题)和第II卷(表达题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回.第 I卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1〜3题.周代,尽管关于食品安全事件的记载不多,但我们还是看到,由于食品安全关系重大,统治者对此非常重视并作出了特别规定.周代的食品交易是以直接收获采摘的初级农产品为主,所以对农产品的成熟度十分关注.据《礼记》记栽,用代对食品交易的规定有:“五谷不时,果实未熟,不鬻于市.”这是我国历史上最早的关于食品安全管理的记录.汉唐时期,食品交易活动非常频繁,交易品种十分丰富.为杜绝有毒有害食品流入市场,国家在法律上作出了相应的规定.汉朝《二年律令》规定:“诸食脯肉,脯肉毒杀、伤、病人者,亟尽孰燔其余•……当燔弗燔,及吏主者,皆坐脯肉赃,与盗同法.即肉类因腐坏等因素可能导致中毒者,应尽快焚毁,否则将处罚当事人及相关官员.唐朝《唐律》规定:“脯肉有毒,曾经病人,有余者速焚之,违者杖九十.若故与人食并出卖,令人病者,徒一年;以故致死者,绞.即人自食致死者,从过失杀人法。
”从《唐律》中可以看到,在唐代,知脯肉有毒不速焚而构成的刑事犯罪分为两种情况,处罚各不相同:一是得知脯肉有毒时,食品的所有者应当立刻焚毁所剩有毒食品,以绝后患,否则杖九十;二是明知脯肉有毒而不立刻焚毁,致人中毒,则视情节及后果以科罚。
宋代,饮食市场空前繁荣。
孟元老在《东京梦华录》中,追述了北宋都城开封府的城市风貌,并且以大量笔墨写到饮食业的昌盛,书中共提到一百多家店镝以及相关行会. 商品市场的繁荣,不可避免地带来一些问题,一些商贩“以物市于人,敝恶之场,饰为新奇;假伪之物,饰为真实.如绢帛之用胶糊,米麦之增温润,肉食之灌以水,药材之易以他物(《袁氏世范》)有的不法分子甚至采用鸡塞沙,鹅羊吹气、卖盐杂以灰之类伎俩谋取利润,为了加强对食品掺假,以次充好现象的监督和管理,宋代规定从业者必须加入行会,而行会必须对商品质量负责,市肆谓之行者,因官府料索而得此名,不以其物小大,但合充用者,皆置为行,虽医卜亦有职.”(《都城纪胜》商人们依经营类型组成行会,商铺,手工业和其他服务性行业的相关人员必领加入行会组织,并按行业登记在籍,否则就不能从业经营.各个行会对生产经营的商品质量进行把关,行会的首领作为拉保人,负责评定物价和监察不法行为.除了由行会把关外,宋代法律也继承了《唐律》的规定,对有毒有害食品的销售者予以严惩上述朝代对食品流通的安全管理及有关法律举措,可以给我们很多启示•也可以为现今我国食品质量和安全监管模式的合理构建提供新的思路和路径选择.(摘编自张炸达《古代食品安全监管述略》>1.下列关于原文第一、二两段内容的表述,不正确的一项是A周代统治者严禁未成熟的果实和谷物进入流通市场,以防止此类初级农产品引起食品安全方面的问题。
2014年高考理科数学全国卷2(含答案解析)
绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|(1)4,}M x x x =-<∈R ,{1,0,1,2,3}N =-,则MN = ( )A .{0,1,2}B .{1,0,1,2}-C .{1,0,2,3}-D .{0,1,2,3} 2.设复数z 满足(1i)2i z -=,则z =( )A .1i -+B .1i --C .1i +D .1i -3.等比数列{}n a 的前n 项和为n S .已知32110S a a =+,59a =,则1a =( )A .13B .13-C .19D .19-4.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l ⊥n ,l α⊄,l β⊄,则( )A .αβ∥且l α∥B .αβ∥且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.已知5(1)(1)ax x ++的展开式中的2x 的系数为5,则a = ( )A .4-B .3-C .2-D .1-6.执行如图的程序框图,如果输入的10N =,则输出的S = ( ) A .11112310++++B .11112!310++++!!C .11112311++++ D .11112311++++!!!7.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )8.设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b a c >>C .a c b >>D .a b c >>9.已知0a >,x ,y 满足约束条件1,3,(3).x x y y a x ⎧⎪+⎨⎪-⎩≥≤≥若2z x y =+的最小值为1,则a = ( )A .14B .12C .1D .210.已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .0x ∃∈R ,0()0f x =B .函数()y f x =的图象是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0()0f x '=11.设抛物线C :22(0)y px p =>的焦点为F ,点M 在C 上,||5MF =.若以MF 为直径的圆过点(0,2),则C 的方程为( )A .24y x =或28y x =B .22y x =或28y x =C .24y x =或216y x = D .22y x =或216y x =12.已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( )A .(0,1)B .21(1,)22-C .21(1,]23-D .11[,)32第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =________. 14.从n 个正整数1,2,,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________.15.设θ为第二象限角,若π1tan()42θ+=,则sin cos θθ+=________. 16.等差数列{}n a 的前n 项和为n S .已知100S =,1525S =,则n nS 的最小值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)ABC △在内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin a b C c B =+.(Ⅰ)求B ;(Ⅱ)若2b =,求ABC △面积的最大值. 18.(本小题满分12分) --------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________如图,直棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,122AA AC CB AB ===. (Ⅰ)证明:1BC ∥平面1A CD ; (Ⅱ)求二面角1D AC E --的正弦值.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57 000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的频率),利润T 的数学期望.20.(本小题满分12分)平面直角坐标系xOy 中,过椭圆M :22221(0)x y a b a b+=>>右焦点的直线30x y +-=交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(Ⅰ)求M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ABCD 的对角线CD AD ⊥,求四边形ABCD 面积的最大值.21.(本小题满分12分)已知函数()e ln()xf x x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明:()0f x >.请考生在第22、23、24三题中任选一题作答,如果多做,则按做的第一题积分.作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD 为ABC △外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC AE DC AF =,B ,E ,F ,C 四点共圆.(Ⅰ)证明:CA 是ABC △外接圆的直径;(Ⅱ)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC △外接圆面积的比值.23.(本小题满分10分)选修4—4:坐标系与参数方程已知动点P ,Q 都在曲线C :2cos ,2sin x t y t =⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02π)α<<,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c 均为正数,且1a b c ++=.证明: (Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】解不等式2(14)x -<,得13x <<-,即|13{}M x x =<<-,而1,0,1,,3{}2N =-,所以0,}2{1,M N =,故选A .【提示】求出集合M 中不等式的解集,确定出M ,找出M 与N 的公共元素,即可确定出两集合的交集.【考点】集合的基本运算(交集),解一元二次不等式. 2.【答案】A【解析】2i 2i 1i 22i 1i 1i 1i 21+i z (+)-+====-(-)(+)-. 【提示】根据所给的等式两边同时除以1i -,得到z 的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果. 【考点】复数代数形式的四则运算. 3.【答案】C【解析】设数列{}n a 的公比为q ,若1q =,则由59a =,得19a =,此时327S =,而219+109a a =,不满足题意,因此1q ≠.∵1q ≠时,33111(1)1+10a S a a q q q --==,∴3+0111q qq =--,整理得29q =.(步骤1) ∵4519a a q ==,即1819a =,∴119a =.(步骤2) 【提示】设等比数列{}n a 的公比为q ,利用已知和等比数列的通项公式即可求出. 【考点】等比数列的通项和前n 项和. 4.【答案】D【解析】因为m α⊥,l m ⊥,l α⊄,所以l α∥.同理可得l β∥.又因为m ,n 为异面直线,所以α与β相交,且l 平行于它们的交线.故选D .【提示】由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.【考点】直线与平面的位置关系. 5.【答案】D【解析】因为5(1+)x 的二项展开式的通项为5C 0)5(r rr r x ≤≤∈Z ,,则含x 2的项为221552C +C )0+5(1x ax x a x =,所以10+55a =,1a =-.【提示由题意利用二项展开式的通项公式求得展开式中2x 的系数为221552C +C )0+5(1x ax x a x =,由此解得a 的值.【考点】二项式定理 6.【答案】B【解析】由程序框图知,当1k =,0S =,1T =时,1T =,1S =;当2k =时,12T =,11+2S =; 当k =3时,123T =⨯,111+223S =+⨯;当k =4时,1234T =⨯⨯,1111+223234S =++⨯⨯⨯;;(步骤1)当k =10时,123410T =⨯⨯⨯⨯,1111+2!3!10!S =+++,k 增加1变为11,满足k N >,输出S ,所以B 正确.(步骤2)【提示】从赋值框给出的两个变量的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能. 【考点】循环结构的程序框图. 7.【答案】A【解析】如图所示,该四面体在空间直角坐标系O -xyz 的图象为下图:第7题图则它在平面zOx 上的投影即正视,故选A .【提示】由题意画出几何体的直观图,然后判断以zOx 平面为投影面,则得到正视图即可. 【考点】空间直角坐标系,三视图. 8.【答案】D【解析】根据公式变形,lg6lg 21lg3lg3a ==+,lg10lg 21lg5lg5b ==+,lg14lg 21lg 7lg 7c ==+,因为lg 7lg 5g 3l >>,所以lg2lg2lg2lg7lg5lg3<<,即c b A <<.故选D . 【提示】利用log ()log log (0)a a a xy x y x y =+>、,化简a ,b ,c 然后比较3log 2,5log 2,7log 2大小即可.【考点】对数函数的化简和大小的比较. 9.【答案】B【解析】由题意作出1,3x x y ≥⎧⎨+≤⎩所表示的区域如图阴影部分所示,作直线2+1x y =,因为直线2+1x y =与直线1x =的交点坐标为(1,)1-,结合题意知直线(3)y a x =-过点(1,)1-,代入得12a =,所以12a =.第9题图【提示】先根据约束条件画出可行域,设2z x y =+,再利用z 的几何意义求最值,只需求出直线2zx y=+过可行域内的点B 时,从而得到a 值即可. 【考点】二元线性规划求目标函数的最值.10.【答案】C【解析】由于2()32f x x ax b '=++是二次函数,()f x 有极小值点0x ,必定有一个极大值点1x ,若10x x <,则()f x 在区间0(,)x -∞上不单调递减,C 不正确.【提示】利用导数的运算法则得出()00f x '∆>∆≤,分与讨论,即可得出. 【考点】利用导数求函数的极值. 11.【答案】C【解析】设点M 的坐标为00(,)x y ,由抛物线的定义,得052|+MF x p ==|,则052x p =-.(步骤1)又点F 的坐标为,02p ⎛⎫ ⎪⎝⎭,所以以MF 为直径的圆的方程为00+0()()2p x y x x y y ⎛⎫⎪-- ⎝⎭-=.(步骤2)将0x =,2y =代入得00+840px y -=,即02+2480y y -=,所以04y =. 由0202y px =,得16252p p ⎛⎫=- ⎪⎝⎭,解之得2p =,或8p =.(步骤3)所以C 的方程为24y x =或216y x =.故选C .【提示】已知抛物线焦点到抛物线上点的线段的距离和以这条线段为直径的圆上的一点,求出抛物线的方程.【考点】抛物线的定义和抛物线的标准方程. 12.【答案】B【解析】根据题意画出图形,如图(1),由图可知,直线BC 的方程为1x y +=.由1,,x y y ax b +=⎧⎨=+⎩解得1,11b a b M a a -+⎛⎫⎪++⎝⎭. 可求()0,N b ,,0b D a ⎛⎫- ⎪⎝⎭.直线y ax b =+将△ABC 分割为面积相等的两部分,∴12S S =△△BDM ABC .又12BOC ABC S S =△△,CMN ODN S S ∴=△△,即111(1)221b b b b a a -⎛⎫⨯-⨯=-⨯ ⎪+⎝⎭.整理得22(1)1b b a a -=+. 22(1)1b ab a-+∴=,11b ∴-=,11b =即b =,可以看出,当a 增大时,b 也增大.当a →+∞时,12b →,即12b <.当0a →时,直线+y ax b =接近于y b =.当y b =时,如图(2),2222(1)112CDM ABC S CN b S CO -===△△.1b ∴-1b =1b ∴>-. 由上分析可知1122b -<<,故选B .第12题图(1) 第12题图(2)【提示】已知含有参数的直线将三角形分割为面积相等的两部分和点的坐标,求出参数的取值范围.【考点】函数单调性的综合应用.第Ⅱ卷二、填空题 13.【答案】2【解析】以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图所示,则点A 的坐标为(0,0),点B 的坐标为(2,0),点D 的坐标为(0,2),点E 的坐标为(1,2),则1(),2AE =,)2(2,BD =-,所以2AE BD =.第13题图【提示】结合几何的关系,求出向量的数量积. 【考点】平面向量的数量积运算. 14.【答案】8【解析】从1,2,…,n 中任取两个不同的数共有2C n 种取法,两数之和为5的有(1,4),(2,3)2种,所以221C 14n =,即24111142n n n n ==(-)(-),解得8n =.【提示】列出从n 个正整数1,2,…,n 中任意取出两个不同的数的所有取法种数,求出和等于5的种数,根据取出的两数之和等于5的概率为114列式计算n 的值. 【考点】古典概型,排列组合的应用.15.【答案】 【解析】由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得tan 13θ=-,即1s 3in cos θθ-=.(步骤1)将其代入22sin +cos 1θθ=,得210cos 19θ=.因为θ为第二象限角,所以10cos θ-=0in 1s θ=,sin +cos 5θθ=-.(步骤2)【提示】已知等式利用两角和与差的正切函数公式及特殊角的三角函数值化简,求出tan θ的值,再根据θ为第二象限角,利用同角三角函数间的基本关系求出sin cos θθ与的值,即可求出sin cos θθ+的值.【考点】两角和与差的正切,同角三角函数的基本关系. 16.【答案】49-【解析】设数列{}n a 的首项为a 1,公差为d ,则110110910+210+450S a d d a =⨯==,① 1151151415215+10525a d a d S =⨯==+.②(步骤1) 联立①②,得13a =-,23d =,所以2(1)211032333n n n n n n S -=-+⨯=-.(步骤2)令()n f n nS =,则32110()33f n n n =-,220()3f n n n '=-.令()0f n '=,得0n =或203n =.(步骤3)当203n >时,()0f n '>,200<<3n 时,()0f n '<,所以当203n =时,()f n 取最小值,而n ∈N +,则(6)48f =-,(7)49f =-,所以当7n =时,()f n 取最小值-49.(步骤4)【提示】已知等差数列前10项和与前15项和,求出n 与前n 项和乘积的最小值. 【考点】等差数列的前n 项,利用导数求函数的最值. 三、解答题 17.【答案】(1)π4(2【解析】(1)由已知及正弦定理得sin sin cos +sin sin A B C C B =.①又()+A B C π=-,故sin sin +sin cos +co )s i (s n A B C B C B C ==.②由①,②和π()0,C ∈得sin cos B B =,即tan 1B =,又π()0,B ∈,所以π4B =.(步骤1) (2)△ABC的面积1sin 2S ac B ==. 由已知及余弦定理得22π2cos 44+ac a c =-.(步骤2)又22+2a c ac ≥,故ac ≤,当且仅当a c =时,等号成立.因此△ABC.(步骤3)【提示】(1)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,求出tan B 的值,由B 为三角形的内角,利用特殊角的三角函数值即可求出B 的度数;(2)利用三角形的面积公式表示出三角形ABC 的面积,把sin B 的值代入,得到三角形面积最大即为ac 最大,利用余弦定理列出关系式,再利用基本不等式求出ac 的最大值,即可得到面积的最大值.【考点】正弦定理,余弦定理,三角形面积公式,两角和与差的正弦. 18.【答案】(1)连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则1BC DF ∥.因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(步骤1) (2)由AC CB AB ==,得AC BC ⊥ 以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设2CA =,则()1,1,0D ,()0,2,1E ,12,()0,2A ,(1),1,0CD =,(0),2,1CE =,12,0,2()CA =. 设111,(),n x y z =是平面A 1CD 的法向量,则10,0,n CD n CA ⎧=⎪⎨=⎪⎩即1111+0,2+20.x y x z =⎧⎨=⎩ 可取1),(,11n =--.(步骤2)同理,设m 是平面A 1CE 的法向量,则10,0,m CE m CA ⎧=⎪⎨=⎪⎩可取2,1(),2m =-.(步骤3)从而3cos ,3||||n m m n n m <>==,故6sin ,3m n <>= 即二面角D -A 1C -E .(步骤4)第18题图(1)【提示】(1)通过证明1BC 平行平面1ACD 内的直线DF ,利用直线与平面平行的判定定理证明11BC ACD 平面∥ (2).由AC CB AB ==,得AC BC ⊥以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设2CA =,111,(),n x y z =是平面A 1CD 的法向量,同理,设m 是平面A 1CE 的法向量,由3cos ,3||||n m m n n m <>==,故6sin ,3m n <>=【考点】直线与平面的判定,空间直角坐标系,空间向量及其运算.19.【答案】(1)80039000,100130,65000,130150.X X T X -≤<⎧=⎨≤≤⎩ (2)0.7(3)59400【解析】(1)当100[),130X ∈时,50030013()080039000T X X X =--=-,当130[],150X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩(步骤1)(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量120[],150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7(步骤2)(3所以450000.1+530000.2+610000.3+650000.459400ET =⨯⨯⨯⨯=.(步骤3)【提示】(1)由题意先分段写出,当100[),130X ∈时,当130[],150X ∈时,和利润值,最后利用分段函数的形式进行综合即可.(2)由(1)知,利润T 不少于57000元,当且仅当120150X ≤≤再由直方图知需求量120[],150X ∈的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T 不少于57000元的概率的估计值.(3)利用利润T 的数学期望=各组的区间中点值x 该区间的频率之和即得.【考点】频率分布直方图,分段函数的模型,离散型随机变量的数学期望.20.【答案】(1)22163x y +=(2 【解析】(1)设11(),A x y ,22(),B x y ,00(),P x y ,则2211221x y a b +=,2222221x y a b+=,21211y y x x -=--,由此可得22121221211b x x y y a y y x x (+)-=-=(+)-. 因为120+2x x x =,120+2y y y =,0012y x =,所以222a b =(步骤1)又由题意知,M的右焦点为,故223a b -=. 因此26a =,23b =.所以M 的方程为22163x y +=.(步骤2) (2)由220,1,63x y x y ⎧+=⎪⎨+=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩或0,x y =⎧⎪⎨=⎪⎩因此||AB =.(步骤3) 由题意可设直线CD的方程为3y x n n ⎛=+-<< ⎝,设33(),C x y ,44(),D x y .由22,163y x n x y =+⎧⎪⎨+=⎪⎩得223+4+260x nx n -=.于是3,4x (步骤4) 因为直线CD 的斜率为1,所以43|||x x CD - 由已知,四边形ACBD 的面积186||||29S CD AB ==.当n =0时,S 取得最大值,最大值为.所以四边形ACBD .(步骤5)【提示】(1)把右焦点(,0)c 代入直线可解得C .设11(),A x y ,22(),B x y ,线段AB 的中点00(),P x y ,利用“点差法”即可得到a ,b 的关系式,再与222a bc =+联立即可得到a ,b ,c .(2)把直线0x y +=与椭圆的方程联立得到根与系数的关系,即可得到弦长||AB ,由CD AB ⊥,可设直线CD 的方程为y x n =+,与椭圆的方程联立得到根与系数的关系,即可得到弦长||CD .利用1||||2ACBD S AB CD =四边形即可得到关于n 的表达式,利用二次函数的单调性即可得到其最大值.【考点】椭圆的方程、椭圆的简单几何性质、点差法的应用和直线与椭圆的位置关系. 21.【答案】(1)1()e x f x x m=-+. 由0x =是()f x 的极值点得(0)0f '=,所以1m =.于是ln +)1(()xf e x x =-,定义域为()1,+-∞,1()e 1xf x x =-+.(步骤1)函数1()e 1x f x x =-+在()1,+-∞单调递增,且(0)0f '=.因此当,0()1x ∈-时,()0f x '<; 当+()0,x ∈∞时,()0f x '>.所以()f x 在()1,0-单调递减,在(0,+)∞单调递增.(步骤2)(2)当2m ≤,,()+x m ∈-∞时,l ()()n +ln +2x m x ≤,故只需证明当2m =时,()0f x >. 当2m =时,函数1()e 2x f x x =-+在()2,+-∞单调递增. 又1()0f '-<,(0)0f '>,故()0f x '=在()2,+-∞有唯一实根x 0,且0)0(1,x ∈-.(步骤3) 当2+(),x ∈-∞时,()0f x '<;当0(),+x x ∈∞时,()0f x '>,从而当0x x =时,()f x 取得最小值.由0()0f x '=得001e 2x x =+,00ln +2()x x =-,故200000()()+11022f x f x x x x x ≥)=+++=(>. 综上,当2m ≤时,()0f x >.(步骤4)【提示】(1)求出原函数的导函数,因为0x =是函数()f x 的极值点,由极值点处的导数等于0求出m 的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间; (2)证明当2m ≤时,()0f x >,转化为证明当2m =时()0f x >求出当2m =时函数的导函数,可知导函数在(2,)-+∞上为增函数,并进一步得到导函数在(1,0)-上有唯一零点0x ,则当0x x =时函数取得最小值,借助于0x 是导函数的零点证出0()0f x >,从而结论得证. 【考点】利用导数求函数的单调区间和极值,利用导数解决不等式问题. 22.【答案】(1)因为CD 为△ABC 外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF △∽△,所以DBC EFA ∠=∠.(步骤1)因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒.所以90CBA ∠=︒,因此CA 是△ABC 外接圆的直径.(步骤2)(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由DB BE =,有CE DC =,又222BC DB BA DB ==,所以222 2.4+6CA DB BC DB ==而2223DC DB D CE DA B ===,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12. (步骤3)第22题图【提示】(1)已知CD 为ABC △外接圆的切线,利用弦切角定理可得DCB A ∠=∠,及BC DCFA EA=,可知CDB AEF △∽△,于是DBC EFA ∠=∠.利用B 、E 、F 、C 四点共圆,可得CFE DBC ∠=∠,进而得到90EFA CFE ∠=∠=︒即可证明CA 是ABC △外接圆的直径;(2)要求过B 、E 、F 、C 四点的圆的面积与ABC △外接圆面积的比值.只需求出其外接圆的直径的平方之比即可.由过B 、E 、F 、C 四点的圆的直径为CE ,及DB BE =,可得CE DC =,利用切割线定理可得222BC DB BA DB ==,222 2.4+6CA DB BC DB ==,都用DB 表示即可.【考点】弦切角,圆内接四边形的性质.23.【答案】(1)cos cos 2,sin sin 2x y αααα=+⎧⎨=+⎩0()2παα<<为参数, (2)d (02π)α<< M 的轨迹过坐标原点【解析】(1)依题意有2cos (n )2si P αα,,2cos2,2si 2()n Q αα,因此cos +cos2,sin +i ()s n2M αααα.M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩0()2παα<<为参数,.(步骤1)(2)M 点到坐标原点的距离d =(02π)α<<.当πα=时,0d =,故M 的轨迹过坐标原点.(步骤2)【提示】(1)根据题意写出P ,Q 两点的坐标:2cos (n )2si P αα,,2cos2,2si 2()n Q αα,再利用中点坐标公式得PQ 的中点M 的坐标,从而得出M 的轨迹的参数方程;(2)利用两点间的距离公式得到M 到坐标原点的距离d 证当πα=时,0d =,故M 的轨迹过坐标原点. 【考点】参数方程,轨迹方程.24.【答案】(1)由22+2b a ab ≥,22+2b c bc ≥,22+2c a ca ≥,得222++++a b c ab bc ca ≥.(步骤1)由题设得21)++(a b c =,即222+++2+2+21a b c ab bc ca =.所以3+(+)1ab bc ca ≤,即1++3ab bc ca ≤.(步骤2) (2)因为22a b a b +≥,22b c b c +≥,22c a c a+≥,故222(++(2))a b c a b c a b c b c a +++++≥,(步骤3)即222++a b c a c a c b b ++≥. 所以2221a b c b c a++≥(步骤4)【提示】(1)依题意,由21)++(a b c =,即222+++2+2+21a b c ab bc ca =,利用基本不等式可得3+(+)1ab bc ca ≤,从而得证;(2)利用基本不等式可证得:22a b a b +≥,22b c b c +≥,22c a c a +≥,三式累加即可证得结论.【考点】不等式证明,均值不等式.。
2014年全国高考理综试题及答案-新课标2卷(解析版)
2014年普通高等学校招生全国统一考试(新课标Ⅱ卷)理科综合试卷第Ⅰ卷一、选择题(每小题6分,只有一个符合题意)1、关于细胞的叙述,错误的是A.植物细胞的胞间连丝具有物质运输的作用B.动物细胞间的粘着性与细胞膜上的糖蛋白有关C.ATP水解释放的能量可用于细胞内的吸能反应D.哺乳动物的细胞可以合成蔗糖,也可以合成乳糖【答案】D【解析】本题考查的是细胞结构和化学成份这两个知识点。
细胞膜的功能之一信息传递,其方式如通过胞间连丝,A项正确。
糖蛋白与细胞相互识别有关,又与细胞间的粘着性有关,癌变后的细胞由于糖蛋白减少所以易转移和扩散, B项正确。
ATP水解后有能量可用于各项生命活动,如电能、热能等其他细胞内的吸能反应,C项正确。
蔗糖是植物内的一种二糖,在哺乳动物的细胞不可以合成,故D项是错误的。
2.同一动物个体的神经细胞与肌肉细胞在功能上是不同的,造成这种差异的主要原因是A.两者所处的细胞周期不同B.两者合成的特定蛋白不同C.两者所含有的基因组不同D.两者核DNA复制的方式不同【答案】B【解析】本题考查的是细胞分化这个知识点。
同一生物个体的不同细胞,在形态结构与功能上是不同的,是基因的选择性表达的结果,其DNA分子或遗传物质并没有差异,A、C、D都不正确,基因的选择性表达之后,形成了不同的蛋白质,使各细胞中的蛋白质有所不同,故B项正确。
3.关于在正常情况下组织液的生成与回流的叙述,错误的是A.生成与回流的组织液中氧气的含量相等B.组织液不断生成与回流,并保持动态平衡C.血浆中的有些物质经毛细血管动脉端进入组织液D.组织液中的有些物质经毛细血管静脉端进入血液【答案】D【解析】本题考查的是内环境成份这一个知识点。
内环境中的各种成份是处于动态平衡之中,氧气在生成的组织液中会高于回流的组织液,因为组织细胞在不断消耗氧气,这样氧气就能以自由扩散形式从组织液进入组织细胞,故A不正确,B正确。
因为毛细血管壁有一定通透性,所以血浆中的小分子物质可以透过毛细血管动脉端进入组织液,同理,组织液中的有些物质经毛细血管静脉端进入血液,血浆与组织液可以发生物质相互渗透。
2014年高考文综全国卷2(含详细答案)
文科综合能力测试试卷 第1页(共38页) 文科综合能力测试试卷 第2页(共38页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)文科综合能力测试使用地区:宁夏、辽宁、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分300分,考试时间150分钟。
考生注意:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷本卷共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
珠江三角洲某中心城市周边的农民竞相在自家的宅基地上建起了“握手楼”(图1)。
据此完成1,2题。
图11. 农民建“握手楼”的直接目的是( )A. 吸引外来人口定居B. 吸引市民周末度假C. 增加自住房屋面积D. 出租房屋增加收入2. “握手楼”的修建反映该中心城市 ( )A. 居住人口减少B. 城区房价昂贵C. 人居环境恶化D. 城区不再扩大总部位于江苏徐州(约34°N ,117°E )的某企业承接了甲国(图2)价值7.446亿美元的工程机械订单。
据此完成3~5题。
图23. 甲国位于( )A. 欧洲B. 非洲C. 北美洲D. 南美洲4. 2011年6月21日,该订单的首批产品从徐州发货。
这一日,徐州与甲国首都相比( ) A. 徐州的正午太阳高度较高 B. 徐州的白昼较短 C. 两地正午物影方向相同D. 两地日出方位角相同5. 该批产品运往甲国,最近的海上航线需经( )A. 好望角B. 苏伊士运河C. 巴拿马运河D. 麦哲伦海峡降水在生态系统中被分为蓝水和绿水。
2014高考全国新课标II卷生物试题评价与解析
试题特点
1紧扣教材,强化对基础知识和基本技能的考 查,充分体现了回归教材的命题趋势。 2突出主干知识的考查,注重多种能力考查 3强调学科内知识之间的内在联系 4突出了实验的考查
1.关于细胞的叙述,错误的是 A.植物细胞的胞间连丝具有物质运输的作用 B.动物细胞间的黏着性与细胞膜上的糖蛋白有关 C.ATP水解释放的能量可用于细胞内的吸能反应 D.哺乳动物的细胞可以合成蔗糖,也可以合成乳糖 【答案】D
在细胞免疫过程中,效应T细胞的作用是 识别并与被病原体入侵的宿主细胞密切接触,裂解宿主细胞。肠腔进入血液 ___________________________。 淋巴因子 (3)在特异性免疫中,T细胞可产生______________ 因 B 子,受到抗原刺激的________ 细胞可在该因子的作用下, 增殖分化为浆细胞,浆细胞可产生____________ ,参与 抗体 体液免疫过程。
31.(9分) 某陆地生态系统中,除分解者外,仅有甲、乙、丙、丁、 戊五个种群。调查可知,该生态系统有四个营养级,营养 级之间的能量传递效率为10—20%,且每个种群只处于 一个营养级,一年内输入各种群的能量数值如下表所示, 表中能量数值的单位相同。回答下列问题: 种群 甲 乙 能量 3.56 12.80 丙 10.30 丁 0.48 戊 226.50
(1) 请画出该生态系统中的食物网 (2) 甲和乙的种间关系是 捕食 ;种群丁是该生态系统 生物组分中的 消费者 。 (3) 一般来说,生态系统的主要功能包括 物质循环 、 能量流动 ,此外还具有信息传递等功能。碳对生物和 生态系统具有重要意义,碳在 生物群落和 无机环境之间 的循环主要以CO2的形式进行。
40.[生物——选修3:现代生物科技专题](15分)
2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)
2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B 两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y 1+y 2=3,y 1y 2=﹣.∴S△OAB =S △OAF +S△OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【考点】LM :异面直线及其所成的角.【专题】5F :空间位置关系与距离.【分析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,如图:BC 的中点为O ,连结ON ,,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB===, 在△ANO 中,由余弦定理可得:cos ∠ANO===.故选:C .【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2014年高考生物试卷及答案解析汇总(全国15套)
2014高考生物试题汇编(含解析)目录1、全国大纲卷(考试地区:广西)2---72、新课标全国卷(I)(河南、河北、山西、陕西、湖北、江西、湖南)7--133、新课标全国卷(II)(青海、西藏、甘肃、贵州、吉林、宁夏、内蒙古、黑龙江、新疆、云南、辽宁)14--204、北京市21--275、浙江省27--326、四川省33--407、天津市40--478、福建省47--549、重庆市55--6010、安徽省61--6711、上海市(生命科学)67--8712、广东省87--9613、山东省96--10614、江苏省(生物)106--12315、海南(生物)123--1352014年普通高等学校招生全国统一考试(大纲卷)理科综合生物部分(大纲卷)1.下列有关细胞核的叙述,错误..的是A.蛋白质是细胞核中染色质的组成成分B.细胞核中可进行遗传物质的复制和转录C.小分子物质可以通过核孔,大分子物质不能D.有丝分裂过程中存在核膜消失和重新形成的现象【答案】C【解析】细胞核中染色质是由DNA和组蛋白构成,A正确;细胞核是遗传物质复制和转录的主要场所,B正确;原则上分子直径较小的物质可通过核孔,大分子物质如酶或mRNA 也能通过核孔,故C项错误;有丝分裂过程中核膜的消失和重建分别在前期和末期,D项正确。
(大纲卷)2.A TP是细胞中重要的高能磷酸化合物。
下列有关ATP的叙述,错误..的是A.线粒体合成的ATP可在细胞核中发挥作用B.机体在运动时消耗ATP,睡眠时则不消耗A TPC.在有氧与缺氧的条件下细胞质基质中都能形成A TPD.植物根细胞吸收矿质元素离子所需的A TP来源于呼吸作用【答案】B【解析】细胞核无法进行细胞呼吸,细胞核需要的ATP主要由线粒体提供,A项正确;ATP是生命活动直接的能源物质,机体无时无刻不在消耗ATP,睡眠时生命活动并没停止,也需要消耗能量,故B项错误;有氧呼吸和无氧呼吸第一阶段都在细胞质基质中有ATP形成,C项正确;根细胞吸收矿质元素离子主要通过主动运输的形式,其消耗的能量主要是由细胞呼吸所提供的ATP,故D项正确。
2014年全国高考新课标2卷理综试题(含答案)
2014年普通高等学校招生全国统一考试(新课标Ⅱ卷)理科综合能力测试化学部分7.下列过程没有发生化学反应的是()A.用活性炭去除冰箱中的异味B.用热碱水清除炊具上残留的油污C.用浸泡过高锰酸钾溶液的硅藻土保鲜水果D.用含硅胶、铁粉的透气小袋与食品一起密封包装8.四联苯的一氯代物有( )A.3种B.4种C.5种D.6种9.下列反应中,反应后固体物质增重的是()A.氢气通过灼热的CuO粉末B.二氧化碳通过Na2O2粉末C.铝与Fe2O3发生铝热反应D.将锌粒投入Cu(NO3)2溶液10.下列图示实验正确的是()A.除去粗盐溶液中的不溶物B.碳酸氢钠受热分解C.除去CO气体中的CO2气体D.乙酸乙酯制备演示实验11.一定温度下,下列溶液的离子浓度关系式正确的是()A.pH=5的H2S溶液中,c(H+)=c(HS—)=1×10—5mol•L-1B.pH=a的氨水溶液,稀释10倍后,其pH=b,则a=b+1C.pH=2的H2C2O4溶液与pH=12的NaOH溶液任意比例混合:c(Na+)+c(H+)=c(OH—)+c(HC2O4-)D.pH相同的①CH3COONa②NaHCO3③NaClO三种溶液的c(Na+):①〉②〉③12.2013年3月我国科学家报道了如图所示的水溶液锂离子电池体系,下列叙述错误的是()A.a为电池的正极B.电池充电反应为LiMn2O4=Li1-x Mn2O x+xLiC.放电时,a极锂的化合价发生变化D.放电时,溶液中Li+从b向a迁移13.室温下,将1mol的CuSO4•5H2O(s)溶于水会使溶液温度降低,热效应为△H1,将1mol 的CuSO4(s)溶于水会使溶液温度升高,热效应为△H2,CuSO4•5H2O受热分解的化学方程式为:CuSO4•5H2O(s) 错误!CuSO4(s)+5H2O(l),热效应为△H3.则下列判断正确的是() A.△H2>△H3 B.△H1<△H3 C.△H1+△H3=△H2 D.△H1+△H2〉△H3 26.(13分)在容积为1。
历年高考理综试题及答案
某研究者用抗原(A)分别免疫3只同种小鼠(X、Y与Z),每只小鼠免疫5次,每次免疫一周后测定各小鼠血清抗体的效价(能检测出抗原抗体反应的血清最大稀释倍数),结果如下图所示。
若要制备杂交瘤细胞,需取免疫后小鼠的B淋巴细胞(染色体数目为40条),并将该细胞与体外培养的小鼠骨髓瘤细胞(染色体数目为60条)按一定比例加入试管中,再加入聚乙二醇诱导细胞融合,经筛选培养及抗体检测,得到不断分泌抗A抗体的杂交瘤细胞。
2014年普通高等学校招生全国统一考试
理科综合生物试题(新课标1卷)
一.选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.关于细胞膜结构与功能的叙述,错误的是
A.脂质与蛋白质是组成细胞膜的主要物质
B.当细胞衰老时,其细胞膜的通透性会发生改变
C.甘油是极性分子,所以不能以自由扩散的方式通过细胞膜
从森林被全部砍伐的地方开始的演替为次生演替(3分)
(2)形成森林需要一定的土壤条件,上述次生演替起始时即具备该条件,而从裸岩开始的演替要达到该条件需要漫长的时间。(3分)(3)变快(1分) 发生改变(1分)(每空1分,共2分)
31.(10分)(1)呼吸 下降(每空2分共4分) (2)降低 增加(每空2分共4分) (3)会(2分)
酵母膏
无机盐
淀粉
纤维素粉
琼脂
CR溶液
水
培养基甲
+
+
+
+
-
+
+
培养基乙
+
+
+
-
+
+
2014年高考理综试题新课标全国卷1带答案解析
2015年全国卷1理综第Ⅰ卷<选择题共126分>可能用到的相对原子质量:H 1 C 12 N 14 O 16 Cl 35.5 K 39Cr 52 Fe 56 Cu 64 Br 80 Ag 108 I 127 一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列叙述错误的是A.DNA与ATP中所含元素的种类相同B.一个tRNA分子中只有一个反密码子C.T2噬菌体的核酸由脱氧核糖核苷酸组成D.控制细菌性状的基因位于拟核和线粒体中的DNA上2.下列关于植物生长素的叙述,错误的是A.植物幼嫩叶片中的色氨酸可转变为生长素B.成熟茎韧皮部中的生长素可以进行非极性运输C.幼嫩细胞和成熟细胞对生长素的敏感程度相同D.豌豆幼苗切段中乙烯的合成受生长素浓度的影响3.某同学给健康实验兔静脉滴注0.9%的NaCl溶液<生理盐水>20 mL后,会出现的现象是A.输入的溶液会从血浆进入组织液B.细胞内液和细胞外液分别增加10 mLC.细胞内液Na+的增加远大于细胞外液Na+的增加D.输入的Na+中50%进入细胞内液,50%分布在细胞外液4.下列关于初生演替中草本阶段和灌木阶段的叙述,正确的是A.草本阶段与灌木阶段群落的丰富度相同B.草本阶段比灌木阶段的群落空间结构复杂C.草本阶段比灌木阶段的群落自我调节能力强D.草本阶段为灌木阶段的群落形成创造了适宜环境5.人或动物PrP基因编码一种蛋白<PrP°>,该蛋白无致病性。
PrP°的空间结构改变后成为PrP°°<朊粒>,就具有了致病性。
PrP°°可以诱导更多的PrP°转变为PrP°°,实现朊粒的增殖,可以引起疯牛病。
据此判断,下列叙述正确的是A.朊粒侵入机体后可整合到宿主的基因组中B.朊粒的增殖方式与肺炎双球菌的增殖方式相同C.蛋白质空间结构的改变可以使其功能发生变化D.PrP°转变为PrP°°的过程属于遗传信息的翻译过程6.抗维生素D佝偻病为X染色体显性遗传病,短指为常染色体显性遗传病,红绿色盲为X染色体隐性遗传病,白化病为常染色体隐性遗传病。
2014年高考理综新课标全国卷I生物试题分析及解析
2014年高考理综新课标全国卷I生物试题分析及解析适用省份:河南、河北、山西、陕西、湖北、江西、湖南1.关于细胞膜结构和功能的叙述,错误的是A.脂质和蛋白质是组成细胞膜的主要物质B.当细胞衰老时,其细胞膜的通透性会发生改变C.甘油是极性分子,所以不能以自由扩散的方式透过细胞膜D.细胞产生的激素与靶细胞膜上相应受体的结合可实现细胞间的信息传递【答案】C【解析】细胞膜的基本骨架是磷脂双分子层,依据相似相溶原理(由于极性分子间的电性作用,使得极性分子组成的溶质易溶于极性分子组成的溶剂),极性分子甘油易以自由扩散的方式通过细胞膜。
2.正常生长的绿藻,照光培养一段时间后,用黑布迅速将培养瓶罩上,此后绿藻细胞的叶绿体内不可能发生的现象是A.O2的产生停止B.CO2的固定加快C.ATP/ADP比值下降D.NADPH/NDP+比值下降【答案】B【解析】用黑布将培养瓶罩住,光反应停止,氧气的产生停止,A 项正确;光反应停止,[H]和ATP 的产生停止,导致暗反应C3 的还原速度减慢,C3 在叶绿体内积累导致二氧化碳的固定减慢,B 项错误;光反应停止,ATP 的生成减少,ATP/ADP 比值下降,C 项正确;光反应停止,NADPH([H])的产生减少,NADPH/NADP比值下降,D 项正确。
3.内环境稳态是维持机体正常生命活动的必要条件,下列叙述错误的是A.内环境保持相对稳定有利于机体适应外界环境的变化B.内环境稳态有利于新陈代谢过程中酶促反应的正常进行C.维持内环境中Na+、K+浓度的相对稳定有利于维持神经细胞的正常兴奋性D.内环境中发生的丙酮酸氧化分解给细胞提供能量,有利于生命活动的进行【答案】D【解析】内环境保持相对稳定有利于机体适应外界环境的变化,为细胞提供一个相对稳定的生活环境,A 项正确;内环境稳态可使细胞生活在温度和pH 等相对稳定的环境中,有利于新陈代谢过程中酶促反应的正常进行, B 项正确;静息电位的维持主要依赖于K+外流,动作电位的产生主要依赖于Na+内流,维持内环境中Na+、K+浓度的相对稳定有利于维持神经细胞的正常兴奋性, C 项正确;丙酮酸的氧化分解发生在细胞内(丙酮酸的彻底氧化分解在线粒体中,不彻底氧化分解在细胞质基质中),没有发生在内环境中,D 项错误。
(完整word版)2014高考语文全国新课标2卷+答案解析
2014年普通高等学校招生全国统一考试语文注意事项:1.本试卷分第I卷(阅读题)和第II卷(表达题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回.第 I卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1〜3题.周代,尽管关于食品安全事件的记载不多,但我们还是看到,由于食品安全关系重大,统治者对此非常重视并作出了特别规定.周代的食品交易是以直接收获采摘的初级农产品为主,所以对农产品的成熟度十分关注.据《礼记》记栽,用代对食品交易的规定有:“五谷不时,果实未熟,不鬻于市.”这是我国历史上最早的关于食品安全管理的记录.汉唐时期,食品交易活动非常频繁,交易品种十分丰富.为杜绝有毒有害食品流入市场,国家在法律上作出了相应的规定.汉朝《二年律令》规定:“诸食脯肉,脯肉毒杀、伤、病人者,亟尽孰燔其余•……当燔弗燔,及吏主者,皆坐脯肉赃,与盗同法.即肉类因腐坏等因素可能导致中毒者,应尽快焚毁,否则将处罚当事人及相关官员.唐朝《唐律》规定:“脯肉有毒,曾经病人,有余者速焚之,违者杖九十.若故与人食并出卖,令人病者,徒一年;以故致死者,绞.即人自食致死者,从过失杀人法。
”从《唐律》中可以看到,在唐代,知脯肉有毒不速焚而构成的刑事犯罪分为两种情况,处罚各不相同:一是得知脯肉有毒时,食品的所有者应当立刻焚毁所剩有毒食品,以绝后患,否则杖九十;二是明知脯肉有毒而不立刻焚毁,致人中毒,则视情节及后果以科罚。
宋代,饮食市场空前繁荣。
孟元老在《东京梦华录》中,追述了北宋都城开封府的城市风貌,并且以大量笔墨写到饮食业的昌盛,书中共提到一百多家店镝以及相关行会. 商品市场的繁荣,不可避免地带来一些问题,一些商贩“以物市于人,敝恶之场,饰为新奇;假伪之物,饰为真实.如绢帛之用胶糊,米麦之增温润,肉食之灌以水,药材之易以他物(《袁氏世范》)有的不法分子甚至采用鸡塞沙,鹅羊吹气、卖盐杂以灰之类伎俩谋取利润,为了加强对食品掺假,以次充好现象的监督和管理,宋代规定从业者必须加入行会,而行会必须对商品质量负责,市肆谓之行者,因官府料索而得此名,不以其物小大,但合充用者,皆置为行,虽医卜亦有职.”(《都城纪胜》商人们依经营类型组成行会,商铺,手工业和其他服务性行业的相关人员必领加入行会组织,并按行业登记在籍,否则就不能从业经营.各个行会对生产经营的商品质量进行把关,行会的首领作为拉保人,负责评定物价和监察不法行为.除了由行会把关外,宋代法律也继承了《唐律》的规定,对有毒有害食品的销售者予以严惩上述朝代对食品流通的安全管理及有关法律举措,可以给我们很多启示•也可以为现今我国食品质量和安全监管模式的合理构建提供新的思路和路径选择.(摘编自张炸达《古代食品安全监管述略》>1.下列关于原文第一、二两段内容的表述,不正确的一项是A周代统治者严禁未成熟的果实和谷物进入流通市场,以防止此类初级农产品引起食品安全方面的问题。
2014年高考生物全国卷2新课标配答案解析
2014新课标全国卷Ⅱ1.A4[2014·新课标全国卷Ⅱ] 关于细胞的叙述,错误的是( )A.植物细胞的胞间连丝具有物质运输的作用B.动物细胞间的黏着性与细胞膜上的糖蛋白有关C.ATP水解释放的能量可用于细胞内的吸能反应D.哺乳动物的细胞可以合成蔗糖,也可以合成乳糖1.D [解析]胞间连丝是植物细胞间的通讯连接,是由穿过细胞壁的质膜围成的细胞质通道,所以具有物质运输的作用,A项正确。
癌细胞膜上的糖蛋白减少,使癌细胞彼此之间的黏着性显著降低,可见动物细胞间的黏着性与细胞膜上的糖蛋白有关,B项正确.ATP是细胞的直接能源物质,细胞内的吸能反应一般与ATP的水解反应相联系,C项正确.蔗糖是植物细胞特有的二糖,哺乳动物的细胞不能合成,D项错误。
2.D2[2014·新课标全国卷Ⅱ] 同一动物个体的神经细胞与肌细胞在功能上是不同的,造成这种差异的主要原因是( )A.二者所处的细胞周期不同B.二者合成的特定蛋白不同C.二者所含有的基因组不同D.二者核DNA的复制方式不同2.B [解析] 同一动物个体的神经细胞和肌细胞都是由同一个受精卵分裂、分化而来,所以二者含有相同的基因组,C项错误。
神经细胞与肌细胞都是高度分化的细胞,没有连续分裂的能力,所以不存在细胞周期,A项错误。
核DNA的复制方式都是半保留复制,D项错误。
细胞分化是基因选择性表达的结果,在不同类型的细胞中表达的基因不一样,导致合成的特定蛋白不相同,B项正确。
3.H1[2014·新课标全国卷Ⅱ] 关于在正常情况下组织液生成与回流的叙述,错误的是() A.生成与回流的组织液中氧气的含量相等B.组织液不断生成与回流,并保持动态平衡C.血浆中的有些物质经毛细血管动脉端进入组织液D.组织液中的有些物质经毛细血管静脉端进入血液3.A [解析]组织液与组织细胞之间发生物质交换,氧气由组织液扩散进入组织细胞参与氧化分解,所以回流的组织液氧气含量降低,A项错误。
(高清版)2014年全国新课标II卷地理试题解析
题。
6.下列河流中,绿水比例最大的是
A√.塔里木河流域
C.雅鲁藏布江流域
B.长江流域 D.黑龙江流域
7.在干旱和半干旱地区,下列措施中,使绿水中生产
性绿水比重提高最多的是
A.水田改旱地
B.植树造林
C√ .覆膜种植农作物
D.修建梯田
图3示意科隆群岛(加拉帕戈斯群
岛)的地理位置。
读图3,完成8~9题 科
①盛行西风 ②地形抬升 ③暖流增湿 ④反气旋控制
√A.①②
C.③④
B.②③ D.①④
11.下列农业生产类型中,最适宜在图示岛屿发展的是
A.水田农业
B.迁移农业
C.种植园农业
√D.畜牧业
(2014新课及沼泽的吸收(附)影响河流泥沙和营养
60°
首都 海洋
江苏徐州(约34°N,117°E) 图2
5.该批产品运往甲国,最近的海上航线需经
A.好望角
B.苏伊士运河
C√ .巴拿马运河 D.麦哲伦海峡
降水在生态系统中被分为蓝水和绿水。蓝水是形成
径流的部分(包括地表径流和地下径流);绿水是被蒸
发(腾)的部分,其中被植物蒸腾的部分称为生产性绿
水,被蒸发的部分被称为非生产性绿水。据此完成6~7
(2)分析建三江农作物病虫害较少的气候原因。(6分)
①纬度高,冬季寒冷而漫长,害虫不易越冬; ②夏季气温日较差大,日均温较低,不利于虫害 生存和繁殖。
(3)简述建三江水稻种植过程中化肥施用量较少的原因。 (4分)
①土壤肥沃. ②精准施肥,控制施肥量.
建三江位于三江平原腹地,于1957年开始垦荒,目前 面积1.24万平方千米,人口20多万。这里空气清新,水 源丰富且水质优良,土壤肥沃。近年来,建三江重点种植 水稻,有“中国绿色米都”之称。建三江采用现代技术科 学生产。如定点监测土壤肥力并精准施肥。
年高考新课标全国2卷生物试题及答案
年高考新课标全国2卷生物试题及答案年高考新课标全国2卷生物试题及答案年高考新课标全国2卷生物试题及答案1.关于细胞的叙述,错误的是A.植物细胞的胞间连丝具有物质运输的作用B.动物细胞间的黏着性与细胞膜上的糖蛋白有关C.ATP水解释放的能量可用于细胞内的吸能反应D.哺乳动物的细胞可以合成蔗糖,也可以合成乳糖[答案]D2.同一动物个体的神经细胞与肌细胞在功能上是不同的,造成这种差异的主要原因是A.二者所处的细胞周期不同 B.二者合成的特定蛋白不同C.二者所含有的基因组不同 D.二者核DNA的复制方式不同[答案]B3.关于正常情况下组织液生成与回流的叙述,错误的是A.生成与回流的组织液中氧气的含量相等B.组织液不断生成与回流,并保持动态平衡C.血浆中的有些物质经毛细血管动脉端进入组织液D.组织液中的有些物质经毛细血管静脉端进入血液[答案]A4.将某植物花冠切成大小和形状相同的细条,分为a、b、c、d、e和f组(每组的细条数相等),取上述6组细条分别置于不同浓度的蔗糖溶液中,浸泡相同时间后测量各组花冠细条的长度,结果如图所示。
假如蔗糖溶液与花冠细胞之间只有水分交换,则A.实验后,a组液泡中的溶质浓度比b组的高B.浸泡导致f组细胞中液泡的失水量小于b组的C.a组细胞放在蔗糖溶液中失水或吸水所耗ATP大于b组D.使细条在浸泡前后长度不变的蔗糖浓度介于0.4~0.5mol﹒L-1之间[答案]D5.关于核酸的叙述,错误的是A.细胞核中发生的转录过程有RNA聚合酶的参与B.植物细胞的线粒体和叶绿体中均可发生DNA的复制C.双链DNA分子中一条链上磷酸和核糖是通过氢键连接的D.用甲基绿和吡罗红染色可观察DNA和RNA在细胞中的分布[答案]C6.关于光合作用和呼吸作用的叙述,错误的是A.磷酸是光反应中合成ATP所需的反应物B.光合作用中叶绿素吸收光能不需要酶的参与C.人体在剧烈运动时所需的能量由乳酸分解提供D.病毒核酸的复制需要宿主细胞的呼吸作用提供能量[答案]C29.(10分)某植物净光合速率的变化趋势如图所示。
2014年高考全国卷生物部分
2014年全国高考(新课标全国卷Ⅰ)生物部分试题、答案及解析一、选择题(每小题6分,共36分)1.关于细胞膜结构和功能的叙述,错误的是A.脂质和蛋白质是组成细胞膜的主要物质B.当细胞衰老时,其细胞膜的通透性会发生改变C.甘油是极性分子,所以不能以自由扩散的方式通过细胞膜D.细胞产生的激素与靶细胞上相应受体的结合可实现细胞间的信息传递(C )2.正常生长的绿藻,照光培养一段时间后,用黑布迅速将培养瓶罩上,此后绿藻细胞的叶绿体内不可能发生的现象是A.O2的产生停止B.CO2的固定加快C.ATP/ADP比值下降D.NADPH/NADP+比值下降( B )3.内环境稳态是维持机体正常生命活动的必要条件,下列叙述错误的是A.内环境保持相对稳定有利于机体适应外界环境的变化B.内环境稳态有利于新陈代谢过程中酶促反应的正常进行C.维持内环境中Na+、K+浓度的相对稳定有利于维持神经细胞的正常兴奋性D.内环境中发生的丙酮酸氧化分解给细胞提供能量,有利于生命活动的进行(D )4.下列关于植物细胞质壁分离实验的叙述,错误的是A.与白色花瓣相比,采用红色花瓣有利于实验现象的观察B.用黑藻叶片进行实验时,叶绿体的存在会干扰实验现象的观察C.用紫色洋葱鳞片叶外表皮不同部位观察到的质壁分离程度可能不同D.紫色洋葱鳞片叶外表皮细胞的液泡中的色素,有利于实验现象的观察( B )5.下图为某种单基因常染色体隐性遗传病的系谱图(深色代表的个体是该遗传病患者,其余为表现型正常个体)。
近亲结婚时该遗传病发病率较高,假定图中第Ⅳ代的两个个体婚配生出一个患该遗传病子代的概率是1/48,那么,得出此概率值需要的限定条件是A.Ⅰ—2和Ⅰ—4必须是纯合子B.Ⅱ—1、Ⅲ—1、Ⅲ—4必须是纯合子C.Ⅱ—2、Ⅱ—3、Ⅲ—2和Ⅲ—3必须是纯合子D.Ⅱ—4、Ⅱ—5、Ⅳ—1和Ⅳ—2必须是纯合子(B )6.某种植物病毒V是通过稻飞虱吸食水稻汁液在水稻间传播的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014新课标全国卷Ⅱ1.A4[2014·新课标全国卷Ⅱ] 关于细胞的叙述,错误的是( )A.植物细胞的胞间连丝具有物质运输的作用B.动物细胞间的黏着性与细胞膜上的糖蛋白有关C.ATP水解释放的能量可用于细胞内的吸能反应D.哺乳动物的细胞可以合成蔗糖,也可以合成乳糖1.D [解析] 胞间连丝是植物细胞间的通讯连接,是由穿过细胞壁的质膜围成的细胞质通道,所以具有物质运输的作用,A项正确。
癌细胞膜上的糖蛋白减少,使癌细胞彼此之间的黏着性显著降低,可见动物细胞间的黏着性与细胞膜上的糖蛋白有关,B项正确。
ATP是细胞的直接能源物质,细胞内的吸能反应一般与ATP的水解反应相联系,C项正确。
蔗糖是植物细胞特有的二糖,哺乳动物的细胞不能合成,D项错误。
2.D2[2014·新课标全国卷Ⅱ] 同一动物个体的神经细胞与肌细胞在功能上是不同的,造成这种差异的主要原因是( )A.二者所处的细胞周期不同B.二者合成的特定蛋白不同C.二者所含有的基因组不同D.二者核DNA的复制方式不同2.B [解析] 同一动物个体的神经细胞和肌细胞都是由同一个受精卵分裂、分化而来,所以二者含有相同的基因组,C项错误。
神经细胞与肌细胞都是高度分化的细胞,没有连续分裂的能力,所以不存在细胞周期,A项错误。
核DNA的复制方式都是半保留复制,D项错误。
细胞分化是基因选择性表达的结果,在不同类型的细胞中表达的基因不一样,导致合成的特定蛋白不相同,B项正确。
3.H1[2014·新课标全国卷Ⅱ] 关于在正常情况下组织液生成与回流的叙述,错误的是( ) A.生成与回流的组织液中氧气的含量相等B.组织液不断生成与回流,并保持动态平衡C.血浆中的有些物质经毛细血管动脉端进入组织液D.组织液中的有些物质经毛细血管静脉端进入血液3.A [解析] 组织液与组织细胞之间发生物质交换,氧气由组织液扩散进入组织细胞参与氧化分解,所以回流的组织液氧气含量降低,A项错误。
组织液与血浆之间是不断进行物质交换并保持动态平衡的,B项正确。
血浆中的物质经毛细血管动脉端进入组织液,组织液中的物质经毛细血管静脉端回到血浆,C、D项正确。
4.C2、C3[2014·新课标全国卷Ⅱ] 将某植物花冠切成大小和形状相同的细条,分为a、b、c、d、e和f组(每组的细条数相等),取上述6组细条分别置于不同浓度的蔗糖溶液中,浸泡相同时间后测量各组花冠细条的长度,结果如图所示。
假如蔗糖溶液与花冠细胞之间只有水分交换,则( )A.实验后,a组液泡中的溶质浓度比b组的高B.浸泡导致f组细胞中液泡的失水量小于b组的C.a组细胞在蔗糖溶液中失水或吸水所耗ATP大于b组D.使细条在浸泡前后长度不变的蔗糖浓度介于0.4~0.5 mol·L-1之间4.D [解析] 实验前长度/实验后长度的比值为1时,水分进出细胞达到平衡;比值小于1时,表明细胞吸水,且比值越小花冠吸水越多;比值大于1时,表明细胞失水,且比值越大,花冠失水越多。
据图可推知, a组吸水多于b组,因此实验后a组细胞液中溶质浓度低于b组,A项错误。
f 组比值大于b组,因此失水量大于b组,B项错误。
水分子进出细胞的方式是自由扩散,不消耗能量,C项错误。
由c组吸水,d组失水,细胞液浓度与外界溶液浓度相等时实验前长度/实验后长度=1,判断出细条的细胞液浓度介于0.4~0.5 mol·L-1之间,D项正确。
5.A2[2014·新课标全国卷Ⅱ] 关于核酸的叙述,错误的是( )A.细胞核中发生的转录过程有RNA聚合酶的参与B.植物细胞的线粒体和叶绿体中均可发生DNA的复制C.双链DNA分子中一条链上的磷酸和核糖是通过氢键连接的D.用甲基绿和吡罗红染色可观察DNA和RNA在细胞中的分布5.C [解析] 转录是在RNA聚合酶的参与下,以DNA的一条链为模板合成RNA的过程,A项正确。
线粒体和叶绿体中都含有DNA,都可进行DNA的复制,B项正确。
两个脱氧核苷酸链的碱基之间以氢键相连,一条链上磷酸与脱氧核糖通过磷酸二酯键相连,且组成DNA的五碳糖是脱氧核糖而不是核糖,C项错误。
甲基绿使DNA呈现出绿色,而吡罗红使RNA呈现出红色,用甲基绿和吡罗红的混合染色剂将细胞染色,可显示出DNA和RNA在细胞中的主要分布情况,D项正确。
6.C8[2014·新课标全国卷Ⅱ] 关于光合作用和呼吸作用的叙述,错误的是( )A.磷酸是光反应中合成ATP所需的反应物B.光合作用中叶绿素吸收光能不需要酶的参与C.人体在剧烈运动时所需要的能量由乳酸分解提供D.病毒核酸的复制需要宿主细胞的呼吸作用提供能量6.C [解析] 合成ATP的原料是ADP和磷酸,A项正确。
光合作用吸收光能是通过色素蛋白复合体来完成的,不需要酶的参与,B项正确。
人体剧烈运动时,肌细胞无氧呼吸产生乳酸,同时释放少量能量,乳酸是无氧呼吸的产物,不能提供能量,C项错误。
病毒不具有独立代谢的能力,病毒增殖所需的能量都是由宿主细胞呼吸产生的,D项正确。
29.C6[2014·新课标全国卷Ⅱ] 某植物净光合速率的变化趋势如图所示。
据图回答下列问题:(1)当CO2浓度为a时,高光强下该植物的净光合速率为______。
CO2浓度在a~b之间时,曲线________表示了净光合速率随CO2浓度的增高而增高。
(2)CO2浓度大于c时,曲线B和C所表示的净光合速率不再增加,限制其增加的环境因素是______。
(3)当环境中CO2浓度小于a时,在图示的3种光强下,该植物呼吸作用产生的CO2量________(填“大于”“等于”或“小于”)光合作用吸收的CO2量。
(4)据图可推测,在温室中,若要采取提高CO2浓度的措施来提高该种植物的产量,还应该同时考虑__________这一因素的影响,并采取相应措施。
29.(1)0 A、B和C (2)光强(3)大于(4)光强[解析] (1)据图可知,CO2浓度为a时,高光强(曲线A)下的纵坐标为0,即净光合速率为0;CO2浓度在a~b之间时,曲线A、B、C均表现为上升趋势,即三者的净光合速率均随CO2浓度增高而增高。
(2)CO2浓度大于c时,高光强条件下(曲线A)的净光合速率仍然能够随着CO2浓度的增高而增高,而中光照与低光照条件下的净光合速率不再随CO2浓度的增高而增高,由此可知,限制B、C净光合速率增加的环境因素不再是CO2浓度,而是光强。
(3)CO2浓度小于a时,3种光强下,净光合速率均小于0,即呼吸速率大于光合速率,也就是说呼吸作用产生的CO2量大于光合作用吸收的CO2量。
(4)据图可知,CO2浓度和光强会影响净光合速率从而影响植物的产量,故若要提高植物的产量,应综合考虑CO2浓度和光强对植物的影响。
30.H5[2014·新课标全国卷Ⅱ] 为了探究某种复方草药对某种细菌性乳腺炎的疗效是否与机体免疫功能增强有关,某研究小组将细菌性乳腺炎模型小鼠随机分为实验组(草药灌胃)、空白对照组(蒸馏水灌胃)和阳性对照组(免疫增强剂A灌胃),并检测免疫指标。
回答下列问题:(1)研究发现:实验组小鼠吞噬细胞的吞噬能力显著高于阳性对照组,极显著高于空白对照组。
这一结果至少可说明该草药增强了小鼠的非特异性免疫功能。
非特异性免疫的特点是________________________________________________________________________。
(2)研究还发现:实验组小鼠的T细胞含量显著高于空白对照组,与阳性对照组相近。
这一结果说明:该草药可能通过提高小鼠的T细胞含量来增强其特异性免疫功能。
通常,在细胞免疫过程中,效应T细胞的作用是________________________________________________________________________ ________________________________________________________________________________________________________________________________________________。
(3)在特异性免疫中,T细胞可产生________因子,受到抗原刺激的________细胞可在该因子的作用下,增殖分化为浆细胞,浆细胞产生________,参与体液免疫过程。
30.(1)机体生来就有,不针对某一类特定病原体,而是对多种病原体都有一定的防御作用(2)识别并与被病原体入侵的宿主细胞紧密接触,可使之裂解死亡(3)淋巴 B 抗体[解析] (1)非特异性免疫人人生来就有,不针对某一类特定病原体,而是对多种病原体都有一定的防御作用。
(2)在细胞免疫过程中,T细胞受到抗原刺激后增殖、分化出大量的效应T细胞,效应T细胞可以识别并接触被病原体侵染的细胞(靶细胞),并使其裂解凋亡。
同时效应T细胞还可以攻击自身癌细胞,使其凋亡。
(3)体液免疫时,细胞受到抗原刺激后可以释放淋巴因子,淋巴因子可以促使受到抗原刺激的B 细胞增殖分化产生浆细胞和记忆细胞,浆细胞分泌抗体,该抗体与刺激其产生的抗原进行特异性结合。
31.K1[2014·新课标全国卷Ⅱ] 某陆地生态系统中,除分解者外,仅有甲、乙、丙、丁、戊5个种群。
调查得知,该生态系统有4个营养级,营养级之间的能量传递效率为10%~20%,且每个种回答下列问题:(1)请画出该生态系统中的食物网。
(2)甲和乙的种间关系是________;种群丁是该生态系统生物组分中的________。
(3)一般来说,生态系统的主要功能包括________、________,此外还具有信息传递等功能。
碳对生物和生态系统具有重要意义,碳在________和________之间的循环主要以CO2的形式进行。
31.(1)如图(2)捕食消费者(3)物质循环能量流动生物群落无机环境[解析] (1)根据题干获取的信息为“营养级之间的能量传递效率为10%~20%,且每个种群只处于一个营养级”。
分析图表,戊含有的能量最多,应属于第一营养级,属于生产者;乙和丙所含能量处于同一数量级并且二者之和(23.1)介于戊能量值的10%~20%之间,故乙和丙应同属于第二营养级;甲所含能量介于第二营养级的10%~20%之间,应属于第三营养级;丁所含能量介于第三营养级的10%~20%之间,应属于第四营养级,由此绘出食物网。
(2)由上述食物网得出,甲和乙两种间具有捕食关系。
戊所含能量最多,属于生产者,其他几个种群均属于消费者。
(3)物质循环、能量流动、信息传递是生态系统的三大功能;碳以CO2的形式在生物群落与无机环境之间循环往复。