二元一次方程组应用题(难题训练)
二元一次方程组应用题(50题)
二元一次方程组应用题1、用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?2、一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?3、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?4、某厂第二车间的人数比第一车间的人数的五分之四少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的四分之三.问这两个车间各有多少人?5、共青团中央部门发起了“保护母亲河”行动,某校九年级两个班的115名学生积极参与,已知九一班有三分之一的学生捐了10元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了5元,两班的捐款总额为785元,问两班各有多少名学生?6、某班同学去18千米的北山郊游。
只有一辆汽车,需分两组,甲组先乘车、乙组步行。
车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。
已知车速度是60千米/时,步行速度是4千米/时,求A点距北山的距离。
7、运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?8、现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?9、一船队运送一批货物,如果每艘船装50吨,还剩下25吨装不完;如果每艘船再多装5吨,还有35吨空位.求这个船队共有多少艘船,共有货物多少吨?10、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?11、有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?12、加工一批零件,甲先单独做8小时,然后又与乙一起加工5小时完成任务。
二元一次方程应用题(难题)精编版
二元一次方程应用题(难题)精编版1、已知以下二元一次方程:ax + by = cdx + ey = f求解该方程组,得到x和y的值。
2、给定以下程序:当输入x=2时,输出y=6;当输入x=1时,输出y=3;求当输入x=3时,输出的y的值。
3、___和___同一个方程组:ax + 3by = c2ax - by = 5c已知x=1,y=2,求a:b:c的值。
4、植物园门票价格如下:购票人数:1~50人,每人门票价为13元;51~100人,每人门票价为11元;100人以上,每人门票价为9元。
某学校七年级(3),(4)两个班共104人五一节去植物园春游,(3)班人数不到50人,(4)班人数超过50人。
估算以班为单位购票,则共需支付1240元。
求两个班各有多少人,并说明如何购票更合算。
5、___是古代著名的抗倭将领。
有一次,当倭寇来袭时,___主力尚未到达,城里的兵力仅360人。
___决定抽调100人去绕道袭击敌人的粮草,剩下的260人重新布置,使得敌人无论从哪个方向察看,都会认为士兵增加了25名。
请问,___第一次如何布阵?第二次如何布置兵力?6、一群学生前往滩坑电站建设工地进行社会实践活动。
男生戴白色安全帽,女生戴红色安全帽,休息时坐在一起。
每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色的安全帽是红色的2倍。
请问,这群学生共有多少人?7、一列快车长160米,一列慢车长170米。
如果两车相向而行,从相遇到离开需要5秒;如果同向而行,从快车追及慢车到离开需要33秒。
求快车和慢车的速度。
8、某商场计划用1万元从商家购进50台电视机。
已知该厂家生产3种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。
现在考虑两种不同型号的电视机购进50台,用去9万元。
这是否可行?如果商场销售一台甲种电视机可获得150元的利润,销售一台乙种电视机可获得200元的利润,销售一台丙种电视机可获得250元的利润。
二元一次方程组应用题(50题)
二元一次方程组应用题(50题)1. 婆婆家的流水问题婆婆家有一个流水池,从自来水管道接入流水池中,再从流水池中通过自来水管道供应给家中的各个水龙头。
假设自来水管道的水流速度为x,流水池的容积为y,通过自来水管道流出的水量为z。
已知当自来水管道的水流速度为8升/分钟时,流水池会在20分钟内完全注满。
求出流水池的容积和通过自来水管道流出的水量之间的关系。
解题思路:设流水池的容积为y升,通过自来水管道流出的水量为z升。
根据题意得到以下方程组: 1. 自来水管道的水流速度与流水池的注水时间关系:8升/分钟 = y/20分钟 2. 流水池的容积与自来水管道流出的水量关系:z = y根据方程组可以求得:y = 160升,z = 160升。
2. 兰兰购买书籍兰兰去书店购买了几本书,每本书的价格不等。
已知兰兰购买的这几本书的总价格为x元,当其中两本书的价格分别减少5元和增加7元后,他们的价格相等。
求出每本书的原始价格。
解题思路:设第一本书的价格为y元,第二本书的价格为z元。
根据题意得到以下方程组: 1. 兰兰购买的这几本书的总价格:x = y + z 2. 当其中两本书的价格分别减少5元和增加7元后,他们的价格相等:y - 5 = z + 7将第二个方程式代入第一个方程式中,求解可以得到:y = (x + 12) / 2,z = (x - 12) / 2。
3. 成绩排名班级里有30个学生,数学和英语两门课的成绩分别用x和y表示。
已知数学成绩平均分为80分,英语成绩平均分为85分。
学生成绩排名中,有10个学生的数学成绩高于平均分,有15个学生的英语成绩高于平均分。
求出数学和英语成绩中,既高于平均分,又相等的学生人数。
解题思路:设数学成绩高于平均分且相等的学生人数为y,英语成绩高于平均分且相等的学生人数为z。
根据题意得到以下方程组: 1. 数学成绩平均分为80分:(80 * 30 + y) / 30 =80 2. 英语成绩平均分为85分:(85 * 30 + z) / 30 = 85 3. 学生成绩排名中,有10个学生的数学成绩高于平均分:y = 10 4.学生成绩排名中,有15个学生的英语成绩高于平均分:z =15求解方程组可以得到:y = 10,z = 15,既高于平均分,又相等的学生人数为10。
二元一次方程组应用题(难题训练)
二元一次方程组应用题(难题训练)二元一次方程组应用题(难题训练)在高中数学课程中,二元一次方程组是一个重要的概念。
它涉及到两个未知数的线性方程组,通常用于解决实际问题。
本文将通过几个难题的训练来加深我们对二元一次方程组的理解和应用。
问题一:商务旅行小明去国外出差,在旅途中经过两个城市A和城市B。
他从城市A出发时速度为60公里/小时,在路上停留了2小时,然后以70公里/小时的速度继续行驶到达城市B。
如果整个旅程共耗时8小时,求两个城市之间的距离。
解析:设A到B的距离为d公里,则小明在A停留2小时后行驶的时间为(8-2)=6小时。
根据速度公式,我们得到以下两个方程:d = 60 * t1 + 70 * t2t1 + t2 = 6其中,t1为小明从A到B的行驶时间,t2为小明从B到A的行驶时间。
根据第二个方程,我们可以得到t1 = 6 - t2。
将其代入第一个方程中,整理得到:d = 60 * (6 - t2) + 70 * t2化简后得到:d = 420 + 10t2由于距离不能为负数,所以可以得到t2的取值范围为0 ≤ t2 ≤ 6。
将此范围代入上述方程,我们可以得到两个城市之间的距离d的取值范围为420 ≤ d ≤ 480。
因此,两个城市之间的距离为420到480公里之间。
问题二:环形跑道一个环形跑道的内侧是一个长为800米的椭圆,外侧是一个长为1000米的椭圆。
有两名运动员在该环形跑道上同时从同一起点开始跑,一圈跑完所用时间相差1分钟。
求解两名运动员的速度。
解析:设第一个运动员的速度为v1米/分钟,第二个运动员的速度为v2米/分钟。
根据题意,我们可以得到以下两个方程:800 = 2π * (800 / v1)1000 = 2π * (1000 / v2)其中,第一个方程表示内侧椭圆的周长,第二个方程表示外侧椭圆的周长。
令t1为第一个运动员跑一圈所用的时间,t2为第二个运动员跑一圈所用的时间。
根据题意,我们有t2 = t1 + 1。
完整版)二元一次方程组应用题经典题及答案
完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。
类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。
类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。
二元一次方程组应用题30道专项练习
二元一次方程组应用题1、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,求原来的两位数。
2、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:项目第一次第二次甲种货车辆数/辆 2 5乙种货车辆数/辆 3 6累计运货吨数/吨 15.5 35现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问:货车应付运费多少元3、初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。
问一工多少名学生、多少辆汽车。
4、某校举办物理竞赛,有120人报名参加,竞赛结果:总平均成绩为66分,合格生平均成绩为76分,不及格生平均成绩为52分,则这次物理竞赛中,及格的学生有多少人,不及格的学生有多少人。
5、甲乙两地相距20千米,A从甲地向乙地方向前进,同时B从乙地向甲地方向前进,两小时后二人在途中相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2千米,求A、B二人的速度。
6、甲乙两地相距60千米,A、B两人骑自行车分别从甲乙两地相向而行,如果A 比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等。
求A、B两人骑自行车的速度7、某公司去年的总收入比总支出多50万元,今年比去年的总收入增加10%,总支出节约20%,今年的总收入比总支出多100万元.求去年的总收入与总支出。
8、王大伯承包了25亩地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元.其中茄子每亩用了1700元,获得纯利2400元;种西红柿每亩用了1800元,获得纯利2600元,问王大伯一共获纯利多少元?9、小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时两人相遇,相遇后小明即返回原地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米.请求出两人的速度.10、2004年岁末的印度洋海啸,牵动着世界人民的心.某国际医疗救援队用甲、乙两种原料为手术后的病人配置营养品.每克甲原料含0.5单位的蛋白质和1单位的铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质.若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?11、车间里有90 名工人,每人每天能隆产螺母24 个或螺栓15 个,若一个螺栓配两个螺母,那么应分配多少人生产螺栓,多少人生产螺母才能使螺栓和螺母正好配套?12、某区中学生足球联赛共8 轮(即每个队均需要赛8 场),胜一场得 3分,平一场得1 分,负一场得0 分.在这次足球联赛中,雄师队踢平的场数是所负场所的2 倍,共得17 分.你知道雄师队胜了几场球吗?13、10 年前,母亲的年龄是儿子的6 倍;10 年后,母亲的年龄是儿子的2 倍.求母子现在的年龄.14、已知一艘轮船载重量是500 吨,容积是1000 立方米.现有甲、乙两种货待装,甲种货物每吨体积是7 立方米,乙种货物每吨体积是2 立方米,求怎么样货才能最大限度的利用船的载重量和体积?15、某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%。
苏科版数学七年级下第十章《二元一次方程组》难题训练(2)(含解析答案)
七下第十章《二元一次方程组》难题训练(2)班级:___________姓名:___________ 得分:___________ 一、选择题1. 为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A. 4种B. 3种C. 2种D. 1种2. 甲、乙二人跑步,如果甲让乙先跑10米,甲跑5秒就可追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,若设甲、乙每秒种分别跑x ,y 米,可列方程组为( )A. {5x =5y +104x −2=4y B. {5x +10=5y4x −4y =2 C. {5(x −y)=104(x −y)=2xD. {5x −5y =104(x −y)=2y3. 已知关于x ,y 的方程组{x +3y =4−a x −5y =3a,给出下列结论:①{x =5y =−1是方程组的解;②无论a 取何值,x ,y 的值都不可能互为相反数; ③当a =1时,方程组的解也是方程x +y =4−a 的解; ④x ,y 的值都为自然数的解有4对。
其中正确的个数为A. 3个B. 2个C. 1个D. 4个4. 若x |k|+ky =2+y 是关于x 、y 的二元一次方程,则k 的值为( )A. 1B. −1C. 1或−1D. 05. 方程|x −2y −3|+|x +y +1|=1的整数解的个数是( )A. 1个B. 2个C. 3个D. 4个6. 某风景点有二人座、三人座、四人座的三种游船供游客租住,某旅行团20人准备同时租用这三种游船共7艘,且每艘游船都坐满,那么租船方案有( )A. 4种B. 3种C. 2种D. 1种7. 已知m 为正整数,且关于x ,y 的二元一次方程组{mx +2y =103x −2y =2有整数解,则m 2的值为( )A. 9B. 1,9C. 0,1,81D. 1,81二、填空题8. 已知x =3+t,y =3−t ,用x 的代数式表示y 为 .9. 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有6张白铁皮.若用x 张制盒身,y 张制盒底可以使盒身与盒底配套,那么可列方程组为:______________.10. 已知x ,y 取0,1,2,3,…,9中的数,且3x −4y =11,则2x +3y =________. 11. 甲、乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时.设这艘轮船在静水中的速度为x 千米/小时,水流速度为y 千米/小时,根据题意可列方程组_____________________________.12. 已知{x =a y =b 是方程组{2x +y =−33x −2y =7的解,则5a −b 的值是_____.13. 爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:则9:00时看到的两位数是_____________14. 解关于x ,y 的方程组时,可以用①×2−②消去未知数x ,也可以用①×4+②×3消去未知数y ,试求a +b 的值为___________.15. 定义运算“∗”,规定x ∗y =ax 2+by ,其中a 、b 为常数,且1∗2=5,2∗1=6,则2∗3=________. 16. 现有八个大小相同的长方形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是 .三、解答题17.小颖解方程组{ax+2y=7cx−dy=4,时,把a看错后得到的解是{x=5y=1,而正确解是{x=3y=−1.请你帮小颖写出原来的方程组.18.在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是多少平方厘米?.19.一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节约运费,该市政府可以决定甲、乙、丙三种车型参与运送,已知它们的总辆数为16辆,你能通过列方程(组)的方法分别求出几种车型的辆数吗?(3)求出哪种方案的运费最省?最省是多少元.20. 阅读下列材料:问题:某饭店工作人员第一次买了13只鸡、5只鸭、9只鹅共用了925元.第二次买了2只鸡、4只鸭、3只鹅共用了320元,试问第三次买了鸡、鸭、鹅各一只共需多少元?(假定三次购买鸡、鸭、鹅的单价不变)解:设鸡、鸭、鹅的单价分别为x ,y ,z 元.依题意,得{13x +5y +9z =9252x +4y +3z =320 上述方程组可变形为{5(x +y +z)+4(2x +z)=9254(x +y +z)−(2x +z)=320设x +y +z =a ,2x +z =b ,上述方程组可化为①+4×②得:a =________,即x +y +z =________. 答:第三次买鸡、鸭、鹅各一只共需________元. 阅读后,细心的你.可以解决下列问题:(1)选择题:上述材料中的解答过程运用了________思想方法来指导解题. A .整体B.数形结合C.分类讨论(2)某校体育组购买体育用品甲、乙、丙、丁的件数和用钱金额如下表:品名次数甲 乙 丙 丁 用钱金额(元)第一次购买件数 5 4 3 1 1882 第二次购买件数97512764那么购买每种体育用品各一件共需多少元?21. 列二元一次方程组解应用题:某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)加工成如图2的竖式与横式两种无盖的长方体铁容器.(加工时接缝材料不计)(1)如果加工无盖竖式铁容器与无盖横式铁容器各1个,则共需要长方形铁片_____张,正方形铁片_____张;(2)现有长方形铁片2014张,正方形铁片1176张,如果加工成这两种铁容器,刚好铁片全部用完,那加工的竖式铁容器、横式铁容器各有多少个?(3)把长方体铁容器加盖可以加工成为铁盒。
二元一次方程(组)解应用题(含答案)
第八章二元一次方程(组)解应用题(含答案)1.缉私艇与走私艇相距120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?时才能追上.问走私艇与缉私艇的速度分别是多少?1.解:设走私艇的速度是x海里/时,缉私艇的速度是y海里/时,由题意得:时,由题意得:,解得,答:走私艇的速度是25海里/时,缉私艇的速度是35海里/时2.甲、乙两人从A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1地.小时乙到达A地.)问甲、乙行驶的速度分别是多少?(1)问甲、乙行驶的速度分别是多少?千米?(2)甲、乙行驶多少小时,两车相距30千米?2.解:(1)设甲、乙行驶的速度分别是每小时x千米、y千米,千米,根据题意,得,解得.所以甲、乙行驶的速度分别是每小时15千米、45千米;千米;(2)由第(1)小题,可得A,B两地相距45×(3+1)=180(千米).千米,设甲、乙行驶x小时,两车相距30千米,)千米,根据题意,得两车行驶的总路程是(180﹣30)千米或(180+30)千米,则:(45+15)x=180﹣30或(45+15)x=180+30.解得:或.千米所以甲、乙行驶或小时,两车相距30千米3.小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32平均速度为3千米/时,时,而在下坡路上的平均速度为分钟.求小明上坡、下坡各用了多长时间?分钟.求小明上坡、下坡各用了多长时间?3.解:32分钟=小时,小时,)小时,由题意,得设小明上坡用了x小时,下坡用了(﹣x)小时,由题意,得3x+5(﹣x)=1.8,解得:x=,则下坡所用时间为:﹣==.答:小明上坡用了小时,下坡用了小时小时4.A 、B 两地相距20千米.甲乙两人同时从A 、B 两地相向而行,经过2小时后两人相遇,相遇时甲比乙多行4千米.根据题意,列出两元一次方程组,求出甲乙两人的速度.千米.根据题意,列出两元一次方程组,求出甲乙两人的速度. 4.解:(1)设甲的速度为x 千米/时,乙的速度为y 千米/小时,由题意得,小时,由题意得,,解得:.答:甲的速度为6千米/时,乙的速度为4千米/小时小时5.长春至吉林现有铁路长为128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米.开通后,城际列车的平均速度将为现有列车平均速度的2.25倍,运行时间将比现有列车运行时间缩短小时.求城际列车的平均速度.列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.小时.,解得.64×2.25=144千米/小时.小时.城际列车的平均速度144千米/小时小时6.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留汽车在相遇处停留1小时后原速返回,小时后原速返回,在汽车再次出发在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米? 6.解:设汽车的速度是x 千米每小时,拖拉机速度y 千米每小时,根据题意得:千米每小时,根据题意得:,解得:,则汽车汽车行驶的路程是:(+)×90=165(千米),拖拉机行驶的路程是:(+)×30=85(千米).千米答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两,问两车每秒各行驶多少米?车尾相离经过16s,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?7.解:设客车的速度是每秒x米,货车的速度是每秒x米.米.由题意得(x+x)×16=200+280,解得x=18.答:两车的速度是客车18m/s,货车12m/s8.A、B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人倍.求两人的速度. 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍.求两人的速度.8.解:设甲的速度是x千米/时,乙的速度是y千米/时.时.由题意得:解得:答:甲的速度是4千米/时,乙的速度是5千米/时9.从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少?乙地的全程是多少?9.解:设从甲地到乙地的上坡路为xkm,平路为ykm,依题意得,解之得,∴x+y=3.1km,答:甲地到乙地的全程是3.1km10.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时,当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻.解:设甲的速度为x千米/时,乙的速度为由题意可得:.由题意得,,解得:,则解得答:甲,乙二人的速度是1414、在某条高速公路上依次排列着、在某条高速公路上依次排列着A 、B 、C 三个加油站,三个加油站,A A 到B 的距离为120千米,千米,B B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?1414、解:设巡逻车、犯罪团伙的车的速度分别为、解:设巡逻车、犯罪团伙的车的速度分别为x 、y 千米千米//时,则()3120120x y x y -=ìïí+=ïî,整理,得40120x y x y -=ìí+=î,解得8040x y =ìí=î, 答:巡逻车的速度是80千米千米//时,犯罪团伙的车的速度是40千米千米//时.1515、悟空顺风探妖踪,千里只行四分钟、悟空顺风探妖踪,千里只行四分钟、悟空顺风探妖踪,千里只行四分钟. .归时四分行六百,风速多少才称雄归时四分行六百,风速多少才称雄归时四分行六百,风速多少才称雄? ?1515、解:设悟空飞行速度是每分钟、解:设悟空飞行速度是每分钟x 里,风速是每分钟y 里,依题意得依题意得依题意得 4(x+y)=1000 4(x+y)=10004(x-y)=600 x=200 y=5016.16.某列火车通过某列火车通过450米的铁桥,从车头上桥到车尾下桥,从车头上桥到车尾下桥,共共33秒,同一列火车以同样的速度穿过760米长的隧道时,整列火车都在隧道里的时间是22秒,问这列火车的长度和速度分别是多少分别是多少? ?16. 16. 解解:设火车长为x 米,火车的速度为y 米/秒,33y=x 33y=x++45022y=760 22y=760--xX=276解方程组得:解方程组得:解方程组得: y=22 y=22答:火车长答:火车长276米,速度为22米/秒.。
二元一次方程(组)解应用题(含答案)
第八章二元一次方程(组)解应用题(含答案)1缉私艇与走私艇相距 120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?1. 解:设走私艇的速度是 x海里/时,缉私艇的速度是 y海里/时,由题意得:[2(x+y)=120[12 (y- K)-120,解得卜,辽(y=35答:走私艇的速度是 25海里/时,缉私艇的速度是 35海里/时2. 甲、乙两人从 A , B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经 3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1小时乙到达A地.(1)问甲、乙行驶的速度分别是多少?(2)甲、乙行驶多少小时,两车相距30千米?2. 解:(1)设甲、乙行驶的速度分别是每小时 x 千米、y千米,根据题意,得’,ir v-i & 解得….(y=45所以甲、乙行驶的速度分别是每小时15千米、45千米;(2)由第(1)小题,可得 A , B两地相距45X( 3+1) =180 (千米).设甲、乙行驶x小时,两车相距 30千米,根据题意,得两车行驶的总路程是(180- 30)千米或(180+30)千米,则:(45+15) x=180 - 30 或(45+15) x=180+30 .解得:戸|或疋所以甲、乙行驶"或—小时,两车相距 30千米2 23. 小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的平均速度为3千米/时,而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32 分钟.求小明上坡、下坡各用了多长时间?3. 解:32分钟小时,15设小明上坡用了 x小时,下坡用了(亠-x)小时,由题意,得15]3x+5 (一-x) =1.8,解得:x=90 y=304. A 、B 两地相距20千米.甲乙两人同时从 A 、B 两地相向而行,经过 2小时后两人相遇, 相遇时甲比乙多行 4千米•根据题意,列出两元一次方程组,求出甲乙两人的速度. 4•解:(1设甲的速度为 x 千米/时,乙的速度为 y 千米/小时,由题意得,(2s+2y=20(2K - 2y=4,解得:|{二.答:甲的速度为6千米/时,乙的速度为4千米/小时5.长春至吉林现有铁路长为 128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米•开通后,城际列车的平均速度将为现有列车平均速度的 2.25倍,运行时间将比现有列车运行时间缩短 芒小时.求城际3列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.xy=1282.药小(y- -|) =96,卜二內4解得 :.64X2.25=144 千米 /小时.城际列车的平均速度 144千米/小时6•甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行, 1小时20分后相遇•相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?[解得:x=「,则下坡所用时间为:答:小明上坡用了 鱼左』=丄15 30"10'小时1CI—小时,下坡用了306. 解:设汽车的速度是[■| (x+y) =160丄』 ,x 千米每小时,拖拉机速度 y 千米每小时,根据题意得:则汽车汽车行驶的路程是: (一+_) >90=165 (千米),3 2拖拉机行驶的路程是:(一+卫)>30=85 (千米).冈2答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.—列客车长200 m ,一列货车长280 m ,在平行的轨道上相向行驶,从两车头相遇到两 车尾相离经过16s,已知客车与货车的速度之比是 3: 2,问两车每秒各行驶多少米? 7.解:设客车的速度是每秒x 米,货车的速度是每秒 -x 米.由题意得(x+Zx ) >6=200+280 ,3解得x=18.答:两车的速度是客车 18m/s ,货车12m/s& A 、B 两地相距36千米•甲从A 地出发步行到B 地,乙从B 地出发步行到 A 地•两人 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的 2倍•求两人的速度.&解:设甲的速度是 x 千米/时,乙的速度是y 千米/时. 「4 (x+yj =36 (36-內0 二2 (36-6y)解得: 答:甲的速度是4千米/时,乙的速度是5千米/时9•从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走 3km ,平路每小时走4km ,下坡每小时走 5km ,那么从甲地到乙地用 54分钟,从乙地到甲地用 42分钟,甲地到 乙地的全程是多少?xkm ,平路为ykm ,/• x+y=3.1km ,答:甲地到乙地的全程是 3.1km 10•甲、乙分别自 A 、B 两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速 度都提高了 1千米/小时,当甲到达B 地后立刻按原路向 A 地返行,当乙到达A 地后也立刻由题意得:9•解:设从甲地到乙地的上坡路为解之得宙1・5 ]尸1花按原路向B 地返行,甲、乙二人在第一次相遇后 3小时36分又再次相遇,则 A 、B 两地的距离是多少?10•解:设甲的速度为 x 千米/时,乙的速度为y 千米/时, 可得:x+y=18 A 、B 两地的距离=2 (x+y) =2 XI8=36 答:A 、B 两地的距离是36千米11 •某班同学,从学校出发步行到某地搞军训活动,如果每小时走 6km ,则可提前10min到达目的地;如果每小时走 5km ,则比预定时间迟到 18min ,问:学校到某地有多远预定到达时间是多少?11 •解:设学校到某地 x 千米•预定到达时间是 y 小时.$(厂”I 5吨)=/解得.*1° •故学校到某地14千米•预定到达时间是 2.5小时 12.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20km ,那么甲用1小时就能追上乙;如果乙先走 1小时,那么甲只用15分钟就能追上乙,求甲、乙二人 的速度.12 •解:设甲的速度是 x 千米/时,乙的速度为y 千米/时, 答:甲的速度是25千米/时,乙的速度为5千米/时13.甲,乙两人相距15千米,如果两人同时相向而行,过 1小时30分相遇;如果乙向相反方向走,甲同时追赶,经过 7小时30分可以追上,求甲,乙二人的速度各是多少.13.解:设甲,乙二人的速度是 x 千米/小时和y 千米/小时.fl. 5K +1. 5y=157.由题意得,x=20+y0.25s= (141X25)y由题意可得:答:甲,乙二人的速度是 6千米/小时和4千米/小时14、在某条高速公路上依次排列着A B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米•分别在A C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A C两个加油站驶去,结果往 B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上. 问巡逻车和犯罪团伙的车的速度各是多少?14、解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,则3 x y 120 x y 40 x 80,整理,得y ,解得,x y 120 x y 120 y 40答:巡逻车的速度是 80千米/时,犯罪团伙的车的速度是 40千米/时.15、悟空顺风探妖踪,千里只行四分钟.归时四分行六百,风速多少才称雄?15、解:设悟空飞行速度是每分钟x里,风速是每分钟 y里,依题意得 4(x+y)=10004(x-y)=600 x=200 y=5016. 某列火车通过450米的铁桥,从车头上桥到车尾下桥, 度穿过760米长的隧道时,整列火车都在隧道里的时间是分别是多少?16. 解:设火车长为x米,火车的速度为 y米/秒,33y=x + 45022y=760 — xX=276 「解方程组得:[y=22答:火车长276米,速度为22米/秒. 共33秒,同一列火车以同样的速22秒,问这列火车的长度和速度。
二元一次方程较复杂练习题及答案
二元一次方程较复杂练习题及答案一.解答题1.求适合2.解下列方程组的x,y的值.3.解方程组:.4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有求k,b的值.当x=2时,y的值.当x为何值时,y=3?7.解方程组:;和..8.解方程组:9.解方程组:10.解下列方程组:11.解方程组:12.解二元一次方程组:;13.在解方程组.时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.甲把a看成了什么,乙把b看成了什么?求出原方程组的正确解.14.15.解下列方程组:;.16.解下列方程组:二元一次方程组解法练习题精选参考答案与试题解析一.解答题1.求适合的x,y的值.2.解下列方程组.3.解方程组:二元一次方程组解法练习题一.解答题1.解下列方程组?x?2y?1??2??32?1?yx?2???1?2?3??5x?2y?11a?4x?4y?6a6).??x?y?2?x?y?x2?02.求适合的x,y的值.3.已知关于x,y的二元一次方程y=kx+b的解有和.求k,b的值.当x=2时,y的值.当x为何值时,y=3?;.;4)6);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.甲把a看成了什么,乙把b看成了什么?求出原方程组的正确解.21.求适合的x,y的值.2.解下列方程组.3.解方程组:34.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.求k,b的值.当x=2时,y的值.当x为何值时,y=3?48.解方程组:7.解方程组:;.9.解方程组:5二元一次方程组一、判断 1、方程组??y?1?x的解是方程3x-2y=13的一个解3x?2y?5??x?3y?5??7??3x?2y??12?232、方程组?,可以转化为?5x?6y??272y?3x?4????2?5?33、若x+x+y=0是二元一次方程,则a的值为±14、若x+y=0,且|x|=2,则y的值为????、方程组??mx?my?m?3x有唯一的解,那么m的值为m≠- ????4x?10y?8?221?1?x?y?26、方程组?3有无数多个解 ?????x?y?6?7、x+y=5且x,y的绝对值都小于5的整数解共有5组 ????、方程组??3x?y?1?3x?y?1的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组?的x?5y?3x?5y?3??解???a29、若|a+5|=5,a+b=1则的值为?b3???7?3y10、在方程4x-3y=7里,如果用x的代数式表示y,则x?二、选择:1、任何一个二元一次方程都有一个解;两个解;三个解;无数多个解;、如果??x?y?a的解都是正数,那么a的取值范围是?3x?2y?4444; ?2?a?; a??;33?x?2y?3m3、关于x、y的方程组?的解是方程3x+2y=34的一组解,那么m的值是x?y?9m?a 2;-1; 1;4、在下列方程中,只有一个解的是 ??x?y?1?3x?3y?0?x?y?13x?3y?4?-2;??x?y?0?3x?3y??2?x?y?13x?3y?3?1?5、下列方程组中,是二元一次方程组的是 ?x?y?4?x?y?5??11 ?y?z?7??9??xy???x?13x?2y?6???x?y?xyx?y?1?6、已知方程组??x?y?5有无数多个解,则a、b的值等于ax?3y?b?1?a=-3,b=-14a=-1,b=9a=3,b=-7a=-3,b=14x?4y7、若5x-6y=0,且xy≠0,则的值等于 5x?3y21-18、若|3x+y+5|+|2x-2y-2|=0,则2x-3xy的值是14-4-1219、已知?k?k??x?4?x??2与?都是方程y=kx+b的解,则k与b的值为?y??2?y??51,b=-21,b=k??k??1,b=21,b=-2三、填空:1、在方程3x+4y=16中,若x、y都是正整数,那么这个方程的解为___________;、若??x?1?ax?2y?b?a?_______是方程组?的解,则?; y??14x?y?2a?1b?_______???3、方程|a|+|b|=2的自然数解是_____________;4、若4x+3y+5=0,则3-5的值等于_________;5、若x+y=a,x-y=1同时成立,且x、y都是正整数,则a的值为________;、从方程组??4x?3y?3z?0中可以知道,x:z=_______;y:z=________;?x?3y?z?0227、已知a-3b=2a+b-15=1,则代数式a-4ab+b+3的值为__________;四、解方程组?mn??3??5x?2y?11a?34; 1、?;、?4x?4y?6amn????13??23?x?y3x?4y????2?x?y?253、?;4、?;x?y???x?y?x?0?1??22五、解答题:107?x???471x的系数,解得?;乙看?y?58?47?81?x???76错了方程②中的y的系数,解得?,若两人的计算都准确无误,请写出这个方程组,并求出此17?y??19?方程组的解;22、使x+4y=|a|成立的x、y的值,满足+|3y-x|=0,又|a|+a=0,求a的值;3、要使下列三个方程组成的方程组有解,求常数a的值。
10道二元一次方程组应用题及答案(精品文档)
1:某校为同学们安排宿舍。
若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住4人,且两间宿舍没人住。
求该年级同学人数和宿舍间数。
(解:设年级人数是x人,宿舍是y人)解:设年级人数是x人,宿舍是y人)5y-x=-46(y-2)-x=2解这个方程组得:y=18x=942:用A、B两种原料配制两种油漆,已知甲种油漆含A、B两种原料之比为5:4,每千克50元,乙种油漆含A、B两种原料之比为3:2,每千克48.6元,求A、B两种原料每千克的价格分别是多少元。
(解:设A种原料每千克x元,B种原料每千克y元)5÷9×x+4÷9×y=503÷5×x+2÷5×y=48.6化简方程组得:5x+4y=4503x+2y=243解这个方程组得:x=36y=67.53:甲、乙两地相距24千米,公共汽车和直达快车在8:45从甲、乙两地相向开出,这两辆车都在8:52到达中途A处。
有一次,直达快车晚开8分钟,两车则在8:58相遇途中B处,求这两车的速度。
(解:设直达快车每小时x千米,公共汽车每小时y千米)7÷60×x+7÷60×y=2413÷60×y+5÷60×x=244.要用含药30%和75%的两种防腐药水,配制含药50%的防腐药水18千克,两种药水各需取多少千克?(解:设含药30%的药水x千克,含药75%的药水y千克)x+y=1830%有效成分=x×30%75%有效成分=y×75%50%有效×成分=18×50%所以30%x+7×5%=18×50%0.3x+0.75y=9x+y=180.3x+0.3y=5.4所以0.75y-0.3y=9-5.40.45x=3.6x=8y=10所以30%取8千克,75%取10千克5.一列快车长70千米,慢车长80千米,若两车同时相向而行,快车从追上慢车到完全离开慢车为20秒,若两车相向而行,则两车从相遇到离开时间为4秒,求两车每小时各行多少千米。
二元一次方程组应用题训练题(含答案)
二元一次方程组应用题训练题(含答案)1.一家工厂需要进行两道工序来生产产品。
第一道工序每人每天可以完成900件,第二道工序每人每天可以完成1200件。
现在有7位工人参与这两道工序,应该如何分配人力,才能使每天第一道工序和第二道工序所完成的件数相等?2.垃圾对环境的影响越来越严重,因此垃圾分类回收成为了一个重要的话题。
一所中学准备购买两种型号的垃圾分类回收箱,共20个,放置在校园中各个合适的位置。
其中型号一有14个,型号二有6个,总共需要4240元。
如果购买型号一8个,型号二12个,需要4480元。
请问型号一和型号二的单价分别是多少?3.某农场去年生产了大豆和小麦共计300吨。
今年采用新技术后,总产量为350吨,其中大豆超产10%,小麦超产20%。
请问今年该农场实际生产了多少吨大豆和多少吨小麦?4.有两块试验田,原本每块田都可以产生470千克的花生。
改用良种后,两块试验田共产生了532千克的花生。
已知第一块田的产量比原来增加了16%,第二块田的产量比原来增加了10%。
请问这两块试验田改用良种后,各增产了多少千克的花生?5.一家书店有两个下属书店,共有某种图书5000册。
如果将甲书店的400册该种图书调出给乙书店,那么乙书店的该种图书数量仍然比甲书店的数量少400册的一半。
请问这两个书店原来各有多少册这种图书?6.甲种电影票每张20元,乙种电影票每张15元。
如果购买甲、乙两种电影票共40张,恰好用去720元,请问甲、乙两种电影票各买了多少张?7.XXX和XXX一起去超市购买矿泉水和面包。
XXX买了3瓶矿泉水和3个面包,共花费21元;XXX买了4瓶矿泉水和5个面包,共花费32.5元。
请问这种矿泉水和面包的单价分别是多少?8.一家旅馆有三人间和两人间两种客房,其中三人间每人每天需要支付25元,两人间每人每天需要支付35元。
一个50人的旅游团到该旅馆住宿,租住了若干个客房,每个客房都被住满,一天总共花费1510元。
二元一次方程组应用题(难题训练)
二元一次方程组应用题(难题训练) 在我们的日常生活中,二元一次方程组的应用非常广泛。
今天,我们就来探讨一下二元一次方程组在实际问题中的应用,以及如何解决这些难题。
一、生活中的实际问题1.1 购物优惠假设你在一个商场购物,商家为了吸引顾客,给你提供了两种商品。
第一种商品的价格是x元,第二种商品的价格是y元。
如果你购买这两种商品的总金额达到一定数额,你可以享受到一定的优惠。
例如,总金额达到100元时,你可以享受到5%的优惠;总金额达到200元时,你可以享受到10%的优惠。
请问这两种商品的价格分别是多少?解答:设第一种商品的价格为x元,第二种商品的价格为y元。
根据题意,我们可以得到以下两个方程:x + y = 总金额(1 优惠百分比) * (x + y) = 总金额 * (1 优惠百分比)将第一个方程代入第二个方程,我们可以得到:(1 优惠百分比) * 总金额 = 总金额 * (1 优惠百分比)解这个方程,我们可以得到:优惠百分比 = 1 总金额 / 原价总额由于优惠百分比是一个小于1的小数,所以总金额必须大于原价总额。
因此,我们可以得出结论:当购买这两种商品的总金额达到原价总额时,可以享受到最大的优惠。
而要计算出具体的价格,我们需要知道原价总额和优惠百分比的具体数值。
1.2 行程问题假设你有两段路程需要走,第一段路程的距离是x千米,第二段路程的距离是y千米。
已知从第一段路程的起点出发走到第二段路程的起点所需的时间是t小时,同时已知从第二段路程的起点出发走到第一段路程的终点所需的时间也是t小时。
请问这两段路程的具体距离分别是多少?解答:设第一段路程的距离为x千米,第二段路程的距离为y千米。
根据题意,我们可以得到以下两个方程:x = vt + a1y = vt + a2其中v表示速度,a1表示第一段路程的起点到终点的水平距离,a2表示第二段路程的起点到终点的水平距离。
将第一个方程代入第二个方程,我们可以得到:y = x + a2 a1由于从第二段路程的起点出发走到第一段路程的终点所需的时间是t小时,所以我们可以得出结论:a1 = x y。
二元一次方程组的应用难题10道
二元一次方程组的应用难题10道1、甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?2、小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由。
3、李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?4、小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?5、现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?6、某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?7、一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.8、用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?9、今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄。
10、某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。
(完整)初中二元一次方程组应用题专项练习(含部分难题答案)
1、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?2、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?3、初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.4、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?5、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?6、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?7、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?8、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
七年级下册数学列二元一次方程组解应用题专项训练
第八章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了;”请问老师、学生今年多大年龄了呢2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元1若分班购票,则共应付1240元,求两班各有多少名学生2请您计算一下,若两班合起来购票,能节省多少元钱3若两班人数均等,您认为是分班购票合算还是集体购票合算5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满;已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元;1初一年级人数是多少原计划租用45座汽车多少辆2若租用同一种车,要使每个学生都有座位,怎样租用更合算6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生;1求平均每分钟一道正门和一道侧门各可以通过多少名学生2检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定请说明理由;8、现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子9、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度;10、已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度;11、为了保护生态环境,我省某山区县响应国家“退耕还林”号召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,求改变后林地面积和耕地各为多少平方千米12、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元13、某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元14、在一次足球选拔赛中,有12支球队参加选拔,每一队都要与另外的球队比赛一次,记分规则为胜一场记3分,平一场记1分,负一场记0分;比赛结束时,某球队所胜场数是所负的场数的2倍,共得20分,问这支球队胜、负各几场15、某个体户向银行申请了甲、乙两种贷款,共计136万元,每一年需付利息16.84万元,甲种贷款的年利率是12%,乙种贷款的年利率是13%,问这两种贷款的数额各是多少16、李明以两种形式分别储蓄了2000元各1000元,一年后全部取出,扣除利息所得税可得利息43.92,已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几注:公民应交利息所得税=利息金额×20%;17、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元18、“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折按售价的70%销售和九折按售价的90%销售,共付款386元,这两种商品原售价之和为500元,问这两种商品的原销售价分别为多少元19、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件20、某商场按定价销售某种电器时,每台可获利48元 ,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等;求该电器每台的进价、定价各是多少元21、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价;在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元22、某工厂去年的利润总产值——总支出为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,问去年的总产值、总支出各是多少万元小红家去年结余5000元,估计今年可结余9500元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入和支出各是多少23、某校2004年秋季初一年级和高一年级招生总数为500人,计划2005年秋季期初一年级招生数增加20%;高一年级招生数增加15%,这样2005年秋季初一、高一年级招生总数比2004年将增加18%,求2005年秋季初一年级、高一年级的计划招生数是多少24、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量每小时通过观测点的汽车车辆数,三位同学汇报高峰时段的车量情况下如下:甲同学说:“二环路车流量为每小时1000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;请您根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少25、初三2班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.26、根据下图给出的信息,求每件T恤衫和每瓶矿泉水的价格;27、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元;1求该同学看中的随身听和书包单价各是多少元2某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售不足100元不返券,购物券全场通用,但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗若两家都可以选择,在哪一家购买更省钱28、“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.1若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.2若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.29、 列一段文字,然后解答问题.修建润扬大桥,途经镇江某地,需搬迁一批农户,为了节约土地资源和保护环境,政府决定统一规划建房小区,并且投资一部分资金用于小区建设和补偿到政府规划小区建房的搬迁农户.建房小区除建房占地外,其余部分政府每平方米投资100元进行小区建设;搬迁农户在建房小区建房,每户占地100 平方米,政府每户补偿4万元,此项政策,吸引了搬迁农户到政府规划小区建房,这时建房占地面积占政府规划小区总面积的20%.政府又鼓励非搬迁户到规划小区建房,每户建房占地120平方米,但每户需向政府交纳土地使用费2.8万元,这样又有20户非搬迁户申请加入.此项政策,政府不但可以收取土地使用费,同时还可以增加小区建房占地面积,从而减少小区建设的投资费用.若这20户非搬迁户到政府规划小区建房后,此时建房占地面积占政府规划规划小区总面积的40%. 1设到政府规划小区建房的搬迁农户为x 户,政府规划小区总面积为y 平方米. 可得方程组解得 2在20户非搬迁户加入建房前,请测算政府共需投资 __________万元;在20户非搬迁户加入建房后,请测算政府将收取的土地使用费投入后,还需投资__________万元.3设非搬迁户申请加入建房并被政府批准的有z 户,政府将收取的土地使用费投入后,还需投资p 万元.①用含z 的代数式表示p ;②当p 不高于140万元,而又使建房占地面积不超过规划小区总面积的35%时,那么政府可以批准多少户非搬迁户加入建房29、某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a , , x =y =元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:1 求a、b的值;2 初三年级学生的捐款解决了其余..贫困中小学生的学习费用,请将初三学生年级学生可捐助的贫困中、小学生人数直接填入表中.不需写出计算过程30、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车;熟练工人晓云元月份领工资900多元,她记录了如下表的一些数据:元月份作小狗和小汽车的数目没有限制,从二月分开始,厂方从销售方面考虑逐月调整为:k 月份每个工人每月生产的小狗的个数不少于生产的小汽车的个数的k 倍k =2,3,4,……,12,假设晓云的工作效率不变,且服从工厂的安排,请运用所学数学知识说明厂家广告是否有欺诈行为参考答案:12.解:21. 解:设甲服装的成本是x 元,乙服装的成本是y 元,依题意得;⎩⎨⎧+=+++=+157500%90]%)401(%)501[(500y x y x 解得x=300,y=200 答:甲、乙两件服装的成本分别为300元、200元25.解: 设去年A 超市销售额为x 万元,B 超市销售额为y 万元,由题意得()()⎩⎨⎧=+++=+,170%101%151,150y x y x 解得⎩⎨⎧==.50,100y x 1001+15%=115万元,501+10%=55万元.答:A,B 两个超市今年“五一节” 期间的销售额分别为115万元,27. 解:1解法一:设书包的单价为x 元,则随身听的单价为()48x -元根据题意,得48452x x-+=解这个方程,得答:该同学看中的随身听单价为360元,书包单价为92元; 解法二:设书包的单价为x元,随身听的单价为y元根据题意,得x yy x+==-⎧⎨⎩45248解这个方程组,得xy==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元;2在超市A购买随身听与书包各一件需花费现金:45280%3616⨯=.元因为3616400.<,所以可以选择超市A购买;在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金:3602362+=元因为362400<,所以也可以选择在超市B购买; ……4分因为3623616>.,所以在超市A购买更省钱; ……5分30.解: 设制作一个小狗用时间t1分钟,可得工资x元,制作一辆小汽车用时间t2分钟,可得工资y 元;依题意得解得:4.175.0 20t 1521===y x t ,,=,就二月份来讲,设二月份生产汽车玩具a 件,则生产小狗2a 件,此时可得工资: M =a a a 9.2100100275.04.1+=+⨯+又因为工人每月工作8×25×60=12000分钟,所以二月份可生产玩具汽车 20a +15×2a =12000 解得 a =240件;故二月份可领工资796元,小于计件工资的最低额,所以说厂家的广告有欺诈行为;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、某商场欲购甲、乙两种商品共50 件,甲种商品每件进价为率为15%,共获利278 元,问甲、乙两种商品各购进多少件?35 元,利润率为20%;乙种商品进价为20 元,利润
1 已知仙鹤和乌龟是动物中的长寿星,一天鹤父、鹤女与龟祖、龟孙在聊天,它们发现鹤父的年龄是鹤女的
2 倍,龟祖的年龄是龟孙的 5 倍,它们四位的年龄和的 300 倍恰好是 900 岁。
十年后,鹤父和鹤女之和的 5 倍,加上龟祖、龟孙的年龄也是 900 岁,试求它们分别是多少岁?
2、华联商场购进甲、乙两种商品后,甲商品加价50%,乙商品加价 40%作为标价,后适逢元旦商场搞促销活动,
甲商品打八折销售,乙商品打八五折销售。
某顾客购买甲、乙商品各一件,共付款 538元,已知商场共盈利 88 元,求甲、乙两
种商品的进价。
4、某储户存入银行甲、乙两种利息的存款,共计 2 万元,甲种存款的年利率是 3%,乙种存款的年利率是 1.5%,
不计利息税,该储户一年共得利息 525 元,求甲、乙两种存款各是多少万元?
5、两个两位数的和是 85,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。
已知前一个四位数比后一个四位数大1287。
求这两个两位数。
6、一个三位数和一个两位数的差为225,在三位数的左边写这个两位数,得到一个五位数,在三位数的右边写上这
个两位数,也得到一个五位数。
已知前面的五位数比后面的五位数大225,求这个三位数和两位数。
7、一艘船航行于甲、乙两地之间,顺水需 3 h,逆水要比顺水多走h,若水流速度为2km/h,求船在静水中的速
2
度和甲、乙两地间的路程?
8在某条高速公路上依次排列着 A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米•分别在A、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在 B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团
伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻
车和犯罪团伙的车的速度各是多少?
9随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展,某地区2003年和2004年小学入
学儿童人数之比为 8: 7,且2003?年入学人数的2倍比2004年入学人数的3倍少1 500?人,?某人估计2005?年入学儿童人数将超过 2300人,请你通过计算,判断他的估计是否符合当前的变化趋势.
10某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天
4
可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的-;现在工厂改进了人员组织结构
5
和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产 25套,求订做
的工作服是几套?要求的期限是几天?
将蔬菜全部进行粗加工; 尽可能多地进行精加工,来不及加工的蔬菜在市场上
全部销售; 将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在 15 天完
成.
你认为哪种方案获利最多?为什么? 方案一 方案二 方案三 11某人沿公路匀速前进, 每隔 4min 就遇到迎面开来的一辆公共汽车, 每隔 6min 就有一辆公共汽车从背后超过他. 假 定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是
1200m ,求某人前进的速度和
公共汽车的速度,汽车每隔几分钟开出一辆?
某出租汽车公司有出租车 100辆,平均每天每车消耗的汽油费为 80元.为了减少环境污染, 市场推出一种叫 “CNG ” 改烧汽油为天然气的装置,每辆车改装价格为 4000 元.公司第一次改装了部分车辆后核算:已改装后的车辆每 天的燃料费占剩下未改装车辆每天燃料费用的二十分之三,公司第二次再改装同样多的车辆后,所有改装后的车 辆每天的燃料费占剩下未改装车辆每天燃料费用的五分之二.问:
(1) 公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?
(2) 若公司一次性全部出租车改装,多少天后就可以从节省的燃料费中收回成本? 12.某地生产一种绿色蔬菜, 若在市场上直接销售, 每吨利润为 1000 元;经粗加工后销售, 每吨利润可达 4500 元; 经精加工后销售,每吨利润涨至 7500 元.当地一家农工商公司收购这种蔬菜 140 吨,该公司加工厂的生产能力 是:如果对蔬菜进行粗加工,每天可加工
16 吨;如果进行精加工,每天可加工 6 吨,但两种加工方式不能赔不 是进行.受季节条件的限制,公司必须在 15 天之内将这批蔬菜全部销售或加工完毕,为此公司研究了三种加工
方案:
13 某同学在 A 、B 两购物中心发现他看中的运动服的单价相同 , 球鞋的单价也相同 , 运动服和球鞋的单价之和为 452
元,且运动服的单价比球鞋的单价的 4倍少 8 元.
(1)求该同学看中的运动服和球鞋的单价各是多少元
? (2)某一天,该同学上街,恰好赶上商家促销,A 所有的商品打八折销售,B 全场每购物满100元返购物券30元销售(不 足 100元不返券 , 购物券全场通用 , 只限于购物 ), 他只带了 400元钱.如果他只在一家购物中心购买这两种物品 ,你能 说明他可以选择哪一家购买更省钱吗 ?还有哪些购买方式?哪种方式更划算?。