重卡贯通式驱动桥结构设计

合集下载

某型重卡驱动桥设计

某型重卡驱动桥设计

某型重卡驱动桥设计摘要驱动桥是构成汽车的四大总成之一,一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成,它位于传动系末端,其基本作用是增矩、降速,承受作用于路面和车架或车身之间的力。

它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要,采用传动效率高的单级减速驱动桥已经成为未来载重汽车的发展方向。

本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计本次设计首先对驱动桥的特点进行了说明,根据给定的数据确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型及参数,并对其强度进行校核。

数据确定后,利用AUTOCAD建立二维图,再用CATIA软件建立三维模型,最后用CAITA中的分析模块对驱动桥壳进行有限元分析。

关键词:驱动桥;CAD;CATIA;有限元分析AbstractDrivie axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the powertrain.Its basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or body.Its performance will have a direct impact on automobile performance,and it is particularly important for the truck. Using single stage and high transmission efficiency of the drive axle has become the development direction of the future trucks.This article referred to the traditional driving axle's design method to carry on the truck driving axle's design.In this design,first part is the introduction of the characteristics of the drive axle,according to the given date to calculate the parameters of the automobile,then confirm the structure types and parameters of the Main reducer, differential mechanism,half shaft and axle housing,then check the strength and life of them.After confirming the parameters, using AUTOCAD to establish 2 dimensional model,then using CATIA establish 3 dimensional model. Finally using the analysis module in CATIA to finite element analysis for the axle housing.Key words: drive axle;CAD;CATIA;finite element analysis目录1 绪论 (1)1.1 驱动桥简介 (1)1.2 国内外研究现状 (1)1.3 驱动桥设计要求 (1)2 驱动桥设计 (3)2.1 主减速器设计 (3)2.1.1 主减速器的结构形式 (3)2.1.2 主减速器的减速形式 (4)2.1.3 主减速器主,从动锥齿轮的支撑方案 (4)2.1.4 主减速器基本参数选择与计算载荷的确定 (6)2.2 差速器设计 (17)2.2.1 对称锥齿轮式差速器工作原理 (17)2.2.2 对称式圆锥行星齿轮差速器的结构 (17)2.2.3 对称式圆锥行星齿轮差速器的设计 (18)2.3 驱动半轴的设计 (23)2.3.1 结构形式分析 (23)2.3.2 全浮式半轴的结构设计 (24)2.3.3 全浮式半轴的强度计算 (24)2.3.4 半轴的结构设计及材料与热处理 (25)2.3.5 半轴花键的强度计算 (25)2.4 驱动桥壳的设计 (26)2.4.1 整体式桥壳的结构 (27)2.4.2 桥壳的受力分析与强度计算 (27)3 CATIA三维建模........................................ 错误!未定义书签。

毕业设计(论文)-某重型卡车驱动桥的设计模板

毕业设计(论文)-某重型卡车驱动桥的设计模板

目录中文摘要 1 英文摘要 21 绪论 32 汽车驱动桥结构方案分析 43 主减速器总成设计 53.1 主减速器的结构形式选择 63.2 主减速器基本参数的计算与载荷的确定 123.3 主减速器锥齿轮强度计算 143.4 主减速器轴承的计算 173.5 主减速器齿轮材料热处理 214 差速器总成设计 234.1 差速器结构形式选择 234.2 差速器齿轮主要参数选择 244.3 差速器齿轮的强度计算 275 半轴的设计 295.1 半轴的形式选择 295.2 半轴的结构设计和校核、材料选择 30 6驱动桥壳设计 326.1桥壳的结构型式选择 326.2桥壳的受力分析及强度计算 337 制动器的校核计算 367.1 制动器的基本参数 377.2 制动器效能因素计算 387.3 衬片磨损特性计算 397.4 检查蹄有无自锁的可能性 40 结论 42 谢辞 43 参考文献 44某重型卡车驱动桥的设计摘要:汽车后桥是汽车的主要部件之一,其基本的功用是增大由传动轴或直接由变速器传来的转矩,再将转矩分配给左右驱动车轮,并使左右驱动车轮具有汽车行驶运动所要求的差速功能:同时,驱动桥还要承受作用于路面和车架或承载车身之间的铅垂力、纵向力,横向力及其力矩。

其质量,性能的好坏直接影响整车的安全性,经济性、舒适性、可靠性。

本文认真地分析参考了江淮HF15015卡车驱动桥以及韩国现代468号驱动桥,在论述汽车驱动桥运行机理的基础上,提练出了在驱动桥设计中应掌握的满足汽车行驶的平顺性和通过性、降噪技术的应用及零件的标准化、部件的通用化、产品的系列化等三大关键技术;阐述了汽车驱动桥的基本原理并进行了系统分析;根据经济、适用、舒适、安全可靠的设计原则和分析比较,确定了重型卡车驱动桥结构形式、布置方法、主减速器总成、差速器总成、桥壳及半轴的结构型式;并对制动器以及主要零部件进行了强度校核,完善了驱动桥的整体设计。

通过本课题的研究,开发设计出适用于装置大马力发动机重型货车的单级驱动桥产品,确保设计的重型卡车驱动桥经济、实用、安全、可靠。

重型自卸汽车设计(驱动桥总成设计)(有cad原图)

重型自卸汽车设计(驱动桥总成设计)(有cad原图)

重型自卸汽车设计(驱动桥总成设计)摘要驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,对于重型自卸汽车也很重要。

驱动桥位于传动系的末端,它的基本功用是将传动轴或变速器传来的转矩增大并适当减低转速后分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力,纵向力和横向力。

通过提高驱动桥的设计质量和设计水平,以保证汽车良好的动力性、安全性和通过性。

此次重型自卸汽车驱动桥设计主要包括:主减速器、差速器、轮边减速器、车轮传动装置和驱动桥壳进行设计。

主减速器采用中央减速器附轮边减速器的形式,且中后桥采用双级贯通式布置形式,国内外多桥驱动的重型自卸汽车大多数采用这种布置形式;本设计主减速器采用了日益广泛应用的双曲面齿轮;差速器设计采用普通对称圆锥行星差速器;车轮传动装置采用全浮式半轴;驱动桥壳采用整体型式;并对驱动桥的相关零件进行了校核。

本文驱动桥设计中,利用了CAD绘图软件表达整体装配关系和部分零件图。

关键词:驱动桥、主减速器、差速器、半轴、双曲面齿轮THE DESIGN OF HEAVY SELF UNLOADINGTRUCK(THE DESIGN OF TRANSAXLE ASSEMBLY)ABSTRACTDrive axle is the one of automobile four important assemblies. It’s performance directly influences on the entire automobile,especially for the heavy self unloading truck . Driving axle set at the end of the transmission system. The basic function of driving axle is to increase the torque transported from the transmission shaft or transmission and decrease the speed ,then distribute it to the right、left driving wheel, another function is to bear the vertical force、lengthways force and transversals force between the road surface and the body or the frame. In order to obtain a good power performance, safety and trafficability characteristic, engineers must promote quality and level of designDriving axle design of the heavy self unloading truck mainly contains: main reduction, differential, wheel border reduction, transmitted apparatus of wheel and the housing of driving axle. The main reducer adopts central reduction along with wheel border reduction. And also the design have the same run-through structure between middle transaxle and the rear one with heavy trucks home and abroad that have several transaxles. Hypoid gear, a new type gear is a good choice for the main reducer of heavy self unloading truck. The differential adopted a common, symmetry, taper, planet gear. Transmission apparatus of wheel adopted full floating axle shaft, and the housing of driving axle adopted the whole pattern,and proofread interrelated parts.During the design process, CAD drafting software is used to expresses the wholes to assemble relationship and part drawing by drafting.Key words:driving axle, the main reducer,differential, wheel border reduction, half shaft, hypoid gear目录第一章绪论 (1)§ 1.1 驱动桥简介 (1)§ 1.2 驱动桥设计的要求 (1)第二章驱动桥的结构方案分析 (3)第三章驱动桥主减速器设计 (6)§ 3.1 主减速器简介 (6)§ 3.2 主减速器的结构形式 (6)§ 3.3 主减速器的齿轮类型 (6)§ 3.4 主减速器主动齿轮的支承型式 (7)§ 3.5 主减速器的减速型式 (8)§ 3.6 主减速器的基本参数选择与设计计算 (8)§ 3.6.1 主减速比的确定 (8)§ 3.6.2 主减速器齿轮计算载荷的确定 (9)§ 3.6.3 主减速器齿轮基本参数选择 (10)§ 3.6.4 主减速器双曲面锥齿轮设计计算 (12)§ 3.6.5 主减速器双曲面齿轮的强度计算 (21)§ 3.7 主减速器齿轮的材料及热处理 (25)§ 3.8主减速器第一级圆柱齿轮副设计 (26)§ 3.8.1基本参数设计计算 (26)§ 3.8.2圆柱齿轮几何参数计算 (27)§ 3.9轮边减速器设计及计算 (28)§ 3.9.1轮边减速器方案的确定 (28)§ 3.9.2轮边减速器各齿轮基本参数的确定 (28)§ 3.9.3各齿轮几何尺寸计算 (29)第四章差速器设计 (31)§ 4.1差速器简介 (31)§ 4.2 差速器的结构形式的选择 (31)§ 4.2.1 对称式圆锥行星齿轮差速器的差速原理 (32)§ 4.2.2 对称式圆锥行星齿轮差速器的结构 (33)§ 4.3差速器齿轮主要参数的选择 (33)§ 4.4差速器齿轮的几何尺寸计算与强度校核 (36)第五章驱动车轮的传动装置 (39)§ 5.1车轮传动装置简介 (39)§ 5.2半轴的型式和选择 (39)§ 5.3半轴的设计计算与校核 (39)§ 5.4半轴的结构设计及材料与热处理 (41)第六章驱动桥壳设计 (42)§ 6.1 驱动桥壳简介 (42)§ 6.2 驱动桥壳的结构型式及选择 (42)§ 6.3 驱动桥壳强度分析计算 (43)§ 6.3.1当牵引力或制动力最大时 (43)§ 6.3.2通过不平路面垂直力最大时 (44)第七章结论 (46)参考文献 (47)致谢 (48)附录A (49)第一章绪论§ 1.1 驱动桥简介在科学技术快速发展的今天,随着汽车工业的不断进步,汽车的各项性能指标也在不断提高,作为传动系末端的驱动桥的设计,更要有进一步的改进,以适应市场的需要,促进汽车行业的发展。

驱动桥的结构和类型

驱动桥的结构和类型

驱动桥的结构和类型驱动桥的结构和类型,听上去像是汽车工程师的专属话题,但其实这也是个值得聊聊的有趣话题。

开车的朋友们可能知道,驱动桥就是车子动力传递的关键部分。

你想想,车子在路上风驰电掣,背后可都是这些“桥”的功劳。

哎,别小看它们,没它们可真开不动。

说到驱动桥,得先了解一下它的基本结构。

简单来说,驱动桥由几个重要的部分组成,像是齿轮、差速器和半轴。

齿轮呢,就像是车子的小“心脏”,负责将发动机的动力传递给车轮。

而差速器就有点像我们生活中的“调解员”,在车轮转动的时候,能够让两个轮子转得不一样快。

想象一下,你在转弯的时候,外侧的车轮得转得比内侧快,不然可真是拐不过来啊。

再说半轴,它就像是连接齿轮和车轮的桥梁,把动力一股脑儿地送到车轮上。

就这几个部分,构成了驱动桥的基本结构。

哎,听起来有点复杂,但实际上,车子的每一个零件都有它存在的道理。

就像咱们生活中,每个人都有自己的角色,缺了谁都不行。

接下来聊聊驱动桥的类型。

这可有意思了,驱动桥可以分为前驱和后驱,还有四驱。

前驱就是动力在前面,驱动前轮。

这种设计就像是前面带头大哥,动力直接从发动机传到前轮,车子在行驶的时候更稳定,尤其在雨雪天气,前轮抓地力更强,感觉就像走在云端一样。

后驱呢,动力在后面,驱动后轮。

想象一下,车尾带着动力冲出去,那种感觉就像是“奋勇争先”,不怕泥泞,后驱的车子在加速的时候,后轮更有力量。

开着后驱的车子,转弯时更能感受到那种“漂移”的快感,简直就像在赛道上飞驰。

还有四驱,顾名思义,四个轮子都在“发力”。

这车子就像是个全能选手,无论是泥泞小路,还是山路十八弯,四驱都能轻松应对。

驾驭四驱的感觉就像是穿越各种地形的勇士,开车的同时,心中也充满了冒险的刺激。

再来聊聊驱动桥的优缺点。

前驱车的优点就是结构简单,制造成本低,维护也相对容易。

不过,缺点就是在高速行驶时可能不如后驱那样稳定。

而后驱车的优点就多了,动力分配更均匀,驾驶体验更好,但成本高,维护难度也增加。

货车驱动桥结构设计

货车驱动桥结构设计

是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动 齿数多的锥齿轮。对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改 变动力方向。
个差速传动机构,用来在两输出轴间分配转矩,保证两输出轴以不同的角速度转 动,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打 滑。
也叫驱动车轮传动装置,是连接驱动轮和差速器的轴,并且在驱动轮与差速器间 传递转矩。一般在变速箱加速器和驱动轮之间。
LOGO
目录
研究背景 研究意义 研究目标 论文结构 相关概念 研究内容 研究方法与过程 主要结论 致谢
LOGO
研究背景
LOGO
绿色经济的发 工业的快速发
展所要求

国家道路 建设
燃油资源不可 再生,故要求 燃油消耗率减 低
货车驱动桥
货车本身随着国 家多方面的发展 要求自身改变适 应时代
研究意义
最后向所有关心和帮助过我的人表示真心 的感谢。
LOGO
LOGO
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
LOGO
驱动桥作为汽车行驶系重要组成部分,驱动桥的 工作环境是非常恶劣的。
对汽车的行驶性能如动力性、经济性、平顺性、 通过性、机动性和操纵稳定性等有直接影响。
油价上涨,运输成本上升,因此在保证汽车动力 性的前提下,降低燃油消耗的趋势势在必行。

重型卡车双级主减速器驱动桥

重型卡车双级主减速器驱动桥

目录1前言 (2)2 总体方案论证 (3)2.1非断开式驱动桥 (3)2.2断开式驱动桥 (4)2.3多桥驱动的布置 (4)3 主减速器设计 (6)3.1主减速器结构方案分析 (6)3.2主减速器主、从动锥齿轮的支承方案 (7)3.3主减速器锥齿轮设计 (9)3.4主减速器锥齿轮的材料 (11)3.5主减速器锥齿轮的强度计算 (12)3.6主减速器锥齿轮轴承的设计计算 (13)4 差速器设计 (18)4.1差速器结构形式选择 (19)4.2普通锥齿轮式差速器齿轮设计 (19)4.3差速器齿轮的材料 (21)4.4普通锥齿轮式差速器齿轮强度计算 (21)5 驱动车轮的传动装置设计 (23)5.1半轴的型式 (23)5.2半轴的设计与计算 (23)5.3半轴的结构设计及材料与热处理 (26)6 驱动桥壳设计 (27)6.1桥壳的结构型式 (27)6.2桥壳的受力分析及强度计算 (28)7 结论 (29)致谢 (30)附件清单 (31)1前言本课题是对货车驱动桥的结构设计。

故本说明书将以“驱动桥设计”内容对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。

驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式与设计计算方法。

汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。

汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。

另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。

例如,驱动桥包含主减速器、差速器、驱动车轮的传动装置(半轴及轮边减速器)、桥壳和各种齿轮。

重型汽车的桥结构

重型汽车的桥结构

锻造二车间讲义动力传递的纽带卡车车桥结构图文讲解发动机,变速箱和车桥是卡车的三大动力核心总成,三者中车桥虽不像发动机和变速箱一样常被人们提及,但却在汽车动力传输的过程中发挥着纽带的作用,对整车的行驶的动力性和稳定性有着举足轻重的作用。

● 什么是车桥?车桥,通过悬架和车架(或承载式车身)相连,两端安装汽车车轮的桥式结构。

图为车桥总成● 车桥的作用车桥的功能就是传递车架(或承载式车身)与车轮之间各方向作用力及其力矩,其对汽车的动力性,稳定性,承载能力等性能有着重要的影响。

如果是作为驱动桥,除了承载作用外还起到驱动、减速和差速的作用。

● 车桥的结构卡车一般采用发动机前置,后轮驱动的布置方法。

一般情况下,前桥都是转向桥,而驱动桥在后桥。

前桥的结构前桥定型结构卡车前桥由主要由前梁,转向节,主销和轮毂等部分组成。

车桥两端与转向节绞接。

前梁的中部为实心或空心梁。

● 驱动桥结构驱动桥位于汽车传动系统的末端,主要由主减速器、差速器、半轴和驱动桥壳等组成。

驱动桥典型结构1.主减速器主减速器一般用来改变传动方向,降低转速,增大扭矩,保证汽车有足够的驱动力和适当的速度。

主减速器类型较多,有单级、双级、双速、轮边减速器等。

卡车后桥主减速器1)单级主减速器由一对减速齿轮实现减速的装置,称为单级减速器。

其结构简单,重量轻。

2)双级主减速器对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速,通常称为双级减速器。

双级减速器有两组减速齿轮,实现两次减速增扭。

双级主减速器为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。

二级齿轮副是斜齿圆柱齿轮。

主动圆锥齿轮旋转,带动从动圆锥齿轮旋转,从而完成一级减速。

第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。

因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动。

(毕业设计)中型货车驱动桥设计说明书

(毕业设计)中型货车驱动桥设计说明书

摘要本次毕业设计的题目是中型货车驱动桥设计。

驱动桥是汽车传动系统的重要组成部件,位于传动系的末端,其功用是增大由传动轴或变速器传来的转矩,将其传给驱动轮并使其具有差速功能。

所以中型专用汽车驱动桥设计有着重要的实际意义。

在本次设计中,根据当今驱动桥的发展情况确定了驱动桥各部件的设计方案。

其中根据本次设计的车型为中型货车,故主减速器的形式采用双级主减速器,而差速器则采用目前被广泛应用的对称式锥齿轮差速器,其半轴为全浮式支撑。

在本次设计中完成了对主减速器、差速器、半轴、桥壳与轴承的设计计算与校核并通过以上计算满足了驱动桥的各项功能。

此外本设计还应用了较为先进的设计软件,如用MATLAB进行计算编程和用CAXA软件绘图。

本设计保持了驱动桥有足够的强度、刚度和足够的使用寿命,以与足够的其他性能。

并且在本次设计中力求做到零件通用化和标准化。

关键词:驱动桥、主减速器、差速器、半轴、桥壳AbstractThe graduation project is the subject of a medium goods vehicle driver in the design of the bridge.Bridge drive vehicle drive system is an important component parts, its function is increasing drive shaft or transmission came from the torque, and its transmission to a driving wheel differential function. So medium-sized private car driver has a practical bridge design Significance.In the design of the bridge under the current drive the development of the driver identified the components of the bridge design. Accordingto the design of this model for the medium-sized cars, so the main reducer in the form of a two-stage main reducer, and the current differential is being widely used symmetric bevel gear differential; its axle for the whole floating - Support. In the completion of the design of the main reducer, differential and axle, bearings and the bridge shell calculation and design verification. Through the above calculation and the drive to meet the various functions of the bridge. In addition the design of a more advanced design tools, such as MATLAB calculated using CAXA software programming and graphics.This design has maintained a drive axle have sufficient strength, stiffness and sufficient life, and enough other properties. And in this design-to-common and standardized components.Key words:DriveBridge, the main reducer, differential and axle, ShellBridge目录第1章绪论11.1 驱动桥简介11.2 驱动桥设计的基本要求1第2章驱动桥主减速器设计22.1 主减速器简介22.2 主减速器形式选择22.3主减速器锥齿轮选择32.4 主减速器齿轮支撑42.5 主减速器轴承预紧52.6 锥齿轮啮合调整62.7 润滑62.8双曲面锥齿轮设计72.8.1 主减速比确定72.8.2 主减速器齿轮计算载荷确定72.8.3 主减速器齿轮基本参数选择82.8.4 有关双曲面锥齿轮设计计算方法与公式112.8.5 主减速器双曲面齿轮强度计算192.9 主减速器齿轮材料与处理21第3章差速器的设计223.1 差速器的功用223.2 差速器结构形式的选择223.3 差速器齿轮的基本参数选择243.4 差速器强度计算253.5 差速器直齿远锥齿轮参数26第4章车轮传动装置的设计284.1车轮传动装置的功用284.2 半轴支撑形式284.3 全浮式半轴计算载荷的确定284.4 半轴强度的计算284.5 全浮式半轴杆部直径的初选294.6 半轴的结构设计与材料与热处理29第5章驱动桥壳设计305.1 驱动桥壳的功用和设计要求305.2 驱动桥壳结构方案分析305.3 汽车以最大牵引力行使时的桥壳强度计算31第6章轴承的寿命计算326.1 主减速器轴承的计算326.2 轴承载荷的计算346.3 主动齿轮轴承寿命计算34结论36参考文献37致38附录139附录244第1章绪论1.1驱动桥简介驱动桥是汽车传动系的重要组成部分,一般由主减速器、差速器、车轮传动装置和桥壳等组成。

重型货车驱动桥的设计

重型货车驱动桥的设计

摘要本次设计的题目是重型车辆车桥设计。

驱动桥一般由主减速器、差速器、半轴及桥壳四部分组成,其基本功用是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左、右车轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;此外,还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。

本设计首先论述了驱动桥的组成,再分析驱动桥各部分结构型式,确定总体设计方案:采用整体式驱动桥,主减速器的减速型式采用单级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用普通对称式圆锥行星齿轮差速器,半轴采用全浮式型式,桥壳采用钢板冲压焊接式整体式桥壳。

在本次设计中,主要完成了单级减速器、圆锥行星齿轮差速器、全浮式半轴的设计和桥壳的校核及CAD绘图等工作。

关键词:驱动桥;主减速器;差速器;半轴;桥壳;CAD;设计;校核IABSTRACTThe object of the design is The Design for Driving Axle of truck of Cellon Ⅱ CA1080. Driving Axle is consisted of Final Drive, Differential Mechanism, Half Shaft and Axle Housing. The basic function of Driving Axle is to increase the torque transmitted by Drive Shaft or directly transmitted by Gearbox, then distributes it to left and right wheel, and make these two wheels have the differential function which is required in Automobile Driving Kinematics; besides, the Driving Axle must also stand the lead hangs down strength, the longitudinal force and the transverse force acted on the road surface, the frame or the compartment lead.The configuration of the Driving Axle is introduced in the theses at first. On the basis of the analysis of the structure ,the developing process and advantages and disadvantages of the former type of Driving Axle, the design adopted the Integral Driving Axle, Single Reduction Gear for Main Decelerator’s deceleration form, Spiral Bevel Gear for Main Decelerator’s gear, Full-floating for Axle and stamp-welded steel sheet of Integral Axle Housing for Axle Housing. In the design, we accomplished the design for Single Reduction Gear, tapered Planetary Gear Differential Mechanism, Full-floating Axle, the checking of Axle Housing and CAD drawing and so on..Key words: Drive axle;Main reducer;Differential;Axle;Bridge shell;CAD;Design;CheckII目录摘要 (I)Abstract ...........................................................................................................I I 第1章绪论 (1)1.1研究背景 (1)1.2驱动桥研究的目的和意义 (1)1.3驱动桥研究状况与发展趋势 (2)1.3.1 发展状况 (2)1.3.2驱动桥发展趋势 (2)1.4 主要研究内容 (4)第2章驱动桥结构方案拟定 (5)2.1 驱动桥的结构和种类 (5)2.1.1 汽车车桥的种类 (5)2.1.2驱动桥的种类 (5)2.1.3驱动桥结构组成 (5)2.2设计要求 (10)2.2.1 适用车型 ·····································································错误!未定义书签。

重型货车驱动桥结构讲解以及故障解决方法分析

重型货车驱动桥结构讲解以及故障解决方法分析

重型货车驱动桥结构讲解以及故障解决方法分析货车车桥中,前桥主要用来转向,一般也称之为前轴。

在车桥市场中,前桥占车桥销售额的33%左右,其中具有驱动功能的前桥占比非常小,仅在特殊工况下的军车、石油、矿用及野外作业等领域车辆中配用。

后桥主要为驱动桥,主要用来降速增扭和改变动力传输方向。

后桥可分为单级减速驱动桥与双级减速驱动桥,其中双级减速驱动桥又分为中央双级减速驱动桥和中央、轮边双级减速驱动桥。

1、中央单级减速驱动桥中央单机减速驱动桥是驱动桥结构最简单的一种,在中央桥包处由一对准双曲线螺旋锥齿轮实现降速增扭,其结构简单、重量轻、易于装配,一般在主传动比小于6情况下采用单机减速桥。

对于一些承载较大的载重车,要求具有大的减速比,如果采用单级减速驱动桥,则必须加大从动齿轮直径,这样一来会影响驱动桥桥包离地间隙,降低整桥通过性。

所以此时有必要采用双机减速驱动桥。

2、中央双级减速驱动桥目前国内车桥市场上,中央双级减速驱动桥主要有两种类型:一类是在单级减速器中预留空间,当要求增大牵引力与速比时,装入圆柱行星齿轮减速机构,将原中央单级减速改为中央双级减速,其桥壳、主减等均可互换;另一类是需要改制第一级锥齿轮,然后装入第二级圆柱直齿轮或斜齿轮,变成中央双级驱动桥。

中央双级减速驱动桥作为一种派生产品,使用受到一定限制,因此一般不作为一种基本桥型来发展,只用来做派生的特殊驱动桥。

3、中央单级、轮边减速驱动桥轮边减速驱动桥由中央一级减速加轮边一级减速组成。

当前轮边减速驱动桥可分为圆锥行星齿轮式轮边减速桥与圆柱行星齿轮式轮边减速桥两类,其主要区别在于轮边行星齿轮结构不同。

这类桥由于存在一级轮边减速,降低了半轴传递的转矩,把增大的转矩直接加到轴头轮边减速器上,而且由于存在轮边减速,其中央桥包尺寸可以减小,保证了车辆的高通过性。

与单级桥相比,其结构复杂,重量大,价格贵,而且轮边减壳存在齿轮传动,长时间行驶会产生大量的热致使轮毂过热,因此作为公路车驱动桥,它不如单级减速桥,轮边减速驱动桥主要应用在工程车及矿用车等非公路车上。

重卡贯通式驱动桥结构设计任务书

重卡贯通式驱动桥结构设计任务书
第3~7周(10月23日~11月26日):1、完成整体设计,材料的选择和相关计算,完成所有草图的绘制;2、11月19日指导教师进行中期检查;3、11月26日全系中期检查并及时写好毕业设计日志。
第8~9周(11月27日~12月10日):1、完成所有正式图纸的绘制和论文草稿;2、12月10日结题检查。
第10~11周(12月11日~12月16日):1、对毕业设计论文的内容、格式、英、汉文摘要、毕业论文等内容进行修改,2、完成正式论文的装订;3、12月16日上交所有毕业设计相关材料。
三、本设计主要研究方法:1.调研和实际考察,研究前人经验、现实的国内外研究现状和发展趋势,以及存在的问题;2.对所要研究的课题进行初步可行性分析;3.进行设计计算。
四、论文要求:1.参考文献篇数:10篇以上(其中不少于2篇外文文献);2.内容充实,结构清晰合理,符合规范;3.必须进行大量的实地调查。
技术要求与主要内容:
一、本设计将选用载重量为30吨的重型载货汽车参数并根据设计要求查找相关资料进行设计。通过汽车整体的匹配性设计完成贯通式驱动桥的主减器、差速器、轮边减速器等部件进行设计和计算,并完成校核。
二、设计出的驱动桥符合国家各项重型货车的标准,运行稳定可靠,成本降低,适合本国路面的行驶状况和国情。
第12周(12月17日~12月28日):1、准备毕业设计答辩。2、12月28日答辩
同组设计者及分工:
指导教师签字
年月日
系(教研室)主任意见:
系(教研室)主任签字
年月日
哈工大华德学院毕业设计(论文)任务书
姓名:孙明院(系):汽车工程系
专业:交通运输(汽车运用工程)班号:0793122
任务起止日期:2010年10月11日至2010年12月29日

车辆工程毕业设计4BJ1090汽车驱动桥设计

车辆工程毕业设计4BJ1090汽车驱动桥设计

摘要本次设计的题目是BJ1090汽车驱动桥设计。

驱动桥一般由主减速器、差速器、半轴及桥壳四部分组成,其基本功用是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左、右车轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;此外,还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。

BJ1090汽车是重型载货汽车,要保证足够的离地间隙,满足汽车的通过性,同时需要满足较大的传动比,本文首先确定驱动桥的总体结构,在分析驱动桥各部分结构型式,及其以往形式的优缺点的基础上,确定了总体设计方案:采用整体式驱动桥,主减速器的减速型式采用双级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用普通对称式圆锥行星齿轮差速器,半轴型式采用全浮式,桥壳采用铸造整体式桥壳。

在本次设计中,主要完成了双级减速器、圆锥行星齿轮差速器、全浮式半轴、桥壳的设计工作。

关键词:驱动桥;主减速器;全浮式半轴;桥壳;ABSTRACTThe object of the design is The Design for Driving Axle of Heavy Truck. Driving Axle is consisted of Main Decelerator, Differential Mechanism, Half Shaft and Axle Housing. The basic function of Driving Axle is to increase the torque transmitted by Drive Shaft or directly transmitted by Gearbox, then distributes it to left and right wheel, and make these two wheels have the differential function which is required in Automobile Driving Kinematics; besides, the Driving Axle must also stand the lead hangs down strength, the longitudinal force and the transverse force acted on the road surface, the frame or the compartment lead.BJ1090 cars are heavy duty truck, to ensure the adequate ground clearance, meet the car by sex, at the same time need to meet large transmission ratio, the configuration of the Driving Axle is introduced in the thesis at first. On the basis of the analysis of the structure and the developing process of Driving Axle, the design adopted the Integral Driving Axle, Double Reduction Gear for Main Decelerator’s deceleration form, Spiral Bevel Gear for Main Decelerator’s gear, Full Floating for Axle and Casting Integral Axle Housing for Axle Housing. In the design, we accomplished the design for Double Reduction Gear, tapered Planetary Gear Differential Mechanism, Full Floating Axle and Axle Housing.Key words: Driving Axle; Main Decelerator; Full floating axle; Axle Housing; Differential Mechani目录摘要 (I)Abstract ..................................................................................... 错误!未定义书签。

汽车驱动桥的设计以及组成详解

汽车驱动桥的设计以及组成详解

汽车驱动桥的设计以及组成详解一.功能:驱动桥处于动力传动系的末端,是汽车传动系的重要总成之一。

其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直立、纵向力和横向力。

驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。

二.驱动桥的设计:驱动桥设计应当满足如下基本要求:1.选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。

2.外形尺寸要小,保证有必要的离地间隙。

3.齿轮及其他传动件工作平稳,噪声小。

4.在各种转速和载荷下具有高的传动效率。

5.在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。

6.与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动相协调。

7.结构简单,加工工艺性好,制造容易,拆装、调整方便。

三.驱动桥的分类驱动桥分非断开式与断开式两大类。

1.非断开式驱动桥非断开式驱动桥也称为整体式驱动桥,其半轴套管与主减速器壳均与轴壳刚性地相连一个整体梁,因而两侧的半轴和驱动轮相关地摆动,通过弹性元件与车架相连。

它由驱动桥壳1,主减速器(图中包括6、7),差速器(图中包括2、3、4)和半轴5组成。

1-后桥壳;2-差速器壳;3-差速器行星齿轮;4-差速器半轴齿轮;5-半轴;6-主减速器从动齿轮齿圈;7-主减速器主动小齿轮2.断开式驱动桥驱动桥采用独立悬架,即主减速器壳固定在车架上,两侧的半轴和驱动轮能在横向平面相对于车体有相对运动的则称为断开式驱动桥。

1-主减速器;2-半轴;3-弹性元件;4-减振器;5-车轮;6-摆臂;7-摆臂轴为了与独立悬架相配合,将主减速器壳固定在车架(或车身)上,驱动桥壳分段并通过铰链连接,或除主减速器壳外不再有驱动桥壳的其它部分。

为了适应驱动轮独立上下跳动的需要,差速器与车轮之间的半轴各段之间用万向节连接。

四.驱动桥的组成驱动桥主要由主减速器、差速器、半轴和驱动桥壳等组成。

重型货车驱动桥总成设计需关注的六个问题

重型货车驱动桥总成设计需关注的六个问题
一旦出现干涉,可在满足强制性国家标准《道路 车辆外廓尺寸、轴荷及质量限值》的前提下增加车桥 的轮距或优化钢板弹簧座结构,避免干涉的发生。
钢板弹簧座与钢板弹簧的间隙
钢板弹簧作为中重型货车悬架中主要的机构[3], 在使用过程中易发生与钢板弹簧座的干涉现象。整车 装配时,钢板弹簧插入钢板弹簧座空间内,设计时要 注意插入板簧内的片数,也就是插入的高度,要预留 一定的间隙,间隙预留最少一片板簧的厚度。除此之 外,还要注意钢板弹簧座的偏置方向,一般中桥的钢 板弹簧座要朝车头方向偏,后桥的朝车尾方向偏,让 出一定的运动距离,防止板簧与钢板弹簧座产生运动 干涉。因为板簧的初始状态带有弹性弧高,在一定的 负荷作用下,板簧变平,由弧形变成水平。从纵向来 观测板簧距离板簧座的距离变小,如偏置的方向相反 或正中布置,很容易产生干涉情况。
图3 双曲线锥齿轮从动轮与主锥导向轴承座位置
气室位置及中心距的布置
在驱动桥总成中,气室布置的位置可以有很多种 选择,可以在主减速器侧,也可以在后盖侧,也可以 在桥壳的上方。
根据驱动桥使用车型的不同,可以分为以下几类: (1)牵引、载货车 中桥的气室一般布置在主减 速器侧,后桥的气室一般在后盖侧并且不能抬高,更 不能布置在桥壳上方。因为整车在此上方布置有牵引 鞍座,会引起运动干涉。 (2)自卸车 中桥气室一般布置在主减速器侧或 桥壳上方,后桥气室一般在后盖侧并且抬高布置或在 桥壳上方,因为自卸车卸货时一般靠近堆场,后桥的 气室极易被货物磕碰,所以抬高布置。另外当气室抬 高时,一定要注意气室中心距的布置,尽量缩小气室 中心距,因车桥在整车上会有一定量的左右窜动及上 下跳动,易引起气室与车架运动干涉。
冲压焊接结构,难免有制造误差,再加上焊接桥壳附 件时的焊接变形,可能导致实际间隙比理论间隙更 小,设计时一般要预留最少10mm的间隙。如间隙太 小,可通过增大气室角度、抬高气室或把气室布置在 桥的上方来解决。气室及调整臂位置如图1所示。

重卡贯通式驱动桥结构设计

重卡贯通式驱动桥结构设计

重卡贯通式驱动桥结构设计首先是减速器的设计。

减速器是驱动桥的核心组件,其主要作用是将发动机的动力传递给车轮。

减速器的设计应尽量减小传动过程中的能量损失,并提高传动效率。

这就要求减速器的齿轮采用高强度材料,同时要保证齿轮之间的啮合精度。

另外,减速器还需要具备一定的润滑和冷却系统,以降低传动过程中的温度和摩擦。

接下来是行星齿轮的设计。

行星齿轮是将减速器的输出转矩分配给不同车轮的关键部件。

行星齿轮的设计应考虑到各个齿轮的载荷分布和传力平衡。

在设计过程中,需要合理选择齿轮的模数和齿数,以及齿轮材料和热处理工艺,以保证行星齿轮的强度和耐磨性。

最后是卸荷器的设计。

卸荷器是贯通式驱动桥的特有装置,其作用是在车辆行驶过程中根据负荷和行驶状态来调节驱动桥的传动比例。

卸荷器的设计应考虑到驱动桥的扭矩和速度的变化范围,并配备相应的控制系统。

在设计过程中,需要充分考虑卸荷器与减速器和行星齿轮之间的匹配性和可靠性,以保证驱动桥的稳定性和可控性。

除了以上主要组件的设计之外,重卡贯通式驱动桥结构设计还需要考虑到底盘的占用空间和安装方式。

为了最大限度地减小底盘的占用空间,可以采用垂直布置的方式,即将减速器、行星齿轮和卸荷器等组件沿车轴线方向布置。

另外,还可以根据具体车型的要求,设计不同形式的壳体和支撑结构,以保证驱动桥的稳定性和可靠性。

综上所述,重卡贯通式驱动桥结构设计是一个复杂而关键的工作,涉及到驱动桥多个组件的设计和集成。

在设计过程中,需要充分考虑驱动力的传递效率、轴承的寿命、减震和降噪等因素,并合理选择材料和工艺,以提高驱动桥的强度和可靠性。

载重汽车驱动桥设计说明书

载重汽车驱动桥设计说明书

载重汽车驱动桥设计摘要驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。

当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。

本设计参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。

本设计首先确定主要部件的结构型式和主要设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支承轴承进行了寿命校核。

本设计不是采用传统的双曲面锥齿轮作为载重汽车的主减速器而是采用弧齿锥齿轮,希望这能作为一个课题继续研究下去。

关键字:载重汽车驱动桥单级减速桥锥齿轮The Designing of Heavy Truck Rear Drive AxlesAbstractDrive axle is the one of automobile four important assemblies.It` performance directly influence on the entire automobile,especially for the heavy truck .Because using the big power engine with the big driving torque satisfied the need of high speed,heavy-loaded,high efficiency,high benefit today`heavy truck,single reduction final drive axle is. Thisdesign following the traditional designing method of the drive axle. First ,make up the main parts`structure and the key designing parameters; thus reference to the similar driving axle structure ,decide the entire designing project ; fanially check the strength of the axle drive bevel pinion ,bevel gear wheel ,the differentional planetary pinion,differential side gear ,full-floating axle shaft and the banjo axle housing ,and the life expection of carrier bearing . The designing take the spiral bevel gear for the tradional hypoid gear ,as the gear type of heavy truck`s final drive,with the expection of the question being discussed,further .Key words:heavy truck drive axle single reduction final drivebevel gear1前言本课题是对YC1090货车驱动桥的结构设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。

当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。

所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。

本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。

本文首先确定主要部件的结构型式和主要设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支承轴承进行了寿命校核。

本文不是采用传统的双曲面锥齿轮作为载重汽车的主减速器而是采用弧齿锥齿轮,希望这能作为一个课题继续研究下去。

关键字:载重汽车驱动桥单级减速桥弧齿锥齿轮AbstractDrive axle is the one of automobile four important assemblies.It` performance directly influence on the entire automobile,especially for the heavy truck .Because using the big power engine with the big driving torque satisfied the need of high speed,heavy-loaded,high efficiency,high benefit today`heavy truck,must exploiting the high driven efficiency single reduction final drive axle is becoming the heavy truck`developing tendency. This design following the traditional designing method of the drive axle. First ,make up the main parts`structure and the key designing parameters; thus reference to the similar driving axle structure ,decide the entire designing project ; fanially check the strength of the axle drive bevel pinion ,bevel gear wheel ,the differentional planetary pinion,differential side gear ,full-floating axle shaft and the banjo axle housing ,and the life expection of carrier bearing . The designing take the spiral bevel gear for the tradional hypoid gear ,as the gear type of heavy truck`s final drive,with the expection of the question being discussed,further .Key words:heavy truck drive axle single reduction final drivethe spiral bevel gear目录摘要 (I)Abstract (II)第1章绪论.....................................................错误!未定义书签。

第2章驱动桥结构方案分析....................................................- 4 -第3章主减速器设计. (6)3.1 主减速器的结构形式 (6)3.1.1 主减速器的齿轮类型 (6)3.1.2 主减速器的减速形式 (6)3.1.3 主减速器主,从动锥齿轮的支承形式 (7)3.2 主减速器的基本参数选择与设计计算 (7)3.2.1 主减速器计算载荷的确定 (7)3.2.2 主减速器基本参数的选择 (9)3.2.3 主减速器圆弧锥齿轮的几何尺寸计算 (12)3.2.4 主减速器圆弧锥齿轮的强度计算 (14)3.2.5 主减速器齿轮的材料及热处理 (21)3.2.6 主减速器轴承的计算 (22)第4章轮边减速器的设计 (30)4.1 轮边减速器基本参数的选择4.2 轮边减速器齿轮强度的校核第5章驱动半轴的设计 (38)5.1 全浮式半轴计算载荷的确定 (39)5.2 全浮式半轴的杆部直径的初选 (40)5.3 全浮式半轴的强度计算 (40)5.4 半轴花键的强度计算 (41)结论 (42)致谢 (42)参考文献 (43)附录1 (43)附录2 (43)第1章绪论汽车驱动桥位于传动系的末端。

其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。

驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。

对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。

随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在十吨以上的载货汽车的发动机,最大功率在140KW以上,最大转矩也在700N·m 以上,百公里油耗是一般都在34升左右。

为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。

这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过程中的损失。

在这一环节中,发动机是动力的输出者,也是整个机器的心脏,而驱动桥则是将动力转化为能量的最终执行- 1 -者。

因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。

所以设计新型的驱动桥成为新的课题。

目前国内重型车桥生产企业也主要集中在中信车桥厂、东风襄樊车桥公司、济南桥箱厂、汉德车桥公司、重庆红岩桥厂和安凯车桥厂几家企业。

这些企业几乎占到国内重卡车桥90%以上的市场。

设计驱动桥时应当满足如下基本要求:1)选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。

2)外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。

3)齿轮及其他传动件工作平稳,噪声小。

4)在各种载荷和转速工况下有较高的传动效率。

5)具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。

6)与悬架导向机构运动协调。

7)结构简单,加工工艺性好,制造容易,维修,调整方便。

在本设计中还采用了AutoCAD和Pro/E绘图软件分别进行了工程图的- 2 -绘制和实体造型,运用AutoCAD绘制了、行星齿轮轴、左、右壳以及传动机构半轴的零件图,通过对AutoCAD的编辑工具与命令的运用,掌握了从AutoCAD基础图形的绘制→基础零件的绘制→各类零件图的创建与绘制的方法,并且理解了机械图绘制的工作流程。

另外还运用Pro/E绘图软件,运用初步的操作绘制出了主减速器的主、从动锥齿轮,差速器的行星齿轮、半轴齿轮等的实体造型,为今后更好的学习和掌握各种应用软件和技能打下坚实的基础。

- 3 -第2章驱动桥结构方案分析由于要求设计的是13吨级的后驱动桥,要设计这样一个级别的驱动桥,一般选用非断开式结构以与非独立悬架相适应,该种形式的驱动桥的桥壳是一根支撑在左右驱动车轮的刚性空心梁,一般是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,此时驱动桥,驱动车轮都属于簧下质量。

驱动桥的结构形式有多种,基本形式有三种如下:1)中央单级减速驱动桥。

此是驱动桥结构中最为简单的一种,是驱动桥的基本形式,在载重汽车中占主导地位。

一般在主传动比小于6的情况下,应尽量采用中央单级减速驱动桥。

目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承,有差速锁装置供选用。

2)中央双级驱动桥。

在国内目前的市场上,中央双级驱动桥主要有2种类型:一类如伊顿系列产品,事先就在单级减速器中预留好空间,当要求增大牵引力与速比时,可装入圆柱行星齿轮减速机构,将原中央单级改成中央双级驱动桥,这种改制“三化”(即系列化,通用化,标准化)程度高,桥壳、主减速器等均可通用,锥齿轮直径不变;另一类如洛克威尔系列产品,当要增大牵引力与速比时,需要改制第一级伞齿轮后,再装入第二级圆柱直齿轮或斜齿轮,变成要求的中央双级驱动桥,这时桥壳可通用,主减速器不通用,锥齿轮有2个规格。

由于上述中央双级减速桥均是在中央单级桥的速比超出一定数值或牵引总质量较大时,作为系列产品而派生出来的一种型号,它们很难变型为前驱动桥,使用受到一定限制;因此,综合来说,双级减速桥一般均不作为一种基本型驱动桥来发展,而是作为某一特殊考虑而派生出来的驱动桥存在。

3)中央单级、轮边减速驱动桥。

轮边减速驱动桥较为广泛地用于油田、建筑工地、矿山等非公路车与军用车上。

当前轮边减速桥可分为2类:一类- 4 -为圆锥行星齿轮式轮边减速桥;另一类为圆柱行星齿轮式轮边减速驱动桥。

①圆锥行星齿轮式轮边减速桥。

由圆锥行星齿轮式传动构成的轮边减速器,轮边减速比为固定值2,它一般均与中央单级桥组成为一系列。

在该系列中,中央单级桥仍具有独立性,可单独使用,需要增大桥的输出转矩,使牵引力增大或速比增大时,可不改变中央主减速器而在两轴端加上圆锥行星齿轮式减速器即可变成双级桥。

这类桥与中央双级减速桥的区别在于:降低半轴传递的转矩,把增大的转矩直接增加到两轴端的轮边减速器上,其“三化”程度较高。

但这类桥因轮边减速比为固定值2,因此,中央主减速器的尺寸仍较大,一般用于公路、非公路军用车。

②圆柱行星齿轮式轮边减速桥。

单排、齿圈固定式圆柱行星齿轮减速桥,一般减速比在3至4.2之间。

相关文档
最新文档