复变函数复习题答案()

合集下载

复变函数积分变换复习卷及答案

复变函数积分变换复习卷及答案

复变函数复习卷及参考答案一、填空题1、复数1z i =+的三角表示式=2(cossin )44i pp+;复指数表示式=42ie p 。

2、复数()13z i =+的z =2;23Argz k pp =+;arg 3z p=;13z i =-。

3、62111i i i -æö==-ç÷+èø。

10125212131i i i i i +-=+-=-。

4、()()31123513253x y i x i y i x y +=ì++-=-Þí-=-î,求解方程组可得,45,1111x y -==。

5、()()231,f z z z =-+则()61f i i ¢-=--。

6、()n3L i -ln 226i k i pp =-+;ln()ie 12i p=+。

7、()(2)1321,(13)2ik i iiee i p p p -++==+。

8、32282(cossin)33k k i p pp p++-=+;0,1,2k =。

1224(4)2i i -==±。

9、1sin 2e e i i --=;221cos ()22i e e pp p -=+;10 、21024z dzz z ==++ò ;1212z dz i z p ==-ò 。

11、设31cos ()zf z z -=,则0z =是(一级极点);31cos 1Re [,0]2z s z -=。

1()s i n f z z=,0z =是本性奇点。

二、判断下列函数在何处可导?何处解析?在可导处求出导数。

(1)()22f z x iy=+;解:22,,2,0,0,2u u v v u x v y x y xyxy¶¶¶¶======¶¶¶¶,一阶偏导连续,因此当,x y y x u v u v ==-时,即x y =时可导,在z 平面处处不解析。

复变函数考试试题及参考答案

复变函数考试试题及参考答案

复变函数考试试题及参考答案下面是十道复变函数考试试题(一)的参考试题及答案:1.计算下列复数的幂函数:$z=1+i$,$n=3$。

答案:$(1+i)^3=-2+2i$。

2.计算下列复数的幂函数:$z=-2+i$,$n=4$。

答案:$(-2+i)^4=7-24i$。

3.求解方程:$z^2+4z+5=0$。

答案:可以使用求根公式求解,$(z+2)^2+1=0$,得到两个解:$z_1=-2+i$和$z_2=-2-i$。

4. 计算下列复数的极坐标形式:$z = 3e^{i \pi/6}$。

答案:$z = 3\cos(\pi/6) + 3i\sin(\pi/6) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$。

5.计算下列复数的共轭复数:$z=2-i$。

答案:$z^*=2+i$。

6. 将下列复数表示为共轭形式:$z = 4e^{i \pi/3}$。

答案:$z = 4\cos(\pi/3) + 4i\sin(\pi/3) = 4(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = 2 + 2\sqrt{3}i$。

7.计算下列复数的实部和虚部:$z=3+2i$。

答案:实部为3,虚部为28.计算下列复数的模长:$z=-4+3i$。

答案:$,z, = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5$。

9.求复数的幂函数:$z=-1-i$,$n=2$。

答案:$(-1-i)^2=1-2i-1=-2i$。

10. 求复数的幂函数:$z = \sqrt{3} + i$, $n = 3$。

答案:$(\sqrt{3} + i)^3 = -2\sqrt{3} + 2i$。

复变函数1到5章测试题及答案

复变函数1到5章测试题及答案

复变函数1到5章测试题及答案(总20页)--本页仅作预览文档封面,使用时请删除本页--- 2 -第一章 复数与复变函数(答案)一、 选择题1.当iiz -+=11时,5075100z z z ++的值等于(B ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足arg(2)3z π+=,5arg(2)6z π-=,那么=z (A )(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+-3.复数)2(tan πθπθ<<-=i z 的三角表示式是(D )(A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i(C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i4.若z 为非零复数,则22z z -与z z 2的关系是(C ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是(B )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线- 3 -6.一个向量顺时针旋转3π,对应的复数为i 31-,则原向量对应的复数是(A )(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是(D )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设z 为复数,则方程i z z +=+2的解是(B ) (A )i +-43 (B )i +43 (C )i -43 (D )i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合是(D ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程232=-+i z 所代表的曲线是(C )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周(C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为(B ) (A )221=+-z z (B )433=--+z z- 4 -(C ))1(11<=--a azaz (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则12()f z z -=(C ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.000Im()Im()limz z z z z z →--(D )(A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是(C ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为(A )(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg 8arctan -π 3.设43)arg(,5π=-=i z z ,则=z i 21+- 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 ie θ16- 5 -5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为6.不等式522<++-z z522=++-z (或1)23()25(2222=+y x ) 的内部 7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为 122=+y x8.方程i z i z +-=-+221所表示的曲线是连接点 12i -+ 和 2i - 的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为()2211u v -+= 10.=+++→)21(lim 421z z iz 12i -+三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围. (]25,25[+-(或25225+≤+≤-z )) 四、设0≥a ,在复数集C 中解方程a z z =+22. (当10≤≤a 时解为i a )11(-±±或)11(-+±a 当+∞≤≤a 1时解为)11(-+±a ) 五、设复数i z ±≠,试证21zz+是实数的充要条件为1=z 或Im()0z =. 六、对于映射)1(21zz +=ω,求出圆周4=z 的像.- 6 -(像的参数方程为π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u .表示w 平面上的椭圆1)215()217(2222=+v u ) 七、设iy x z +=,试讨论下列函数的连续性:1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f2.⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f .(1.)(z f 在复平面除去原点外连续,在原点处不连续; 2.)(z f 在复平面处处连续)第二章 解析函数(答案)一、选择题:1.函数23)(z z f =在点0=z 处是( B )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( B )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( D )(A )设y x ,为实数,则1)cos(≤+iy x- 7 -(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( C )(A )xyi y x 222-- (B )xyi x +2 (C ))2()1(222x x y i y x +-+- (D )33iy x + 5.函数)Im()(2z z z f =在0z =处的导数( A )(A )等于0 (B )等于1 (C )等于1- (D )不存在 6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( C )(A )0 (B )1 (C )2 (D )2- 7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( C )(A )0 (B )1 (C )1- (D )任意常数8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是( C )(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数 (B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数 (C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数- 8 -(D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( A )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.i i 的主值为( D )(A )0 (B )1 (C )2πe (D )2e π-11.z e 在复平面上( A )(A )无可导点 (B )有可导点,但不解析 (C )有可导点,且在可导点集上解析 (D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( C )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( D )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A )3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( C )(A )αz 在复平面上处处解析 (B )αz 的模为αz- 9 -(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍 二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(limi +1 2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 常数 3.导函数x v i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 xv x u ∂∂∂∂,可微且满足222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂ 4.设2233)(y ix y x z f ++=,则=+-')2323(i f i 827427- 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f ic xyi y x ++-222或ic z +2c 为实常数6.函数)Re()Im()(z z z z f -=仅在点=z i 处可导 7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k8.复数i i 的模为),2,1,0(2 ±±=π-k e k9.=-)}43Im{ln(i 34arctan -- 10 -10.方程01=--z e 的全部解为),2,1,0(2 ±±=πk i k三、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -= (;sin )(z z f -=')2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f x x ++-=(.)1()(z e z z f +=') 四、已知22y x v u -=-,试确定解析函数iv u z f +=)(. (c i z i z f )1(21)(2++-=.c 为任意实常数)第三章 复变函数的积分(答案)一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( D )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( D)(A )2i π (B )2iπ- (C )0 (D )(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ( B ) (A ) i π2- (B )0 (C )i π2 (D )i π44.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ( C)(A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( B) (A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( A ) (A )i π2- (B )1- (C )i π2 (D )1 7.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c ⎰+'+'')()()(2)( ( C )(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定 8.设c 是从0到i 21π+的直线段,则积分=⎰cz dz ze ( A )(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( A )(A )i π22(B )i π2 (C )0 (D )i π22-10.设c 为正向圆周i a i z ≠=-,1,则=-⎰cdz i a zz 2)(cos ( C) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( C )(A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D ) (A )积分⎰=--ra z dz a z 1的值与半径)0(>r r 的大小无关 (B )2)(22≤+⎰cdz iy x ,其中c 为连接i -到i 的线段(C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( D)(A)c iz +2 (B ) ic iz +2 (C )c z +2 (D )ic z +2 14.下列命题中,正确的是(C)(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v =(B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( B )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v - (C )),(),(y x iv y x u - (D )xv i x u ∂∂-∂∂二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰cdz z 2 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(23 i π103.设⎰=-=2)2sin()(ξξξξπd z z f ,其中2≠z ,则=')3(f 0 4.设c 为正向圆周3=z ,则=+⎰cdz zzz i π6 5.设c 为负向圆周4=z ,则=-⎰c z dz i z e 5)(π 12iπ 6.解析函数在圆心处的值等于它在圆周上的 平均值7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内 解析8.调和函数xy y x =),(ϕ的共轭调和函数为 C x y +-)(21229.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a -3 10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为),(y x u -三、计算积分 1.⎰=+-R z dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; (当10<<R 时,0; 当21<<R 时,i π8; 当+∞<<R 2时,0) 2.⎰=++22422z z z dz.(0) 四、求积分⎰=1z zdz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e .(i π2)五、若)(22y x u u +=,试求解析函数iv u z f +=)(. (321ln 2)(ic c z c z f ++=(321,,c c c 为任意实常数))第四章 级 数(答案)一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( C )(A )等于0 (B )等于1 (C )等于i (D )不存在 2.下列级数中,条件收敛的级数为( C )(A )∑∞=+1)231(n n i (B )∑∞=+1!)43(n nn i (C ) ∑∞=1n n n i (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) ∑∞=+1)1(1n n i n (B )∑∞=+-1]2)1([n n n in(C)∑∞=2ln n n n i (D )∑∞=-12)1(n nnn i 4.若幂级数∑∞=0n n n z c 在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( A )(A )绝对收敛 (B )条件收敛 (C )发散 (D )不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( D )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( D )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( B ) (A ) 1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为( A )(A ))1ln(z + (B ))1ln(z - (D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n nn z c ,那么幂级数∑∞=0n n n z c 的收敛半径=R ( C )(A )∞+ (B )1 (C )2π(D )π 10.级数+++++22111z z z z的收敛域是( B ) (A )1<z (B )10<<z (C )+∞<<z 1 (D )不存在的 11.函数21z在1-=z 处的泰勒展开式为( D)(A ))11()1()1(11<++-∑∞=-z z n n n n (B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( B )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 2)()(( B )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π14.若⎩⎨⎧--==-+=,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n n n z c 的收敛域为( A ) (A )3141<<z (B )43<<z(C )+∞<<z 41 (D )+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( C )(A )1 (B )2 (C )3 (D )4 二、填空题1.若幂级数∑∞=+0)(n n n i z c 在i z =处发散,那么该级数在2=z 处的收敛性为 发散2.设幂级数∑∞=0n nn z c 与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是 12R R ≥ .3.幂级数∑∞=+012)2(n n n z i 的收敛半径=R22 4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=00)()(n n n z z c z f 成立,其中=n c ),2,1,0()(!10)( =n z f n n 或()0,2,1,0()()(21010d r n dz z z z f ir z z n <<=-π⎰=-+ ). 5.函数z arctan 在0=z 处的泰勒展开式为 )1(12)1(012<+-∑∞=+z z n n n n .6.设幂级数∑∞=0n nn z c 的收敛半径为R ,那么幂级数∑∞=-0)12(n n n n z c 的收敛半径为2R. 7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 211<-<z . 8.函数zze e 1+在+∞<<z 0内洛朗展开式为 nn nn z n z n ∑∑∞=∞=+00!11!1 . 9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n n nz c,那么该洛朗级数收敛域的外半径=R π .10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 ∑∞=+--02)()1(n n nn i z i 三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式. ()2(,12110≥+===--n a a a a a n n n ,),2,1,0(})251()251{(5111 =--+=++n a n n n ) 四、求幂级数∑∞=12n nz n 的和函数,并计算∑∞=122n n n 之值.(3)1()1()(z z z z f -+=,6)五、将函数)1()2ln(--z z z 在110<-<z 内展开成洛朗级数.(n n nk k z k n z z z z z z )1()1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+)第五章 留 数(答案)一、选择题: 1.函数32cot -πz z在2=-i z 内的奇点个数为 ( D ) (A )1 (B )2 (C )3 (D )4 2.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f的( B )(A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点 3.设0=z 为函数zz ex sin 142-的m 级极点,那么=m ( C ) (A )5 (B )4 (C)3 (D )2 4.1=z 是函数11sin)1(--z z 的( D ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点5.∞=z 是函数2323z z z ++的( B ) (A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设∑∞==0)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re k zz f s ( C ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k7.设a z =为解析函数)(z f 的m 级零点,那么='],)()([Re a z f z f s ( A ) (A)m (B )m - (C ) 1-m (D ))1(--m8.在下列函数中,0]0),([Re =z f s 的是( D )(A ) 21)(ze zf z -= (B )z z z z f 1sin )(-= (C )z z z z f cos sin )(+= (D) ze zf z 111)(--= 9.下列命题中,正确的是( C )(A ) 设)()()(0z z z z f m ϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m 级极点.(B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s(C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s(D ) 若0)(=⎰cdz z f ,则)(z f 在c 内无奇点10. =∞],2cos [Re 3zi z s ( A ) (A )32- (B )32 (C )i 32 (D )i 32- 11.=-],[Re 12i ez s i z ( B) (A )i +-61 (B )i +-65 (C )i +61 (D )i +65 12.下列命题中,不正确的是( D)(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s(B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则)()(],)()([Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-= (D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(zf 的一级极点,并且)1(lim ]),([Re 0zzf z f s z →=∞ 13.设1>n 为正整数,则=-⎰=211z ndz z ( A ) (A)0 (B )i π2 (C )n i π2 (D )i n π214.积分=-⎰=231091z dz z z ( B ) (A )0 (B )i π2 (C )10 (D )5i π 15.积分=⎰=121sin z dz z z ( C ) (A )0 (B )61-(C )3i π- (D )i π- 二、填空题 1.设0=z 为函数33sin z z -的m 级零点,那么=m 9 .2.函数z z f 1cos 1)(=在其孤立奇点),2,1,0(21 ±±=+=k k z k ππ处的留数=]),([Re k z z f s 2)2()1(π+π-k k. 3.设函数}1exp{)(22zz z f +=,则=]0),([Re z f s 0 4.设a z =为函数)(z f 的m 级极点,那么='],)()([Re a z f z f s m - . 5.设212)(zz z f +=,则=∞]),([Re z f s -2 . 6.设5cos 1)(z z z f -=,则=]0),([Re z f s 241- . 7.积分=⎰=113z z dz e z 12i π .8.积分=⎰=1sin 1z dz z i π2 . 三、计算积分⎰=--412)1(sin z z dz z e z z .(i π-316) 四、设a 为)(z f 的孤立奇点,m 为正整数,试证a 为)(z f 的m 级极点的充要条件是b z f a z m az =-→)()(lim ,其中0≠b 为有限数. 五、设a 为)(z f 的孤立奇点,试证:若)(z f 是奇函数,则]),([Re ]),([Re a z f s a z f s -=;若)(z f 是偶函数,则]),([Re ]),([Re a z f s a z f s --=.。

复变函数期末试题及答案

复变函数期末试题及答案

复变函数期末试题及答案一、选择题(每题5分,共20分)1. 若复数 \( z = a + bi \)(其中 \( a, b \) 为实数),则\( \bar{z} \) 表示()A. \( a - bi \)B. \( -a + bi \)C. \( -a - bi \)D. \( a + bi \)答案:A2. 对于复变函数 \( f(z) = u(x, y) + iv(x, y) \),以下说法正确的是()A. \( u \) 和 \( v \) 都是调和函数B. \( u \) 和 \( v \) 都是解析函数C. \( u \) 和 \( v \) 都是连续函数D. \( u \) 和 \( v \) 都是可微函数答案:A3. 若 \( f(z) \) 在 \( z_0 \) 处可导,则下列说法中正确的是()A. \( f(z) \) 在 \( z_0 \) 处解析B. \( f(z) \) 在 \( z_0 \) 处连续C. \( f(z) \) 在 \( z_0 \) 处可微D. \( f(z) \) 在 \( z_0 \) 处的导数为0答案:C4. 已知 \( f(z) \) 是解析函数,且 \( f(z) \) 在 \( z_0 \) 处有孤立奇点,则 \( f(z) \) 在 \( z_0 \) 处的留数是()A. 0B. \( \infty \)C. 1D. \( -1 \)答案:A二、填空题(每题5分,共20分)1. 若 \( z = x + yi \),且 \( |z| = 2 \),则 \( x^2 + y^2 = \_\_\_\_\_ \)。

答案:42. 设 \( f(z) = z^2 \),则 \( f(2 + 3i) = \_\_\_\_\_ \)。

答案:-5 + 12i3. 若 \( f(z) \) 在 \( z_0 \) 处解析,则 \( f(z) \) 在 \( z_0 \) 处的导数 \( f'(z_0) \) 等于 \_\_\_\_\_。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一)三 . 计算题( 40 分):dz1、|z z 0 | 1 ( z z )n__________. ( n 为自然数)f ( z)12.sin 2 z cos 2z _________.3. 函数sin z的周期为 ___________.f (z)14. z 2 1 ,则f ( z)的孤立奇点有 __________.设 5. 幂级数nz n的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ... z n7. 若 n,则 nn ______________.Res(ez8.n,0)z________,其中 n 为自然数 .9.sin z的孤立奇点为 ________ .z10. 若zlimf (z) ___是f (z) 的极点,则z z.1. 设( z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1}内的罗朗展式 .1dz.2.|z| 1cos zf ( z) 3 2 71,其中 C { z :| z |3} ,试求 f '(1 i ).3.d设Czwz 14. 求复数 z 1 的实部与虚部 .四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数, 那么它在 D 内为常数 .2. 试证 :f (z)z(1 z) 在割去线段 0 Re z 1 的 z 平面内能分出两个单值解析分支 , 并求出支割线 0 Re z 1 上岸取正值的那支在 z 1 的值 .《复变函数》考试试题(二)二. 填空题 . (20 分)1.设z i ,则| z |__,arg z__, z__2.设 f ( z)(x2 2 xy) i (1 sin( x2y2 ), z x iy C,则lim f (z)________.z1idz_________. (n为自然数)3.|z z0 |1 ( z z )n4.幂级数nz n的收敛半径为 __________ .n05.若 z0是 f(z) 的 m 阶零点且 m>0,则 z0是f ' ( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.18.设 f ( z)1z2,则 f ( z) 的孤立奇点有_________.9.函数 f (z)| z |的不解析点之集为________.10.Res( z41,1)____ . z三.计算题 . (40 分)1.求函数sin(2z3)的幂级数展开式 .2. 在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z i 处的值.计算积分: Ii1)单位圆(| z |1)3.| z | dz,积分路径为(i的右半圆 .sin zdzz22( z)4.求2.四. 证明题 . (20 分)1.设函数 f(z) 在区域 D 内解析,试证:f(z)在 D 内为常数的充要条件是 f ( z)在D内解析.2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(三)二. 填空题 .(20 分)11.设 f ( z),则f(z)的定义域为___________.z212.函数 e z的周期为_________.3.若 z nn 2 i (1 1 )n,则 lim z n __________.1 nn n4. sin 2 z cos 2z___________.dz5.|z z 0 | 1 ( z z )n_________. ( n 为自然数)6.幂级数nx n的收敛半径为 __________.n 07.设f (z)1,则 f ( z ) 的孤立奇点有 __________.z218. 设ez1,则 z___ .9.若z 0 是 f (z) 的极点,则 limf ( z) ___ .z z 010.Res( e z,0)____.z n三. 计算题 . (40分)11.将函数 f ( z)z 2e z在圆环域 0z内展为 Laurent 级数 .n!n2. 试求幂级数nnz的收敛半径 .n3. 算下列积分:e zdz,其中C 是| z| 1.Cz 2 (z29)4. 求z 9 2z 6z28z 2 0 在 | z |<1内根的个数 .四 . 证明题 . (20 分)1.函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设f (z) 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及 M ,使得当| z|R 时| f (z) |M | z |n ,证明f (z) 是一个至多 n 次的多项式或一常数。

复变函数复习题详细答案

复变函数复习题详细答案

复变函数复习题详细答案复变函数复习题详细答案如下:1. 复数的代数形式和几何解释复数 \( z = a + bi \) 可以表示为平面上的一个点 \( (a, b) \),其中 \( a \) 是实部,\( b \) 是虚部。

复数的模 \( |z| \) 表示该点到原点的距离,即 \( |z| = \sqrt{a^2 + b^2} \)。

2. 复数的运算两个复数 \( z_1 = a + bi \) 和 \( z_2 = c + di \) 的加法和乘法运算如下:\[ z_1 + z_2 = (a + c) + (b + d)i \]\[ z_1 \cdot z_2 = (ac - bd) + (ad + bc)i \]3. 复数的共轭和模复数 \( z = a + bi \) 的共轭为 \( \overline{z} = a - bi \),模为 \( |z| = \sqrt{a^2 + b^2} \)。

4. 复数的指数形式复数 \( z \) 可以表示为指数形式 \( z = re^{i\theta} \),其中\( r = |z| \) 是模,\( \theta \) 是 \( z \) 的辐角,满足\( \cos\theta = \frac{a}{r} \) 和 \( \sin\theta = \frac{b}{r} \)。

5. 复数的对数复数 \( z \) 的对数定义为 \( \log z = \log r + i\theta \),其中 \( r = |z| \),\( \theta \) 是 \( z \) 的主辐角。

6. 复数的导数设 \( f(z) = u(x, y) + iv(x, y) \) 是复函数,其中 \( z = x +iy \),则 \( f(z) \) 的导数为:\[ f'(z) = \frac{\partial u}{\partial x} + i\frac{\partialv}{\partial x} \]前提是 \( u \) 和 \( v \) 的偏导数满足柯西-黎曼方程。

济南大学成人教育《复变函数(191302)》期末考试复习题及参考答案

济南大学成人教育《复变函数(191302)》期末考试复习题及参考答案

17.
A、 B、 C、 D、 答案: C
18.
A、 B、 C、 D、 答案: D
19.
A、 B、 C、
D、 答案: A
20.
A、 B、 C、 D、
答案: C
21.
A、 B、 C、 D、 答案: D
22.
A、 B、 C、 D、 答案: D
23.
A、 B、
C、 D、 答案: C
24.
A、 B、 C、 D、 答案: B
33.
A、 B、 C、 D、 答案: B
34.
A、 B、 C、
D、 答案: B
35.
A、 B、 C、 D、 答案: C
36.
A、 B、
C、 D、 答案: C
37.
A、 B、 C、 D、 答案: B
题 二、 判断
1.
A、正确
B、错误
答案: 正确
2.
A、正确
B、错误
答案: 正确
3.
A、正确
B、错误
答案: 正确
9.
A、 B、 C、 D、 答案: A
10.
A、
B、 C、 D、
答案: D
11.
A、 B、 C、 D、 答案: D
12.
A、 B、 C、 D、 答案: A
13.
A、 B、 C、 D、 答案: C
14.
A、 B、 C、 D、 答案: C
15.
A、 B、 C、 D、 答案: C
16.
A、
B、 C、
D、 答案: B
4.
A、正确
B、错误
答案: 正确
5.
A、正确
B、错误
答案: 正确

(完整版)复变函数试题及答案

(完整版)复变函数试题及答案
C是复数其实部等于1D是复数其模等于1
2、下列命题正确的是()
A B零的辐角是零
C仅存在一个数z,使得 D
3、下列命题正确的是()
A函数 在 平面上处处连续
B 如果 存在,那么 在 解析
C每一个幂级数在它的收敛圆周上处处收敛
D如果v是u的共轭调和函数,则u也是v的共轭调和函数
4、根式 的值之一是()
1、 的指数形式是
2、 =
3、若0<r<1,则积分
4、若 是 的共轭调和函数,那么 的共轭调和函数是
5、设 为函数 = 的m阶零点,则m =
6、设 为函数 的n阶极点,那么 =
7、幂级数 的收敛半径R=
8、 是函数 的奇点
9、方程 的根全在圆环内
10、将点 ,i,0分别变成0,i, 的分式线性变换
二、单选题(每小题2分)
1 2 3 4 5
四 计算题(每小题6分,共36分)
1解: , 分
…5分
解得: 分
2解:被积函数在圆周的 内部只有一阶极点z=0
及二阶极点z=1 分
= 2i(-2+2)=0 分
3解:
= …4分
( <2)…6分
4解: 被积函数为偶函数在上半z平面有两个
一阶极点i,2i…1分
I= …2分
= …3分
= …5分
A可去奇点B一阶极点C一阶零点D本质奇点
6、函数 ,在以 为中心的圆环内的洛朗展式
有m个,则m=( )
A 1 B2C3 D 4
7、下列函数是解析函数的为()
A B
C D
8、在下列函数中, 的是()
A B
C D
9、设a ,C: =1,则 ()

复变函数考试复习资料

复变函数考试复习资料

一、单选题1.设f(z)=sin z,则下列命题中,不正确的是( )。

A、f(z)在复平面上处处解析B、f(z)以2T为周期C、D、丨f(z)丨是无界的答案: C2.A、iB、-iC、1D、-1答案: B3.下列命题中,不正确的是()。

A、B、C、若在区域D内有f '(z)=g(z),则在D内g'(z)存在且解析D、答案: D4.设f(z)在区域D内解析,c为D内任一条正向简单闭曲线,它的内部全属于D.如果f(z)在c上的值为2,那么对c内任一点z0,f(z0)( )A、等于0B、等于1C、等于2D、不能确定答案: C5.下列函数中,为解析函数的是()。

A、x²-y²-2xyB、x²+xyiC、2(x-1)y+i(y²-x²+2x)D、x³+iy³答案: C6.下列方程所表示的曲线中,不是圆周的为( ).A、B、C、D、答案: B7.函数f(z)在点z可导是f(z)在点z解析的( )A、充分不必要条件B、必要不充分条件C、充分必要条件D、既非充分条件也非必要条件答案: B8.A、2B、2iC、1+iD、2+2i答案: A9.A、不存在的B、唯一的C、纯虚数D、实数答案: D10.A、有界区域B、无界区域C、有界闭区域D、无界闭区域答案: D11.设v(x,y)在区域D内为u(x,y)的共辄调和函数,则下列函数中为D内解析函数的是()。

A、v(x,y)+iu(x,y)B、v(x,y)-iu(x, y)二、 判断题C 、u(x,y)-iv(x,y)D 、答案: B12.下列数中,为实数的是( )。

A 、B 、cos iC 、In iD 、答案: B1.若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件.A 、正确B 、错误答案: 正确2.若a 是f(z)和g(z)的一个奇点,则a 也是f(z)+g(z)的奇点。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

大学复变函数复习题+答案

大学复变函数复习题+答案

《复变函数和积分变换》一.(本题30分,其每小题各3分)1. 方程()t i 1z +=(t 为实参数)给出的曲线是 ;2. 复数3i 1+的指数形式是 ____3. 计算34-________4.函数()224z z 1z +-,z=0为 级极点,2i z ±=为 级极点5. 若∑==0n n n 2nz )(z f ,则其收敛半径 ; 6.计算留数:⎪⎭⎫⎝⎛0,z cosz Res 3 ;7. 函数()()()y ,x iv y ,x u z f +=在()y ,x z =可微的充要条件为 _____8. 曲线y x :=C 在映射z1)(=z f 下的像是_______ 9. C 为以a 为圆心,r 为半径的圆周,计算()⎰-Cna z dz(n 为正整数) ;10. 判断n1n 25i 1∑∞=⎪⎭⎫⎝⎛+的敛散性 .二、计算题(25分,每小题各5分)(1)、计算积分⎰CRezdz 其中积分路径C 为: ①连接由原点到1+i 的直线段;②连接由原点到点1的直线段及连接由点1到点1+i 的直线段所组成的折线.(2)、已知:()()3z e 1zsinzz f -=求:]0),z (f [Re s(3)、计算()()10dz z 1ln rz <<+⎰=r 4)、计算()()dz i z z 9zC2⎰+-,其中2||=z C 为正向圆周:。

(5)计算dz e 1z z 12⎰=.三、求积分()dz 1z z e 4z 22z⎰=-(7分)四、求解析函数),(),()(y x v y x u z f +=,已知()233x y x y ,x u -= ,且()i 0f =. (7分)五、验证()()0x xyarctgy ,x v >=在右半z 平面内满足Laplace 方程,即0,0=∆=∆ψϕ;其中22yx ∂∂+∂∂=∆, 并求以此为虚部的解析函数()z f .(8分六、(8分)求函数()()()2z 1z 1z f --=分别在如下区域展成洛朗展式(1).1|1|0<-<z (2)0<2z -<1.七、求实轴在映射iz 2i+=ω下的象曲线(8分)八、求函数()()0t 0,t 1,t f >⎪⎩⎪⎨⎧>≤=δδδ的傅立叶变换(7分)答案一、(1)直线y=x (2)i32k 2e⎪⎭⎫ ⎝⎛+ππ (3)一;二 (4)()()3i 12;2;3i 12313231--+--(5)2 (6)21- (7)①函数u(x,y),v(x,y)在(x,y)可微 ②u(x,y),v(x,y)在(x,y)满足C.-R.条件.即x y y x v u ,v u -==. (8)x=-y (9)⎩⎨⎧>=1n ,01n ,i 2π (10发散二、(1) ①连接原点到点1+i 的直线段的参数方程为: z=(1+i)t 1)t (0≤≤故 ⎰CRezdz =()[]{}()dt i 1t i 1Re 10++⎰ =()⎰+1tdt i 1=2i 1+ ②连接由原点到点1的直线段的参数方程为: z=t 1)t (0≤≤,连接由点1到点1+i 的直线段参数方程为: z=(1-t)+(1+i)t 1)t (0≤≤,即 z=1+it 1)t (0≤≤,故 ⎰C Rezdz =()[]⎰⎰++101idt it 1Re Retdt =⎰⎰+110dt i tdt =i 21+ (2)由题可知被积函数只有z=0一个奇点。

复变函数考试题及答案

复变函数考试题及答案

复变函数考试题及答案一、选择题(每题2分,共40分)1. 下列哪个不是复数的实部?A. 2B. -3iC. -4D. 5i答案:B2. 设z = x + yi,其中x和y都是实数,若z和z*的虚部相等,则x和y满足的关系是:A. x = yB. x = -yC. x = 0D. y = 0答案:C3. 设复函数f(z) = u(x, y) + iv(x, y),其中u(x, y)和v(x, y)是光滑函数,若f(z)满足Cauchy-Riemann方程,则u和v满足的关系是:A. ∂u/∂x = ∂v/∂y,∂u/∂y = -∂v/∂xB. ∂u/∂x = ∂v/∂y,∂u/∂y = ∂v/∂xC. ∂u/∂y = -∂v/∂x,∂u/∂x = ∂v/∂yD. ∂u/∂y = ∂v/∂x,∂u/∂x = -∂v/∂y答案:A4. 设f(z)是复平面上的解析函数,若f(z)的实部为2x^2 + 3y,则f(z)的虚部为:A. 2x^2 - 3yB. 3yC. 2x^2D. 2x^3 + 3y答案:C5. 若f(z) = z^3,其中z为复数,则f(z)的导数为:A. 3z^2B. z^2C. 2zD. 0答案:A......二、计算题(共60分)1. 计算下列复数的模和辐角:(1)z1 = 3 + 4i(2)z2 = -2 + 2i(3)z3 = -4 - 3i答案:(1)|z1| = sqrt(3^2 + 4^2) = 5,arg(z1) = arctan(4/3)(2)|z2| = sqrt((-2)^2 + 2^2) = 2sqrt(2),arg(z2) = arctan(2/(-2)) + π = -π/4(3)|z3| = sqrt((-4)^2 + (-3)^2) = 5,arg(z3) = arctan((-3)/(-4)) + π = π/42. 设复数z满足|z-2| = 3,且arg(z-2) = π/3,求z的值答案:由题意得,z-2的模为3,即|z-2| = 3,且z-2的辐角为π/3,即arg(z-2) = π/3根据复数的模和辐角定义,可以得到:3 = |z-2| = sqrt((Re(z-2))^2 + (Im(z-2))^2)π/3 = arg(z-2) = arctan((Im(z-2))/(Re(z-2)))解方程组可以得到:Re(z-2) = 3/2Im(z-2) = 3sqrt(3)/2再加上z-2 = Re(z-2) + Im(z-2)i,可以计算得到:z = 3/2 + 3sqrt(3)/2 + 2 = 2 + 3sqrt(3)/23. 将复数z = 1 + i转化为极坐标形式,并计算z^3的值。

《复变函数》期末复习题及答案

《复变函数》期末复习题及答案

复变函数复习题及答案一、判断题(红色的是错误的)1.0的幅角为0.2.i i 2<.3.z z ln 2ln 2=. 4.Lnz Lnz 22=.5.Lnz z Ln 21=. 6.0=-Lnz Lnz .7.z z Re ||>. 8.z z z Im Re ||+≤.9.Lnz Lnz z Lnz Lnz +=+=ln 2.10.函数()()231z z f +=在复平面内没有奇点. 11.若0z 是函数()z f 的奇点,则()0/z f不存在.12.设()y x v ,是()y x u ,的共轭调和函数,函数则()y x u ,也是()y x v ,的共轭调和函数. 13.设()y x v ,是()y x u ,的共轭调和函数,则22v u +一定是调和函数.14.函数()zzz f =的奇点只有一个0=z . 15.设C 是不经过原点的简单闭曲线,则⎰=Cdz z 012. 16.解析函数的导数还是解析函数. 17.Argz nArgz n11=. 18.1|cos |≤z . 19.1cos sin 22=+z z .20.∑+∞==-011n n z z .21.0sin lim=∞→zzz .22.若c z f z z =→)(lim 0,则z 0是函数的可去奇点.23.若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. 24. 若∞=z 是函数)(z f 的可去奇点,则[]0),(Re =∞z f s .25. 设0z 是)(z f 的孤立奇点,如果∞=→)(lim 0z f z z ,则0z 是)(z f 的极点.二、选择题1.下列各式中表示有界区域的是( C ).A.0Re >zB.0Im >zC.2|2|<-zD.2||>z 2.在映射2z w =下,双曲线122=-y x 在w 平面上的象是(A ). A.平行于u 的直线 B.平行于v 的直线 C.双曲线 D.圆3.方程2|||1|=+++i z z 所表示的曲线是( B ).A .圆 B.椭圆 C .双曲线 D.直线4.下列方程中表示直线的是( C ).A.1Re 2=z B.1=z z C.1=+z z D.1||||=+z z5.复数iiz -+=21在第( A )象限. A.一 B.二 C.三 D.四 6.=Lni ( A ),其中k 是整数. A.i k ⎪⎭⎫⎝⎛+ππ22 B.i k ⎪⎭⎫ ⎝⎛+-ππ22 C.i k ⎪⎭⎫ ⎝⎛+ππ24 D. i k ⎪⎭⎫ ⎝⎛+-ππ24 7.对于幂级数,下列命题中正确的是( B ).A.在收敛圆内,其条件收敛B.在收敛圆内,其绝对收敛C.在收敛圆上,其处处收敛 D 在收敛圆上,其处处发散8.0=z 是()zz z f 2sin =的( D ).A.本性奇点B.极点C.连续点D.可去奇点 9.在复平面内,关于z sin 的命题中,错误的是( C ).A.z sin 是周期函数B.z sin 是解析函数C.1|sin |≤zD.()z z cos sin /=10.设C 为正向曲线1||=z ,则()=--⎰Ci z dz21( A ).A.0B.iπ1C.i πD. i π2 11.设()zz z z f 222-+=,则()[]=0,Re z f s ( C ).A.0B.1C.1-D. 212.函数()zz f 1=将z 平面上的曲线1=x 映射成w 平面内的一条( A ). A .圆 B.椭圆 C .双曲线 D.直线13. 下列积分中,值不为零的是( D )(其中C 是正向曲线1||=z ). A.⎰Czdz B.⎰C dz z z sin C.()⎰-C dz z z 5.01 D.()⎰-Cdz z z 2114. 下列级数中,绝对收敛的级数为( D ). A.∑∞=1n )1(1n i n + B.∑∞=1n ]2)1([n n i n +- C.∑∞=2n n i n ln D. ∑∞=1n nni 2 15. 2lim1n n nini→∞+-=( A ).A.12i -+B.12i +C.2i +D.∞16. 0=z 为函数()()zz z z z f 1sin11)(+-=的( A ).A.非孤立奇点B.极点C.本性奇点D.可去奇点17.下列式子中成立的是( D ).A.i i 2<B.1sin ≤zC.z z ln 2ln 2=D.z Lnz Lnz ln 2+=18.若幂级数∑+∞=0n nn z c 在点12i +收敛,则∑+∞=1n nn n z c 在点2=z 处的敛散性为( A ).A.绝对收敛B.条件收敛C.发散D.不能确定(∑+∞=1n nn n z c 与∑+∞=0n n n z c 收敛半径是一样的,再根据阿贝尔定理)19.0=z 是函数()zzz f 1sin =的( D ).A.可去奇点B.极点C.本性起点D.非孤立奇点 20.下列级数中条件收敛的是( B ).A. nn i ∑∞+=⎪⎭⎫⎝⎛+021 B. ∑+∞=0n n n i C. ∑+∞=02n n n i D. ∑+∞=+021n n n i21.下列级数绝对收敛的是( B ).()()()()()221111112nnnn n n n i i i A B C i D nnn ∞∞∞∞====⎛⎫++⎪⎝⎭∑∑∑∑22、级数∑∞=++-111)1(n n n nz 的收敛半径R 和和函数为( B ). A.1),1ln(=+R z B.1),1ln(=+R z z C.1),1ln(=-R z D.1),1ln(=-R z z (∑∞=++-111)1(n n n n z =∑⎰∑∑∞=∞=++∞=+-=+-=-0001211d )1(1)1()1(n z n nn n n n n n z z z n z z n z z()z z dz zz dz z z z z zzz n n n znn +=+=-=-=⎰⎰∑∑⎰∞=∞=+1ln 11)(d )1(001) 23.设C 为椭圆1422=+y x ,则积分⎰Cz z d 1= ( A ). A.i π2 B.π C.0 D.i π2-24.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则( B )为D 内解析函数.A.),(),(y x iu y x v +B.),(),(y x iu y x v -C.),(),(y x iv y x u -D.xvi x u ∂∂-∂∂ 25. 级数∑∑+∞=+∞=+01n n nn n n bz z a b a ,(是复常数),则其收敛域是( D ).A.||||a z <B.||||b z <C.+∞<<||0zD.当||||b a <时||||||b z a << 三、填空题 1. 设42πiez -=,则=z Re 12. ()()112-+=z z z z f 在奇点0=z 附近的洛朗级数的收敛圆环域为1||0<<Z .3. 方程0=chz 的根是i k π⎪⎭⎫ ⎝⎛+21 4.=-⎰=1||12sin z dz z zπ____i π_________. 5. =⎥⎦⎤⎢⎣⎡-0,sin Re 4z z z s 61. 6.=⎰=1||z dz z i π2.7. ()()by x i ay x z f +++=在复平面内解析,则=a 1-,=b 1 .8.设i e z +=1,则=z Im i k ⎪⎭⎫⎝⎛+24π;9.函数2z w =将z 平面内的曲线222=-y x 映射成w 平面内曲线的方程为2=u . 10.=⎰+idz z 102()3131i +. 11.设()12-=z ze z f z,则()=0///f__-9_____________.(()12-=z ze z f z zz z e zz e z z z ze 222111--=-=-= ()⎪⎪⎭⎫ ⎝⎛++++++++-=...!31 (3)253z z z z z z z = (2)332----=z z z ()()()()()32///!3002100z f z f z f f z f '''+++=所以()()9!3230,23!30-=-='''-='''f f ) 12.设()∑+∞=-=+02111n nn z c z ,则此幂级数的收敛半径是2 .13.=⎥⎦⎤⎢⎣⎡-+0,1sin Re 6z chz z s 1201. 14.=-⎰=3||24z dz z i π2 15. =⎥⎦⎤⎢⎣⎡∞+,11Re 3z s ___0_______. 16. 设i z 22-=,则z arg =4π-,z ln =i 48ln π-.17.dz zez z⎰=11= i π18.设i z 432+=,则=||z 5.19. 若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a ____-3 .20. 0=z 是函数()121sin z e z z f z --=的__10__级极点.21. =⎥⎥⎦⎤⎢⎢⎣⎡∞,Re 1z e 0 .22.函数()4ln 2-=z zz f 的奇点的集合是}2{]0,( -∞ 23. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __-1+ie________. 24.()1-=z zz f 将区域2||=z 映射成___________________.25. z=0为()()122-=z e z z f 的 4 级零点.四、计算题1. 计算()i -1ln ,()1sin -i π和21的值解:()()i i i i i 42ln 211arg |1|ln 1ln π-=-+-=- ()i ee sh i ch i 211cos 1sin sin 2--=+=+πππ(()xshy i xchy iy x cos sin sin +=+)()()ππππ2sin 2cos 12)1(ln 2122i eeeii Ln +====+2. 求解析函数()iv u z f +=其中()01,22=+=f y x yu解:()()()222222222/2ziy xy x iy x xy y u i x u z f =+-++=∂∂-∂∂= ()()c zidz z fz f +-==⎰/由()01=f 得到,i c = 3. 求满足方程i y iix 21+=++的x 和y 的值。

复变函数考题及答案

复变函数考题及答案

复变函数考题及答案【篇一:复变函数试题与答案】>一、选择题1.当z?1?i时,z100?z75?z50的值等于() 1?i(a)i (b)?i(c)1 (d)?12.设复数z满足arc(z?2)??3,arc(z?2)?5?,那么z?() 61331?i (d)??i 2222(a)?1?3i (b)?3.复数z?tan??i(3?i (c)??????)的三角表示式是() 2 ???)?i??)] (b)sec?(a)sec22??3?3???)?i??)] 22?(c)?sec3?3?????)?i??)](d)?sec???)?i??)] 2222224.若z为非零复数,则z?与2z的关系是()2222(a)z??2z (b)z??2z22(c)z??2z (d)不能比较大小5.设x,y为实数,则动点(x,y)z1?x??yi,z2?x??yi且有z1?z2?12,的轨迹是()(a)圆(b)椭圆(c)双曲线(d)抛物线6.一个向量顺时针旋转?3,向右平移3个单位,再向下平移1个单位后对应的复数为1?3i,则原向量对应的复数是()(a)2(b)1?i (c)3?i (d)3?i17.使得z2?z成立的复数z是() 2(a)不存在的(b)唯一的(c)纯虚数(d)实数8.设z为复数,则方程z??2?i的解是()(a)?3333?i (b)?i (c)?i (d)??i 44449.满足不等式z?i?2的所有点z构成的集合是() z?i(a)有界区域(b)无界区域(c)有界闭区域(d)无界闭区域10.方程z?2?3i?2所代表的曲线是()(a)中心为2?3i,半径为2的圆周(b)中心为?2?3i,半径为2的圆周(c)中心为?2?3i,半径为2的圆周(d)中心为2?3i,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()(a)z?1?2 (b)z?3?z?3?4 z?2z?a?1(a?1) (d)z?a?z?a?c?0(c?0) 1?az(c)12.设f(z)?1?,z1?2?3i,z2?5?i,,则f(z1?z2 )(a)?4?4i(b)4?4i(c)4?4i(d)?4?4i13.limim(z)?im(z0)() x?x0z?z0(a)等于i(b)等于?i(c)等于0(d)不存在14.函数f(z)?u(x,y)?iv(x,y)在点z0?x0?iy0处连续的充要条件是()(a)u(x,y)在(x0,y0)处连续(b)v(x,y)在(x0,y0)处连续(c)u(x,y)和v(x,y)在(x0,y0)处连续(d)u(x,y)?v(x,y)在(x0,y0)处连续 2z2?z?115.设z?c且z?1,则函数f(z)?的最小值为() z (a)?3 (b)?2(c)?1 (d)1二、填空题1.设z?(1?i)(2?i)(3?i),则z? (3?i)(2?i)2.设z?(2?3i)(?2?i),则argz?3.设z?,arg(z?i)?3?,则z? 4(cos5??isin5?)24.复数的指数表示式为 2(cos3??isin3?)5.以方程z?7?i的根的对应点为顶点的多边形的面积为6.不等式z?2?z?2?5所表示的区域是曲线的内部 67.方程2z?1?i?1所表示曲线的直角坐标方程为2?(1?i)z8.方程z?1?2i?z?2?i所表示的曲线是连续点和的线段的垂直平分线9.对于映射??2i22,圆周x?(y?1)?1的像曲线为 z410.lim(1?z?2z)? z?1?i三、若复数z满足z?(1?2i)z?(1?2i)?3?0,试求z?2的取值范围.四、设a?0,在复数集c中解方程z2?2z?a.五、设复数z??i,试证z是实数的充要条件为z?1或im(z)?0. 21?z3六、对于映射??11(z?),求出圆周z?4的像. 2z七、试证1.z1?0(z2?0)的充要条件为z1?z2?z1?z2; z2z1?0(zj?0,k?j,k,j?1,2,?,n))的充要条件为 z22.z1?z2???zn?z1?z2???zn.八、若limf(z)?a?0,则存在??0,使得当0?z?z0??时有f(z)?x?x01a. 2九、设z?x?iy,试证x?y2?z?x?y.十、设z?x?iy,试讨论下列函数的连续性: ?2xy,z?0?1.f(z)??x2?y2 ?0,z?0??x3y?,z?02.f(z)??x2?y2.?0,z?0?第二章解析函数一、选择题:1.函数f(z)?3z在点z?0处是( )(a)解析的(b)可导的(c)不可导的(d)既不解析也不可导2.函数f(z)在点z可导是f(z)在点z解析的( )4 2(a)充分不必要条件(b)必要不充分条件(c)充分必要条件(d)既非充分条件也非必要条件3.下列命题中,正确的是( )(a)设x,y为实数,则cos(x?iy)?1(b)若z0是函数f(z)的奇点,则f(z)在点z0不可导(c)若u,v在区域d内满足柯西-黎曼方程,则f(z)?u?iv在d内解析(d)若f(z)在区域d内解析,则在d内也解析4.下列函数中,为解析函数的是( )(a)x2?y2?2xyi(b)x2?xyi(c)2(x?1)y?i(y2?z?x20?2x)(d)x3?iy35.函数f(z)?z2im(z)在处的导数( )(a)等于0 (b)等于1 (c)等于?1(d)不存在6.若函数f(z)?x2?2xy?y2?i(y2?axy?x2)在复平面内处处解析,那么实常数a?( )(a)0(b)1(c)2(d)?27.如果f?(z)在单位圆z?1内处处为零,且f(0)??1,那么在z?1内f(z)?( )(a)0(b)1(c)?1(d)任意常数8.设函数f(z)在区域d内有定义,则下列命题中,正确的是(a)若f(z)在d内是一常数,则f(z)在d内是一常数(c)若f(z)与f(z)在d内解析,则f(z)在d内是一常数(d)若argf(z)在d内是一常数,则f(z)在d内是一常数9.设f(z)?x2?iy2,则f?(1?i)?( )5【篇二:复变函数期末考试复习题及答案详解】=txt>1、 ?|z?z?1(z?z)n?0|__________.(n为自然数) 022.sinz?cos2z? _________.3.函数sinz的周期为___________.f(z)?14.设z2?1,则f(z)的孤立奇点有__________.?5.幂级数?nzn的收敛半径为__________.n?06.若函数f(z)在整个平面上处处解析,则称它是__________. lim 1?z2?...?zn7.若nlim??zn??z,则n??n?______________.zres(ezn,0)?8.________,其中n为自然数.9. sinzz的孤立奇点为________ .limf(10.若z0是f(z)z?zz)?___的极点,则0.三.计算题(40分):f(z)?11. 设(z?1)(z?2),求f(z)在d?{z:0?|z|?1}内的罗朗展式.1dz2. ?|z|?1cosz.2??13. 设f(z)??3??7c??zd?,其中c?{z:|z|?3},试求f(1?i).w?z?14. 求复数z?1的实部与虚部.四. 证明题.(20分) 1. 函数f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内为常数.2. 试证: f(z)在割去线段0?rez?1的z平面内能分出两个单值解析分支, 并求出支割线0?rez?1上岸取正值的那支在z??1的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设z??i,则|z|?__,argz?__,?__2.设f(z)?(x2?2xy)?i(1?sin(x2?y2),?z?x?iy?c,则zlim?1?if(z)?________.3.?dz|z?z0|?1(z?zn?_________.(n为自然数)0)?4. 幂级数?nzn的收敛半径为__________ .n?05. 若z0是f(z)的m阶零点且m0,则z0是f(z)的_____零点.6. 函数ez的周期为__________.7. 方程2z5?z3?3z?8?0在单位圆内的零点个数为________.8. 设f(z)?11?z2,则f(z)的孤立奇点有_________.9. 函数f(z)?|z|的不解析点之集为________.10. res(z?1z4,1)?____. 三. 计算题. (40分)1. 求函数sin(2z3)的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z?i处的值.i3. 计算积分:i???i|z|dz,积分路径为(1)单位圆(|z|?1)的右半圆.sinzz?24. 求(z?dz)22.四. 证明题. (20分)1. 设函数f(z)在区域d内解析,试证:f(z)在d内为常数的充要条件是f(z)在d内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设f(z)?1z2?1,则f(z)的定义域为___________. 2. 函数ez 的周期为_________.3. 若zn?21?n?i(1?1n?n)n,则limn??zn?__________.4. sin2z?cos2z?___________.dz5. ?|z?z?0|?1(z?zn_________.(n为自然数) )?6. 幂级数?nxn的收敛半径为__________.n?07. f(z)?1设z2?1,则f(z)的孤立奇点有__________.8. 设ez??1,则z?___. 9. 若z0是f(z)的极点,则limz?zf(z)?___.z10. res(ezn,0)?____.三. 计算题. (40分)11. 将函数f(z)?z2ez在圆环域0?z??内展为laurent级数.??2. 试求幂级数?n!nzn的收敛半径. n?n3. 算下列积分:?ezdzcz2(z2?9),其中c是|z|?1.4. 求z9?2z6?z2?8z?2?0在|z|1内根的个数.四. 证明题. (20分) 1. 函数f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内为常数.2. 设f(z)是一整函数,并且假定存在着一个正整数n,以及两个正数r及m,使得当|z|?r时|f(z)|?m|z|n,证明f(z)是一个至多n次的多项式或一常数。

复变函数试题及答案

复变函数试题及答案

复变函数试题及答案一、选择题(每题4分,共40分)1. 下列哪个函数在全平面上是解析的?A. f(z) = |z|^2B. f(z) = e^zC. f(z) = ln(z)D. f(z) = 1/z答案:B2. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。

下列哪个条件是解析函数的充分必要条件?A. u满足柯西-黎曼方程B. v满足柯西-黎曼方程C. u和v满足柯西-黎曼方程D. u和v的一阶偏导数满足柯西-黎曼方程答案:C3. 设f(z) = u(r, θ)是解析函数,其中r和θ是极坐标系下的变量。

下列哪个条件是解析函数的充分必要条件?A. u满足极坐标下的柯西-黎曼方程B. f(z)在全平面上是解析的C. f(z)在圆心附近是解析的D. f(z)在正实轴上是解析的答案:A4. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。

若u和v满足柯西-黎曼方程,则A. f(z)在全平面上是解析的B. f(z)在实轴上是解析的C. f(z)在虚轴上是解析的D. f(z)在解析的那部分上满足柯西-黎曼方程答案:A5. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。

若f(z)在实轴上是解析的,则A. u(x, y)在全平面上是解析的B. v(x, y)在全平面上是解析的C. u(x, y)和v(x, y)满足柯西-黎曼方程D. u(x, y)和v(x, y)处处可微分答案:C二、填空题(每空5分,共30分)1. 若f(z) = x^2 - y^2 + 2xyi是解析函数,则它的共轭函数为________。

答案:f*(z) = x^2 - y^2 - 2xyi2. 设f(z) = u(x, y)是解析函数,且满足柯西-黎曼方程的实部形式,则函数f(z)可表示为f(z) = ________。

复变函数复习题答案

复变函数复习题答案

复变函数复习题答案1. 复数的代数形式是什么?复数的代数形式为 \( z = a + bi \),其中 \( a \) 和 \( b \) 是实数,\( i \) 是虚数单位,满足 \( i^2 = -1 \)。

2. 复数的模和辐角的定义是什么?复数 \( z = a + bi \) 的模定义为 \( |z| = \sqrt{a^2 + b^2} \),辐角定义为 \( \arg(z) = \tan^{-1}\left(\frac{b}{a}\right) \)(考虑主值)。

3. 复数的乘法和除法如何进行?两个复数 \( z_1 = a_1 + b_1i \) 和 \( z_2 = a_2 + b_2i \) 的乘法为:\[ z_1 \cdot z_2 = (a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1)i \]除法为:\[ \frac{z_1}{z_2} = \frac{(a_1 + b_1i)(a_2 - b_2i)}{a_2^2 +b_2^2} \]4. 复数的共轭是什么?复数 \( z = a + bi \) 的共轭为 \( \overline{z} = a - bi \)。

5. 复数的实部和虚部如何表示?复数 \( z = a + bi \) 的实部表示为 \( \Re(z) = a \),虚部表示为 \( \Im(z) = b \)。

6. 复数的指数形式和对数形式是什么?复数的指数形式为 \( z = |z|e^{i\arg(z)} \),对数形式为\( \log(z) = \ln|z| + i\arg(z) \)。

7. 复变函数的导数定义是什么?设 \( f(z) \) 在 \( z_0 \) 处可导,则导数定义为:\[ f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) -f(z_0)}{\Delta z} \]8. 柯西-黎曼方程是什么?对于复变函数 \( f(z) = u(x, y) + iv(x, y) \),柯西-黎曼方程为:\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \]\[ \frac{\partial u}{\partial y} = -\frac{\partialv}{\partial x} \]9. 复变函数的积分定义是什么?复变函数 \( f(z) \) 在曲线 \( C \) 上的积分定义为:\[ \int_C f(z) \, dz = \int_C (u(x, y) + iv(x, y)) \, (dx + idy) \]10. 留数定理的内容是什么?留数定理指出,对于在简单闭合曲线 \( C \) 内部及其上除了有限个奇点外处处解析的函数 \( f(z) \),其在 \( C \) 上的积分可以表示为:\[ \int_C f(z) \, dz = 2\pi i \sum \text{Res}(f, z_k) \]其中 \( z_k \) 是 \( f(z) \) 在 \( C \) 内部的奇点,\( \text{Res}(f, z_k) \) 是 \( f(z) \) 在 \( z_k \) 处的留数。

《复变函数》考试试题与答案各种总结

《复变函数》考试试题与答案各种总结

《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()(1)f z z z =-在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1. 2101i n n π=⎧⎨≠⎩; 2. 1; 3. 2k π,()k z ∈; 4. z i =±; 5. 16. 整函数;7. ξ;8. 1(1)!n -; 9. 0; 10. ∞.三.计算题.1. 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑.2. 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-. 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰. 3. 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ϕλπϕλ==-⎰.所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+. 4. 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a b i a b w z z a b a b a b -+-+==-=-=-+++++++++. 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b -=+++. 四. 证明题.1. 证明 设在D 内()f z C =. 令2222(),()f z u iv f z u v c =+=+=则.两边分别对,x y 求偏导数, 得 0(1)0(2)x x y y uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 若220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =. 所以12,u c v c ==. (12,c c 为常数).所以12()f z c ic =+为常数. 2. 证明()(1)f z z z =-的支点为0,1z =. 于是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π. 所以()(1)f z z z =-的幅角共增加2π. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π, 故2(1)22i f e i π-==.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f i z ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×. 二. 填空题1.1,2π-, i ; 2. 3(1sin 2)i +-; 3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -.6. 2k i π,()k z ∈.7. 0;8. i ±;9. R ; 10. 0. 三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑. 2. 解 令i z re θ=. 则22(),(0,1)k if z z rek θπ+===.又因为在正实轴去正实值,所以0k =.所以4()if i eπ=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222ii i iz dz de ei ππθθππ---===⎰⎰.4. 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-.比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数. 2. 即要证“任一 n 次方程 101100(0)nn n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”.证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n nn n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<.()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00n a z = 有相同个数的根. 而 00n a z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R < 内有n 个根.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________. 4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =nzze . 三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数复习题答案()
部门: xxx
时间: xxx
整理范文,仅供参考,可下载自行编辑
复变函数复习题答案<2018.12)
一、判断题(红色的是错误的>
1.的幅角为.
2..
3..
4..
5..
6..
7..
8..
9..
10.函数在复平面内没有奇点.
11.若是函数的奇点,则不存在.
12.设是的共轭调和函数,函数则也是的共轭调和函数.
13.设是的共轭调和函数,则一定是调和函数.
14.函数的奇点只有一个.
15.设是不经过原点的简单闭曲线,则.
16.解读函数的导数还是解读函数.
17..
18..
19..
20..
21..
22.若,则z0是函数的可去奇点.
23.若函数f(z>在z0处解读,则它在该点的某个邻域内可以展开为幂级数.
24. 若是函数的可去奇点,则.
25. 设是的孤立奇点,如果,则是的极点.
二、选择题
1.下列各式中表示有界区域的是< C).
A. B. C. D.
2.在映射下,双曲线在平面上的象是<A ).
A.平行于的直线
B.平行于的直线
C.双曲线
D.圆
3.方程所表示的曲线是<B).
A.圆 B.椭圆 C.双曲线 D.直线
4.下列方程中表示直线的是< C ).
A. B. C. D.
5.复数在第< A)象限.
A.一
B.二
C.三
D.四b5E2RGbCAP
6.( A >,其中是整数.
A. B. C. D.
7.对于幂级数,下列命题中正确的是< B ).
A.在收敛圆内,其条件收敛
B.在收敛圆内,其绝对收敛
C.在收敛圆上,其处处收敛 D在收敛圆上,其处处发散
8.是的< D ).
A.本性奇点
B.极点
C.连续点
D.可去奇点p1EanqFDPw
9.在复平面内,关于的命题中,错误的是< C ).
A.是周期函数
B.是解读函数
C.
D.
10.设为正向曲线,则( A >.
A. B. C.
D.DXDiTa9E3d
11.设,则( C >.
A. B. C.
D.RTCrpUDGiT
12.函数将平面上的曲线映射成平面内的一条<A).
A.圆 B.椭圆 C.双曲线 D.直线
13. 下列积分中,值不为零的是< D)<其中是正向曲线).
A. B. C. D.
14.下列级数中,绝对收敛的级数为< D ).
A. B. C. D.
15.=< B ).
A. B. C. D.
16.为函数的< A ).
A.非孤立奇点
B.极点
C.本性奇点
D.可去奇点
17.下列式子中成立的是< D ).
A. B. C. D.
18.若幂级数在点收敛,则在点处的敛散性为<
A ).
A.绝对收敛
B.条件收敛
C.发散
D.不能确定
19.是函数的< D ).
A.可去奇点
B.极点
C.本性起点
D.非孤立奇点
20.下列级数中条件收敛的是< B ).
A. B. C. D.
21.下列级数绝对收敛的是< B ).
22、级数的收敛半径和和函数为<B ).
A. B. C. D.
23.设为椭圆,则积分= < A ).
A. B. C. D.
24.设在区域内为的共轭调和函数,则(B >为内解读函数.
A. B.
C. D.
25.级数是复常数),则其收敛域是< D ).
A. B. C. D.当时
三、填空题
1.设,则 1
2.在奇点附近的洛朗级数的收敛圆环域为. 3.方程的根是
4._____________.
5..
6..
7.在复平面内解读,则 1 .
8.设,则;
9.函数将平面内的曲线映射成平面内曲线的方程为.
10..
11.设,则__9_____________.
12.设,则此幂级数的收敛半径是.
13..
14.
15.___0_______.
16.设,则=,=.
17.=
18.设,则.
19. 若函数为某一解读函数的虚部,则常数____-3.
20.是函数的__10__级极点.
21. 0 .
22.函数的奇点的集合是
23.若,则__1-ie________.
24.将区域映射成___________________.
25.z=0为的4级零点.
四、计算题
1.计算,和的值
解:
2.求解读函数其中
解:
由得到,
3.求满足方程的和的值。

解:由,得到
,解得
4.求的奇点,并讨论这些奇点的类型.
解:函数的奇点集合为,其中是可去奇点,其余奇点是非
孤立奇点。

5.计算积分,其中<1)为直线上从<0,0)到的直线段
<2)是曲线上从到的一段弧。

解:<1),从到,
<2)从到
已知函数调和,求解读函数,
解:
由得到,,所以
6.将函数分别在区域与内展开成洛朗级
数。

解:
(1)在时
(2)在时
所以
7.求积分
解:
8.求积分,其中是正向圆周
解:函数在内有三个奇点,在无有穷奇点。

9.计算积分
解:函数在内有连个奇点
10.求积分
解:函数在内有两个奇点,在外有奇点
所以
11.设,求的解读区域并在此区域中求
解:的只有两个奇点,
其解读区域是
12.设,求与
解:
13.设,为从原点到的直线段,求
解:,从到1
14.分别在与内展开成洛朗级数
解:
<1)在内
<2)在内
15.设,求与
解:
16.判断级数的收敛性,若收敛,指出是绝对收敛还是条件收敛。

解:
是公比绝对值小于1的等比级数,所以收敛,所以
绝对收敛。

17.计算积分计算积分
解:函数在外只有一个奇点,所以
18.利用留数计算积分
解:
19.计算积分
解:在内有两个奇点,,在为只有一个奇点,
所以
20.利用留数计算积分
解:函数是偶函数,所以
五、证明题
1.若解读,且,证明:是常数函数。

证明:因为|f(z>|=C,对C进行讨论.
若C=0,则u=0,v=0,f(z>=0为常数.
若C0,则f(z> 0,但,即u2+v2=C2
则两边对x,y分别求偏导数,有
利用C-R条件,由于f(z>在D内解读,有
所以所以
即u=C1,v=C2,于是f(z>为常数.
2.证明:若是解读函数,则是调和函数。

证明:因为是解读函数,所以解读,所以
和都是解读函数,
所以是解读函数
3.设复数,试证
证明:设,由于所以,
4.设区域为右半平面,为内圆周上的任意一点,用内任意一
曲线连接原点和,证明
证明:在右半平面解读,所以积分与路径无关。

当时,
5.设函数f(z>在区域D内解读,试证:f(z>在D内为常数的充要条件是在D内解读.
证明:设在D内解读,则
而f(z>为解读函数,所以
所以即
从而v为常数,u为常数,即f(z>为常数.
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

相关文档
最新文档