2018年安徽省合肥市高考数学二模试卷
2018年安徽省合肥市高考数学二模试卷(文科)(解析版)
2018年安徽省合肥市高考数学二模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(1﹣2i)•i(i是虚数单位)的虚部是()A.﹣2i B.i C.﹣2D.12.(5分)已知集合M={x|x<1},N={x|0<x<2},则M∩N=()A.(0,1)B.(﹣∞,1)C.(﹣∞,2)D.[0,1)3.(5分)已知圆C:(x﹣6)2+(y﹣8)2=4,O为坐标原点,则以OC为直径的圆的方程为()A.(x﹣3)2+(y+4)2=100B.(x+3)2+(y﹣4)2=100C.(x﹣3)2+(y﹣4)2=25D.(x+3)2+(y﹣4)2=254.(5分)在直角坐标系中,若角α的终边经过点,则sin(π+α)=()A.B.C.D.5.(5分)中国古代词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是()A.174斤B.184斤C.191斤D.201斤6.(5分)已知函数是奇函数,则f(a)的值等于()A.B.3C.或3D.或37.(5分)某公司一种型号的产品近期销售情况如表根据上表可得到回归直线方程,据此估计,该公司7月份这种型号产品的销售额为()A.19.5万元B.19.25万元C.19.15万元D.19.05万元8.(5分)执行如图所示的程序框图,若输出的结果为1,则输入x的值为()A.3或﹣2B.2或﹣2C.3或﹣1D.﹣2或﹣1或3 9.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)相邻两条对称轴间的距离为,且,则下列说法正确的是()A.ω=2B.函数y=f(x﹣π)为偶函数C.函数f(x)在上单调递增D.函数y=f(x)的图象关于点对称10.(5分)在正方体ABCD﹣A1B1C1D1中,E是棱A1B1的中点,用过点A,C,E的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为()A.B.C.D.11.(5分)已知双曲线C:﹣=1(a>0,b>0)的焦点为F1、F2,点P是双曲线C 上的一点,∠PF1F2=15°,∠PF2F1=105°,则该双曲线的离心率为()A.B.C.D.12.(5分)已知函数f(x)是定义在R上的增函效,f(x)+2>f′(x),f(0)=1,则不等式ln[f(x)+2]﹣ln3>x的解集为()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,1)D.(1,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若命题p:∀x>0,lnx﹣x+1≤0,则¬p为.14.(5分)已知两个单位向量,的夹角为,则=.15.(5分)已知四棱锥P﹣ABCD的侧棱长都相等,且底面是边长为的正方形,它的五个顶点都在直径为10的球面上,则四棱锥P﹣ABCD的体积为.16.(5分)小李从网上购买了一件商品,快递员计划在下午5:00﹣6:00之间送货上门.已知小李下班到家的时间为下午5:30﹣6:00.快递员到小李家时,如果小李未到家,就将商品存放到快递柜中,则小李需要去快递柜收取商品的概率等于.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知正项等比数列{a n}满足a3=9,a4﹣a2=24.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=n•a n,求数列{b n}的前n项的和S n.18.(12分)某班级甲、乙两个小组各有10位同学,在一次期中考试中,两个小组同学的数学成绩如下:甲组:94,69,73,86,74,75,86,88,97,98;乙组:75,92,82,80,95,81,83,91,79,82.(Ⅰ)画出这两个小组同学数学成绩的茎叶图,判断哪一个小组同学的数学成绩差异较大,并说明理由;(Ⅱ)从这两个小组数学成绩在90分以上的同学中,随机选取2人在全班介绍学习经验,求选出的2位同学不在同一个小组的概率.19.(12分)在多面体ABCDPQ中,平面P AD⊥平面ABCD,AB∥CD∥PQ,AB⊥CD,△P AD为正三角形,O为AD中点,且AD=AB=2,CD=PQ=1.求证:(Ⅰ)平面POB⊥平面P AC;(Ⅱ)求多面体ABCDPQ的体积.20.(12分)已知椭圆经过点,椭圆E的一个焦点为.(Ⅰ)求椭圆E的方程;(Ⅱ)若直线l过点且与椭圆E交于A,B两点,求|AB|的最大值.21.(12分)已知函数f(x)=(x﹣1)e x﹣ax2(e是自然对数的底数).(Ⅰ)判断函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x∈R,f(x)+e x≥x3+x,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知过点P(0,﹣1)的直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C的方程为2a sinθ﹣ρcos2θ=0(a>0).(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C分别交于点M,N,且|PM|,|MN|,|PN|成等比数列,求a的值.[选修4-5:不等式选讲]23.已知函数f(x)=|3x+m|.(Ⅰ)若不等式f(x)﹣m≤9的解集为[﹣1,3],求实数m的值;(Ⅱ)若m>0,函数g(x)=f(x)﹣2|x﹣1|的图象与x轴围成的三角形的面积大于60,求m的取值范围.2018年安徽省合肥市高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(1﹣2i)•i(i是虚数单位)的虚部是()A.﹣2i B.i C.﹣2D.1【解答】解:∵(1﹣2i)•i=2+i,∴复数(1﹣2i)•i的虚部是1.故选:D.2.(5分)已知集合M={x|x<1},N={x|0<x<2},则M∩N=()A.(0,1)B.(﹣∞,1)C.(﹣∞,2)D.[0,1)【解答】解:集合M={x|x<1},N={x|0<x<2},则M∩N={x|0<x<1}=(0,1).故选:A.3.(5分)已知圆C:(x﹣6)2+(y﹣8)2=4,O为坐标原点,则以OC为直径的圆的方程为()A.(x﹣3)2+(y+4)2=100B.(x+3)2+(y﹣4)2=100C.(x﹣3)2+(y﹣4)2=25D.(x+3)2+(y﹣4)2=25【解答】解:圆C的圆心坐标C(6,8),则OC的中点坐标为E(3,4),半径|OE|==5,则以OC为直径的圆的方程为(x﹣3)2+(y﹣4)2=25,故选:C.4.(5分)在直角坐标系中,若角α的终边经过点,则sin(π+α)=()A.B.C.D.【解答】解:∵角α终边经过点,即点P(,),∴x=,y=,r=|OP|=1,则sin(π+α)=﹣sinα==﹣y=﹣.故选:A.5.(5分)中国古代词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是()A.174斤B.184斤C.191斤D.201斤【解答】解:由题意可知,数列为等差数列,公差为d=17,n=8,S8=996,以第8个儿子为首项,∴8a1+×17=996,解得a1=184,故选:B.6.(5分)已知函数是奇函数,则f(a)的值等于()A.B.3C.或3D.或3【解答】解:f(x)是奇函数;∴;整理得:(2a2﹣2)2x=0;∴2a2﹣2=0;∴a=±1;a=1时,;a=﹣1时,.故选:C.7.(5分)某公司一种型号的产品近期销售情况如表根据上表可得到回归直线方程,据此估计,该公司7月份这种型号产品的销售额为()A.19.5万元B.19.25万元C.19.15万元D.19.05万元【解答】解:由题意,=,==16.8回归直线方程,可得:=13.8.当x=7时,可得y=0.75×7+13.8=19.05.故选:D.8.(5分)执行如图所示的程序框图,若输出的结果为1,则输入x的值为()A.3或﹣2B.2或﹣2C.3或﹣1D.﹣2或﹣1或3【解答】解:当x>2时,由y==1得:x2﹣2x=3,解得:x=3,或x=﹣1(舍)当x≤2时,由y=﹣2x﹣3=1,解得:x=﹣2,综上可得若输出的结果为1,则输入x的值为3或﹣2,故选:A.9.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)相邻两条对称轴间的距离为,且,则下列说法正确的是()A.ω=2B.函数y=f(x﹣π)为偶函数C.函数f(x)在上单调递增D.函数y=f(x)的图象关于点对称【解答】解:由题意得,即T=3π,∴,得,故A错误;∴f(x)=2sin(x+φ),又,∴2sin(+φ)=0,∵0<φ<π,∴φ=.∴f(x)=2sin(x+),∵f(x﹣π)=2sin,∴函数y=f(x﹣π)为奇函数,故B错误;当x∈时,x+∈[0,],则函数f(x)在上单调递增,故C正确;∵f()=2sin()=2cos=﹣1,∴函数y=f(x)的图象关于点对称,故D错误.故选:C.10.(5分)在正方体ABCD﹣A1B1C1D1中,E是棱A1B1的中点,用过点A,C,E的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为()A.B.C.D.【解答】解:正方体ABCD﹣A1B1C1D1中,E是棱A1B1的中点,用过点A,C,E的平面截正方体,则所截的图形如下:所截的坪面为平面AECF,所以位于截面以下部分的几何体的侧(左)视图为:A故选:A.11.(5分)已知双曲线C:﹣=1(a>0,b>0)的焦点为F1、F2,点P是双曲线C 上的一点,∠PF1F2=15°,∠PF2F1=105°,则该双曲线的离心率为()A.B.C.D.【解答】解:双曲线C:﹣=1(a>0,b>0)的焦点为F1、F2,点P是双曲线C 上的一点,∠PF1F2=15°,∠PF2F1=105°,F1F2=2c,由正弦定理可得:,PF1==,同理PF2==,所以﹣=2a,即,可得e=.故选:D.12.(5分)已知函数f(x)是定义在R上的增函效,f(x)+2>f′(x),f(0)=1,则不等式ln[f(x)+2]﹣ln3>x的解集为()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,1)D.(1,+∞)【解答】解:根据题意,设g(x)=,其导数g′(x)==,又由f(x)+2>f′(x),则有g′(x)<0,则函数g(x)在R上为减函数,f(0)=1,则g(0)==3,又由函数f(x)是定义在R上的增函效,则有f(x)+2>f′(x)>0,即f(x)+2>0在R上恒成立;则ln[f(x)+2]﹣ln3>x⇒ln>x⇒>e x⇒>3⇒g(x)>g(0),又由g(x)为减函数,则有x<0,则不等式的解集为(﹣∞,0);故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若命题p:∀x>0,lnx﹣x+1≤0,则¬p为∃x>0,lnx﹣x+1>0.【解答】解:因为全称命题的否定是特称命题,所以,命题p:∀x>0,lnx﹣x+1≤0,则¬p 为∃x>0,lnx﹣x+1>0.故答案为:∃x>0,lnx﹣x+1>0.14.(5分)已知两个单位向量,的夹角为,则=.【解答】解:两个单位向量,的夹角为,则=2=2﹣﹣1=,故答案为:.15.(5分)已知四棱锥P﹣ABCD的侧棱长都相等,且底面是边长为的正方形,它的五个顶点都在直径为10的球面上,则四棱锥P﹣ABCD的体积为6或54.【解答】解:∵四棱锥P﹣ABCD的侧棱长都相等,且底面是边长为的正方形,它的五个顶点都在直径为10的球面上,连结AC,BD,交于点E,设球心为O,球半径为R,连结PO,BO,则E在直线PO上,PO=BO=R,∴BE==3,R=5,∴OE==4,∴PE=R﹣OE=5﹣4=1或PE=R+OE=5+4=9,∴四棱锥P﹣ABCD的体积为:V===6,或V===54.故答案为:6或54.16.(5分)小李从网上购买了一件商品,快递员计划在下午5:00﹣6:00之间送货上门.已知小李下班到家的时间为下午5:30﹣6:00.快递员到小李家时,如果小李未到家,就将商品存放到快递柜中,则小李需要去快递柜收取商品的概率等于.【解答】解:假设快递员送达的时刻为x,小李到家的时刻为y,则有序实数对(x,y)满足的区域为{(x,y)|},小李需要去快递柜收取商品,即序实数对(x,y)满足的区域为{(x,y)|},如图:∴小李需要去快递柜收取商品的概率等于.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知正项等比数列{a n}满足a3=9,a4﹣a2=24.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=n•a n,求数列{b n}的前n项的和S n.【解答】解:(Ⅰ)设数列{a n}的公比为q,由a4﹣a2=24,得,即3q2﹣8q﹣3=0,解得q=3或.又∵a n>0,则q>0,∴q=3,∴.(Ⅱ),∴,…①,①×3可得:,…②,①﹣②可得:,∴.18.(12分)某班级甲、乙两个小组各有10位同学,在一次期中考试中,两个小组同学的数学成绩如下:甲组:94,69,73,86,74,75,86,88,97,98;乙组:75,92,82,80,95,81,83,91,79,82.(Ⅰ)画出这两个小组同学数学成绩的茎叶图,判断哪一个小组同学的数学成绩差异较大,并说明理由;(Ⅱ)从这两个小组数学成绩在90分以上的同学中,随机选取2人在全班介绍学习经验,求选出的2位同学不在同一个小组的概率.【解答】解:(Ⅰ)由两个小组同学的数学成绩出这两个小组同学数学成绩的茎叶图如下:由茎叶图中数据分布可知,甲组数据分布比较分散,乙组数据分布相对集中,∴甲组同学的成绩差异较大.(Ⅱ)设甲组数据成绩在90分以上的三位同学为A1,A2,A3,乙组数据在90分以上的三位同学为B1,B2,B3.从这6位同学中选出2位同学,共有15个基本事件,列举如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,B3);(A2,A3),(A2,B1),(A2,B2),(A2,B3);(A3,B1),(A3,B2),(A3,B3);(B1,B2),(B1,B3),(B2,B3).其中,从这6位同学中选出2位同学不在同一个小组共有9个基本事件,∴选出的2位同学不在同一个小组的概率.19.(12分)在多面体ABCDPQ中,平面P AD⊥平面ABCD,AB∥CD∥PQ,AB⊥CD,△P AD为正三角形,O为AD中点,且AD=AB=2,CD=PQ=1.求证:(Ⅰ)平面POB⊥平面P AC;(Ⅱ)求多面体ABCDPQ的体积.【解答】解:(Ⅰ)证明:在多面体ABCDPQ中,平面P AD⊥平面ABCD,AB∥CD∥PQ,AB⊥CD,△P AD为正三角形,O为AD中点,且AD=AB=2,CD=PQ=1,∴由条件可知,Rt△ADC≌Rt△BAO,故∠DAC=∠ABO.∴∠DAC+∠AOB=∠ABO+∠AOB=90°,∴AC⊥BO.∵P A=PD,且O为AD中点,∴PO⊥AD.∵平面P AD⊥平面ABCD,PO⊥AD,∴PO⊥平面ABCD.又∵AC⊂平面ABCD,∴AC⊥PO.又∵BO∩PO=O,∴AC⊥平面POB.∵AC⊂平面P AC,∴平面POB⊥平面P AC.解:(Ⅱ)取AB中点为E,连接CE,QE.由(Ⅰ)可知,PO⊥平面ABCD.又∵AB⊂平面ABCD,∴PO⊥AB.又∵AB⊥CD,PO∩AD=O,∴AB⊥平面P AD.∴多面体ABCDPQ的体积:=.20.(12分)已知椭圆经过点,椭圆E的一个焦点为.(Ⅰ)求椭圆E的方程;(Ⅱ)若直线l过点且与椭圆E交于A,B两点,求|AB|的最大值.【解答】解:(Ⅰ)依题意,设椭圆E的左,右焦点分别为,.则|PF1|+|PF2|=4=2a,∴a=2,,∴b2=1,∴椭圆E的方程为.(Ⅱ)当直线l的斜率存在时,设,A(x1,y1),B(x2,y2).由得.由△>0得4k2>1.由,得.设,则,∴.当直线l的斜率不存在时,,∴|AB|的最大值为.21.(12分)已知函数f(x)=(x﹣1)e x﹣ax2(e是自然对数的底数).(Ⅰ)判断函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x∈R,f(x)+e x≥x3+x,求a的取值范围.【解答】解:(Ⅰ)∵f′(x)=xe x﹣2ax=x(e x﹣2a),当a≤0时,f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,∴f(x)有1个极值点;当时,f(x)在(﹣∞,ln2a)上单调递增,在(ln2a,0)上单调递减,在(0,+∞)上单调递增,∴f(x)有2个极值点;当时,f(x)在R上单调递增,此时f(x)没有极值点;当时,f(x)在(﹣∞,0)上单调递增,在(0,ln2a)上单调递减,在(ln2a,+∞)上单调递增,∴f(x)有2个极值点;∴当a≤0时,f(x)有1个极值点;当a>0且时,f(x)有2个极值点;当时,f(x)没有极值点.(Ⅱ)由f(x)+e x≥x3+x得xe x﹣x3﹣ax2﹣x≥0.当x>0时,e x﹣x2﹣ax﹣1≥0,即对∀x>0恒成立.设,则.设h(x)=e x﹣x﹣1,则h′(x)=e x﹣1.∵x>0,∴h′(x)>0,∴h(x)在(0,+∞)上单调递增,∴h(x)>h(0)=0,即e x>x+1,∴g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴g(x)≥g(1)=e﹣2,∴a≤e﹣2.当x=0时,不等式恒成立,a∈R;当x<0时,e x﹣x2﹣ax﹣1≤0.设h(x)=e x﹣x2﹣ax﹣1,则h′(x)=e x﹣2x﹣a.设φ(x)=e x﹣2x﹣a,则φ′(x)=e x﹣2<0,∴h′(x)在(﹣∞,0)上单调递减,∴h′(x)≥h′(0)=1﹣a.若a≤1,则h′(x)≥0,∴h(x)在(﹣∞,0)上单调递增,∴h(x)<h(0)=0.若a>1,∵h′(0)=1﹣a<0,∴∃x0<0,使得x∈(x0,0)时,h′(x)<0,即h(x)在(x0,0)上单调递减,∴h(x)>h(0)=0,舍去,∴a≤1.综上可得,a的取值范围是(﹣∞,e﹣2].请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知过点P(0,﹣1)的直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C的方程为2a sinθ﹣ρcos2θ=0(a>0).(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C分别交于点M,N,且|PM|,|MN|,|PN|成等比数列,求a的值.【解答】解(Ⅰ)曲线C的方程为2a sinθ﹣ρcos2θ=0(a>0).∴2aρsinθ﹣ρ2cos2θ=0.即x2=2ay(a>0).(Ⅱ)将代入x2=2ay,得,得.∵a>0,∴解①得.∵|PM|,|MN|,|PN|成等比数列,∴|MN|2=|PM|•|PN|,即,∴,即,解得a=0或.∵,∴.[选修4-5:不等式选讲]23.已知函数f(x)=|3x+m|.(Ⅰ)若不等式f(x)﹣m≤9的解集为[﹣1,3],求实数m的值;(Ⅱ)若m>0,函数g(x)=f(x)﹣2|x﹣1|的图象与x轴围成的三角形的面积大于60,求m的取值范围.【解答】(Ⅰ)由题意得解①得m≥﹣9.②可化为﹣9﹣m≤3x+m≤9+m,.∵不等式f(x)≤9的解集为[﹣1,3],∴,解得m=﹣3,满足m≥﹣9.∴m=﹣3;(Ⅱ)依题意得,g(x)=|3x+m|﹣2|x﹣1|.又∵m>0,∴,g(x)的图象与x轴围成的△ABC的三个顶点的坐标为A(﹣m﹣2,0),,,∴,解得m>12.。
安徽省合肥市2018届高三第二次教学质量检测数学(理)试题(精编含解析)
安徽省合肥市2018届高三第二次教学质量检测数学理试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数满足(是虚数),则复数在复平面内对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】∴,∴,∴复数点为,位于第二象限.选B.2.已知集合,集合,则()A. B. C. D.【答案】D【解析】∵,,∴.选D.3.命题,关于的方程有实数解,则为()A. ,关于的方程有实数解B. ,关于的方程没有实数解C. ,关于的方程没有实数解D. ,关于的方程有实数解【答案】C【解析】根据含有量词的命题的否定可得,为:,关于的方程没有实数解.选C.4.在直角坐标系中,若角的终边经过点,则()A. B. C. D.【答案】A【解析】由条件得点的坐标为,∴.∴.选A.5.中国古代词中,有一道“八子分绵”的数学命题:“九百九十斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言.”题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是()A. 174斤B. 184斤C. 191斤D. 201斤【答案】B【解析】用表示8个儿按照年龄从大到小得到的绵数,由题意得数列是公差为17的等差数列,且这8项的和为996,∴,解得.∴.选B.6.执行如图所示的程序框图,若输出的结果为1,则输入的的值为()A. 3或-2B. 2或-2C. 3或-1D. -2或-1或3【答案】A【解析】由题意可得本题是求分段函数中,求当时的取值.当时,由,解得,符合题意.当时,由,得,解得或(舍去).综上可得或.选A.7.小李从网上购买了一件商品,快递员计划在下午5:00-6:00之间送货上门,已知小李下班到家的时间为下午5:30-6:00.快递员到小李家时,如果小李未到家,则快递员会电话联系小李.若小李能在10分钟之内到家,则快递员等小李回来;否则,就将商品存放在快递柜中.则小李需要去快递柜收取商品的概率为()A. B. C. D.【答案】D【解析】设快递员到小李家的时间为x,小李到家的时间为y,由题意可得所有基本事件构成的平面区域为,设“小李需要去快递柜收取商品”为事件A,则事件A包含的基本事件构成的平面区域为,如图阴影部分所示的直角梯形.在中,当时,;当时,.∴阴影部分的面积为,由几何概型概率公式可得,小李需要去快递柜收取商品的概率为.选D.8.在正方体中,,,分别为棱,,的中点,用过点,,的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为()A. B. C. D.【答案】C【解析】取的中点连,则为过点,,的平面与正方体的面的交线.延长,交的延长线与点,连,交于,则为过点,,的平面与正方体的面的交线.同理,延长,交的延长线于,连,交于点,则为过点,,的平面与正方体的面的交线.所以过点,,的平面截正方体所得的截面为图中的六边形.故可得位于截面以下部分的几何体的侧(左)视图为选项C所示.选C .9.已知函数,实数,满足不等式,则下列不等式恒成立的是()A. B. C. D.【答案】C【解析】由题意得,故函数为奇函数.又,故函数在R上单调递减.∵,∴,∴,∴.选C.10.已知双曲线的左,右焦点分别为,,,是双曲线上的两点,且,,则该双曲线的离心率为()A. B. C. D.【答案】B【解析】如图,设,是双曲线左支上的两点,令,由双曲线的定义可得.在中,由余弦定理得,整理得,解得或(舍去).∴,∴为直角三角形,且.在中,,即,∴,∴.即该双曲线的离心率为.选B.点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,利用和转化为关于e的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.(2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量.11.函数,,,且在上单调,则下列说法正确的是( )A. B.C. 函数在上单调递增D. 函数的图象关于点对称【答案】C【解析】由题意得函数的最小正周期为,∵在上单调,∴,解得.∵,,∴,解得,∴.对于选项A,显然不正确.对于选项B,,故B不正确.对于选项C,当时,,所以函数单调递增,故C正确.对于选项D,,所以点不是函数图象的对称中心,故D不正确.综上选C.点睛:解决函数综合性问题的注意点(1)结合条件确定参数的值,进而得到函数的解析式.(2)解题时要将看作一个整体,利用整体代换的方法,并结合正弦函数的相关性质求解.(3)解题时要注意函数图象的运用,使解题过程直观形象化.12.已知点在内部,平分,,对满足上述条件的所有,下列说法正确的是()A. 的三边长一定成等差数列B. 的三边长一定成等比数列C. ,,的面积一定成等差数列D. ,,的面积一定成等比数列【答案】B【解析】设.在中,可得.在中,分别由余弦定理得,①,②.③由①+②整理得,∴,将代入上式可得.又由三角形面积公式得,∴,∴,∴,∴.由③得,∴,整理得.故选B.点睛:本题难度较大,解题时要合理引入变量,通过余弦定理、三角形的面积公式,建立起三角形三边间的联系,然后通过消去变量的方法逐步得到三边的关系.由于计算量较大,在解题时要注意运算的准确性和合理性.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知两个单位向量,的夹角为,则__________.【答案】【解析】.答案:14.的展开式中含项的系数为__________.【答案】18【解析】含项为,故系数为.15.已知半径为的球内有一个内接四棱锥,四棱锥的侧棱长都相等,底面是正方形,当四棱锥的体积最大时,它的底面边长等于__________.【答案】4【解析】如图,设四棱锥的侧棱长为,底面正方形的边长为,棱锥的高为.由题意可得顶点在地面上的射影为底面正方形的中心,则球心在高上.在中,,∴,整理得.又在中,有,∴.∴,∴.设,则,∴当时,单调递增,当时,单调递减.∴当时取得最大值,即四棱锥的体积取得最大值,此时,解得.∴四棱锥的体积最大时,底面边长等于4.答案:416.为保护环境,建设美丽乡村,镇政府决定为三个自然村建造一座垃圾处理站,集中处理三个自然村的垃圾,受当地条件限制,垃圾处理站只能建在与村相距,且与村相距的地方.已知村在村的正东方向,相距,村在村的正北方向,相距,则垃圾处理站与村相距__________.【答案】2或7【解析】以为为坐标原点,为x轴建立平面直角坐标系,则.由题意得处理站在以为圆心半径为5的圆A上,同时又在以为圆心半径为的圆C上,两圆的方程分别为和.,解得或.∴垃圾处理站的坐标为或,∴或,即垃圾处理站与村相距或.答案:2或7点睛:解答本题的关键是读懂题意,深刻理解垃圾处理站所在的位置,然后通过合理建立平面直角坐标系,将所求问题转化为求两圆交点的问题,解方程组得到两圆交点坐标后再通过两点间的距离公式求解.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等比数列的前项和满足,且.(1)求数列的通项公式;(2)设,求数列的前项的和.【答案】(1);(2).【解析】试题分析:(1)由变形得,即,于是可得公比,由此可得通项公式.(2)由(1)得,然后利用错位相减法求和.试题解析:(1)设等比数列的公比为.由,得,即,,∴.(2)由(1)得,,①∴,②①-②得,∴.18.为了解市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了部分高三理科学生数学成绩绘制如图所示的频率分布直方图.(1)根据频率分布直方图,估计该市此次检测理科数学的平均成绩;(精确到个位)(2)研究发现,本次检测的理科数学成绩近似服从正态分布(,约为19.3).按以往的统计数据,理科数学成绩能达到升一本分数要求的同学约占,据此估计本次检测成绩达到升一本的理科数学成绩大约是多少分?(精确到个位)已知市理科考生约有10000名,某理科学生此次检测数学成绩为107分,则该学生全市排名大约是多少名?(说明:表示的概率,用来将非标准正态分布化为标准正态分布,即,从而利用标准正态分布表,求时的概率,这里.相应于的值是指总体取值小于的概率,即.参考数据:,,). 【答案】(1)103;(2)①117;②4968名.【解析】【详解】试题分析:(1)用每一个小矩形的中点値代替本组数据,乘以对应的频率后取和即可得到平均数.(2)①设理科数学成绩约为,由题意得,根据参考数据可得,故,解得即为所求.②先求得,故可得估计名次为名.试题解析:(1)该市此次检测理科数学成绩平均成绩约为:.(2)记本次考试成绩达到升一本的理科数学成绩约为,根据题意,,即.由,得解得,所以本次考试成绩达到升一本的理科数学成绩约为117分.,所以理科数学成绩为107分时,大约排在名.19.在四棱锥中,平面平面,,,为中点,,.(1)求证:平面平面;(2)求二面角的余弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)由并结合平面几何知识可得.又由及平面平面可得平面,于是得,由线面垂直的判定定理可得平面,进而可得平面平面.(2)根据,建立以为坐标原点的空间直角坐标系,通过求出平面和平面法向量的夹角并结合图形可得所求二面角的余弦值.试题解析:(1)由条件可知,,,,.,且为中点,.∵,,,平面.又平面,.,平面.平面,平面平面.(2)由(1)知,以为坐标原点,建立如图所示的空间直角坐标系,则,,,,∴,,,,设为平面的一个法向量,由,得.令,得.同理可得平面的一个法向量.∴.由图形知二面角为锐角,∴二面角的余弦值为.点睛:用空间向量求解立体几何问题的注意点(1)建立坐标系时要确保条件具备,即要证明得到两两垂直的三条直线,建系后要准确求得所需点的坐标.(2)用平面的法向量求二面角的大小时,要注意向量的夹角与二面角大小间的关系,这点需要通过观察图形来判断二面角是锐角还是钝角,然后作出正确的结论.20.已知点和动点,以线段为直径的圆内切于圆.(1)求动点的轨迹方程;(2)已知点,,经过点的直线与动点的轨迹交于,两点,求证:直线与直线的斜率之和为定值.【答案】(1);(2)见解析.【解析】试题分析:(1)设以线段为直径的圆的圆心为,取,借助几何知识分析可得动点的轨迹是以为焦点,长轴长为4的椭圆,根据待定系数法可得动点的轨迹方程为.(2)①当直线垂直于轴时,不合题意;②当直线的斜率存在时,设直线的方程为,与椭圆方程联立消元后可得二次方程,根据二次方程根与系数的关系及斜率公式可得,为定值.试题解析:(1)如图,设以线段为直径的圆的圆心为,取.依题意,圆内切于圆,设切点为,则,,三点共线,为的中点,为中点,.,∴动点的轨迹是以为焦点,长轴长为4的椭圆,设其方程为,则,,,,,动点的轨迹方程为.(2)①当直线垂直于轴时,直线的方程为,此时直线与椭圆相切,与题意不符.②当直线的斜率存在时,设直线的方程为.由消去y整理得.∵直线与椭圆交于,两点,∴,解得.设,,则,(定值).点睛:(1)解题时注意圆锥曲线定义的两种应用,一是利用定义求曲线方程,二是根据曲线的定义求曲线上的点满足的条件,并进一步解题.(2)求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21.已知函数(是自然对数的底数)(1)判断函数极值点的个数,并说明理由;(2)若,,求的取值范围.【答案】(1)见解析;(2).【解析】试题分析:(1)对求导可得,根据的取值,分,,和四种情况讨论函数的单调性,然后得到极值点的个数.(2)由题意可得对恒成立.然后分,和三种情况分别求解,通过分离参数或参数讨论的方法可得的取值范围.试题解析:(1)∵,∴,当时,在上单调递减,在上单调递增,有1个极值点;当时,在上单调递增,在上单调递减,在上单调递增,有2个极值点;当时,在上单调递增,此时没有极值点;当时,在上单调递增,在上单调递减,在上单调递增,有2个极值点;综上可得:当时,有1个极值点;当且时,有2个极值点;当时,没有极值点.(2)由得.①当时,由不等式得,即对在上恒成立.设,则.设,则.,,在上单调递增,,即,在上单调递减,在上单调递增,,.②当时,不等式恒成立,;③当时,由不等式得.设,则.设,则,在上单调递减,.若,则,在上单调递增,.若,,,使得时,,即在上单调递减,,舍去..综上可得,的取值范围是.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知过点的直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线分别交于点,,且,,成等比数列,求的值.【答案】(1);(2).【解析】试题分析:(1)根据极坐标和直角坐标间的转化公式求解即可.(2)利用直线的参数方程中参数的几何意义并结合一元二次方程根于系数的关系求解.试题解析:(1),,将代入上式可得,∴曲线的直角坐标方程.(2)将代入消去整理得,∵直线与抛物线交于两点,∴,又,∴.设,对应的参数分别为,则.,,成等比数列,,即,,即,解得或(舍去).点睛:利用直线参数方程中参数的几何意义求解问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为(t为参数).若A,B为直线l上两点,其对应的参数分别为,线段AB的中点为M,点M所对应的参数为,则以下结论在解题中经常用到:(1) ;(2) ;(3);(4).23.选修4-5:不等式选讲已知函数.(1)若不等式的解集为,求实数的值;(2)若,函数的图象与轴围成的三角形的面积大于60,求的取值范围.【答案】(1);(2).【解析】试题分析:(1)解不等式可得且,根据不等式的解集为得到,解得,即为所求.(2)由题意可得函数的图象与轴围成的的三个顶点的坐标为,,,于是,解得,即为所求的范围.试题解析:(1)由题意得解得.可化为,解得.不等式的解集为,,解得,满足..(2)依题意得,.又,∴的图象与轴围成的的三个顶点的坐标为,,,,解得.∴实数的取值范围为.。
合肥市高考数学二模试卷(文科)B卷
合肥市高考数学二模试卷(文科)B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018高一上·云南期中) 已知集合,则()A .B .C .D .2. (2分)(2017·太原模拟) 已知复数z= (i为虚数单位),则|z|=()A .B .C .D .3. (2分)(2018·武邑模拟) 已知函数f(x)的定义域为R,当x∈[-2,2]时,f(x)单调递减,且函数f(x +2)为偶函数.则下列结论正确的是()A . f(π)<f(3)<f()B . f(π)<f()<f(3)C . f()<f(3)<f(π)D . f()<f(π)<f(3)4. (2分)设x,y满足约束条件,若恒成立,则实数a的最大值为()A .B .C .D .5. (2分)已知是平面向量,若,,则与的夹角是()A .B .C .D .6. (2分) (2017高一下·温州期末) 等差数列{an}的前n项和为Sn ,若S9=45,则3a4+a8=()A . 10B . 20C . 35D . 457. (2分) (2017高二下·广安期末) 甲、乙两人从1,2,…,15这15个数中,依次任取一个数(不放回).则在已知甲取到的数是5的倍数的情况下,甲所取的数大于乙所取的数的概率是()A .B .C .D .8. (2分) (2018高一上·大连期末) 《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥为鳖臑,平面,三棱锥的四个顶点都在球O的球面上,则球O的表面积为()A . 17B . 25C . 34D . 509. (2分)将函数y=sin2x的图象向左平移φ(φ>0)个单位,所得图象对应的函数为偶函数,则φ的最小值为()A .B .C .D .10. (2分)(2018·龙泉驿模拟) 某四棱锥的三视图如图所示,则该四棱锥的体积为()A .B .C .D .11. (2分)已知双曲线右支上的一点到左焦点距离与道右焦点的距离之差为,且两条渐近线的距离之积为,则双曲线的离心率为()A .B .C .D .12. (2分)已知函数f(x)满足f(x+1)=﹣f(x),且f(x)是偶函数,当x∈[0,1]时,f(x)=x2 ,若在区间[﹣1,3]内,函数g(x)=f(x)﹣kx﹣k有4个零点,则实数k的取值范围是()A .B .C .D .二、填空题: (共4题;共4分)13. (1分)已知α,β均为锐角,且tan(α﹣β)= ,若cosα= ,则cos2β的值为________.14. (1分)以A(1,2)为圆心,且与圆x2+y2=45相切的圆的方程是________.15. (1分) (2018高二上·齐齐哈尔月考) 执行如图所示的程序框图,若输入的值为3,则输出的的值为________.16. (1分) (2016高一下·江阴期中) 把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如图).则第8个三角形数是________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (共6题;共45分)17. (10分) (2018高一下·雅安期中) 向量 , ,已知,且有函数.(1)求函数的解析式及周期;(2)已知锐角的三个内角分别为,若有,边 ,,求的长及的面积.18. (10分)如图,PA⊥平面ABC,AB⊥BC,AB=PA=2BC=2,M为PB的中点.(1)求证:AM⊥平面PBC;(2)求点M到平面PAC的距离.19. (5分)(2017·河西模拟) 如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.参考数据: =9.32, =40.17, =0.55,≈2.646.参考公式:相关系数r= 回归方程 = + t 中斜率和截距的最小二乘估计公式分别为: = , = ﹣.20. (5分)在平面直角坐标系xOy中,已知点A(0,3),直线l:y=2x﹣4,设圆C的半径为1,圆心C在直线l上;若动点M满足:|MA|=2|MO|,且M的轨迹与圆C有公共点.求圆心C的横坐标a的取值范围.21. (10分) (2017高三上·红桥期末) 已知函数f(x)=[ax2﹣(2a+1)x+a+2]ex(a∈R).(1)当a≥0时,讨论函数f(x)的单调性;(2)设g(x)= ,当a=1时,若对任意x1∈(0,2),存在x2∈(1,2),使f(x1)≥g(x2),求实数b的取值范围.22. (5分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ2= ,直线l的极坐标方程为ρ= .(Ⅰ)写出曲线C1与直线l的直角坐标方程;(Ⅱ)设Q为曲线C1上一动点,求Q点到直线l距离的最小值.四、 [选修4-5:不等式选讲] (共1题;共10分)23. (10分) (2017高三上·珠海期末) 设函数 f (x)=|x﹣1|+|x﹣a|(a∈R).(1)若a=﹣3,求函数 f (x)的最小值;(2)如果∀x∈R,f (x)≤2a+2|x﹣1|,求a的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题:解答应写出文字说明,证明过程或演算步骤. (共6题;共45分) 17-1、17-2、18-1、18-2、19-1、20-1、21-1、21-2、22-1、四、 [选修4-5:不等式选讲] (共1题;共10分)23-1、23-2、。
【数学】安徽省合肥市2018届高三第二次教学质量检测试题(文)
安徽省合肥市2018届高三第二次教学质量检测数学试题(文)第Ⅰ卷一、选择题1.复数12ii (i 是虚数单位)的虚部是()A .2iB .iC .-2D .12.已知集合|1M x x ,|02Nx x,则M N()A .0,1B .,1C .,2D .0,13.已知圆22:684C x y,O 为坐标原点,则以OC 为直径的圆的方程为()A .2234100x y B .2234100x y C .223425xyD .223425xy4.在平面直角坐标系中,若角的终边经过点5π5πsin ,cos33P ,则s i n ()A .32B .12C. 12D .325.中国古代词中,有一道“八子分绵”的数学名题:“九百九十斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是()A .174斤B .184斤C.191斤D .201斤6.已知函数22x xa f xa是奇函数,则f a 的值等于()A .13B .3 C.13或3 D .13或37.某公司一种型号的产品近期销售情况如下表月份x2 3 4 5 6 销售额y (万元)15.116.317.017.218.4根据上表可得到回归直线方程?0.75y x a,据此估计,该公司7月份这种型号产品的销售额为()A .19.5万元B .19.25万元 C.19.15万元D .19.05万元8.执行如图所示的程序框图,若输出的结果为1,则输出的x 值是()A .3或-2B .2或-2 C. 3或-1 D .3或-1或-29.已知函数2sin 0,0πf x x 相邻两条对称轴间的距离为3π2,且π02f,则下列说法正确的是()A.2B.函数πy f x 为偶函数C.函数f x 在ππ,2上单调递增D.函数y f x 的图象关于点3π,04对称10.在正方体1111ABCDA BC D 中,E 是棱11AB 的中点,用过点A ,C ,E 的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为()A .B . C. D .11.已知双曲线2222:10,0x y C a bab的焦点为1F ,2F ,点P 是双曲线C 上的一点,1215PF F ,21105PF F ,则该双曲线的离心率为()A .6B .3C. 262D .6212.已知函数f x 是定义在R 上的增函数,2f x f x ′,01f ,则不等式ln2ln 3f xx 的解集为()A .,0B .0, C. ,1D .1,第Ⅱ卷二、填空题13.若命题:0p x,ln 10xx ,则p 为.14.已知两个单位向量a ,b 的夹角为π3,则2a b a b.15.已知四棱锥PABCD 的侧棱长都相等,且底面是边长为32的正方形,它的五个顶点都在直径为10的球面上,则四棱锥PABCD 的体积为.16.小李从网上购买了一件商品,快递员计划在5:00-6:00之间送货上门.已知小李下班到家的时间为下午5:30-6:00.快递员到小李家时,如果小李未到家,就将商品存放到快递柜中,则小李需要去快递柜收取商品的概率等于.三、解答题17. 已知正项等比数列n a 满足39a ,4224a a .Ⅰ求数列n a 的通项公式;Ⅱ设nn b n a ,求数列n b 的前n 项的和n S .18. 某班级甲、乙两个小组各有10位同学,在一次期中考试中,两个小组同学的数学成绩如下:甲组:94,69,73,86,74,75,86,88,97,98;乙组:75,92,82,80,95,81,83,91,79,82.Ⅰ画出这两个小组同学数学成绩的茎叶图,判断哪一个小组同学的数学成绩差异较大,并说明理由;Ⅱ从这两个小组数学成绩在90分以上的同学中,随机选取2人在全班介绍学习经验,求选出的2位同学不在同一个小组的概率.19. 在多面体ABCDPQ中,平面PAD平面ABCD,////AB CD PQ,AB CD,PAD为正三角形,O为AD中点,且2AD AB,1CD PQ.Ⅰ求证:平面POB平面PAC;Ⅱ求多面体ABCDPQ的体积.20. 已知椭圆2222:10x yE a ba b经过点13,2P,椭圆E的一个焦点为3,0.Ⅰ求椭圆E的方程;Ⅱ若直线l过点0,2M且与椭圆E交于A,B两点,求AB的最大值.21.已知函数21exf x x ax (e 是自然对数的底数)Ⅰ判断函数f x 极值点的个数,并说明理由;Ⅱ若0x,3exf xxx ,求a 的取值范围.22.选修4-4:坐标系与参数方程已知过点0,1P 的直线l 的参数方程为12312xt yt(t 为参数),在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的方程为22sincos00a a .Ⅰ求曲线C 的直角坐标方程;Ⅱ若直线l 与曲线C 分别交于点M ,N ,且PM ,MN ,PN 成等比数列,求a 的值.23.选修4-5:不等式选讲已知函数3f x x m .Ⅰ若不等式9f xm 的解集为1,3,求实数m 的值;Ⅱ若0m ,函数21g x f xx 的图象与x 轴围成的三角形的面积大于60,求m的取值范围.【参考答案】一、选择题1-5: DACBB 6-10: CDACA11、12:DA二、填空题13.0x ,ln 10x x 14.1215.6或54 16.34三、解答题17.解:Ⅰ设数列n a 的公比为q ,由4224a a ,得9924qq,即23830qq ,解得3q 或13q.又0na ,则0q,3q ∴,31933n n na ∴.Ⅱ13n nn b n a n ,1211323333n nS n ∴,1211323133n nnS n n 3,1211231133332nn nnnS n ∴-2,12314nnnS ∴.18. 解:Ⅰ由茎叶图中数据分布可知,甲组数据分布比较分散,乙组数据分布相对集中,所以,甲组同学的成绩差异较大.(也可通过计算方差说明:2101.6s 甲,237.4s 乙,22s s 甲乙)Ⅱ设甲组数据成绩在90分以上的三位同学为123,,A A A ;乙组数据在90分以上的三位同学为123,,B B B .从这6位同学中选出2位同学,共有15个基本事件,列举如下:12,A A ,13,A A ,11,A B ,12,A B ,13,A B ;23,A A ,21,A B ,22,A B ,23,A B ;31,A B ,32,A B ,33,A B ;12,B B ,13,B B ,23,B B .其中,从这6位同学中选出2位同学不在同一个小组共有9个基本事件,93155P∴. 19.Ⅰ证明:由条件可知,Rt ADC Rt BAO ≌,故DAC ABO .90DACAOB ABOAOB∴,AC BO ∴.PAPD ,且O 为AD 中点,POAD ∴.PAD ABCD PAD ABCDADPO AD POPAD平面平面平面平面平面,PO∴平面ABCD .又AC 平面ABCD ,ACPO ∴.又BO PO O ,AC ∴平面POB .AC平面PAC ,∴平面POB平面PAC .Ⅱ解:取AB 中点为E ,连接CE ,QE .由Ⅰ可知,PO平面ABCD .又AB 平面ABCD ,PO AB ∴.又ABCD ,PO AD O ,AB ∴平面PAD .13BCDPQPADQECQCEBPADCEBV V V SAES PO∴231143211234323. 20. 解:Ⅰ依题意,设椭圆E 的左,右焦点分别为13,0F ,23,0F .则1242PF PF a ,2a∴,3c ,21b∴,∴椭圆E 的方程为2214xy .Ⅱ当直线l 的斜率存在时,设:2l y kx ,11,A x y ,22,B x y .由22214ykxxy 得22148240kxkx .由0得241k.由1228214k x x k,122414x x k得22212122211142611414AB k x x x x k k.设2114tk,则102t,22125562612612246ABtt t∴.当直线l 的斜率不存在时,5626AB ,AB ∴的最大值为566.21. 解:Ⅰe2e 2xxf x x ax x a ′.当0a 时,f x 在,0上单调递减,在0,上单调递增,f x ∴有1个极值点;当102a时,f x 在,ln2a 上单调递增,在ln2,0a 上单调递减,在0,上单调递增,f x ∴有2个极值点;当12a 时,f x 在R 上单调递增,f x ∴没有极值点;当12a时,f x 在,0上单调递增,在0,ln 2a 上单调递减,在ln 2,a 上单调递增,f x ∴有2个极值点;∴当0a时,f x 有1个极值点;当0a且12a时,f x 有2个极值点;当12a时,f x 没有极值点.Ⅱ由3exf xxx 得32e0xx xaxx . 当0x时,2e10x x ax ,即2e1xx ax对0x 恒成立.设2e1xx g xx,则21e1x x x g xx ′.设e1xh xx ,则e1xh x′.0x,0h x∴′,h x ∴在0,上单调递增,0h xh ∴,即e1xx ,g x ∴在0,1上单调递减,在1,上单调递增,1e 2g xg ∴,e 2a∴,a ∴的取值范围是,e 2.22. 解:Ⅰ22sin cos0a ,222sincos0a ∴,即220xay a .Ⅱ将12312xtyt代入22xay ,得24380tat a ,得2121243480,43,8.aa t t a t t a ①.0a ,∴解①得23a. PM ,MN ,PN 成等比数列,2MNPMPN ∴,即21212t t t t ,21212124t t t t t t ∴,即243400aa ,解得0a或56a.23a,56a∴.23. 解:Ⅰ由题意得90,39.m xmm ①②①得9m.②可化为939m x m m ,9233m x . 不等式9f x 的解集为1,3,9213m ∴,解得3m ,满足9m . 3m ∴Ⅱ依题意得,321g x x m x .又0m ,2,3521,321.mx m x mg x x m x x m x ∴g x 的图象与x 轴围成的ABC 的三个顶点的坐标为2,0A m ,2,05m B ,2,233m mC ,243160215ABC C m S AB y ∴,解得12m .。
【数学】安徽省合肥市2018届高三第二次教学质量检测数学文试题含解析
安徽省合肥市2018届高三第二次教学质量检测数学文试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数(是虚数单位)的虚部是()A. B. C. -2 D. 1【答案】D【解析】由复数的运算法则可得:,据此可得复数的虚部为1.本题选择D选项.2. 已知集合,,则()A. B. C. D.【答案】A【解析】由题意结合交集的定义可得:,表示为区间形式即.本题选择A选项.3. 已知圆,为坐标原点,则以为直径的圆的方程为()A. B.C. D.【答案】C【解析】由题意可知:,则圆心坐标为:圆的直径为:,据此可得圆的方程为:,即:.本题选择C选项.4. 在平面直角坐标系中,若角的终边经过点,则()A. B. C. D.【答案】B【解析】由诱导公式可得:,,即:,由三角函数的定义可得:,则.本题选择B选项.5. 中国古代词中,有一道“八子分绵”的数学名题:“九百九十斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是()A. 174斤 B. 184斤 C. 191斤 D. 201斤【答案】B【解析】用表示8个儿按照年龄从大到小得到的绵数,由题意得数列是公差为17的等差数列,且这8项的和为996,∴,解得.∴.选B.6. 已知函数是奇函数,则的值等于()A. B. 3 C. 或3 D. 或3【答案】C【解析】函数为奇函数,则:,即:恒成立,整理可得:,即恒成立,,当时,函数的解析式为:,,当时,函数的解析式为:,,综上可得:的值等于或3.本题选择C选项.点睛:正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.7. 某公司一种型号的产品近期销售情况如下表销售额根据上表可得到回归直线方程,据此估计,该公司7月份这种型号产品的销售额为()A. 19.5万元B. 19.25万元C. 19.15万元D. 19.05万元【答案】D【解析】由题意可得:,,回归方程过样本中心点,则:.回归方程为:,该公司7月份这种型号产品的销售额为:万元.本题选择D选项.8. 执行如图所示的程序框图,若输出的结果为1,则输出的值是()A. 3或-2B. 2或-2C. 3或-1D. 3或-1或-2【答案】A........................当时,由,解得,符合题意.当时,由,得,解得或(舍去).综上可得或.选A.9. 已知函数相邻两条对称轴间的距离为,且,则下列说法正确的是()A. B. 函数为偶函数C. 函数在上单调递增D. 函数的图象关于点对称【答案】C【解析】由题意可得,函数的周期为:,则,A说法错误;当时,,,故取可得:,函数的解析式为:,,函数为奇函数,B说法错误;当时,,故函数在上单调递增,C说法正确;,则函数的图象不于点对称,D说法错误;本题选择C选项.10. 在正方体中,是棱的中点,用过点,,的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为()A. B. C. D.【答案】A本题选择A选项.11. 已知双曲线的焦点为,,点是双曲线上的一点,,,则该双曲线的离心率为()A. B. C. D.【答案】D【解析】由正弦定理可得:不妨设,结合双曲线的定义有:,,双曲线的离心率为:.本题选择D选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).12. 已知函数是定义在上的增函数,,,则不等式的解集为()A. B. C. D.【答案】A【解析】解法1:令,则:原不等式等价于求解不等式,,由于,故,函数在定义域上单调递减,且,据此可得,不等式即:,结合函数的单调性可得不等式的解集为 .本题选择A选项.解法2:构造函数,满足函数是定义在上的增函数,,,则不等式即:,,即不等式的解集为.本题选择A选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若命题,,则为__________.【答案】,【解析】全称命题的否定为特称命题,据此可得为,.14. 已知两个单位向量,的夹角为,则__________.【答案】【解析】.答案:15. 已知四棱锥的侧棱长都相等,且底面是边长为的正方形,它的五个顶点都在直径为10的球面上,则四棱锥的体积为__________.【答案】6或54【解析】由题意可知,棱锥底面正方形的对角线长为:,棱锥的底面积为:,据此分类讨论:当球心位于棱锥内部时,棱锥的高为:,棱锥的体积:;当球心位于棱锥外部时,棱锥的高为:,棱锥的体积:;综上可得:四棱锥的体积为6或54.16. 小李从网上购买了一件商品,快递员计划在5:00-6:00之间送货上门.已知小李下班到家的时间为下午5:30-6:00.快递员到小李家时,如果小李未到家,就将商品存放到快递柜中,则小李需要去快递柜收取商品的概率等于__________.【答案】【解析】如图所示,轴表示快递员送货的试卷,轴表示小李到家的时间,图中的矩形区域为所有可能的时间组合,阴影部分为满足小李需要去快递柜收取商品的时间,结合几何概型公式可得小李需要去快递柜收取商品的概率:.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,据此求解几何概型即可.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知正项等比数列满足,.求数列的通项公式;设,求数列的前项的和.【答案】(1) ;(2) .【解析】试题分析:由题意列方程可得数列的公比,则数列的通项公式.结合(1)的结论可得,错误相减可得其前n项和为.试题解析:设数列的公比为,由,得,即,解得或.又,则,,.,,,,.18. 某班级甲、乙两个小组各有10位同学,在一次期中考试中,两个小组同学的数学成绩如下:甲组:94,69,73,86,74,75,86,88,97,98;乙组:75,92,82,80,95,81,83,91,79,82.画出这两个小组同学数学成绩的茎叶图,判断哪一个小组同学的数学成绩差异较大,并说明理由;从这两个小组数学成绩在90分以上的同学中,随机选取2人在全班介绍学习经验,求选出的2位同学不在同一个小组的概率.【答案】(1)见解析;(2) .【解析】试题分析:(1)结合所给的数据画出茎叶图,观察可得甲组数据分布比较分散,乙组数据分布相对集中,或者利用方差也可以说明甲组同学的成绩差异较大.(2)由题意列出所有的事件,共有15中,其中满足题意的事件由9种,据此可得选出的2位同学不在同一个小组的概率.试题解析:由茎叶图中数据分布可知,甲组数据分布比较分散,乙组数据分布相对集中,所以,甲组同学的成绩差异较大.(也可通过计算方差说明:,,)设甲组数据成绩在90分以上的三位同学为;乙组数据在90分以上的三位同学为.从这6位同学中选出2位同学,共有15个基本事件,列举如下:,,,,;,,,;,,;,,.其中,从这6位同学中选出2位同学不在同一个小组共有9个基本事件,.19. 在多面体中,平面平面,,,为正三角形,为中点,且,.求证:平面平面;求多面体的体积.【答案】(1)见解析;(2) .【解析】试题分析:由相似三角形的性质可得.由面面垂直的性质可得平面,则.据此可得平面,结合面面垂直的判断定理有平面平面.取中点为,连接,.则该几何体分割为一个三棱柱与一个三棱锥,结合体积公式计算可得组合体的体积.试题解析:由条件可知,,故.,.,且为中点,.,平面.又平面,.又,平面.平面,平面平面.取中点为,连接,.由可知,平面.又平面,.又,,平面..20. 已知椭圆经过点,椭圆的一个焦点为.求椭圆的方程;若直线过点且与椭圆交于,两点,求的最大值.【答案】(1) ;(2) .【解析】试题分析:与椭圆结合椭圆的定义计算可得,则,,椭圆的方程为.分类讨论,当直线的斜率存在时,设,,.联立直线方程与椭圆方程可得.换元后结合二次函数的性质可得.当直线的斜率不存在时,,故的最大值为.试题解析:依题意,设椭圆的左,右焦点分别为,.则,,,,椭圆的方程为.当直线的斜率存在时,设,,.由得.由得.由,得.设,则,.当直线的斜率不存在时,,的最大值为.点睛:(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.21. 已知函数(是自然对数的底数)判断函数极值点的个数,并说明理由;若,,求的取值范围.【答案】(1)见解析;(2) .【解析】试题分析:求导可得.分类讨论可得:当时,有1个极值点;当且时,有2个极值点;当时,没有极值点.结合函数的定义域可知,原问题等价于对恒成立.设,则.讨论函数g(x)的最小值.设,结合h(x)的最值可得在上单调递减,在上单调递增,,的取值范围是.试题解析:.当时,在上单调递减,在上单调递增,有1个极值点;当时,在上单调递增,在上单调递减,在上单调递增,有2个极值点;当时,在上单调递增,没有极值点;当时,在上单调递增,在上单调递减,在上单调递增,有2个极值点;当时,有1个极值点;当且时,有2个极值点;当时,没有极值点.由得.当时,,即对恒成立.设,则.设,则.,,在上单调递增,,即,在上单调递减,在上单调递增,,,的取值范围是.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程已知过点的直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.求曲线的直角坐标方程;若直线与曲线分别交于点,,且,,成等比数列,求的值.【答案】(1) ;(2) .【解析】试题分析:(1)根据极坐标和直角坐标间的转化公式求解即可.(2)利用直线的参数方程中参数的几何意义并结合一元二次方程根于系数的关系求解.试题解析:(1),,将代入上式可得,∴曲线的直角坐标方程.(2)将代入消去整理得,∵直线与抛物线交于两点,∴,又,∴.设,对应的参数分别为,则.,,成等比数列,,即,,即,解得或(舍去).点睛:利用直线参数方程中参数的几何意义求解问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为 (t为参数).若A,B 为直线l上两点,其对应的参数分别为,线段AB的中点为M,点M所对应的参数为,则以下结论在解题中经常用到:(1) ;(2) ;(3);(4).23. 选修4-5:不等式选讲已知函数.若不等式的解集为,求实数的值;若,函数的图象与轴围成的三角形的面积大于60,求的取值范围. 【答案】(1) ;(2) .【解析】试题分析:(1)解不等式可得且,根据不等式的解集为得到,解得,即为所求.(2)由题意可得函数的图象与轴围成的的三个顶点的坐标为,,,于是,解得,即为所求的范围.试题解析:(1)由题意得解得.可化为,解得.不等式的解集为,,解得,满足..(2)依题意得,.又,∴的图象与轴围成的的三个顶点的坐标为,,,,解得.∴实数的取值范围为.2018年高考考前猜题卷理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足iii z 2|2|++=,则=||z ( ) A .3 B .10 C .9 D .102.已知全集R U =,集合}012|{2≥--=x x x M ,}1|{x y x N -==,则=N M C U )(( )A .}1|{≤x xB .}121|{≤<-x xC .}121|{<<-x x D .}211|{<<-x x3.已知蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点的距离都大于2的区域内的概率P 为( ) A .631π-B .43C .63π D .414.已知双曲线)0,0(12222>>=-b a by a x ,过双曲线左焦点1F 且斜率为1的直线与其右支交于点M ,且以1MF 为直径的圆过右焦点2F ,则双曲线的离心率是( ) A .12+ B .2 C .3 D .13+5.一个算法的程序框图如图所示,如果输出y 的值是1,那么输入x 的值是( )A .2-或2B .2-或2C .2-或2D .2-或2 6.已知函数)2||,0)(3sin()(πϕωπω<>+=x x f 的图象中相邻两条对称轴之间的距离为2π,将函数)(x f y =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么)(x f y =的图象( ) A .关于点)0,12(π对称 B .关于点)0,12(π-对称C .关于直线12π=x 对称 D .关于直线12π-=x 对称7.如下图,网格纸上小正方形的边长为1,图中实线画的是某几何体的三视图,则该几何体最长的棱的长度为( )A.32 B.43C. 2D. 411 8.已知等差数列}{n a 的第6项是6)2(xx -展开式中的常数项,则=+102a a ( )A .160B .160-C .350D .320- 9.已知函数)0(212)(<-=x x f x与)(log )(2a x x g +=的图象上存在关于y 轴对称的点,则a 的取值范围是( )A .)2,(--∞B .)2,(-∞C .)22,(--∞D .)22,22(- 10.已知正四棱台1111D C B A ABCD -的上、下底面边长分别为22,2,高为2,则其外接球的表面积为( )A .π16B .π20C .π65D .π465 11.平行四边形ABCD 中,2,3==AD AB ,0120=∠BAD ,P 是平行四边形ABCD 内一点,且1=AP ,若y x +=,则y x 23+的最大值为( ) A .1 B .2 C .3 D .412.设n n n C B A ∆的三边长分别为n n n c b a ,,,n n n C B A ∆的面积为,3,2,1,=n S n …,若n n a a a c b ==++1111,2,2,211nn n n n n a b c a c b +=+=++,则( ) A .}{n S 为递减数列 B .}{n S 为递增数列C .}{12-n S 为递增数列,}{2n S 为递减数列D .}{12-n S 为递减数列,}{2n S 为递增数列二、填空题(每题4分,满分20分,将答案填在答题纸上)13.函数x a x a x x f )3()1()(24-+--=的导函数)('x f 是奇函数,则实数=a .14.已知y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤-≥+-002043y x x y x (R y x ∈,),则22y x +的最大值为 .15.已知F 为抛物线x y C 4:2=的焦点,过点F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则||||DE AB +的最小值为 . 16.在锐角三角形ABC 中,角C B A ,,的对边分别为c b a ,,,且满足ac a b =-22,则BA tan 1tan 1-的取值范围为 . 三、解答题 (本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知等比数列}{n a 的前n 项和为n S ,且满足)(221R m m S n n ∈+=+. (1)求数列}{n a 的通项公式; (2)若数列}{n b 满足)(log )12(112+⋅+=n n n a a n b ,求数列}{n b 的前n 项和n T .18.小张举办了一次抽奖活动.顾客花费3元钱可获得一次抽奖机会.每次抽奖时,顾客从装有1个黑球,3个红球和6个白球(除颜色外其他都相同)的不透明的袋子中依次不放回地摸出3个球,根据摸出的球的颜色情况进行兑奖.顾客中一等奖,二等奖,三等奖,四等奖时分别可领取的奖金为a 元,10元,5元,1元.若经营者小张将顾客摸出的3个球的颜色分成以下五种情况:1:A 个黑球2个红球;3:B 个红球;:c 恰有1个白球;:D 恰有2个白球;3:E 个白球,且小张计划将五种情况按发生的机会从小到大的顺序分别对应中一等奖,中二等奖,中三等奖,中四等奖,不中奖.(1)通过计算写出中一至四等奖分别对应的情况(写出字母即可); (2)已知顾客摸出的第一个球是红球,求他获得二等奖的概率;(3)设顾客抽一次奖小张获利X 元,求变量X 的分布列;若小张不打算在活动中亏本,求a 的最大值.19.如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,0160=∠CBB ,1AC AB =.(1)证明:平面⊥C AB 1平面C C BB 11;(2)若C B AB 1⊥,直线AB 与平面C C BB 11所成的角为030,求直线1AB 与平面C B A 11所成角的正弦值.20.如图,圆),(),0,2(),0,2(,4:0022y x D B A y x O -=+为圆O 上任意一点,过D 作圆O 的切线,分别交直线2=x 和2-=x 于F E ,两点,连接BE AF ,,相交于点G ,若点G 的轨迹为曲线C .(1)记直线)0(:≠+=m m x y l 与曲线C 有两个不同的交点Q P ,,与直线2=x 交于点S ,与直线1-=y 交于点T ,求OPQ ∆的面积与OST ∆的面积的比值λ的最大值及取得最大值时m 的值.(注:222r y x =+在点),(00y x D 处的切线方程为200r yy xx =+)21.已知函数x a x g x x f ln )(,21)(2==. (1)若曲线)()(x g x f y -=在2=x 处的切线与直线073=-+y x 垂直,求实数a 的值;(2)设)()()(x g x f x h +=,若对任意两个不等的正数21,x x ,2)()(2121>--x x x h x h 恒成立,求实数a 的取值范围;(3)若在],1[e 上存在一点0x ,使得)(')()('1)('0000x g x g x f x f -<+成立,求实数a 的取值范围.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为⎪⎩⎪⎨⎧==21t a y t x (其中t 为参数,0>a ),以坐标原点O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l :0sin cos =+-b θρθρ与2C :θρcos 4-=相交于B A ,两点,且090=∠AOB . (1)求b 的值;(2)直线l 与曲线1C 相交于N M ,两点,证明:||||22N C M C ⋅(2C 为圆心)为定值. 23.选修4-5:不等式选讲已知函数|1||42|)(++-=x x x f . (1)解不等式9)(≤x f ;(2)若不等式a x x f +<2)(的解集为A ,}03|{2<-=x x x B ,且满足A B ⊆,求实数a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共4小题,每小题5分,共20分. 13.3 14.8 15.16 16.)332,1( 三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.解:(1)由)(221R m m S n n ∈+=+得⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=282422321m S m S m S ,)(R m ∈,从而有4,2233122=-==-=S S a S S a , 所以等比数列}{n a 的公比223==a a q ,首项11=a ,因此数列}{n a 的通项公式为)(2*1N n a n n ∈=-.(2)由(1)可得12)22(log )(log 1212-=⋅=⋅-+n a a n n n n , ∴)121121(21)12)(12(1+--⨯=-+=n n n n b n ∴)1211215131311(2121+--++-+-⨯=+++=n n b b b T n n 12+=n n. 18.解:(1)4011203)(31023===C C A P ;12011)(310==C B P ,10312036)(3102416===C C C C P ,2112060)(3101426===C C C D P ,6112020)(31036===C C E P∵)()()()()(D P C P E P A P B P <<<<, ∴中一至四等奖分别对应的情况是C E A B ,,,.(2)记事件F 为顾客摸出的第一个球是红球,事件G 为顾客获得二等奖,则181)|(2912==C C F G P .(3)X 的取值为3,2,2,7,3---a ,则分布列为由题意得,若要不亏本,则03212103)2(61)7(401)3(1201≥⨯+⨯+-⨯+-⨯+-⨯a , 解得194≤a ,即a 的最大值为194.19.解:(1)证明:连接1BC ,交C B 1于O ,连接AO , ∵侧面C C BB 11为菱形,∴11BC C B ⊥ ∵为1BC 的中点,∴1BC AO ⊥ 又O AO C B = 1,∴⊥1BC 平面C AB 1又⊂1BC 平面C C BB 11,∴平面⊥C AB 1平面C C BB 11.(2)由B BO AB C B BO C B AB =⊥⊥ ,,11,得⊥C B 1平面ABO 又⊂AO 平面ABO ,∴C B AO 1⊥,从而1,,OB OB OA 两两互相垂直,以O 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz O -∵直线AB 与平面C C BB 11所成角为030,∴030=∠ABO设1=AO ,则3=BO ,∵0160=∠CBB ,∴1CBB ∆是边长为2的等边三角形∴)0,1,0(),0,1,0(),0,0,3(),1,0,0(1-C B B A ,则)1,0,3(),0,2,0(),1,1,0(1111-==-=-=AB B A C B AB 设),,(z y x =是平面C B A 11的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00111C B n B A n 即⎩⎨⎧=-=-0203y z x ,令1=x ,则)3,0,1(=n设直线1AB 与平面C B A 11所成的角为θ, 则46||||||,cos |sin ==><=n AB θ. 20.解:(1)易知过点),(00y x D 的切线方程为400=+y y x x ,其中42020=+y x ,则)24,2(),2,2(000y x F y x E +--, ∴4116416416424424220020000021-=-=--=-⋅-+=y y y x y x y x k k 设),(y x G ,则144122412221=+⇒-=+⋅-⇒-=y x x y x y k k (0≠y ) 故曲线C 的方程为1422=+y x (0≠y ) (2)联立⎩⎨⎧=++=4422y x mx y 消去y ,得0448522=-++m mx x ,设),(),,(2211y x Q y x P ,则544,5822121-=-=+m x x m x x ,由0)44(206422>--=∆m m 得55<<-m 且2,0±≠≠m m∴22221221255245444)58(24)(11||m m m x x x x PQ -=-⨯--⨯=-++=,易得)1,1(),2,2(---+m T m S , ∴)3(2)3()3(||22m m m ST +=+++=,∴22)3(554||||m m ST PQ S S OSTOPQ +-===∆∆λ,令)53,53(,3+-∈=+t t m 且5,3,1≠t ,则45)431(4544654222+--⨯=-+-=t t t t λ, 当431=t ,即43=t 时,λ取得最大值552,此时35-=m . 21.解:(1)xax y x a x x g x f y -=-=-=',ln 21)()(2 由题意得322=-a,解得2-=a (2))()()(x g x f x h +=x a x ln 212+=对任意两个不等的正数21,x x ,2)()(2121>--x x x h x h 恒成立,令21x x >,则)(2)()(2121x x x h x h ->-,即2211)(2)(x x h x x h ->-恒成立 则问题等价于x x a x x F 2ln 21)(2-+=在),0(+∞上为增函数 2)('-+=xax x F ,则问题转化为0)('≥x F 在),0(+∞上恒成立,即22x x a -≥在),0(+∞上恒成立,所以1)2(max 2=-≥x x a ,即实数a 的取值范围是),1[+∞. (3)不等式)(')()('1)('0000x g x g x f x f -<+等价于0000ln 1x ax a x x -<+,整理得01ln 000<++-x ax a x ,构造函数x a x a x x m ++-=1ln )(, 由题意知,在],1[e 上存在一点0x ,使得0)(0<x m2222)1)(1()1(11)('x x a x x a ax x x a x a x m +--=+--=+--=因为0>x ,所以01>+x ,令0)('=x m ,得a x +=1①当11≤+a ,即0≤a 时,)(x m 在],1[e 上单调递增,只需02)1(<+=a m ,解得2-<a ; ②当e a ≤+<11,即10-≤<e a 时,)(x m 在a x +=1处取得最小值.令01)1ln(1)1(<++-+=+a a a a m ,即)1l n (11+<++a a a ,可得)1ln(11+<++a aa (*) 令1+=a t ,则e t ≤<1,不等式(*)可化为t t t ln 11<-+ 因为e t ≤<1,所以不等式左端大于1,右端小于或等于1,所以不等式不能成立. ③当e a >+1,即1->e a 时,)(x m 在],1[e 上单调递减,只需01)(<++-=eaa e e m 解得112-+>e e a .综上所述,实数a 的取值范围是),11()2,(2+∞-+--∞e e . 22.解:(1)由题意可得直线l 和圆2C 的直角坐标方程分别为0=+-b y x ,4)2(22=++y x∵090=∠AOB ,∴直线l 过圆2C 的圆心)0,2(2-C ,∴2=b . (2)证明:曲线1C 的普通方程为)0(2>=a ay x ,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+-=ty t x 22222(t 为参数),代入曲线1C 的方程得04)2222(212=++-t a t , 04212>+=∆a a 恒成立,设N M ,两点对应的参数分别为21,t t ,则821=t t , ∴8||||22=N C M C , ∴||||22N C M C 为定值8.23.解:(1)由9)(≤x f 可得9|1||42|≤++-x x ,即⎩⎨⎧≤->9332x x 或⎩⎨⎧≤-≤≤-9521x x 或⎩⎨⎧≤+--<9331x x解得42≤<x 或21≤≤-x 或12-<≤-x , 故不等式9)(≤x f 的解集为]4,2[-.(2)易知)3,0(=B ,由题意可得a x x x +<++-2|1||42|在)3,0(上恒成立⇒1|42|-+<-a x x 在)3,0(上恒成立1421-+<-<+-⇒a x x a x 在)3,0(上恒成立 3->⇒x a 且53+->x a 在)3,0(上恒成立⎩⎨⎧≥≥⇒50a a 5≥⇒a .。
安徽省合肥市2018届高三第二次教学质量检测数学理试题含
安徽省合肥市2021届高三第二次教学质量检测数学理试题第一卷〔共60分〕一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项是符合题目要求的.1.复数z满足z12i i〔i 是虚数〕,那么复数z在复平面内对应的点在〔〕A.第一象限B .第二象限C.第三象限D.第四象限2.集合A x|2x3,集合B x|x1,那么AB〔〕A.2,1B.2,3C.,1D.,33.命题p:a0,关于x的方程x2ax10有实数解,那么p为〔〕.a0,关于x的方程x2ax10有实数解AB.a0,关于x的方程x2ax10没有实数解C.a0,关于x的方程x2ax10没有实数解D.a0,关于x的方程x2ax10有实数解4.在直角坐标系中,假设角的终边经过点P55,那么sin〔〕sin,cos33A.1B.3C.1D3 222.25.中国古代词中,有一道“八子分绵〞的数学名题:“九百九十斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言〞.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是〔〕A.174斤B.184斤斤D.201斤6.执行如下图的程序框图,假设输出的结果为1,那么输入x的的值为〔〕A .3或-2 B.2或-2C.3或-1D.-2或-1或37.小李从网上购置了一件商品,快递员方案在下午5:00-6:00之间送货上门,小李下班到家的时间为下午5:30-6:00.快递员到小李家时,如果小李未到家,那么快递员会 联系小李.假设小李能在 10分钟之内到家,那么快递员等小李回来;否那么,就将商品存放在快递柜中.那么小李需要去快递柜收取商品的概率为〔 〕A .1B.8C.5D .79912128.在正方体ABCD A 1BC 11D 1中,E ,F ,G 分别为棱CD ,CC 1,A 1B 1 的中点,用过点E ,F ,G 的平面截正方体,那么位于截面以下局部的几何体的侧〔左〕视图为〔〕A .B . C.D.9.函数fx1 2x ,实数a ,b 满足不等式f2a bf43b0,那么以下不等1 2x式恒成立的是〔 〕A .ba2 B.a2b2C.ba2D.a2b210.双曲线C:x 2y 2 1的左,右焦点分别为 F 1,F 2,A ,B 是双曲线C 上的两点,a 2b 2且AF13F1B,cosAF2B 3,那么该双曲线的离心率为〔〕5A.10B.10 C.5D.52211.函数f x2sin x0,0,f82,f0,且f x2在0,上单调.以下说法正确的选项是〔〕A.1B.f62 228C.函数f x在,上单调递增D.函数y f x的图象关于点3对,024称12.点I在ABC内部,AI平分BAC,IBC ACI 1BAC,对满足上述条件2的所有ABC,以下说法正确的选项是〔〕A.ABC的三边长一定成等差数列B.ABC的三边长一定成等比数列ABI,ACI,CBI的面积一定成等差数列D.ABI, ACI,CBI的面积一定成等比数列第二卷〔共90分〕二、填空题〔每题5分,总分值20分,将答案填在答题纸上〕13.两个单位向量a,b的夹角为,那么2ab ab.314.23x2的系数等于在2x1x2的展开式中,.15.半径为3cm的球内有一个内接四棱锥SABCD,四棱锥S ABCD的侧棱长都相等,底面是正方形,当四棱锥SABCD的体积最大时,它的底面边长等于cm.16.为保护环境,建设美丽乡村,镇政府决定为A,B,C 三个自然村建造一座垃圾处理站,集中处理A,B,C 三个自然村的垃圾,受当地条件限制,垃圾处理站M 只能建在与A 村相距5km ,且与C 村相距 31km 的地方.B 村在A 村的正东方向,相距3km ,C 村在B 村的正北方向,相距33km ,那么垃圾处理站 M 与B 村相距km .三、解答题〔本大题共 6小题,共 70分. 解容许写出文字说明、证明过程或演算步骤 .〕17.等比数列a n的前n 项和S n 满足 4S 53S 4S 6,且a 39.Ⅰ求数列a n 的通项公式; Ⅱ设b n 2n 1a n ,求数列b n 的前n 项的和T n .为了解A 市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了局部高三理科学生数学成绩绘制如下图的频率分布直方图.Ⅰ根据频率分布直方图,估计该市此次检测理科数学的平均成绩u 0;〔精确到个位〕 Ⅱ研究发现,本次检测的理科数学成绩X 近似服从正态分布 X~Nu,2〔uu 0,约为〕.①按以往的统计数据,理科数学成绩能到达升一本分数要求的同学约占46%,据此估计本次检测成绩到达升一本的理科数学成绩大约是多少分?〔精确到个位〕②A 市理科考生约有1000名,某理科学生此次检测数学成绩为107分,那么该学生全市排名大约是多少名?〔说明:Pxx 11x 1u表示xx 1的概率,x 1u用来将非标准正态分布化为标准正态分布,即X~N0,1,从而利用标准正态分布表x 0,求x x 1时的概率P x x1,这里x0x1ux0是指总体取值小于x0的概率,即.相应于x0的值x0Pxx0.参考数据:,,〕.19.在四棱锥P ABCD中,平面PAD平面ABCD,AB//CD,AB AD,O为AD中点,PAPD5,AD AB2CD2.Ⅰ求证:平面POB平面PAC;Ⅱ求二面角A PC D的余弦值.20.点A1,0和动点B,以线段AB为直径的圆内切于圆O:x2y24.Ⅰ求动点B的轨迹方程;Ⅱ点P2,0,Q2,1,经过点Q的直线l与动点B的轨迹交于M,N两点,求证:直线PM 与直线PN的斜率之和为定值.21.函数f x x1e xax2〔e是自然对数的底数〕Ⅰ判断函数 f x极值点的个数,并说明理由;Ⅱ假设xR,fxe x x3x,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,那么按所做的第一题记分.22.选修4-4:坐标系与参数方程x1t过点P0,1的直线l的参数方程为2〔t为参数〕,在以坐标原点O为极y13t2点,x轴正半轴为极轴的极坐标系中,曲线C的方程为2asin cos20a0.Ⅰ求曲线C的直角坐标方程;Ⅱ假设直线l与曲线C分别交于点M,N,且PM,MN,PN成等比数列,求a的值.选修4-5:不等式选讲函数fx3xm.Ⅰ假设不等式fxm9的解集为1,3,求实数m的值;Ⅱ假设m0,函数gx fx2x1的图象与x轴围成的三角形的面积大于60,求m 的取值范围.试卷答案一、选择题1-5:BDCAB6-10:ADCCB11、12:CB二、填空题13.1或72三、解答题Ⅰ设数列a n的公比为q.由4S53S4S6,得S6S53S53S4,即a63a5,∴q3,∴a n93n33n1.Ⅱb n2n1a n2n13n1,∴T n130331532⋯2n13n1,3T n131332⋯2n33n12n13n,∴2T n1231232⋯23n12n13n222n30,∴T n n13n1.Ⅰ该市此次检测理科数学成绩平均成绩约为:u065758595105115125135145103.Ⅱ①记本次考试成绩到达升一本的理科数学成绩约为x1,根据题意,P x x11x1u01x1103x1103,即.由得,x1103x1117,所以,本次考试成绩到达升一本的理科数学成绩约为117分.②P x7110710311,所以,理科数学成绩为107分,大约排在100004168名.19.Ⅰ由条件可知,Rt ADC≌RtBAO,∴DAC ABO,∴DAC AOB ABO AOB90,∴AC BO.PA PD,且O为AD中点,∴PO AD.平面PAD平面ABCD平面PAD平面ABCD AD,∴PO平面ABCD.PO ADPO平面PAD又AC平面ABCD,∴AC PO.又BO PO O,∴AC平面POB.AC平面PAC,∴平面POB平面PAC.Ⅱ以O为空间坐标原点,建立如下图的空间直角坐标系,那么P0,0,2,A1,0,0,D1,0,0,C1,1,0,PA1,0,2,AC2,1,0,PD1,0,2,CD0,10,,设n1x,y,z为平面PAC的一个法向量,由n1PA0得x2z0z1x,解得2. n1AC02x y0y2x令x2,那么n12,4,1.同理可得,平面PDC的一个法向量n22,0,1,∴二面角A PC D的平面角n1n23105的余弦值cos.n1n21053520.Ⅰ如图,设以线段A B为直径的圆的圆心为C ,取A′1,0.依题意,圆C 内切于圆O ,设切点为D ,那么O ,C ,D三点共线,O 为 AA ′的中点,C 为 AB中点,∴A ′B2OC.∴BA ′B A2OC2AC2OC2CD2OD4AA ′2依椭圆得定义可知,动点B 的轨迹为椭圆,其中:BA ′BA2a4,AA ′2c2,∴a2,c1,∴b 2a 2 c 23, ∴动点B 的轨迹方程为x 2y 21.43Ⅱ当直线l 垂直于x 轴时,直线l 的方程为xx 2y 2 2,此时直线l 与椭圆1相切,与43题意不符.当直线l 的斜率存在时,设直线l的方程为y1kx2 .y 1k x2由x 2y 2得4k 2 3x 216k 28k x16k 216k 80.14 3216k8kxx124k 23设Mx 1,y 1,Nx 2,y 2,那么x 1x 216k 2 16k 8,4k2 31k2∴kPMkPNy 1 y 2kx 12kx 221 1x 12x 22x 12x 22 2k2x 22x 12kx 1 x 2 42kx 1x 24x 1 2x 22x 1x 2 2x 1 x 2416k 2 8k44k232k2k 3 2k3.16k216k 816k 28k2 44k 2 3 4k 2321.Ⅰ f ′xxe x 2axxe x2a ,当a0时,fx在,0 上单调递减,在 0,上单调递增,∴f x 有1个极值点;当0 a1时,fx在,ln2a上单调递增,在ln2a,0上单调递减,在0,上单2调递增,∴f x 有2个极值点;当a1 x 在R 上单调递增,此时f x 没有极值点;时,f2当a1 x 在,0 上单调递增,在0,ln2a 上单调递减,在ln2a,上单调时,f2递增,∴f x 有2个极值点;∴当a0时,fx 有1个极值点;当a1时,fx 有2个极值点;当a1 且a时,22x 没有极值点.Ⅱ由fxe xx 3 x 得xe xx 3 ax 2x0.当x0时,e xx 2 ax10,即ae x x 21对x 0恒成立.x设g e xx 2 1x1e xx1.xx ,那么g ′xx 2设 xexxhxe x 1.1,那么′0,∴h ′x0,∴hx 在0,上单调递增,∴hxh00,即e x x 1,∴gx 在0,1上单调递减,在1,上单调递增,∴gx g1 e2,∴ae 2.当x 0时,不等式恒成立,aR ;当x0时,e xx 2 ax10.设hxe x x 2 ax1,那么h ′xe x2xa .设x 2xxexaxe2 0,,那么′∴h ′x 在,0 上单调递减,∴h ′xh ′0 1 a .假设a1,那么h ′x 0 ,∴h x 在 ,0 上单调递增,∴hxh00.假设a1,h ′01 a0 ,∴x 0 0 ,使得x x 0,0 时,′0 ,hx即hx在x 0,0上单调递减,∴hxh00,舍去.a1.综上可得,a 的取值范围是 ,e2.22.Ⅰ2asincos 20 ,∴2a sin2cos 20,即x 22aya0.x1tⅡ将23t 代入x 2 2ay ,得t 2 4 3at 8a0,得y124 24 8a0,3at 1t 2 4 3a, ① .t 1t 2 8a.a2,∴解①得a .3PM ,MN ,PN 成等比数列,∴MN2PMPN ,即t 1t 2 2t 1t 2,225∴t 14t 1t 2t 1t 2,即4 3a40a 0 ,解得at 2或a .256a,∴a3.69m 0①,Ⅰ由题意得3xm9m ②. 解①得m9.②可化为9m3x m 9m ,92mx 3.3不等式fx 9的解集为1,3 ,∴ 92m1,解得m3,满足m9.3∴m 3Ⅱ依题意得,gx 3x m 2x 1.x m 2 xm ,3又m0,∴gx5xm2m x1,3x m 2 x 1.gx 的图象与x 轴围成的ABC 的三个顶点的坐标为Am 2,0,B 2m,0,C 5m ,2m2,332∴SABC1ABy C4m360,解得m12.2 15精品推荐强力推荐值得拥有。
2018年安徽省合肥市高考数学二模试卷(文科)
2018年安徽省合肥市高考数学二模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(l-2i)-i(i是虚数单位)的虚部是()A.-2i B.i C.-2 D.l【答案】D【考点】复数的运算【解析】直接利用复数代数形式的乘除运算化简得答案.【解答】•••(1-2i)■i=2+i,•••复数(l-2i)-i的虚部是(1)故选:D.2.已知集合M={x\x<1},N=(x|0<x<2},则M n N=()A.(0,1)B.(-8,1)C.(-oo,2)D.[0,1)【答案】A【考点】交集及其运算【解析】根据交集的定义写出MC\N.【解答】集合M={x\x<1},N=(x|0<x<2),则M n N={x|0<%<1}=(0,1).3.已知圆C:(x—6)2+(y—8尸=4,。
为坐标原点,则以OC为直径的圆的方程()A.(x—3尸+(y+4)2=100B.(x+3)2+(y-4)2=100C.(x—3)2+(y—4)2=25D.(x+3)2 +(y-4)2=25【答案】C【考点】圆的标准方程【解析】求出圆心坐标和班级,结合圆的标准方程进行求解即可.【解答】解:圆C的圆心坐标C(6,8),则。
C的中点坐标为E(3,4),半径|OE|=V32+42=5,则以OC为直径的圆的方程为(X-3尸+(y—4)2=25.4.在直角坐标系中,若角°的终边经过点P(siny,cosy),贝Usin(7T+a)=()A.—:B.—爽C.;D.亚2222【答案】A【考点】三角函数【解析】由题意利用任意角的三角函数的定义,求得sin(?r+a)的值.【解答】角a终边经过点P(siny,cosy),即点P(-乎9,x=——>y=|-r=\0P\=1,2z则sin(?r+a)=—sina=—三=—y=—5.中国古代词中,有一道"八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是()A.174斤B.184斤C.191斤D.201斤【答案】B【考点】等差数列的通项公式等差数列的前n项和【解析】此题暂无解析【解答】解:用表示8个儿子按照年龄从大到小得到的绵数,由题意得数列{%}(>=1,2,3,-,8)是公差为17的等差数列,且这8项的和为996,8四+号x17=996,解得a】=65,•••。
2018合肥二模数学理,答案
高三数学试题(理科)答案 第1 页(共4页)合肥市2018年高三第二次教学质量检测 数学试题(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分.题号 1 2 3 4 5 6 7 8 9 1011 12 答案BDCABADCCBCB二、填空题:本大题共4小题,每小题5分.(13)12(14)10 (15)4 (16)2或7三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) (Ⅰ)设数列{}n a 的公比为q .由54643S S S =+,得655433S S S S -=-,即653a a =,∴3q =, ……………3分 ∴31933n n n a --=⋅=. ……………5分 (Ⅱ)()()121213n n n b n a n -=-⋅=-⋅, ……………6分∴0121133353(21)3n n T n -=⋅+⋅+⋅++-⋅ , ……………8分()()12131333233213n n n T n n -=⋅+⋅++-⋅+-⋅ ,∴()()121212323232132223n n n n T n n --=+⋅+⋅++⋅--⋅=-+-⋅ ,∴()131n n T n =-⋅+. ……………12分(18)(本小题满分12分)(Ⅰ)该市此次检测理科数学平均成绩约为:0650.05750.08850.12950.151050.241150.181250.11350.051450.03μ=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ 103.2103=≈. ………………5分 (Ⅱ)①记本次考试成绩达到升一本的理科数学成绩约为1x ,根据题意得,()1011103110.4619.3x x P x x μσ--⎛⎫⎛⎫>=-Φ=-Φ= ⎪ ⎪⎝⎭⎝⎭,即11030.5419.3x -⎛⎫Φ= ⎪⎝⎭. 由(0.7054)0.54Φ=得,111030.7054116.611719.3x x -=⇒=≈, 故本次考试成绩达到升一本的理科数学成绩约为117分. ………………8分②()()107103107110.207210.58320.416819.3P x -⎛⎫>=-Φ=-Φ≈-=⎪⎝⎭,故理科数学成绩为107分,大约排在100000.41684168⨯=名.………………12分(19)(本小题满分12分)(Ⅰ)由条件可知,Rt ADC ∆≌Rt BAO ∆,∴DAC ABO ∠=∠, ∴90DAC AOB ABO AOB ∠+∠=∠+∠= ,∴AC BO ⊥.高三数学试题(理科)答案 第2 页(共4页).∵PA PD =,且O 为AD 中点,∴PO AD ⊥.∵PAD ABCD PAD ABCD ADPO AD PO PAD⊥⎧⎪=⎪⎨⊥⎪⎪⊂⎩ 平面平面平面平面平面,∴PO ABCD ⊥平面.又∵AC ABCD ⊂平面,∴AC PO ⊥. 又∵BO PO O = ,∴AC POB ⊥平面.∵AC PAC ⊂平面,∴平面POB ⊥平面PAC . …………5分 (Ⅱ)以O 为原点,建立如图所示的空间直角坐标系.则P (0,0,2),A (1,0,0),D (-1,0,0),C (-1,1,0),()102PA =- ,,,()210AC =- ,,,()102PD =-- ,,, ()0 1 0CD =-,,.设()1x y z =,,n 为平面PAC 的一个法向量,由 1100PA AC ⎧⋅=⎪⎨⋅=⎪⎩ n n 得2020x z x y -=⎧⎨-+=⎩,解得122z xy x⎧=⎪⎨⎪=⎩. 令2x =,则()1241=,,n . 同理可得,平面PDC 的一个法向量()2201=-,,n , ∴二面角A PC D --的平面角θ的余弦值1212cos 35θ⋅===n n n n . …………12分(20)(本小题满分12分)(Ⅰ)如图,设以线段AB 为直径的圆的圆心为C ,取A '(-1,0).依题意,圆C 内切于圆O .设切点为D ,则O C D ,,三点共线. ∵O 为AA '的中点,C 为AB 中点,∴2A B OC '=.∴2222242BA BA OC AC OC CD OD AA ''+=+=+==>=.依椭圆的定义可知,动点B 的轨迹为椭圆,其中: 24 22BA BA a AA c ''+====,,∴21a c ==,,∴2223b a c =-=,∴动点B 的轨迹方程为22143x y +=. ………………5分(Ⅱ)当直线l 垂直于x 轴时,直线l 的方程为2x =,此时直线l 与椭圆22143x y +=相切,与题意不符.当直线l 的斜率存在时,设直线l 的方程为()12y k x +=-.由()2212143y k x x y ⎧+=-⎪⎨+=⎪⎩得()()222243168161680k x k k x k k +-+++-=.高三数学试题(理科)答案 第3 页(共4页)设()()1122M x y N x y ,,,,则2122212168431616843102k k x x k k k x x k k ⎧++=⎪+⎪⎪+-=⎨+⎪⎪∆>⇒<⎪⎩, ∴()()12121212122121112222222PM PN k x k x y y k k k x x x x x x ----⎛⎫+=+=+=-+ ⎪------⎝⎭()()()121212121244222224x x x x k k x x x x x x +-+-=-=----++222221684432232316168168244343k k k k k k k k k k k k ⎛⎫+- ⎪+⎝⎭=-=+-=⎛⎫+-+-+ ⎪++⎝⎭. ……………12分 (21) (本小题满分12分)(Ⅰ)∵()()22x x f x xe ax x e a '=-=-.当0a ≤时,()f x 在() 0-∞,上单调递减,在()0+∞,上单调递增,∴()f x 有1个极值点; 当102a <<时,()f x 在() ln 2a -∞,上单调递增,在()ln 2 0a ,上单调递减,在()0+∞,上单调递增,∴()f x 有2个极值点;当12a =时,()f x 在R 上单调递增,此时()f x 没有极值点; 当12a >时,()f x 在() 0-∞,上单调递增,在()0 ln 2a ,上单调递减,在()ln 2 a +∞,上单调递增,∴()f x 有2个极值点;综上所述,当0a ≤时,()f x 有1个极值点;当102a a >≠且时,()f x 有2个极值点; 当12a =时,()f x 没有极值点. …………………6分 (Ⅱ)由()3x f x e x x +≥+得 320x xe x ax x ---≥.当0x >时,210xe x ax ---≥,即21x e x a x--≤对0x ∀>恒成立.设()21x e x g x x --=,则()()()211xx e x g x x ---'=.()1, '()e 1.0, '()0, ()(0,)()(0)0,x x h x e x h x x h x h x h x h =--=->∴>∴+∞∴>= 设则在上单调递增, 1x e x >+即,∴()g x 在()01,单调递减,在()1+∞,上单调递增,∴()()12g x g e ≥=-,∴2a e ≤-. 当0x =时,不等式恒成立,a R ∈;高三数学试题(理科)答案 第4 页(共4页)当0x <时,210x e x ax ---≤.设()21x h x e x ax =---,则()2x h x e x a '=--. 设()2x x e x a ϕ=--,则()20x x e ϕ'=-<,∴()h x '在()0-∞,上单调递减,∴()()01h x h a '≥'=-. 若1a ≤,则()0h x '≥,∴()h x 在()0-∞,上单调递增,∴()()00h x h <=. 若1a >,∵()010h a '=-<,∴00x ∃<,使得()0 0x x ∈,时,()0h x '<,即()h x 在()0 0x ,上单调递减,∴()()00h x h >=,舍去. ∴1a ≤. 综上可得,a 的取值范围是-∞(,e-2]. ………………12分(22)(本小题满分10分)选修4-4:坐标系与参数方程(Ⅰ)∵22sin cos 0a θρθ-=,∴222sin cos 0a ρθρθ-=,即22x ay =(0a >). …………5分(Ⅱ)将1212x t y ⎧=⎪⎪⎨⎪=-+⎪⎩代入22x ay =,得280t a -+=,得21212()480 8a t t t t a⎧∆=--⋅>⎪⎪+=⎨⎪=⎪⎩①. ∵20, .3a a ∴>>解①得∵ PM MN PN ,,成等比数列,∴2MN PM PN =⋅,即21212t t t t -=, ∴()21212124t t t t t t +-=,即2)400a -=,解得56a =,满足23a >.56a ∴=. ……10分 (23)(本小题满分10分)选修4-5:不等式选讲(Ⅰ)由题意得9039m x m m +≥⎧⎪⎨+≤+⎪⎩①②,解①得m ≥-9.②可化为939m x m m --≤+≤+,∴9233mx --≤≤. ∵不等式()9f x ≤的解集为[]13-,,∴9213m--=-, 解得3m =-,满足m ≥-9. ∴ m =-3. …………5分 (II)依题意得,()321g x x m x =+--.又∵0m >,∴()()2 352132 1.m x m x m g x x m x x m x ⎧⎛⎫---≤- ⎪⎪⎝⎭⎪⎪⎛⎫=+--<<⎨ ⎪⎝⎭⎪⎪++≥⎪⎩,,()g x 的图象与x 轴围成的ABC ∆的三个顶点的坐标为()20A m --,,2 05m B -⎛⎫⎪⎝⎭,,2 233m m C ⎛⎫--- ⎪⎝⎭,,∴()243160215ABCC m S AB y ∆+=⋅=>,解得12m >. ………………10分。
合肥市2018年高三第二次教学质量检测数学试题(理科)(含答案)
合肥市2018年⾼三第⼆次教学质量检测数学试题(理科)(含答案)合肥市2018年⾼三第三次教学质量检测数学试题(理科)(考试时间:120分钟满分:150分)第Ⅰ卷⼀、选择题:本⼤题共12⼩题,每⼩题5分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.已知复数2i1iz =+(i 为虚数单位),则z =2.已知集合{}220A x R x x =∈-≥,{}2210B x R x x =∈--=,则()C R A B =IA.?B.12??-C.{}1D. 1 12??-,3.已知椭圆2222:1y x E a b+=(0a b >>)经过点A),()0 3B ,,则椭圆E 的离⼼率为A.23 C.49 D.594.已知111 2 3 23α?∈-,,,,,若()f x x α=为奇函数,且在()0 +∞,上单调递增,则实数α的值是A.-1,3B.13,3C.-1,13,3D. 13,12,35.若l m ,为两条不同的直线,α为平⾯,且l α⊥,则“//m α”是“m l ⊥”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知()()*12nx n N -∈展开式中3x 的系数为80-,则展开式中所有项的⼆项式系数之和为A.64B.32C.1D.1-7.已知⾮零实数a b ,满⾜a a b b >,则下列不等式⼀定成⽴的是A.33a b >B.22a b >C.11a b < D.1122log log a b <8.运⾏如图所⽰的程序框图,若输出的s 值为10-,则判断框内的条件应该是A.3?k <B.4?k <C.5?k <D.6?k < 9.若正项等⽐数列{}n a 满⾜()2*12n n n a a n N +=∈,则65a a -的值是-10.如图,给7条线段的5个端点涂⾊,要求同⼀条线段的两个端点不能同⾊,现有4种不同的颜⾊可供选择,则不同的涂⾊⽅法种数有A.24B.48C.96D.12011.我国古代《九章算术》将上下两⾯为平⾏矩形的六⾯体称为刍童.如图所⽰为⼀个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,⾼为2,则该刍童的表⾯积为A.16+D.16+12.已知函数()22f x x x a =---有零点12x x ,,函数()2(1)2g x x a x =-+-有零点34x x ,,且3142x x x x <<<,则实数a 的取A.924??-- ,B.9 04??-, C.(-2,0) D.()1 +∞,第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题—第(21)题为必考题,每个试题考⽣都必须作答.第(22)题、第(23)题为选考题,考⽣根据要求作答.⼆、填空题:本⼤题共4⼩题,每⼩题5分.把答案填在答题卡相应的位置.(13)若实数x y ,满⾜条件1010330x y x y x y +-≥??--≤??-+≥?,则2z x y =-的最⼤值为 .(14)已知()OA =uu r,()0 2OB =u u u r ,,AC t AB t R =∈u u u r u u u r ,,当OC uuu r 最⼩时,t = . (15)在ABC ?中,内⾓A B C ,,所对的边分别为a b c ,,.若45A =,2sin sin 2sin b B c C a A -=,且ABC ?的⾯积等于3,则b = .(16)设等差数列{}n a 的公差为d ,前n 项的和为n S,若数列也是公差为d 的等差数列,则=n a .三、解答题:解答应写出⽂字说明、证明过程或演算步骤. (17)(本⼩题满分12分)已知函数()1in c o s c o s223f x x x x π?--.(Ⅰ)求函数()f x 图象的对称轴⽅程; (Ⅱ)将函数()f x 图象向右平移4π个单位,所得图象对应的函数为()g x .当0 2x π??,时,求函数()g x 的值域.(18)(本⼩题满分12分)(Ⅰ)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(Ⅱ)现从参与问卷调查且收看了开幕式的学⽣中,采⽤按性别分层抽样的⽅法,选取12⼈参加2022年北京冬奥会志愿者宣传活动.(ⅰ)问男、⼥学⽣各选取了多少⼈?(ⅱ)若从这12⼈中随机选取3⼈到校⼴播站开展冬奥会及冰雪项⽬的宣传介绍,设选取的3⼈中⼥⽣⼈数为X ,写出X 的分布列,并求()E X .附:()()()()()22n a d b cK a b c d a c b d -=++++,其中n a b c d =+++.(19)(本⼩题满分12分)如图,在多⾯体ABCDE 中,平⾯ABD ⊥平⾯ABC ,AB AC ⊥,AE BD ⊥,DE 12AC ,AD=BD=1. (Ⅰ)求AB 的长;EDCBA(Ⅱ)已知24AC ≤≤,求点E 到平⾯BCD 的距离的最⼤值.(20)(本⼩题满分12分)已知抛物线2:2C y px =(0p >)的焦点为F ,以抛物线上⼀动点M 为圆⼼的圆经过点F.若圆M 的⾯积最⼩值为π.(Ⅰ)求p 的值;(Ⅱ)当点M 的横坐标为1且位于第⼀象限时,过M 作抛物线的两条弦M A M B ,,且满⾜AM F BM F ∠=∠.若直线AB 恰好与圆M 相切,求直线AB 的⽅程.(21)(本⼩题满分12分)已知函数()212x f x e x a x =--有两个极值点12x x ,(e 为⾃然对数的底数).(Ⅰ)求实数a 的取值范围; (Ⅱ)求证:()()122f x f x +>.请考⽣在第(22)、(23)题中任选⼀题作答.注意:只能做所选定的题⽬,如果多做,则按所做的第⼀个题⽬计分,作答时,请⽤2B 铅笔在答题卡上,将所选题号对应的⽅框涂⿊. (22)(本⼩题满分10分)选修4-4:坐标系与参数⽅程在平⾯直⾓坐标系xOy 中,直线l的参数⽅程为11x y ?=-??=??(t 为参数),圆C 的⽅程为()()22215x y -+-=.以原点O 为极点,x 轴正半轴为极轴建⽴极坐标系.(Ⅰ)求直线l 及圆C 的极坐标⽅程;(Ⅱ)若直线l 与圆C 交于A B ,两点,求c o s A O B ∠的值.。
2018年安徽省合肥市高考数学二模试卷(理科)
2018年安徽省合肥市高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数z满足z⋅(1−2i)=i(i是虚数),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【考点】复数的代数表示法及其几何意义【解析】把已知等式变形,利用复数代数形式的乘除运算化简,求出z的坐标得答案.【解答】由z⋅(1−2i)=i,得z=i1−2i =i(1+2i)(1−2i)(1+2i)=−25+15i,∴复数z在复平面内对应的点的坐标为(−25,15),在第二象限.2. 已知集合A={x|−2<x<3},集合B={x|x<1},则A∪B=()A.(−2, 1)B.(−2, 3)C.(−∞, 1)D.(−∞, 3)【答案】D【考点】并集及其运算【解析】利用并集定义直接求解.【解答】∵集合A={x|−2<x<3},集合B={x|x<1},∴A∪B={x|x<3}={−∞,3).3. 命题p:∀a≥0,关于x的方程x2+ax+1=0有实数解,则¬p为()A.∃a<0,关于x的方程x2+ax+1=0有实数解B.∃a<0,关于x的方程x2+ax+1=0没有实数解C.∃a≥0,关于x的方程x2+ax+1=0没有实数解D.∃a≥0,关于x的方程x2+ax+1=0有实数解【答案】C【考点】命题的否定【解析】此题暂无解析【解答】解:根据含有量词的命题的否定可得,¬p为∃a≥0,关于x的方程x2+ax+1=0没有实数解.故选C.4. 在直角坐标系中,若角α的终边经过点P(sin 5π3,cos5π3),则sin(π+α)=( )A.−12B.−√32C.12D.√32【答案】 A【考点】 三角函数 【解析】由题意利用任意角的三角函数的定义,求得sin(π+α)的值. 【解答】∵ 角α终边经过点P(sin5π3,cos5π3),即点P(−√32, 12), ∴ x =−√32,y =12,r =|OP|=1,则sin(π+α)=−sinα=−y r =−y =−12.5. 中国古代词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( ) A.174斤 B.184斤 C.191斤 D.201斤 【答案】 B【考点】等差数列的通项公式 等差数列的前n 项和 【解析】 此题暂无解析 【解答】解:用a 1,a 2,⋯,a 8,表示8个儿子按照年龄从大到小得到的绵数,由题意得数列{a n }(n =1,2,3,⋯,8)是公差为17的等差数列,且这8项的和为996, ∴ 8a 1+8×72×17=996,解得a 1=65,∴ a 8=65+7×17=184. 故选B .6. 执行如图所示的程序框图,若输出的结果为1,则输入x 的值为( )A.3或−2B.2或−2C.3或−1D.−2或−1或3 【答案】 A【考点】 程序框图 【解析】根据已知中的程序框图,分类讨论满足y =1的x 值,综合可得答案. 【解答】当x >2时,由y =log 3(x 2−2x)=1得:x 2−2x =3,解得:x =3,或x =−1(舍) 当x ≤2时,由y =−2x −3=1,解得:x =−2, 综上可得若输出的结果为1,则输入x 的值为3或−2,7. 小李从网上购买了一件商品,快递员计划在下午5:00−6:00之间送货上门,已知小李下班到家的时间为下午5:30−6:00.快递员到小李家时,如果小李未到家,则快递员会电话联系小李.若小李能在10分钟之内到家,则快递员等小李回来;否则,就将商品存放在快递柜中.则小李需要去快递柜收取商品的概率为( ) A.19B.89C.512D.712【答案】 D【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型) 【解析】设快递员送达的时刻为x ,小李到家的时刻为y ,根据题意列出有序实数对(x, y)满足的区域,以及小李去快递柜收取商品对应的平面区域,计算面积比即可得出答案. 【解答】假设快递员送达的时刻为x ,小李到家的时刻为y , 则有序实数对(x, y)满足的区域为 {(x, y)|{5≤x ≤65.5≤y ≤6},小李需要去快递柜收取商品,即序实数对(x, y)满足的区域为{(x, y)|{5≤x ≤65.5≤y ≤6x +16<y},∴ 小李需要去快递柜收取商品的概率为 P =SS =12×(13+56)×1212×1=712.8. 在正方体ABCD −A 1B 1C 1D 1中,E ,F ,G 分别为棱CD ,CC 1,A 1B 1的中点,用过点E ,F ,G 的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为( )A.B.C.D.【答案】 C【考点】简单空间图形的三视图 【解析】 此题暂无解析 【解答】解:取AA 1的中点H ,连结GH ,则GH 为过点E,F,G 的平面与正方体的面A 1B 1BA 的交线.延长GH ,交BA 的延长线于点P ,连结EP ,交AD 于N ,则NE 为过点E ,F,G 的平面与正方体的面ABCD 的交线.同理,延长EF ,交D 1C 1的延长线于Q ,连结GQ ,交B 1C 1于点M ,则FM 为过点E,F,G 的平面与正方体的面BCC 1B 1的交线.所以过点E,F,G 的平面截正方体所得的截面为图中的六边形EFMGHN .故可得位于截面以下部分的几何体的侧(左)视图为选项C 所示. 故选C .9. 已知函数f(x)=1−2x 1+2x,实数a ,b 满足不等式f(2a +b)+f(4−3b)>0,则下列不等式恒成立的是( ) A.b −a <2 B.a +2b >2 C.b −a >2 D.a +2b <2【答案】 C【考点】奇偶性与单调性的综合 【解析】 此题暂无解析解:由题意得f(−x)=1−2−x 1+2−x=2x −12x +1=−1−2x 2x +1=−f(x),故函数f(x)为奇函数,又f(x)=−2x −11+2x=−(2x +1)−21+2x=−1+21+2x ,故函数f(x)在R 上单调调递减.∵ f(2a +b)+f(4−3b)>0,∴ f(2a +b)>−f(4−3b)=f(3b −4), ∴ 2a +b <3b −4, ∴ b −a >2. 故选C .10. 已知双曲线C:x 2a 2−y 2b 2=1的左,右焦点分别为F 1,F 2,A ,B 是双曲线C 上的两点,且AF 1→=3F 1B →,cos∠AF 2B =35,则该双曲线的离心率为( ) A.√10 B.√102C.√52D.√5【答案】B【考点】 双曲线的特性 【解析】 此题暂无解析 【解答】解:∵ AF 1→=3F 1B→,∴ A,F 1,B 共线,且点F 1在线段AB 上,如图,设A,B 是双曲线C 左支上的两点, 令|AF 1|=3|F 1B |=3m(m >0),由双曲线的定义可得|BF 2|=2a +m,|AF 2|=2a +3m ,在△F 2AB 中,由余弦定理得(4m)2=(2a +m)2+(2a +3m)2−2×(2a +m)×(2a +3m)×35,整理得3m 2−2am −a 2=0,解得m =a 或m =−13a (舍去).∴ |AB|=4a,|BF 2|=3a,|AF 2|=5a ,∴ △F 2AB 为直角三角形,且∠ABF 2=90∘. 在Rt △F 1BF 2中,|F 1B |2+|BF 2|2=|F 1F 2|2, 即a 2+(3a)2=(2c)2,即10a 2=4c 2, ∴ e 2=c 2a 2=52,∴ e =√102,即该双曲线的离心率为√102. 故选B .在(0, π)上单调.下列说法正确的是()A.ω=12B.f(−π8)=√6−√22C.函数f(x)在[−π,−π2brack上单调递增D.函数y=f(x)的图象关于点(3π4,0)对称【答案】C【考点】正弦函数的单调性【解析】根据题意,设置满足条件的ω,φ的值,依次对各选项讨论即可.【解答】由f(π8)=√2,即2sin(ωπ8+φ)=√2,可得:ωπ8+φ=π4+2kπ或ωπ8+φ=3π4+2kπ,k∈Z;令ωπ8+φ=π4……(1),(2)(3)解得:ω=2,不满足题意:令ωπ8+φ=3π4……(4),(5)(6)解得:ω=23,满足题意:∴f(x)=2sin(23x+2π3)对于B:f(−π8)=2sin(−23×π8+2π3)=2sin7π12=√6+√22,∴B不对.对于C:令−π2≤23x+2π3≤π2,解得:−3π2≤x≤π4,∴函数f(x)在[−π,−π2brack上单调递增,∴C对.对于D:当x=3π4,可得f(3π4)=2sin(23×3π4+2π3)=−2sinπ6=−1,∴函数y=f(x)的图象不是关于点(3π4,0)对称,∴D不对.故选:C.12. 已知点I在△ABC内部,AI平分∠BAC,∠IBC=∠ACI=12∠BAC,对满足上述条件的所有△ABC,下列说法正确的是()A.△ABC的三边长一定成等差数列B.△ABC的三边长一定成等比数列C.△ABI,△ACI,△CBI的面积一定成等差数列D.△ABI,△ACI,△CBI的面积一定成等比数列【答案】B【考点】命题的真假判断与应用【解析】此题暂无解析【解答】解:设∠IBC=∠ACI=∠BAI=∠CAI=θ,IA=IC=m,IB=n,在△IAC中,m=b2cosθ,在△ABI,△BCI,△ABC中,分别由余弦定理得n2=c2+m2−2cmcosθ,m2=a2+n2−2ancosθ,a2=b2+c2−2bcos2θ,由+整理得2(cm+an)cosθ=a2+c2,∴ cm+an=a2+c22cosθ,将m=b2cosθ代入上式可得n=a2+c2−bc2acosθ,又由三角形面积公式得12bcsin2θ=12mcsinθ+12ansinθ+12bmsinθ,∴2bccosθ=mc+an+bm=m(b+c)+an,∴ 2bccosθ=b(b+c)2cosθ+a2+c2−bc2cosθ=a2+b2+c22cosθ,∴ 4bcos2θ=a2+b2+c2,∴ 2bc(1+cos2θ)=a2+b2+c2,由得cos2θ=b2+c2−a22bc,∴ 2bc(1+b2+c2−a22bc)=a2+b2+c2,整理得a2=bc,故△ABC的三边长一定成等比数列.故选B.二、填空题(每题5分,满分20分,将答案填在答题纸上)已知两个单位向量a→,b→的夹角为π3,则(2a→+b→)∗(a→−b→)=________.【答案】12【考点】平面向量数量积的性质及其运算律【解析】直接利用向量的数量积的运算法则求解即可.【解答】两个单位向量a →,b →的夹角为π3,则(2a →+b →)∗(a →−b →)=2a →2−a →∗b →−b →2=2−12−1=12,在(2x +1)2(x −2)3的展开式中,x 2的系数等于________. 【答案】 10【考点】二项式定理的应用 【解析】化简(2x +1)2(x −2)3=(4x 2+4x +1)(x 3−6x 2+12x −8),展开后可得含x 2项的系数. 【解答】∵ (2x +1)2(x −2)3=(4x 2+4x +1)(x 3−6x 2+12x −8), ∴ x 2的系数等于4×(−8)+4×12−6=(10)已知半径为3cm 的球内有一个内接四棱锥S −ABCD ,四棱锥S −ABCD 的侧棱长都相等,底面是正方形,当四棱锥S −ABCD 的体积最大时,它的底面边长等于________cm . 【答案】 4【考点】柱体、锥体、台体的体积计算 【解析】 此题暂无解析 【解答】解:如图,设四棱锥S −ABCD 的侧棱长为x ,底面正方形的边长为a ,棱锥的高为ℎ, 由题意可得顶点S 在底面上的射影为底面正方形的中心O 1,则球心O 在高SO 1上,在Rt △OO 1B 中,OO 1=ℎ−3,OB =3,O 1B =√22a ,∴ 32=(ℎ−3)2+(√22a)2,整理得a2=12ℎ−2ℎ2.又∵ 在Rt △SO 1B 中,有x 2=ℎ2+(√22a)2=ℎ2+(6ℎ−ℎ2)=6ℎ,∴ ℎ=x 26.∴a 2=2x 2−x 418,∴ V S−ABCD =13⋅a 2⋅ℎ=13×(2x 2−x 418)×x 26=1324(−x 6+36x 4),设f(x)=−x 6+36x 4,则f ′(x)=−6x 5+144x 3=−6x 3(x 2−24), ∴ 当0<x <2√6时f ′(x)>0,f(x)单调递增, 当x <2√6时,f ′(x)<0,f(x)单调递减,∴ 当a =2√6时,f(x)取得最大值,即四棱锥S −ABCD 的体积取得最大值, 此时a 2=2×(2√6)2−(2√6)418=16,解得a =4,∴ 四棱锥S −ABCD 的体积最大时,底面边长等于4cm . 故答案为:4.为保护环境,建设美丽乡村,镇政府决定为A,B,C三个自然村建造一座垃圾处理站,集中处理A,B,C三个自然村的垃圾,受当地条件限制,垃圾处理站M只能建在与A村相距5km,且与C村相距√31km的地方.已知B村在A村的正东方向,相距3km,C村在B村的正北方向,相距3√3km,则垃圾处理站M与B村相距________km.【答案】2或7【考点】解三角形【解析】此题暂无解析【解答】解:以A为坐标原点,AB所在直线为x轴建立平面直角坐标系,则A(0,0),B(3,0),C(3,3√3).由题意得处理站M在以A(0,0)为圆心,半径为5的圆A上,同时又在以C(3,3√3)为圆心,半径为√31的圆C上,两圆的方程分别为x2+y2=25和(x−3)2+(y−3√3)2=31,联立{x2+y2=25(x−3)2+(y−3√3)2=31,解得{x=5y=0,或{x=−52y=5√32,∴垃圾处理站M的坐标为(5,0)或(−52,5√32),∴|MB|=2或|MB|=√(−52−3)2+(5√32)2=7,即垃圾处理站M与B村相距2km或7km.故答案为:2或7.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)已知等比数列{a n}的前n项和S n满足4S5=3S4+S6,且a3=9.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(2n−1)⋅a n,求数列{b n}的前n项的和T n.【答案】(Ⅰ)设数列{a n}的公比为q.由4S5=3S4+S6,得S6−S5=3S5−3S4,即a6=3a5,∴q=3,∴a n=9∗3n−3=3n−1.(Ⅱ)b n=(2n−1)∗a n=(2n−1)∗3n−1,∴T n=1∗30+3∗31+5∗32+⋯+(2n−1)∗3n−1,3T n=1∗31+3∗32+⋯+(2n−3)∗3n−1+(2n−1)∗3n,∴−2T n=1+2∗31+2∗32+⋯+2∗3n−1−(2n−1)∗3n=−2+(2−2n)∗3n,∴T n=(n−1)∗3n+1.【考点】数列的求和【解析】(Ⅰ)利用已知条件求出数列的公比,然后求数列{a n}的通项公式;(Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可.【解答】(Ⅰ)设数列{a n}的公比为q.由4S5=3S4+S6,得S6−S5=3S5−3S4,即a6=3a5,∴q=3,∴a n=9∗3n−3=3n−1.(Ⅱ)b n=(2n−1)∗a n=(2n−1)∗3n−1,∴T n=1∗30+3∗31+5∗32+⋯+(2n−1)∗3n−1,3T n=1∗31+3∗32+⋯+(2n−3)∗3n−1+(2n−1)∗3n,∴−2T n=1+2∗31+2∗32+⋯+2∗3n−1−(2n−1)∗3n=−2+(2−2n)∗3n,∴T n=(n−1)∗3n+1.为了解A市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了部分高三理科学生数学成绩绘制如图所示的频率分布直方图.(Ⅰ)根据频率分布直方图,估计该市此次检测理科数学的平均成绩u0;(精确到个位)(Ⅱ)研究发现,本次检测的理科数学成绩X近似服从正态分布X∼N(μ, σ2)(u=u0,σ约为19.3).①按以往的统计数据,理科数学成绩能达到升一本分数要求的同学约占46%,据此估计本次检测成绩达到升一本的理科数学成绩大约是多少分?(精确到个位)②已知A市理科考生约有1000名,某理科学生此次检测数学成绩为107分,则该学生全市排名大约是多少名?= 1 − \pℎi(\dfrac{{x}_{1} − u}{∖sigma})}表示{x\gt x_{1}}的概率,{\phi(\dfrac{{x}_{1} - u}{\sigma})}用来将非标准正态分布化为标准正态分布,即{X\sim N(0,\, 1)},从而利用标准正态分布表{\phi (x_{0})},求{x\gt x_{1}}时的概率{P(x\gt x_{1})},这里{x_{0}= \dfrac{{x}_{1} - u}{\sigma}}.相应于{x_{0}}的值{\phi(x_{0})}是指总体取值小于{x_{0}}的概率,即{\phi (x_{0})= P(x\lt x_{0})}.参考数据:{\phi (0.7045)= 0.54},{\phi (0.6772)= 0.46},{\phi (0.21)= 0.5832)}$.【答案】(1)该市此次检测理科数学成绩平均成绩约为:u0=65×0.05+75×0.08+85×0.12+95×0.15+105×0.24+115×0.18 +125×0.1+135×0.05+145×0.03=103.2≈1(03)(2)①记本次考试成绩达到升一本的理科数学成绩约为x1,根据题意,P(x>x1)=1−ϕ(x1−u0σ)=1−ϕ(x1−10319.3)=0.46,即ϕ(x1−10319.3)=0.54.由ϕ(0.7054)=0.54得,x1−10319.3=0.7054⇒x1=116.6≈117,所以,本次考试成绩达到升一本的理科数学成绩约为117分.P(x>7)=1−ϕ(107−10319.3)=1−ϕ(0.2072)≈1−0.5832=0.4168,所以,理科数学成绩为107分,大约排在10000×0.4168=4168名.【考点】正态分布的密度曲线【解析】(I)以组中值代替小组平均值,根据加权平均数公式计算平均成绩;(II)①根据所给公式列方程求出x1;②根据成绩计算概率,得出大体名次.【解答】(1)该市此次检测理科数学成绩平均成绩约为:u0=65×0.05+75×0.08+85×0.12+95×0.15+105×0.24+115×0.18 +125×0.1+135×0.05+145×0.03=103.2≈1(03)(2)①记本次考试成绩达到升一本的理科数学成绩约为x1,根据题意,P(x>x1)=1−ϕ(x1−u0σ)=1−ϕ(x1−10319.3)=0.46,即ϕ(x1−10319.3)=0.54.由ϕ(0.7054)=0.54得,x1−10319.3=0.7054⇒x1=116.6≈117,所以,本次考试成绩达到升一本的理科数学成绩约为117分.P(x>7)=1−ϕ(107−10319.3)=1−ϕ(0.2072)≈1−0.5832=0.4168,所以,理科数学成绩为107分,大约排在10000×0.4168=4168名.在四棱锥P−ABCD中,平面PAD⊥平面ABCD,AB // CD,AB⊥AD,O为AD中点,PA=PD=√5,AD=AB=2CD=2.(Ⅰ)求证:平面POB⊥平面PAC;(Ⅱ)求二面角A−PC−D的余弦值.【答案】(1)证明:由条件可知,Rt △ADC ≅Rt △BAO ,∴ ∠DAC =∠ABO , ∴ ∠DAC +∠AOB =∠ABO +∠AOB =90∘,∴ AC ⊥BO .∵ PA =PD ,且O 为AD 中点,∴ PO ⊥AD .∵ {PAD ⊥ABCDPAD ∩ABCD =AD PO ⊥AD PO ⊂PAD,∴ PO ⊥平面ABCD .又∵ AC ⊂平面ABCD ,∴ AC ⊥PO . 又∵ BO ∩PO =O ,∴ AC ⊥平面POB . ∵ AC ⊂平面PAC ,∴ 平面POB ⊥平面PAC .(2)以O 为空间坐标原点,建立如图所示的空间直角坐标系,则P(0, 0, 2),A(1, 0, 0),D(−1, 0, 0),C(−1, 1, 0),PA →=(1,0,−2),AC →=(−2,1,0),PD →=(1,0,−2),CD →=(0,−1,0), 设n 1→=(x,y,z)为平面PAC 的一个法向量,由{n 1→⋅PA →=0n 1→⋅AC →=0得{x −2z =0−2x +y =0 ,解得{z =12x y =2x.令x =2,则n 1→=(2,4,1).同理可得,平面PDC 的一个法向量n 2→=(−2,0,1), ∴ 二面角A −PC −D 的平面角θ的余弦值cosθ=|n 1→⋅n 2→||n 1→||n 2→|=√105=√10535.【考点】平面与平面垂直二面角的平面角及求法 【解析】(Ⅰ)通过Rt △ADC ≅Rt △BAO ,推出∠DAC =∠ABO ,证明AC ⊥BO ,PO ⊥AD .推出PO ⊥平面ABCD .得到AC ⊥PO .AC ⊥平面POB ,即可证明平面POB ⊥平面PAC .(Ⅱ)以O 为空间坐标原点,建立如图所示的空间直角坐标系,求出平面PAC 的一个法向量,平面PDC 的一个法向量,利用向量的数量积求解即可. 【解答】(1)证明:由条件可知,Rt △ADC ≅Rt △BAO ,∴ ∠DAC =∠ABO , ∴ ∠DAC +∠AOB =∠ABO +∠AOB =90∘,∴ AC ⊥BO .∵ PA =PD ,且O 为AD 中点,∴ PO ⊥AD .∵ {PAD ⊥ABCDPAD ∩ABCD =AD PO ⊥AD PO ⊂PAD,∴ PO ⊥平面ABCD .又∵ AC ⊂平面ABCD ,∴ AC ⊥PO . 又∵ BO ∩PO =O ,∴ AC ⊥平面POB . ∵ AC ⊂平面PAC ,∴ 平面POB ⊥平面PAC .(2)以O 为空间坐标原点,建立如图所示的空间直角坐标系,则P(0, 0, 2),A(1, 0, 0),D(−1, 0, 0),C(−1, 1, 0),PA →=(1,0,−2),AC →=(−2,1,0),PD →=(1,0,−2),CD →=(0,−1,0), 设n 1→=(x,y,z)为平面PAC 的一个法向量,由{n 1→⋅PA →=0n 1→⋅AC →=0得{x −2z =0−2x +y =0 ,解得{z =12xy =2x. 令x =2,则n 1→=(2,4,1).同理可得,平面PDC 的一个法向量n 2→=(−2,0,1), ∴ 二面角A −PC −D 的平面角θ的余弦值cosθ=|n 1→⋅n 2→||n 1→||n 2→|=√105=√10535.已知点A(1, 0)和动点B ,以线段AB 为直径的圆内切于圆O:x 2+y 2=4. (Ⅰ)求动点B 的轨迹方程;(Ⅱ)已知点P(2, 0),Q(2, −1),经过点Q 的直线l 与动点B 的轨迹交于M ,N 两点,求证:直线PM 与直线PN 的斜率之和为定值. 【答案】(1)如图,设以线段AB 为直径的圆的圆心为C ,取A′(−1, 0). 依题意,圆C 内切于圆O ,设切点为D ,则O ,C ,D 三点共线, ∵ O 为AA′的中点,C 为AB 中点,∴ A′B =20C .∴ |BA′|+|BA|=20C +2AC =20C +2CD =20D =4>|AA′|=2 依椭圆得定义可知,动点B 的轨迹为椭圆,其中:|BA′|+|BA|=2a =4,|AA′|=2c =2, ∴ a =2,c =1,∴ b 2=a 2−c 2=3, ∴ 动点B 的轨迹方程为x 24+y 23=1.(2)证明:当直线l 垂直于x 轴时,直线l 的方程为x =2, 此时直线l 与椭圆x 24+y 23=1相切,与题意不符.当直线l 的斜率存在时,设直线l 的方程为y +1=k(x −2).由{y +1=k(x −2)x 24+y 23=1得(4k 2+3)x 2−(16k 2+8k)x +16k 2+16k −8=0. 设M(x 1, y 1),N(x 2, y 2), 则{x 1+x 2=16k 2+8k4k 2+3x 1x 2=16k 2+16k−84k 2+3△>0⇒k <12 , ∴ k PM +k PN =y 1x 1−2+y 2x2−2=k(x 1−2)−1x 1−2+k(x 2−2)−1x 2−2=2k −(1x1−2+1x2−2)=2k −x 1+x 2−4(x 1−2)(x 2−2)=2k −x 1+x 2−4x 1x 2−2(x 1+x 2)+4=2k −(16k 2+8k4k 2+3)−416k 2+16k−84k 2+3−2(16k 2+8k4k 2+3)+4=2k +3−2k =3.∴ 直线PM 与直线PN 的斜率之和为定值3.【考点】 轨迹方程圆锥曲线的综合问题 【解析】(Ⅰ)设以线段AB 为直径的圆的圆心为C ,取A′(−1, 0).圆C 内切于圆O ,设切点为D ,则O ,C ,D 三点共线,依椭圆得定义可知,动点B 的轨迹为椭圆,由此能求出动点B 的轨迹方程.(Ⅱ)设直线l 的方程为y +1=k(x −2).由{y +1=k(x −2)x 24+y 23=1 得(4k 2+3)x 2−(16k 2+8k)x +16k 2+16k −8=0.由此利用韦达定理、根的判别式,结合已知条件能证明直线PM 与直线PN 的斜率之和为定值3. 【解答】(1)如图,设以线段AB 为直径的圆的圆心为C ,取A′(−1, 0). 依题意,圆C 内切于圆O ,设切点为D ,则O ,C ,D 三点共线, ∵ O 为AA′的中点,C 为AB 中点,∴ A′B =20C .∴ |BA′|+|BA|=20C +2AC =20C +2CD =20D =4>|AA′|=2 依椭圆得定义可知,动点B 的轨迹为椭圆,其中:|BA′|+|BA|=2a =4,|AA′|=2c =2, ∴ a =2,c =1,∴ b 2=a 2−c 2=3, ∴ 动点B 的轨迹方程为x 24+y 23=1.(2)证明:当直线l 垂直于x 轴时,直线l 的方程为x =2, 此时直线l 与椭圆x 24+y 23=1相切,与题意不符.当直线l 的斜率存在时,设直线l 的方程为y +1=k(x −2).由{y +1=k(x −2)x 24+y 23=1 得(4k 2+3)x 2−(16k 2+8k)x +16k 2+16k −8=0. 设M(x 1, y 1),N(x 2, y 2), 则{x 1+x 2=16k 2+8k4k 2+3x 1x 2=16k 2+16k−84k 2+3△>0⇒k <12 , ∴ k PM +k PN =y 1x 1−2+y 2x2−2=k(x 1−2)−1x 1−2+k(x 2−2)−1x 2−2=2k −(1x1−2+1x2−2)=2k −x 1+x 2−4(x 1−2)(x 2−2)=2k −x 1+x 2−4x 1x 2−2(x 1+x 2)+4=2k −(16k 2+8k4k 2+3)−416k 2+16k−84k 2+3−2(16k 2+8k4k 2+3)+4=2k +3−2k =3.∴ 直线PM 与直线PN 的斜率之和为定值3.已知函数f(x)=(x −1)e x −ax 2(e 是自然对数的底数). (Ⅰ)判断函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x ∈R ,f(x)+e x ≥x 3+x ,求a 的取值范围. 【答案】(1)∵ f′(x)=xe x −2ax =x(e x −2a),当a ≤0时,f(x)在(−∞, 0)上单调递减,在(0, +∞)上单调递增, ∴ f(x)有1个极值点;当0<a <12时,f(x)在(−∞, ln2a)上单调递增,在(ln2a, 0)上单调递减,在(0, +∞)上单调递增, ∴ f(x)有2个极值点;当a =12时,f(x)在R 上单调递增, 此时f(x)没有极值点;当a >12时,f(x)在(−∞, 0)上单调递增,在(0, ln2a)上单调递减,在(ln2a, +∞)上单调递增, ∴ f(x)有2个极值点;∴ 当a ≤0时,f(x)有1个极值点; 当a >0且a ≠12时,f(x)有2个极值点; 当a =12时,f(x)没有极值点.(2)由f(x)+e x ≥x 3+x 得xe x −x 3−ax 2−x ≥(0) 当x >0时,e x −x 2−ax −1≥0, 即a ≤e x −x 2−1x 对∀x >0恒成立. 设g(x)=e x −x 2−1x,则g ′(x)=(x−1)(e x −x−1)x 2.设ℎ(x)=e x −x −1,则ℎ′(x)=e x −(1)∵ x >0,∴ ℎ′(x)>0,∴ ℎ(x)在(0, +∞)上单调递增, ∴ ℎ(x)>ℎ(0)=0,即e x >x +1,∴ g(x)在(0, 1)上单调递减,在(1, +∞)上单调递增, ∴ g(x)≥g(1)=e −2,∴ a ≤e −(2) 当x =0时,不等式恒成立,a ∈R ; 当x <0时,e x −x 2−ax −1≤(0)设ℎ(x)=e x −x 2−ax −1,则ℎ′(x)=e x −2x −a . 设φ(x)=e x −2x −a ,则φ′(x)=e x −2<0, ∴ ℎ′(x)在(−∞, 0)上单调递减, ∴ ℎ′(x)≥ℎ′(0)=1−a . 若a ≤1,则ℎ′(x)≥0,∴ ℎ(x)在(−∞, 0)上单调递增, ∴ ℎ(x)<ℎ(0)=(0)若a >1,∵ ℎ′(0)=1−a <0,∴ ∃x 0<0,使得x ∈(x 0, 0)时,ℎ′(x)<0, 即ℎ(x)在(x 0, 0)上单调递减, ∴ ℎ(x)>ℎ(0)=0,舍去, ∴ a ≤(1)综上可得,a 的取值范围是(−∞, e −2]. 【考点】利用导数研究函数的极值 利用导数研究函数的最值 【解析】(Ⅰ)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,从而求出函数的极值点的个数即可; (Ⅱ)问题转化为a ≤e x −x 2−1x对∀x >0恒成立,设g(x)=e x −x 2−1x,设ℎ(x)=e x −x −1,根据函数的单调性求出a 的范围即可. 【解答】(1)∵ f′(x)=xe x −2ax =x(e x −2a),当a ≤0时,f(x)在(−∞, 0)上单调递减,在(0, +∞)上单调递增, ∴ f(x)有1个极值点;当0<a <12时,f(x)在(−∞, ln2a)上单调递增, 在(ln2a, 0)上单调递减,在(0, +∞)上单调递增, ∴ f(x)有2个极值点;当a =12时,f(x)在R 上单调递增, 此时f(x)没有极值点;当a >12时,f(x)在(−∞, 0)上单调递增,在(0, ln2a)上单调递减,在(ln2a, +∞)上单调递增, ∴ f(x)有2个极值点;∴ 当a ≤0时,f(x)有1个极值点; 当a >0且a ≠12时,f(x)有2个极值点; 当a =12时,f(x)没有极值点.(2)由f(x)+e x ≥x 3+x 得xe x −x 3−ax 2−x ≥(0) 当x >0时,e x −x 2−ax −1≥0, 即a ≤e x −x 2−1x 对∀x >0恒成立. 设g(x)=e x −x 2−1x,则g ′(x)=(x−1)(e x −x−1)x 2.设ℎ(x)=e x −x −1,则ℎ′(x)=e x −(1)∵ x >0,∴ ℎ′(x)>0,∴ ℎ(x)在(0, +∞)上单调递增, ∴ ℎ(x)>ℎ(0)=0,即e x >x +1,∴ g(x)在(0, 1)上单调递减,在(1, +∞)上单调递增, ∴ g(x)≥g(1)=e −2,∴ a ≤e −(2) 当x =0时,不等式恒成立,a ∈R ; 当x <0时,e x −x 2−ax −1≤(0)设ℎ(x)=e x −x 2−ax −1,则ℎ′(x)=e x −2x −a . 设φ(x)=e x −2x −a ,则φ′(x)=e x −2<0, ∴ ℎ′(x)在(−∞, 0)上单调递减, ∴ ℎ′(x)≥ℎ′(0)=1−a . 若a ≤1,则ℎ′(x)≥0,∴ ℎ(x)在(−∞, 0)上单调递增, ∴ ℎ(x)<ℎ(0)=(0)若a >1,∵ ℎ′(0)=1−a <0,∴ ∃x 0<0,使得x ∈(x 0, 0)时,ℎ′(x)<0, 即ℎ(x)在(x 0, 0)上单调递减, ∴ ℎ(x)>ℎ(0)=0,舍去, ∴ a ≤(1)综上可得,a 的取值范围是(−∞, e −2].请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]已知过点P(0, −1)的直线l 的参数方程为{x =12ty =−1+√32t(t 为参数),在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的方程为2asinθ−ρcos 2θ=0(a >0). (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 分别交于点M ,N ,且|PM|,|MN|,|PN|成等比数列,求a 的值. 【答案】解(Ⅰ)曲线C 的方程为2asinθ−ρcos 2θ=0(a >0). ∴ 2aρsinθ−ρ2cos 2θ=(0) 即x 2=2ay(a >0).(2)将{x =12ty =−1+√32t代入x 2=2ay , 得t 2−4√3at +8a =0, 得{△=(−4√3a)2−4×8a >0t 1+t 2=4√3at 1t 2=8a. . ∵ a >0, ∴ 解①得a >23.∵ |PM|,|MN|,|PN|成等比数列, ∴ |MN|2=|PM|⋅|PN|, 即|t 1−t 2|2=t 1t 2,∴ (t 1+t 2)2−4t 1t 2=t 1t 2, 即(4√3a)2−40a =0, 解得a =0或a =56. ∵ a >23, ∴ a =56.【考点】参数方程与普通方程的互化 圆的极坐标方程 【解析】(Ⅰ)直接利用转换关系把参数方程和极坐标方程与直角坐标方程进行转化.(Ⅱ)利用直线和曲线的位置关系,把方程组转换为一元二次方程根与系数的关系的应用求出结果. 【解答】解(Ⅰ)曲线C 的方程为2asinθ−ρcos 2θ=0(a >0). ∴ 2aρsinθ−ρ2cos 2θ=(0) 即x 2=2ay(a >0).(2)将{x =12ty =−1+√32t代入x 2=2ay ,得t 2−4√3at +8a =0, 得{△=(−4√3a)2−4×8a >0t 1+t 2=4√3at 1t 2=8a. . ∵ a >0, ∴ 解①得a >23.∵ |PM|,|MN|,|PN|成等比数列, ∴ |MN|2=|PM|⋅|PN|, 即|t 1−t 2|2=t 1t 2,∴ (t 1+t 2)2−4t 1t 2=t 1t 2, 即(4√3a)2−40a =0, 解得a =0或a =56. ∵ a >23, ∴ a =56.[选修4-5:不等式选讲]已知函数f(x)=|3x +m|.(1)若不等式f(x)−m ≤9的解集为[−1, 3],求实数m 的值;(2)若m >0,函数g(x)=f(x)−2|x −1|的图象与x 轴围成的三角形的面积大于60,求m 的取值范围. 【答案】 解:(1)由题意得{9+m ≥0|3x +m|≤9+m.解①得m ≥−9②可化为−9−m ≤3x +m ≤9+m ,−9−2m 3≤x ≤3.∵ 不等式f(x)≤9的解集为[−1, 3], ∴−9−2m 3=−1,解得m =−3,满足m ≥−9, ∴ m =−3.(2)依题意得,g(x)=|3x +m|−2|x −1|.又∵ m >0,∴ g(x)={−x −m −2(x ≤−m 3)5x +m −2(−m 3<x <1)x +m +2(x ≥1).,g(x)的图象与x 轴围成的△ABC 的三个顶点的坐标为 A(−m −2, 0),B(2−m 5,0),C(−m 3,−2m 3−2),∴ S △ABC =12|AB|⋅y C =4(m+3)215>60,解得m >12. 【考点】绝对值不等式的解法与证明 【解析】(Ⅰ)去掉不等式的绝对值并根据条件限制m 的范围,根据题意得出m 的值;(Ⅱ)由m >0去掉绝对值,将函数g(x)写成分段函数的形式,根据大致图象求出三角形的顶点坐标,代入三角形面积公式,解不等式即可. 【解答】解:(1)由题意得{9+m ≥0|3x +m|≤9+m.解①得m ≥−9②可化为−9−m ≤3x +m ≤9+m ,−9−2m 3≤x ≤3.∵ 不等式f(x)≤9的解集为[−1, 3], ∴−9−2m 3=−1,解得m =−3,满足m ≥−9 ∴ m =−3.(2)依题意得,g(x)=|3x +m|−2|x −1|.又∵ m >0,∴ g(x)={−x −m −2(x ≤−m3)5x +m −2(−m 3<x <1)x +m +2(x ≥1).,g(x)的图象与x 轴围成的△ABC 的三个顶点的坐标为 A(−m −2, 0),B(2−m 5,0),C(−m 3,−2m 3−2),∴ S △ABC =12|AB|⋅y C =4(m+3)215>60,解得m >12.。
合肥市包河区18年二模数学试卷和解析
2017~2018年包河区二模数学试卷注意事项:本卷共8大题,23小题,满分150分,考试时间120分钟. 一、 选择题(本大题共10小题,每小题4分,满分40分) 一选择题(本大题共10小题,每小题4分,满分40分) 1.-2018的相反数是( ) A.20181 B.2019 C.20181- D.2018 2.以下运算中,正确的是( ) A.()222b a ba -=- B.()63262a a = C.123=-a a D.23a ab b a =+3.我国现在是LED 的最大生产国,它的使用使去年节电近 1400 亿度,减少二氧化碳排放1.2亿吨.1400亿用科学记数法表示为( )A.3104.1⨯B.8104.1⨯C.11104.1⨯D.12104.1⨯ 4.如图1,在由5个相同的正方体组成的立体图中如图2所示增加一个同样大小的正方体,则图2与图1的视图中不同的是( )A.左视图B.主视图C.俯视图D.俯视图和左视图 5.如图,ABC ∆内接于圆O,ο20=∠C ,则OAB ∠的度数是( )A.ο50B.ο60C.ο70D.ο726.不等式组⎩⎨⎧-≥+>-)1(43123x x x x 的正整数解有( )A.4个B.3个C.2个D.1个7.某校举行数学青年教师优秀课比赛活动,某天下午在安排2位男选手和2位女选手的出场顺序时,采用随机抽签方式.则第一,二位出场选手都是女选手的概率是( ) A.61 B.41 C.31 D.21 8.如图,已知二次函数c bx ax y ++=2的图象分别与x 轴的正半轴和负半轴交于A,B 两 点,且OB OA <,则一次函数b ax y +=和反比例函数xba y +=的图象可能是( )A B C D 9.如图,在平行四边形ABCD 中,E 、F 分别是BC 边,CD 边的中点,AE 、AF 分别交BD于点G ,H ,设△AGH 的面积为1S ,平行四边形ABCD 的面积为2S ,则1S :2S 的值为( )A 、61B 、51C 、72D 、8110.已知二次函数bx ax y +=2的图象经过点A (−1,1),则ab 的值有( )A 、最大值1B 、最大值2C 、最小值0D 、最小值−14二、 填空题(本大题共4小题,每小题5分,满分20分)11. 因式分解:=+-22344ab b a a ___________.12. 如图,在ABC Rt ∆中,ο90=∠BAC ,AC AB =,分别过点B 、C 作过点A 的直线DE的垂线BD 、CE ,垂足分别为D 、E ,若3=BD ,2=CE ,则DE ___________.13.当215-=K 时有012=-+K K ,则=3k ___________.(填最简结果)。
2018合肥市第2次质检试题答案-文科_发布
……………5 分
3S n = 1 ⋅ 31 + 2 ⋅ 32 + L + ( n − 1) ⋅ 3n −1 + n ⋅ 3n ,
(1 − 2n ) ⋅ 3n − 1
2
, ………………12 分
( 2n − 1) ⋅ 3n + 1
4
.
(18)(本小题满分 12 分) (Ⅰ)由茎叶图中数据分布可知,甲组数据分布比较分散,乙组数据分布相对 集中,所以,甲组同学的成绩差异较大. ………………5 分 2 2 (也可通过计算方差说明: s甲 = 101.6 , s乙 = 37.4 , s甲2 > s乙 2 ) (Ⅱ)设甲组成绩在 90 分以上的三位同学为 A1,A2,A3 ; 乙组成绩在 90 分以 上的三位同学为 B1,B2,B3 .从这 6 位同学中选出 2 位同学,共有 15 个基本 事件,列举如下:
(23)(本小题满分 10 分)选修 4-5:不等式选讲 (Ⅰ)由题意得
①, 9 + m ≥ 0 3 x + m ≤ 9 + m ②.
解①得, m ≥ −9 .
−9 − 2m ≤ x ≤ 3. 3 −9 − 2m ∵不等式 f ( x ) ≤ 9 的解集为[ −1,3] ,∴ = −1 ,解得 m = −3 ,满足 m ≥ −9 . 3 ∴ m = −3 …………………5 分 (II)依题意得, g ( x ) = 3x + m − 2 x − 1 .
…………………6 分
ex − x2 − 1 对 ∀x > 0 恒成立. x
2
( x − 1) ( e x − x − 1) ex − x2 − 1 ,则 g ′ ( x ) = . x x2 设 h ( x ) = e x − x − 1 ,则 h′ ( x ) = e x − 1 .
安徽六校教育研究会2018届高三第二次联考数学试题(文)参考答案及评分标准
2 所以 b 2 sin B , c 2 sin C 2 sin B 3 cos B sin B . 3
0B 2 因为 ABC为锐角三角形,所以 B . 6 2 0 C 2 B 3 2
bx+cy-(3- 2)c=0,
因为直线 l 与圆 C2:x2+(y-3)2=1 相切,所以 d= 2 .............4 分 2 |3c-3c+ 2c| =1,即
b2+c2
a2=2c2,从而 e=
(2)设 P(x,y),圆 C2 的圆心记为 C2,
x2 y2 则 2+ 2=1(c>0), 2c c
∵ 1 sin 2 x 1 . 3
∴ f x 的值域为 2 3, 2 3 ,最小正周期为π.............5 分
(2) 由正弦定理
a b c 3 b c 可得 , sin B sin C sin A sin B sin C sin 3
ห้องสมุดไป่ตู้n2 1 ,解得 4
.............6 分 (3)若 n 1 时, f ( x) 恰有两个零点 x1 , x2 (0 x1 x2 ) , mx 1 mx 1 由 f ( x1 ) 1 ln x1 0 , f ( x2 ) 2 ln x2 0 ,得 x1 x2
绩等级为
的概率为
,则该校高二年级学生获得成绩为 的人数约有
,
............3 分
(2)由于这
名学生成绩的平均分
为: 年级此阶段教学未达标.
(3)P =
,且 ............6 分 12 分
2018年安徽省合肥市高考数学二模试卷(理科)(解析版)
第 8 页(共 23 页)
综上可得若输出的结果为 1,则输入 x 的值为 3 或﹣2, 故选:A. 7.(5 分)小李从网上购买了一件商品,快递员计划在下午 5:00﹣6:00 之间送货上门,
已知小李下班到家的时间为下午 5:30﹣6:00.快递员到小李家时,如果小李未到家, 则快递员会电话联系小李.若小李能在 10 分钟之内到家,则快递员等小李回来;否则, 就将商品存放在快递柜中.则小李需要去快递柜收取商品的概率为( )
求 m 的取值范围.
第 6 页(共 23 页)
2018 年安徽省合肥市高考数学二模试卷(理科)
参考答案与试题解析
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只
有一项是符合题目要求的.
1.(5 分)已知复数 z 满足 z(• 1﹣2i)=(i i 是虚数),则复数 z 在复平面内对应的点在( )
到的绵是( )
A.174 斤
B.184 斤
C.191 斤
D.201 斤
6.(5 分)执行如图所示的程序框图,若输出的结果为 1,则输入 x 的值为( )
第 1 页(共 23 页)
A.3 或﹣2
B.2 或﹣2
C.3 或﹣1
D.﹣2 或﹣1 或 3
7.(5 分)小李从网上购买了一件商品,快递员计划在下午 5:00﹣6:00 之间送货上门,
对称
12.(5 分)已知点 I 在△ABC 内部,AI 平分∠BAC, 述条件的所有△ABC,下列说法正确的是( )
,对满足上
A.△ABC 的三边长一定成等差数列 B.△ABC 的三边长一定成等比数列 C.△ABI,△ACI,△CBI 的面积一定成等差数列 D.△ABI,△ACI,△CBI 的面积一定成等比数列 二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
2018合肥市第二次质检试题-数学文科
B. ( x + 3) + ( y − 4 ) = 100 D. ( x + 3) + ( y − 4 ) = 25
2
(4)在平面直角坐标系中,若角α 的终边经过点 P sin , cos ,则 sin (π + α ) = 3 3 A. −
3 2
5π
5π 3 2
B. −
(23)(本小题满分 10 分)选修 4-5:不等式选讲 已知函数 f ( x ) = 3x + m .
(I)若不等式 f ( x ) − m ≤ 9 的解集为[ −1,3] ,求实数 m 的值;
(II)若 m > 0 ,函数 g ( x ) = f ( x ) − 2 x − 1 的图象与 x 轴围成的三角形的面积大于 60,求 m 的取值范围.
(18)(本小题满分 12 分) 某班级甲、乙两个小组各有 10 位同学,在一次期中考试中,两个小组同学的数学成绩如下: 甲组:94,69,73,86,74,75,86,88,97,98; 乙组:75,92,82,80,95,81,83,91,79,82. (I)画出这两个小组同学数学成绩的茎叶图,判断哪一个小组同学的数学成绩差异较大,并说明理由; (II)从这两个小组数学成绩在 90 分以上的同学中, 随机选取 2 人在全班介绍学习经验, 求选出的 2 位同学 不在同一个小组的概率.
(20)(本小题满分 12 分) 已知椭圆 E :
x2 y2 1 + 2 = 1 ( a > b > 0 )经过点 P − 3, ,椭圆 E 的一个焦点为 2 a b 2
(
3, 0 .
)
2
(Ⅰ)求椭圆 E 的方程;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年安徽省合肥市高考数学二模试卷〔理科〕一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.复数z满足z•〔1﹣2i〕=i〔i是虚数〕,那么复数z在复平面内对应的点在〔〕A.第一象限B.第二象限C.第三象限D.第四象限2.集合A={x|﹣2<x<3},集合B={x|x<1},那么A∪B=〔〕A.〔﹣2,1〕B.〔﹣2,3〕C.〔﹣∞,1〕D.〔﹣∞,3〕3.命题p:∀a≥0,关于x的方程x2+ax+1=0有实数解,那么¬p为〔〕A.∃a<0,关于x的方程x2+ax+1=0有实数解B.∃a<0,关于x的方程x2+ax+1=0没有实数解C.∃a≥0,关于x的方程x2+ax+1=0没有实数解D.∃a≥0,关于x的方程x2+ax+1=0有实数解4.在直角坐标系中,假设角α的终边经过点,那么sin 〔π+α〕=〔〕A.B.C.D.5.中国古代词中,有一道“八子分绵〞的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言〞.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是〔〕A.174斤B.184斤C.191斤D.201斤6.执行如下图的程序框图,假设输出的结果为1,那么输入x的值为〔〕A.3或﹣2 B.2或﹣2 C.3或﹣1 D.﹣2或﹣1或37.小李从网上购置了一件商品,快递员方案在下午5:00﹣6:00之间送货上门,小李下班到家的时间为下午5:30﹣6:00.快递员到小李家时,如果小李未到家,那么快递员会联系小李.假设小李能在10分钟之内到家,那么快递员等小李回来;否那么,就将商品存放在快递柜中.那么小李需要去快递柜收取商品的概率为〔〕A.B.C.D.8.在正方体ABCD﹣A1B1C1D1中,E,F,G分别为棱CD,CC1,A1B1的中点,用过点E,F,G的平面截正方体,那么位于截面以下局部的几何体的侧〔左〕视图为〔〕A.B.C.D.9.函数,实数a,b满足不等式f〔2a+b〕+f〔4﹣3b〕>0,那么以下不等式恒成立的是〔〕A.b﹣a<2 B.a+2b>2 C.b﹣a>2 D.a+2b<210.双曲线C:﹣=1的左,右焦点分别为F1,F2,A,B是双曲线C上的两点,且=3,cos∠AF2B=,那么该双曲线的离心率为〔〕A. B.C.D.11.函数f〔x〕=2sin〔ωx+φ〕〔ω>0,0<φ<π〕,f〔〕=,f〔〕=0,且f〔x〕在〔0,π〕上单调.以下说法正确的选项是〔〕A.B.C.函数f〔x〕在上单调递增D.函数y=f〔x〕的图象关于点对称12.点I在△ABC内部,AI平分∠BAC,,对满足上述条件的所有△ABC,以下说法正确的选项是〔〕A.△ABC的三边长一定成等差数列B.△ABC的三边长一定成等比数列C.△ABI,△ACI,△CBI的面积一定成等差数列D.△ABI,△ACI,△CBI的面积一定成等比数列二、填空题〔每题5分,总分值20分,将答案填在答题纸上〕13.两个单位向量,的夹角为,那么=.14.在〔2x+1〕2〔x﹣2〕3的展开式中,x2的系数等于.15.半径为3cm的球内有一个内接四棱锥S﹣ABCD,四棱锥S﹣ABCD的侧棱长都相等,底面是正方形,当四棱锥S﹣ABCD的体积最大时,它的底面边长等于cm.16.为保护环境,建设美丽乡村,镇政府决定为A,B,C三个自然村建造一座垃圾处理站,集中处理A,B,C三个自然村的垃圾,受当地条件限制,垃圾处理站M只能建在与A村相距5km,且与C村相距的地方.B村在A村的正东方向,相距3km,C村在B村的正北方向,相距,那么垃圾处理站M 与B村相距km.三、解答题〔本大题共5小题,共70分.解容许写出文字说明、证明过程或演算步骤.〕17.〔12.00分〕等比数列{a n}的前n项和S n满足4S5=3S4+S6,且a3=9.〔Ⅰ〕求数列{a n}的通项公式;〔Ⅱ〕设b n=〔2n﹣1〕•a n,求数列{b n}的前n项的和T n.18.〔12.00分〕为了解A市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了局部高三理科学生数学成绩绘制如下图的频率分布直方图.〔Ⅰ〕根据频率分布直方图,估计该市此次检测理科数学的平均成绩u0;〔精确到个位〕〔Ⅱ〕研究发现,本次检测的理科数学成绩X近似服从正态分布X~N〔μ,σ2〕〔u=u0,σ约为19.3〕.①按以往的统计数据,理科数学成绩能到达升一本分数要求的同学约占46%,据此估计本次检测成绩到达升一本的理科数学成绩大约是多少分?〔精确到个位〕②A市理科考生约有1000名,某理科学生此次检测数学成绩为107分,那么该学生全市排名大约是多少名?〔说明:表示x>x1的概率,用来将非标准正态分布化为标准正态分布,即X~N〔0,1〕,从而利用标准正态分布表ϕ〔x0〕,求x>x1时的概率P〔x>x1〕,这里x0=.相应于x0的值ϕ〔x0〕是指总体取值小于x0的概率,即ϕ〔x0〕=P〔x<x0〕.参考数据:ϕ〔0.7045〕=0.54,ϕ〔0.6772〕=0.46,ϕ〔0.21〕=0.5832〕.19.〔12.00分〕在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,O为AD中点,,AD=AB=2CD=2.〔Ⅰ〕求证:平面POB⊥平面PAC;〔Ⅱ〕求二面角A﹣PC﹣D的余弦值.20.〔12.00分〕点A〔1,0〕和动点B,以线段AB为直径的圆内切于圆O:x2+y2=4.〔Ⅰ〕求动点B的轨迹方程;〔Ⅱ〕点P〔2,0〕,Q〔2,﹣1〕,经过点Q的直线l与动点B的轨迹交于M,N两点,求证:直线PM与直线PN的斜率之和为定值.21.〔12.00分〕函数f〔x〕=〔x﹣1〕e x﹣ax2〔e是自然对数的底数〕.〔Ⅰ〕判断函数f〔x〕极值点的个数,并说明理由;〔Ⅱ〕假设∀x∈R,f〔x〕+e x≥x3+x,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.〔10.00分〕过点P〔0,﹣1〕的直线l的参数方程为〔t为参数〕,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C的方程为2asinθ﹣ρcos2θ=0〔a>0〕.〔Ⅰ〕求曲线C的直角坐标方程;〔Ⅱ〕假设直线l与曲线C分别交于点M,N,且|PM|,|MN|,|PN|成等比数列,求a的值.[选修4-5:不等式选讲]23.函数f〔x〕=|3x+m|.〔Ⅰ〕假设不等式f〔x〕﹣m≤9的解集为[﹣1,3],求实数m的值;〔Ⅱ〕假设m>0,函数g〔x〕=f〔x〕﹣2|x﹣1|的图象与x轴围成的三角形的面积大于60,求m的取值范围.2021年安徽省合肥市高考数学二模试卷〔理科〕参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.复数z满足z•〔1﹣2i〕=i〔i是虚数〕,那么复数z在复平面内对应的点在〔〕A.第一象限B.第二象限C.第三象限D.第四象限【分析】把等式变形,利用复数代数形式的乘除运算化简,求出z的坐标得答案.【解答】解:由z•〔1﹣2i〕=i,得z=,∴复数z在复平面内对应的点的坐标为〔〕,在第二象限.应选:B.【点评】此题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是根底题.2.集合A={x|﹣2<x<3},集合B={x|x<1},那么A∪B=〔〕A.〔﹣2,1〕B.〔﹣2,3〕C.〔﹣∞,1〕D.〔﹣∞,3〕【分析】利用并集定义直接求解.【解答】解:∵集合A={x|﹣2<x<3},集合B={x|x<1},∴A∪B={x|x<3}={﹣∞,3〕.应选:D.【点评】此题考查并集的求法,考查并集定义等根底知识,考查运算求解能力,考查函数与方程思想,是根底题.3.命题p:∀a≥0,关于x的方程x2+ax+1=0有实数解,那么¬p为〔〕A.∃a<0,关于x的方程x2+ax+1=0有实数解B.∃a<0,关于x的方程x2+ax+1=0没有实数解C.∃a≥0,关于x的方程x2+ax+1=0没有实数解D.∃a≥0,关于x的方程x2+ax+1=0有实数解【分析】利用全称命题的否认是特称命题,写出结果即可.【解答】解:因为全称命题的否认是特称命题,所以,命题p:∀a≥0,关于x的方程x2+ax+1=0有实数解,那么¬p为∃a≥0,关于x的方程x2+ax+1=0没有实数解.应选:C.【点评】此题考查命题的否认,特称命题与全称命题的否认关系,是根本知识的考查.4.在直角坐标系中,假设角α的终边经过点,那么sin 〔π+α〕=〔〕A.B.C.D.【分析】由题意利用任意角的三角函数的定义,求得sin〔π+α〕的值.【解答】解:∵角α终边经过点,即点P〔,〕,∴x=,y=,r=|OP|=1,那么sin〔π+α〕=﹣sinα==﹣y=﹣.应选:A.【点评】此题主要考查任意角的三角函数的定义,属于根底题.5.中国古代词中,有一道“八子分绵〞的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言〞.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是〔〕A.174斤B.184斤C.191斤D.201斤【分析】由题意可知,数列为等差数列,公差为d=17,n=8,S8=996,以第8个儿子为首项,即可求出答案.【解答】解:由题意可知,数列为等差数列,公差为d=17,n=8,S8=996,以第8个儿子为首项,∴8a1+×17=996,解得a1=184,应选:B.【点评】此题考查了等差数列的求和公式的应用,属于根底题.6.执行如下图的程序框图,假设输出的结果为1,那么输入x的值为〔〕A.3或﹣2 B.2或﹣2 C.3或﹣1 D.﹣2或﹣1或3【分析】根据中的程序框图,分类讨论满足y=1的x值,综合可得答案.【解答】解:当x>2时,由y==1得:x2﹣2x=3,解得:x=3,或x=﹣1〔舍〕当x≤2时,由y=﹣2x﹣3=1,解得:x=﹣2,综上可得假设输出的结果为1,那么输入x的值为3或﹣2,应选:A.【点评】此题考查的知识点是程序框图,分类讨论思想,对数的运算性质,难度中档.7.小李从网上购置了一件商品,快递员方案在下午5:00﹣6:00之间送货上门,小李下班到家的时间为下午5:30﹣6:00.快递员到小李家时,如果小李未到家,那么快递员会联系小李.假设小李能在10分钟之内到家,那么快递员等小李回来;否那么,就将商品存放在快递柜中.那么小李需要去快递柜收取商品的概率为〔〕A.B.C.D.【分析】设快递员送达的时刻为x,小李到家的时刻为y,根据题意列出有序实数对〔x,y〕满足的区域,以及小李去快递柜收取商品对应的平面区域,计算面积比即可得出答案.【解答】解:假设快递员送达的时刻为x,小李到家的时刻为y,那么有序实数对〔x,y〕满足的区域为{〔x,y〕|},小李需要去快递柜收取商品,即序实数对〔x,y〕满足的区域为{〔x,y〕|},如下图;∴小李需要去快递柜收取商品的概率为P===.应选:D.【点评】此题考查几何概型概率的求法,考查数形结合的解题思想方法,是中档题.8.在正方体ABCD﹣A1B1C1D1中,E,F,G分别为棱CD,CC1,A1B1的中点,用过点E,F,G的平面截正方体,那么位于截面以下局部的几何体的侧〔左〕视图为〔〕A.B.C.D.【分析】首先求出截面的图形,进一步利用三视图求出结果.【解答】解:正方体被经过E、F、G点的平面所截,其中左边的正方形的左上顶点A被切去,故少一个角,右下面留一个斜棱,故左视图为C.应选:C.【点评】此题考查的知识要点:三视图的应用.9.函数,实数a,b满足不等式f〔2a+b〕+f〔4﹣3b〕>0,那么以下不等式恒成立的是〔〕A.b﹣a<2 B.a+2b>2 C.b﹣a>2 D.a+2b<2【分析】根据题意,分析可得函数f〔x〕为奇函数且在R上为减函数,那么原不等式变形可得f〔2a+b〕>f〔3b﹣4〕,结合函数的单调性可得2a+b<3b﹣4,变形即可得答案.【解答】解:根据题意,函数,其定义域为R,f〔﹣x〕===﹣﹣f〔x〕,那么函数f〔x〕为奇函数;f〔x〕=﹣=﹣〔1﹣〕=﹣1,那么函数f〔x〕在R为减函数,f〔2a+b〕+f〔4﹣3b〕>0⇒f〔2a+b〕>﹣f〔4﹣3b〕⇒f〔2a+b〕>f〔3b﹣4〕⇒2a+b<3b﹣4⇒b﹣a>2,应选:C.【点评】此题考查函数的单调性与奇偶性的综合应用,关键是求出函数的奇偶性与单调性.10.双曲线C:﹣=1的左,右焦点分别为F1,F2,A,B是双曲线C上的两点,且=3,cos∠AF2B=,那么该双曲线的离心率为〔〕A. B.C.D.【分析】设|F1A|=3x,|F1B|=x,在△ABF2中,由余弦定理列方程可得△ABF2是直角三角形,从而得出a,b,c的关系,即可得该双曲线的离心率.【解答】解:设|F1A|=3x,|F1B|=x,那么|AB|=4x,|BF2|=2a+x,|AF2|=2a+3x,在△ABF2中,由余弦定理得:〔4x〕2=〔2a+x〕2+〔2a+3x〕2﹣2〔2a+x〕〔2a+3x〕×,解得x=a,∴AF2=5a,AB=4a,BF2=3a,∴△ABF2是直角三角形,在Rt△F1BF2中,a2+〔3a〕2=〔2c〕2,代入得10a2=4c2,即e2=.那么该双曲线的离心率为e=.应选:B.【点评】此题考查双曲线的简单性质的应用,考查离心率的计算能力.属于中档题.11.函数f〔x〕=2sin〔ωx+φ〕〔ω>0,0<φ<π〕,f〔〕=,f〔〕=0,且f〔x〕在〔0,π〕上单调.以下说法正确的选项是〔〕A.B.C.函数f〔x〕在上单调递增D.函数y=f〔x〕的图象关于点对称【分析】根据题意,设置满足条件的ω,φ的值,依次对各选项讨论即可.【解答】解:由题意,f〔x〕在〔0,π〕上单调.那周期,即,那么ω≤1.对于A:当ω=时,可得f〔x〕=2sin〔x+φ〕,由,,令,可得φ=.即f〔〕=2sin〔×+〕,∴A不对.由f〔〕=0,即2sin〔φ〕=0,可令φ=π,那么φ=……①由f〔〕=,即2sin〔ω+φ〕=,可得:ω+φ=或ω+φ=,k∈Z;令ω+φ=……②,①②解得:ω=2,不满足题意:令ω+φ=……③,①③解得:ω=,满足题意:∴f〔x〕=2sin〔x+〕对于B:f〔〕=2sin〔﹣×+〕=2sin=,∴B不对.对于C:令x+,解得:,∴函数f〔x〕在上单调递增,∴C对.对于D:当x=,可得f〔〕=2sin〔〕=﹣2sin=﹣1,∴函数y=f〔x〕的图象不是关于点对称,∴D不对.应选:C.【点评】此题主要考查三角函数的图象和性质,根据条件确定一个满足条件的解析式是解决此题的关键.12.点I在△ABC内部,AI平分∠BAC,,对满足上述条件的所有△ABC,以下说法正确的选项是〔〕A.△ABC的三边长一定成等差数列B.△ABC的三边长一定成等比数列C.△ABI,△ACI,△CBI的面积一定成等差数列D.△ABI,△ACI,△CBI的面积一定成等比数列【分析】设∠BAI=∠CAI=α,那么∠IBC=∠ACI=α,设∠ABI=β,∠BCI=γ,AI=BI=m,CI=n,在△ABC中,运用正弦定理,在△ACI和△BCI中,由正弦函数和余弦函数的定义,可得a,b,运用三角函数的和差公式、二倍角公式,化简整理,结合等比数列中项性质,即可得到结论.【解答】解:设∠BAI=∠CAI=α,那么∠IBC=∠ACI=α,设∠ABI=β,∠BCI=γ,AI=BI=m,CI=n,在△ABC中,可得==,可得sin〔α+γ〕=,在△ACI中,可得b=2mcosα,在△BCI中,可得a=mcosγ+ncosα,又msinγ=nsinα,即n=,那么a=mcosγ+cosα•=m•=m•=m••,可得a2=c•2mcosα=cb,即有△ABC的三边长一定成等比数列,应选:B.【点评】此题考查三角形的三边长成等比数列的判断,考查三角形的正弦定理和三角函数的恒等变换,考查化简整理的运算能力,属于难题.二、填空题〔每题5分,总分值20分,将答案填在答题纸上〕13.两个单位向量,的夹角为,那么=.【分析】直接利用向量的数量积的运算法那么求解即可.【解答】解:两个单位向量,的夹角为,那么=2=2﹣﹣1=,故答案为:.【点评】此题考查平面向量数量积的应用,考查计算能力.14.在〔2x+1〕2〔x﹣2〕3的展开式中,x2的系数等于10.【分析】化简〔2x+1〕2〔x﹣2〕3=〔4x2+4x+1〕〔x3﹣6x2+12x﹣8〕,展开后可得含x2项的系数.【解答】解:∵〔2x+1〕2〔x﹣2〕3=〔4x2+4x+1〕〔x3﹣6x2+12x﹣8〕,∴x2的系数等于4×〔﹣8〕+4×12﹣6=10.故答案为:10.【点评】此题考查了二项式展开式的应用问题,也考查了逻辑推理与计算能力,是根底题.15.半径为3cm的球内有一个内接四棱锥S﹣ABCD,四棱锥S﹣ABCD的侧棱长都相等,底面是正方形,当四棱锥S﹣ABCD的体积最大时,它的底面边长等于4cm.【分析】由题意画出图形,设四棱锥的底面边长为2a,高为h〔0<h<6〕,可得2a2+h2=6h,写出棱锥体积,把a用h表示,再由导数求解得答案.【解答】解:如图,设四棱锥的底面边长为2a,高为h〔0<h<6〕,那么底面正方形外接圆的半径为,∴侧棱长SA=,由射影定理可得:2a2+h2=6h,那么四棱锥S﹣ABCD的体积V==〔0<h<6〕,那么V′=﹣2h2+8h,可得当h=4时,V有最大值,此时2a2=24﹣16=8,a=2,那么底面边长等于4.故答案为:4.【点评】此题考查球内接多面体体积的求法,考查数形结合的解题思想方法,训练了导数在求最值问题中的应用,是中档题.16.为保护环境,建设美丽乡村,镇政府决定为A,B,C三个自然村建造一座垃圾处理站,集中处理A,B,C三个自然村的垃圾,受当地条件限制,垃圾处理站M只能建在与A村相距5km,且与C村相距的地方.B村在A村的正东方向,相距3km,C村在B村的正北方向,相距,那么垃圾处理站M 与B村相距2或7km.【分析】建立坐标系,求出两圆的方程和公共弦方程,解出M点坐标得出|MB|.【解答】解:以A为原点,以AB为x轴建立平面坐标系,那么A〔0,0〕,B〔3,0〕,C〔3,3〕,以A为圆心,以5为半径作圆A,以C为圆心,以为半径作圆C,那么圆A的方程为:x2+y2=25,圆C的方程为:〔x﹣3〕2+〔y﹣3〕2=31,即x2+y2﹣6x﹣6y+5=0,∴两圆的公共弦方程为:x+y=5,设M〔x,y〕,那么,解得M〔5,0〕或M〔﹣,〕.∴MB=2或MB==7.故答案为:2或7.【点评】此题考查了直线与圆的位置关系,属于中档题.三、解答题〔本大题共5小题,共70分.解容许写出文字说明、证明过程或演算步骤.〕17.〔12.00分〕等比数列{a n}的前n项和S n满足4S5=3S4+S6,且a3=9.〔Ⅰ〕求数列{a n}的通项公式;〔Ⅱ〕设b n=〔2n﹣1〕•a n,求数列{b n}的前n项的和T n.【分析】〔Ⅰ〕利用条件求出数列的公比,然后求数列{a n}的通项公式;〔Ⅱ〕化简数列的通项公式,利用错位相减法求解数列的和即可.【解答】解:〔Ⅰ〕设数列{a n}的公比为q.由4S5=3S4+S6,得S6﹣S5=3S5﹣3S4,即a6=3a5,∴q=3,∴.〔Ⅱ〕,∴,,∴,∴.【点评】此题考查数列的通项公式的求法,数列求和的方法错位相减法的应用,考查计算能力.18.〔12.00分〕为了解A市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了局部高三理科学生数学成绩绘制如下图的频率分布直方图.〔Ⅰ〕根据频率分布直方图,估计该市此次检测理科数学的平均成绩u0;〔精确到个位〕〔Ⅱ〕研究发现,本次检测的理科数学成绩X近似服从正态分布X~N〔μ,σ2〕〔u=u0,σ约为19.3〕.①按以往的统计数据,理科数学成绩能到达升一本分数要求的同学约占46%,据此估计本次检测成绩到达升一本的理科数学成绩大约是多少分?〔精确到个位〕②A市理科考生约有1000名,某理科学生此次检测数学成绩为107分,那么该学生全市排名大约是多少名?〔说明:表示x>x1的概率,用来将非标准正态分布化为标准正态分布,即X~N〔0,1〕,从而利用标准正态分布表ϕ〔x0〕,求x>x1时的概率P〔x>x1〕,这里x0=.相应于x0的值ϕ〔x0〕是指总体取值小于x0的概率,即ϕ〔x0〕=P〔x<x0〕.参考数据:ϕ〔0.7045〕=0.54,ϕ〔0.6772〕=0.46,ϕ〔0.21〕=0.5832〕.【分析】〔I〕以组中值代替小组平均值,根据加权平均数公式计算平均成绩;〔II〕①根据所给公式列方程求出x1;②根据成绩计算概率,得出大体名次.【解答】解:〔I〕该市此次检测理科数学成绩平均成绩约为:u0=65×0.05+75×0.08+85×0.12+95×0.15+105×0.24+115×0.18+125×0.1+135×0.05+145×0.03=103.2≈103.〔II〕①记本次考试成绩到达升一本的理科数学成绩约为x1,根据题意,,即.由ϕ〔0.7054〕=0.54得,,所以,本次考试成绩到达升一本的理科数学成绩约为117分.,所以,理科数学成绩为107分,大约排在10000×0.4168=4168名.【点评】此题考查了正态分布的性质与应用,属于中档题.19.〔12.00分〕在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,O为AD中点,,AD=AB=2CD=2.〔Ⅰ〕求证:平面POB⊥平面PAC;〔Ⅱ〕求二面角A﹣PC﹣D的余弦值.【分析】〔Ⅰ〕通过Rt△ADC≌Rt△BAO,推出∠DAC=∠ABO,证明AC⊥BO,PO ⊥AD.推出PO⊥平面ABCD.得到AC⊥PO.AC⊥平面POB,即可证明平面POB⊥平面PAC.〔Ⅱ〕以O为空间坐标原点,建立如下图的空间直角坐标系,求出平面PAC的一个法向量,平面PDC的一个法向量,利用向量的数量积求解即可.【解答】〔Ⅰ〕证明:由条件可知,Rt△ADC≌Rt△BAO,∴∠DAC=∠ABO,∴∠DAC+∠AOB=∠ABO+∠AOB=90°,∴AC⊥BO.∵PA=PD,且O为AD中点,∴PO⊥AD.∵,∴PO⊥平面ABCD.又∵AC⊂平面ABCD,∴AC⊥PO.又∵BO∩PO=O,∴AC⊥平面POB.∵AC⊂平面PAC,∴平面POB⊥平面PAC.〔Ⅱ〕解:以O为空间坐标原点,建立如下图的空间直角坐标系,那么P〔0,0,2〕,A〔1,0,0〕,D〔﹣1,0,0〕,C〔﹣1,1,0〕,,,,,设为平面PAC的一个法向量,由得,解得.令x=2,那么.同理可得,平面PDC的一个法向量,∴二面角A﹣PC﹣D的平面角θ的余弦值.【点评】此题考查向量的数量积的应用,二面角的求法,考查直线与平面垂直的判定定理以及性质定理的应用.20.〔12.00分〕点A〔1,0〕和动点B,以线段AB为直径的圆内切于圆O:x2+y2=4.〔Ⅰ〕求动点B的轨迹方程;〔Ⅱ〕点P〔2,0〕,Q〔2,﹣1〕,经过点Q的直线l与动点B的轨迹交于M,N两点,求证:直线PM与直线PN的斜率之和为定值.【分析】〔Ⅰ〕设以线段AB为直径的圆的圆心为C,取A′〔﹣1,0〕.圆C内切于圆O,设切点为D,那么O,C,D三点共线,依椭圆得定义可知,动点B的轨迹为椭圆,由此能求出动点B的轨迹方程.〔Ⅱ〕设直线l的方程为y+1=k〔x﹣2〕.由得〔4k2+3〕x2﹣〔16k2+8k〕x+16k2+16k﹣8=0.由此利用韦达定理、根的判别式,结合条件能证明直线PM与直线PN的斜率之和为定值3.【解答】解:〔Ⅰ〕如图,设以线段AB为直径的圆的圆心为C,取A′〔﹣1,0〕.依题意,圆C内切于圆O,设切点为D,那么O,C,D三点共线,∵O为AA′的中点,C为AB中点,∴A′B=2OC.∴|BA′|+|BA|=2OC+2AC=2OC+2CD=2OD=4>|AA′|=2依椭圆得定义可知,动点B的轨迹为椭圆,其中:|BA′|+|BA|=2a=4,|AA′|=2c=2,∴a=2,c=1,∴b2=a2﹣c2=3,∴动点B的轨迹方程为.〔Ⅱ〕证明:当直线l垂直于x轴时,直线l的方程为x=2,此时直线l与椭圆相切,与题意不符.当直线l的斜率存在时,设直线l的方程为y+1=k〔x﹣2〕.由得〔4k2+3〕x2﹣〔16k2+8k〕x+16k2+16k﹣8=0.设M〔x1,y1〕,N〔x2,y2〕,那么,∴==.∴直线PM与直线PN的斜率之和为定值3.【点评】此题考查动点的轨迹方程的求法,考查两直线的斜率之和为定值的证明,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.21.〔12.00分〕函数f〔x〕=〔x﹣1〕e x﹣ax2〔e是自然对数的底数〕.〔Ⅰ〕判断函数f〔x〕极值点的个数,并说明理由;〔Ⅱ〕假设∀x∈R,f〔x〕+e x≥x3+x,求a的取值范围.【分析】〔Ⅰ〕求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出函数的极值点的个数即可;〔Ⅱ〕问题转化为对∀x>0恒成立,设,设h〔x〕=e x﹣x﹣1,根据函数的单调性求出a的范围即可.【解答】解:〔Ⅰ〕∵f′〔x〕=xe x﹣2ax=x〔e x﹣2a〕,当a≤0时,f〔x〕在〔﹣∞,0〕上单调递减,在〔0,+∞〕上单调递增,∴f〔x〕有1个极值点;当时,f〔x〕在〔﹣∞,ln2a〕上单调递增,在〔ln2a,0〕上单调递减,在〔0,+∞〕上单调递增,∴f〔x〕有2个极值点;当时,f〔x〕在R上单调递增,此时f〔x〕没有极值点;当时,f〔x〕在〔﹣∞,0〕上单调递增,在〔0,ln2a〕上单调递减,在〔ln2a,+∞〕上单调递增,∴f〔x〕有2个极值点;∴当a≤0时,f〔x〕有1个极值点;当a>0且时,f〔x〕有2个极值点;当时,f〔x〕没有极值点.〔Ⅱ〕由f〔x〕+e x≥x3+x得xe x﹣x3﹣ax2﹣x≥0.当x>0时,e x﹣x2﹣ax﹣1≥0,即对∀x>0恒成立.设,那么.设h〔x〕=e x﹣x﹣1,那么h′〔x〕=e x﹣1.∵x>0,∴h′〔x〕>0,∴h〔x〕在〔0,+∞〕上单调递增,∴h〔x〕>h〔0〕=0,即e x>x+1,∴g〔x〕在〔0,1〕上单调递减,在〔1,+∞〕上单调递增,∴g〔x〕≥g〔1〕=e﹣2,∴a≤e﹣2.当x=0时,不等式恒成立,a∈R;当x<0时,e x﹣x2﹣ax﹣1≤0.设h〔x〕=e x﹣x2﹣ax﹣1,那么h′〔x〕=e x﹣2x﹣a.设φ〔x〕=e x﹣2x﹣a,那么φ′〔x〕=e x﹣2<0,∴h′〔x〕在〔﹣∞,0〕上单调递减,∴h′〔x〕≥h′〔0〕=1﹣a.假设a≤1,那么h′〔x〕≥0,∴h〔x〕在〔﹣∞,0〕上单调递增,∴h〔x〕<h〔0〕=0.假设a>1,∵h′〔0〕=1﹣a<0,∴∃x0<0,使得x∈〔x0,0〕时,h′〔x〕<0,即h〔x〕在〔x0,0〕上单调递减,∴h〔x〕>h〔0〕=0,舍去,∴a≤1.综上可得,a的取值范围是〔﹣∞,e﹣2].【点评】此题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.请考生在22、23两题中任选一题作答,如果多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.〔10.00分〕过点P〔0,﹣1〕的直线l的参数方程为〔t为参数〕,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C的方程为2asinθ﹣ρcos2θ=0〔a>0〕.〔Ⅰ〕求曲线C的直角坐标方程;〔Ⅱ〕假设直线l与曲线C分别交于点M,N,且|PM|,|MN|,|PN|成等比数列,求a的值.【分析】〔Ⅰ〕直接利用转换关系把参数方程和极坐标方程与直角坐标方程进行转化.〔Ⅱ〕利用直线和曲线的位置关系,把方程组转换为一元二次方程根与系数的关系的应用求出结果.【解答】解〔Ⅰ〕曲线C的方程为2asinθ﹣ρcos2θ=0〔a>0〕.∴2aρsinθ﹣ρ2cos2θ=0.即x2=2ay〔a>0〕.〔Ⅱ〕将代入x2=2ay,得,得.∵a>0,∴解①得.∵|PM|,|MN|,|PN|成等比数列,∴|MN|2=|PM|•|PN|,即,∴,即,解得a=0或.∵,∴.【点评】此题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,一元二次方程根与系数的关系的应用.[选修4-5:不等式选讲]23.函数f〔x〕=|3x+m|.〔Ⅰ〕假设不等式f〔x〕﹣m≤9的解集为[﹣1,3],求实数m的值;〔Ⅱ〕假设m>0,函数g〔x〕=f〔x〕﹣2|x﹣1|的图象与x轴围成的三角形的面积大于60,求m的取值范围.【分析】〔Ⅰ〕去掉不等式的绝对值并根据条件限制m的范围,根据题意得出m 的值;〔Ⅱ〕由m>0去掉绝对值,将函数g〔x〕写成分段函数的形式,根据大致图象求出三角形的顶点坐标,代入三角形面积公式,解不等式即可.【解答】〔Ⅰ〕由题意得解①得m≥﹣9.②可化为﹣9﹣m≤3x+m≤9+m,.∵不等式f〔x〕≤9的解集为[﹣1,3],∴,解得m=﹣3,满足m≥﹣9.∴m=﹣3;〔Ⅱ〕依题意得,g〔x〕=|3x+m|﹣2|x﹣1|.又∵m>0,∴,g〔x〕的图象与x轴围成的△ABC的三个顶点的坐标为A〔﹣m﹣2,0〕,,,∴,解得m>12.【点评】此题考查解绝对值不等式的方法,以及三角形的面积公式,属于中档题.。