高一数学函数奇偶性练习题及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学函数奇偶性练习题及答案解析

数学函数奇偶性练习题及答案解析

1.下列命题中,真命题是()

A.函数y=1x是奇函数,且在定义域内为减函数

B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数

C.函数y=x2是偶函数,且在(-3,0)上为减函数

D.函数y=ax2+c(ac≠0)是偶函数,且在(0,2)上为增函数

解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+c(ac≠0)在(0,2)上为减函数,故选C.

2.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为()

A.10

B.-10

C.-15

D.15

解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,

f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15.

3.f(x)=x3+1x的图象关于()

A.原点对称

B.y轴对称

C.y=x对称

D.y=-x对称

解析:选A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称.

4.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么

a=________.

解析:∵f(x)是[3-a,5]上的奇函数,

∴区间[3-a,5]关于原点对称,

∴3-a=-5,a=8.

答案:8

1.函数f(x)=x的奇偶性为()

A.奇函数

B.偶函数

C.既是奇函数又是偶函数

D.非奇非偶函数

解析:选D.定义域为{x|x≥0},不关于原点对称.

2.下列函数为偶函数的是()

A.f(x)=|x|+x

B.f(x)=x2+1x

C.f(x)=x2+x

D.f(x)=|x|x2

解析:选D.只有D符合偶函数定义.

3.设f(x)是R上的任意函数,则下列叙述正确的是()

A.f(x)f(-x)是奇函数

B.f(x)|f(-x)|是奇函数

C.f(x)-f(-x)是偶函数

D.f(x)+f(-x)是偶函数

解析:选D.设F(x)=f(x)f(-x)

则F(-x)=F(x)为偶函数.

设G(x)=f(x)|f(-x)|,

则G(-x)=f(-x)|f(x)|.

∴G(x)与G(-x)关系不定.

设M(x)=f(x)-f(-x),

∴M(-x)=f(-x)-f(x)=-M(x)为奇函数.

设N(x)=f(x)+f(-x),则N(-x)=f(-x)+f(x).

N(x)为偶函数.

4.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么

g(x)=ax3+bx2+cx()

A.是奇函数

B.是偶函数

C.既是奇函数又是偶函数

D.是非奇非偶函数

解析:选A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-x•f(-x)=-

x•f(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-

x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函数.

5.奇函数y=f(x)(x∈R)的图象必过点()

A.(a,f(-a))

B.(-a,f(a))

C.(-a,-f(a))

D.(a,f(1a))

解析:选C.∵f(x)是奇函数,

∴f(-a)=-f(a),

即自变量取-a时,函数值为-f(a),

故图象必过点(-a,-f(a)).

6.f(x)为偶函数,且当x≥0时,f(x)≥2,则当x≤0时()

A.f(x)≤2

B.f(x)≥2

C.f(x)≤-2

D.f(x)∈R

解析:选B.可画f(x)的大致图象易知当x≤0时,有f(x)≥2.故选B.

7.若函数f(x)=(x+1)(x-a)为偶函数,则a=________.

解析:f(x)=x2+(1-a)x-a为偶函数,

∴1-a=0,a=1.

答案:1

8.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③f(x)=0(x∈R)既是奇函数,又是偶函数;④偶函数的图象关于y轴对称.其中正确的命题是________.

解析:偶函数的图象关于y轴对称,不一定与y轴相交,①错,④对;奇函数当x=0无意义时,其图象不过原点,②错,③对.

答案:③④

9.①f(x)=x2(x2+2);②f(x)=x|x|;

③f(x)=3x+x;④f(x)=1-x2x.

以上函数中的奇函数是________.

解析:(1)∵x∈R,∴-x∈R,

又∵f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),

∴f(x)为偶函数.

(2)∵x∈R,∴-x∈R,

又∵f(-x)=-x|-x|=-x|x|=-f(x),

∴f(x)为奇函数.

(3)∵定义域为[0,+∞),不关于原点对称,

∴f(x)为非奇非偶函数.

(4)f(x)的定义域为[-1,0)∪(0,1]

相关文档
最新文档