2020届高考物理专题复习检测专题一:万有引力与航天(含解析)

合集下载

高考物理万有引力与航天题20套(带答案)含解析

高考物理万有引力与航天题20套(带答案)含解析

高考物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R= 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期2T π=3.土星是太阳系最大的行星,也是一个气态巨行星。

高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)及解析

高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)及解析
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试万有引力与航天
1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t落回抛出点,已知该星球半径为R,引力常量为G,求:
(1)该星球表面的重力加速度;
(2)该星球的密度;
(3)该星球的“第一宇宙速度”.
(1)木星的质量M;
(2)木星表面的重力加速度 .
【答案】(1) (2)
【解析】
(1)由万有引力提供向心力
可得木星质量为
(2)由木星表面万有引力等于重力:
木星的表面的重力加速度
【点睛】万有引力问题的运动,一般通过万有引力做向心力得到半径和周期、速度、角速度的关系,然后通过比较半径来求解.
8.阅读如下资料,并根据资料中有关信息回答问题
(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.
a.因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T,半径为r0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M;
3.设地球质量为M,自转周期为T,万有引力常量为G.将地球视为半径为R、质量分布均匀的球体,不考虑空气的影响.若把一质量为m的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.
(1)若把物体放在北极的地表,求该物体对地表压力的大小F1;
(2)若把物体放在赤道的地表,求该物体对地表压力的大小F2;
2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤 是从高度为h处下落,经时间t落到月球表面.已知引力常量为G,月球的半径为R.

【2020高考物理】模拟考试专项题型含答案解析---万有引力和航天2套

【2020高考物理】模拟考试专项题型含答案解析---万有引力和航天2套

万有引力和航天一.选择题1. (2019全国考试大纲调研卷3)如图,海王星绕太阳沿椭圆轨道运动,P为近日点,Q为远日点,M、N 为轨道短轴的两个端点,运行的周期为T0,若只考虑海王星和太阳之间的相互作用,则海王星在从P经过M、Q到N的运动过程中( )A.从P到M所用的时间等于B.从Q到N阶段,机械能逐渐变大C.从P到Q阶段,速率逐渐变小D.从M到N阶段,万有引力对它先做负功后做正功【参考答案】CD2(2019江苏宿迁期末)2018年12月8日2时23分,我国成功发射“嫦娥四号”探测器。

“嫦娥四号”探测器经历地月转移、近月制动、环月飞行,最终于2019年1月3日10时26分实现人类首次月球背面软着陆。

假设“嫦娥四号”在环月圆轨道和椭圆轨道上运动时,只受到月球的万有引力,则“嫦娥四号”()A.在减速着陆过程中,其引力势能减小B.在环月椭圆轨道上运行时,其速率不变C.由地月转移轨道进入环月轨道,应让其加速D.若知其环月圆轨道的半径、运行周期和引力常量,则可算出月球的密度【参考答案】A【名师解析】嫦娥三号在着陆过程中,万有引力做正功,引力势能减小,故A正确。

在椭圆轨道上,由远月点到近月点,万有引力做正功,速度增加,则远点的速度小于近月点的速度,故B错误。

嫦娥三号由环月段圆轨道变轨进入环月段椭圆轨道时,需点火减速,使得万有引力大于向心力,做近心运动,故C 错误。

已知嫦娥三号环月段圆轨道的半径、运动周期和引力常量,根据万有引力提供向心力可以求出月球的质量,但是月球的半径未知,无法求出月球的体积,则无法得出月球的密度,故D 错误。

3.(2019广东茂名一模)嫦娥四号于2019年1月3日在月球背面着陆,嫦娥五号也计划在今年发射。

如果嫦娥五号经过若干次轨道调整后,先在距离月球表面h 的高度处绕月球做匀速圆周运动,然后开启反冲发动机,嫦娥五号着陆器暂时处于悬停状态,最后实现软着陆,自动完成月面样品采集,并从月球起飞,返回地球。

2020年物理高考二轮总复习:万有引力与航天专题优化训练(含答案)

2020年物理高考二轮总复习:万有引力与航天专题优化训练(含答案)

2020年物理高考二轮总复习万有引力与航天专题优化训练▲不定项选择题1.a 、b 、c 、d 四颗地球卫星,a 还未发射,在地球赤道上随地球表面一起转动,向心加速度为a 1,b 处于地面附近近地轨道上正常运动角速度为1ω,c 是地球同步卫星离地心距离为r ,运行的角速度为2ω,加速度为a 2,d 是高空探测卫星,各卫星排列位置如图,地球的半径为R 。

则有( )A .a 的向心加速度等于重力加速度gB .d 的运动周期有可能是20小时C .212a r a R ⎛⎫= ⎪⎝⎭ D.12ωω=2.下列描述中符合物理学史实的是( )A .第谷通过长期的天文观测,积累了大量的天文资料,并总结出了行星运动的三个规律B .开普勒通过“月地检验”证实了地球对物体的吸引力与天体间的吸引力遵守相同的规律C .伽利略对牛顿第一定律的建立做出了贡献D .万有引力定律和牛顿运动定律都是自然界普遍适用的规律3.2019年1月3日,“嫦娥四号”探测器自主着陆在月球背面南极—艾特肯盆地内的冯卡门撞击坑内,实现人类探测器首次在月球背面软着陆。

“嫦娥四号”初期绕地球做椭圆运动,经过变轨、制动后,成为一颗绕月球做圆周运动的卫星,设“嫦娥四号”绕月球做圆周运动的轨道半径为r 、周期为T ,已知月球半径为R ,不计其他天体的影响。

若在距月球表面高度为h 处(hR )将一质量为m 的小球以一定的初速度水平抛出,则小球落到月球表面的瞬间月球引力对小球做功的功率P 为( )A.B.C.D.4.某人造地球卫星发射时,先进入椭圆轨道Ⅰ,在远地点A 加速变轨进入圆轨道Ⅱ。

已知轨道Ⅰ的近地点B 到地心的距离近似等于地球半径R ,远地点A 到地心的距离为3R ,则下列说法正确的是( )A.卫星在B点的加速度是在A点加速度的3倍B.卫星在轨道Ⅱ上A点的机械能大于在轨道Ⅰ上B点的机械能C.卫星在轨道Ⅰ上A点的机械能大于B点的机械能D.卫星在轨道Ⅱ上A点的动能大于在轨道Ⅰ上B点的动能5.人造地球卫星以地心为圆心,做匀速圆周运动,下列说法正确的是()A.半径越大,速度越小,周期越小B.半径越大,速度越小,周期越大C.所有卫星的速度均是相同的,与半径无关D.所有卫星的角速度均是相同的,与半径无关6.嫦娥工程分为三期,简称“绕、落、回”三步走。

2020版高考物理大二轮复习专题一第4讲万有引力与航天练习(含解析)(最新整理)

2020版高考物理大二轮复习专题一第4讲万有引力与航天练习(含解析)(最新整理)

C.三个星体做圆周运动的线速度大小均为 错误!
D.三个星体做圆周运动的向心加速度大小均为错误!
解析:选 B。质量相等的三星系统的位置关系构成一等边三角形,其中心 O 即为它们的共 同圆心,由几何关系可知三个星体做圆周运动的半径 r=错误!a,故选项 A 错误;每个星体受 到的另外两星体的万有引力提供向心力,其大小 F=错误!·错误!,则错误!=m错误!r,得 T= 2πa错误!,故选项 B 正确;由线速度 v=错误!得 v=错误!,故选项 C 错误;向心加速度 a= 错误!=错误!,故选项 D 错误.
约为地球半径的 6 倍和 3。4 倍,下列说法中正确的是( )
A.静止轨道卫星的周期约为中轨道卫星的 2 倍
B.静止轨道卫星的线速度大小约为中轨道卫星的 2 倍
C.静止轨道卫星的角速度大小约为中轨道卫星的错误!
D.静止轨道卫星的向心加速度大小约为中轨道卫星的错误!
解析:选 A。根据万有引力提供向心力有 G错误!=mr错误!, 解得卫星周期公式 T=2π
7. 国务院批复,
自 2016 年起将 4 月 24 日设立为“中国航天日”。1970 年 4 月 24 日我国首次成功发射的 人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为 440 km,远地点 高度约为 2 060 km;1984 年 4 月 8 日成功发射的东方红二号卫星运行在赤道上空 35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为 a1,东方红二号的加速度为 a2,固定 在地球赤道上的物体随地球自转的加速度为 a3,则 a1、a2、a3 的大小关系为( )
A.a2>a1>a3 C.a3>a1>a2
B.a3>a2>a1 D.a1>a2>a3
解析:选 D。固定在赤道上的物体随地球自转的周期与同步卫星运行的周期相等,同步卫

2020年高三物理专题 万有引力与航天中的热点问题讨论(解析版)

2020年高三物理专题 万有引力与航天中的热点问题讨论(解析版)

万有引力与航天中的一个热点——天体运动(强练提能)1.[多选与“天宫二号”空间实验室对接前,“天舟一号”在距地面约380 km 的圆轨道上飞行,则其( ) A .角速度小于地球自转角速度 B .线速度小于第一宇宙速度 C .周期小于地球自转周期D .向心加速度小于地面的重力加速度【解析】选BCD “天舟一号”在距地面约380 km 的圆轨道上飞行时,由G Mmr 2=mω2r 可知,半径越小,角速度越大,则其角速度大于同步卫星的角速度,即大于地球自转的角速度,A 项错误;由于第一宇宙速度是最大环绕速度,因此“天舟一号”在圆轨道的线速度小于第一宇宙速度,B 项正确;由T =2πω可知,“天舟一号”的周期小于地球自转周期,C 项正确;由G Mm R 2=mg ,G Mm(R +h )2=ma 可知,向心加速度a 小于地球表面的重力加速度g ,D 项正确。

2.[多选]地球同步卫星离地心的距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球半径为R ,则下列比例关系中正确的是( ) A.a 1a 2=rR B.a 1a 2=⎝⎛⎭⎫r R 2 C.v 1v 2=r RD.v 1v 2= R r【解析】选AD 设地球质量为M ,同步卫星的质量为m 1,在地球赤道表面随地球做匀速圆周运动的物体的质量为m 2,根据向心加速度和角速度的关系有a 1=ω12r ,a 2=ω22R ,又ω1=ω2,故a 1a 2=rR ,选项A 正确;由万有引力定律和牛顿第二定律得G Mm 1r 2=m 1v 12r ,G Mm R 2=m v 22R ,解得v 1v 2=Rr,选项D 正确。

3.已知地球赤道上的物体随地球自转的线速度大小为v 1、向心加速度大小为a 1,近地卫星线速度大小为v 2、向心加速度大小为a 2,地球同步卫星线速度大小为v 3、向心加速度大小为a 3。

2020年高考物理真题分类汇编 万有引力与航天

2020年高考物理真题分类汇编 万有引力与航天

2020年高考物理真题分类汇编(详解+精校) 万有引力和航天1.(2020年高考·北京理综卷)由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的( )A .质量可以不同B .轨道半径可以不同C .轨道平面可以不同D .速率可以不同1.A 解析:地球同步轨道卫星轨道必须在赤道平面内,离地球高度相同的同一轨道上,角速度、线速度、周期一定,与卫星的质量无关。

A 正确,B 、C 、D 错误。

2.(2020年高考·福建理综卷)“嫦娥二号”是我国月球探测第二期工程的先导星。

若测得“嫦娥二号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期T ,已知引力常量为G ,半径为R 的球体体积公式334R V π=,则可估算月球的A .密度B .质量C .半径D .自转周期2.A 解析:“嫦娥二号”在近月表面做周期已知的匀速圆周运动,有2224Mm G m R R Tπ=⋅。

由于月球半径R 未知,所以无法估算质量M ,但结合球体体积公式可估算密度(与3MR 成正比),A 正确。

不能将“嫦娥二号”的周期与月球的自转周期混淆,无法求出月球的自转周期。

3.(2020年高考·江苏理综卷)一行星绕恒星作圆周运动。

由天文观测可得,其运动周期为T ,速度为v ,引力常量为G ,则A .恒星的质量为32v T G πB .行星的质量为2324v GT πC .行星运动的轨道半径为2vT πD .行星运动的加速度为2vTπ 3.ACD 解析:根据222()Mm F G m r T π==、 2rv Tπ=得:32v T M G π=、2vT r π=,A 、C 正确,B 错误;根据2v a r =、2v r r T πω==得:2va Tπ=,D 正确。

4.(2020年高考·广东理综卷)已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G 。

第05专题 万有引力和航天(解析版)

第05专题 万有引力和航天(解析版)

海南高考物理试题分类汇编解析 第05专题 万有引力和航天(解析版)一、十年真题解析1. (2020年第7题)2020年5月5日,长征五号B 运载火箭在中国文昌航天发射场成功首飞,将新一代载人飞船试验船送入太空,若试验船绕地球做匀速圆周运动,周期为T ,离地高度为h ,已知地球半径为R ,万有引力常量为G ,则( ) A. 试验船的运行速度为2RTπB. C. 地球的质量为()322R h GT π+D. 地球表面的重力加速度为()2224R h RT π+ 【答案】B【解析】A .试验船的运行速度为Th R T r v )(22+==ππ,故A 错误; B .近地轨道卫星的速度等于第一宇宙速度,根据万有引力提供向心力有R v m RMm G 22= 根据试验船受到的万有引力提供向心力有)4)(222h R Tm h R Mm G +=+(船船π 联立两式解得第一宇宙速度Rh R T v 3)(2+=π,故B 正确;C .根据试验船受到的万有引力提供向心力有)4)(222h R Tm h R Mm G+=+(船船π 解得322)4h R GT M +=(π,故C 错误; D .地球重力加速度等于近地轨道卫星向心加速度,根据万有引力提供向心力有mg R v m RMm G ==22根据试验船受到的万有引力提供向心力有)4)(222h R Tm h R Mm G+=+(船船π联立两式解得重力加速度2232)4TR h R g +=(π,故D 错误。

故选B 。

2.(2019年第4题)2019年5月,我国第45颗北斗卫星发射成功。

已知该卫星轨道距地面的高度约为36000km ,是“天宫二号”空间实验室轨道高度的90倍左右,则() A. 该卫星的速率比“天宫二号”的大 B. 该卫星的周期比“天宫二号”的大 C. 该卫星的角速度比“天宫二号”的大 D. 该卫星的向心加速度比“天宫二号”的大 【答案】B3.(2018年海南物理卷第2题)土星与太阳的距离是火星与太阳距离的6倍多。

高中物理万有引力与航天专题训练答案及解析

高中物理万有引力与航天专题训练答案及解析

高中物理万有引力与航天专题训练答案及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m Mm+L,(2)()3L G M m +【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 RMr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:()()23342L L T M m GG m M π==++ 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.2.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR ,解得该星球的第一宇宙速度为:v ==3.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v gR =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:22324gT R h R π=-4.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯5.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R=得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.6.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。

物理万有引力与航天题20套(带答案)及解析

物理万有引力与航天题20套(带答案)及解析

物理万有引力与航天题20套(带答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.(1)求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)32()2BRhTgRp+= (2)23()tgRR hω=-+【解析】【详解】(1)由万有引力定律和向心力公式得()()2224BMmG m R hTR hπ=++①,2MmG mgR=②联立①②解得:()322BR hTR gπ+=③(2)由题意得()02Btωωπ-=④,由③得()23BgRR hω=+⑤代入④得()23tR gR hω=-+2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;;(4)2【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:v ===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.3.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.4.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。

2020年高考物理一轮总复习《万有引力与航天》测试卷及答案详解

2020年高考物理一轮总复习《万有引力与航天》测试卷及答案详解

2020年高考物理一轮总复习《万有引力与航天》一.选择题(本题共10小题,每小题4分,共40分)1.关于万有引力和万有引力定律理解正确的有()A.不可能看作质点的两物体之间不存在相互作用的引力B.可看作质点的两物体间的引力可用F=计算C.由F=知,两物体间距离r减小时,它们之间的引力增大,紧靠在一起时,万有引力非常大D.引力常量的大小首先是由卡文迪许测出来的,且等于6.67×10﹣11N•m2/kg22.关于人造卫星所受的向心力F、线速度v、角速度ω、周期T与轨道半径r的关系,下列说法中正确的是()A.由F=G可知,向心力与r2成反比B.由F=m可知,v2与r成正比C.由F=mω2r可知,ω2与r成反比D.由F=m可知,T2与r成反比3.人造地球卫星中的物体处于失重状态是指物体()A.不受地球引力作用B.受到的合力为零C.对支持物没有压力D.不受地球引力,也不受卫星对它的引力4.可以发射一颗这样的人造地球卫星,使其圆轨道()A.与地球表面上某一纬度线(非赤道)是共面同心圆B.与地球表面上某一经度线所决定的圆是共面同心圆C.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的D.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是运动的5.关于地球同步通讯卫星,下列说法正确的是()A.它一定在赤道上空运行B.各国发射的这种卫星轨道半径都一样C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度介于第一和第二宇宙速度之间6.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运动一周所用的时间为1200年,它与该恒星的距离为地球到太阳距离的100倍.假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周.仅利用以上两个数据可以求出的量有()A.恒星质量与太阳质量之比B.恒星密度与太阳密度之比C.行星质量与地球质量之比D.行星运行速度与地球公转速度之比7.若把地球视为密度均衡的球体,设想从地面挖一个小口径深井直通地心,将一个小球从井口自由下落,不计其他阻力,有关小球的运动的说法中,正确的是()A.小球做匀速下落B.小球做加速运动,但加速度减小C.小球先加速下落,后减速下落D.小球的加速度增大,速度也增大8.某人造卫星因受高空稀薄空气的阻力作用绕地球运动的轨道会慢慢减小,每次测量中,卫星的运动均可近似看作圆周运动,则它受到的万有引力、线速度及运动周期的变化情况是()A.变大、变小、变大B.变小、变大、变小C.变小、变小、变大D.变大、变大、变小9.一名宇航员来到某星球上,如果该星球的质量为地球的一半,它的直径也为地球的一半,那么这名宇航员在该星球上的重力是他在地球上重力的()A.4倍B.0.5倍C.0.25倍D.2倍10.一旦万有引力常量G值为已知,决定地球质量的数量级就成为可能,若万有引力常量G=6.67×10﹣11N•m2/kg2,重力加速度g=9.8m/s2,地球的半径R=6.4×106m,则可知地球质量的数量级是()。

【物理】2020届一轮复习人教新课标万有引力与航天单元过关练(解析版)

【物理】2020届一轮复习人教新课标万有引力与航天单元过关练(解析版)

2020年高考物理考点精选精炼:万有引力与航天(提升卷)(解析版)1.若某航天器变轨后仍绕地球做匀速圆周运动,但动能增大为原来的四倍,则变轨后() A.向心加速度变为原来的八倍B.周期变为原来的八分之一C.角速度变为原来的四倍D.轨道半径变为原来的二分之一2.假设人造地球卫星绕地球做匀速圆周运动,若卫星离地面越高,则卫星的()A.速度越大B.角速度越大C.向心加速度越大D.周期越长3.两颗人造卫星绕地球逆时针运动,卫星1、卫星2分别沿圆轨道、椭圆轨道运动,圆的半径与椭圆的半长轴相等,两轨道相交于A、B两点,某时刻两卫星与地球在同一直线上,如图所示,下列说法中正确的是()A.两卫星在图示位置的速度v2=v1B.卫星2在A处的加速度较大C.两颗卫星在A或B点处可能相遇D.两卫星永远不可能相遇4.牛顿在发现万有引力定律的过程中,很重要的一步叫“月地检验”。

在月地检验中,牛顿假定使月亮绕地球转动的力和使苹果落向地面的力是同一种力,也跟太阳与行星的引力一样,满足平方反比关系。

在已知地球表面重力加速度、月球轨道半径约为地球半径的60倍左右的情况下,由假设可以推理得出以下哪些结论()A.月球绕地公转的周期约为地球自转周期的60倍B.月球受到地球的引力约为苹果受到地球引力的1 3600C.月球绕地球公转的向心加速度约为地球表面重力加速度的1 3600D.月球表面的重力加速度约为地球表面重力加速度的1 36005.科学家探究自然界的物理规律,为人类的科学事业做出了巨大贡献。

下列描述符合物理学史实的是( )A .贝可勒尔首先发现了X 射线B .库仑首先引入了场的概念和电场线、磁感线的概念C .普朗克首先把能量子引入了物理学,正确破除了“能量连续变化”的传统观念D .牛顿给出万有引力公式122m m F Gr 的同时,首先给出了引力常量的数值 6.关于绕地球做匀速圆周运动的人造地球卫星,下列说法正确的是 A .轨道半径越大,速度越大 B .轨道半径越小,速度越大 C .质量越大,速度越大D .质量越小,速度越大7.关于行星围绕太阳的运动,下列说法中正确的是: A.对于某一个行星,在近日点时线速度比远日点慢 B.对于某一个行星,在近日点时角速度比远日点慢 C.距离太阳越远的行星,公转周期越长D.如果知道行星的公转周期和环绕半径就可以求得行星质量 8.下列关于行星绕太阳运动的说法中正确的是( ) A .所有行星都在同一椭圆轨道上绕太阳运动 B .离太阳越近的行星运动周期越短C .行星在椭圆轨道上绕太阳运动的过程中,其速度与行星和太阳之间的距离有关,距离小时速度小,距离大时速度大D .行星绕太阳运动时,太阳位于行星轨道的中心处9.(多选)据报道,已经发射成功的“嫦娥四号”月球探测器将在月球背面实现软着陆,并展开探测工作,它将通过早先发射的“鹊桥”中继卫星与地球实现信号传输及控制。

高考物理二轮复习:04 曲线运动 万有引力与航天(含答案及解析)

高考物理二轮复习:04 曲线运动 万有引力与航天(含答案及解析)

2020年高考物理二轮复习:04 曲线运动万有引力与航天一、单选题1.我国第一颗人造地球卫星因可以模拟演奏《东方红》乐曲并让地球上从电波中接收到这段音乐而命名为“东方红一号”。

该卫星至今仍沿椭圆轨道绕地球运动。

如图所示,设卫星在近地点、远地点的角速度分别为,,在近地点、远地点的速度分别为,,则()A. B. C. D.2.我国已掌握“半弹道跳跃式高速再入返回技术”,为实现“嫦娥”飞船月地返回任务奠定基础.如图虚线为地球大气层边界,返回器与服务舱分离后,从a点无动力滑入大气层,然后经b点从c点“跳”出,再经d点从e点“跃入”实现多次减速,可避免损坏返回器。

d点为轨迹最高点,离地面高h,已知地球质量为M,半径为R,引力常量为G。

则返回器()A. 在d点处于超重状态B. 从a点到e点速度越来越小C. 在d点时的加速度大小为D. 在d点时的线速度小于地球第一宇宙速度3.2018年1月12日,我国成功发射北斗三号组网卫星.如图为发射卫星的示意图,先将卫星发射到半径为r的圆轨道上做圆周运动,到A点时使卫星加速进入椭圆轨道,到椭圆轨道的远地点B点时,再次改变卫星的速度,使卫星进入半径为2r的圆轨道.已知卫星在椭圆轨道时距地球的距离与速度的乘积为定值,卫星在椭圆轨道上A点时的速度为v,卫星的质量为m,地球的质量为M,引力常量为G,则发动机在A 点对卫星做的功与在B点对卫星做的功之差为(忽略卫星的质量变化)()A. B. C. D.4.如图所示是嫦娥五号的飞行轨道示意图,其中弧形轨道为地月转移轨道,轨道I是嫦娥五号绕月运行的圆形轨道。

已知轨道I到月球表面的高度为H,月球半径为R,月球表面的重力加速度为g,若忽略月球自转及地球引力影响,则下列说法中正确的是()A. 嫦娥五号在轨道III和轨道I上经过Q点时的速率相等B. 嫦娥五号在P点被月球捕获后沿轨道III无动力飞行运动到Q点的过程中,月球与嫦娥五号所组成的系统机械能不断增大C. 嫦娥五号在轨道I上绕月运行的速度大小为D. 嫦娥五号在从月球表面返回时的发射速度要小于5.如图所示,“嫦娥四号”飞船绕月球在圆轨道Ⅰ上运动,在A位置变轨进入椭圆轨道Ⅱ,在近月点B位置再次变轨进入近月圆轨道Ⅲ,下列判断正确的是()A. 飞船在A位置变轨时,动能增大B. 飞船在轨道Ⅰ上的速度大于在轨道Ⅲ上的速度C. 飞船在轨道Ⅰ上的加速度大于在轨道Ⅲ上的加速度D. 飞船在轨道Ⅰ上的周期大于在轨道Ⅱ的周期6.如图所示,当用扳手拧螺母时,扳手上的P、Q两点的角速度分别为和,线速度大小分别为和,则()A. B. C. D.7.在距河面高度h=20 m的岸上有人用长绳拴住一条小船,开始时绳与水面的夹角为30°,人以恒定的速率v=3 m/s拉绳,使小船靠岸,那么( )A. 5 s时绳与水面的夹角为60°B. 5 s后小船前进了15 mC. 5 s时小船的速率为4 m/sD. 5 s时小船到岸边的距离为15 m8.火车轨道在转弯处外轨高于内轨,设斜面倾角为θ,火车质量为m,轨道半径为R,若重力加速度为g,则下列说法正确的是()A. 火车可能受到重力、支持力和向心力B. 物体受到的向心力方向沿轨道斜面向下C. 若火车的速度为,则轨道对火车没有侧向压力D. 增加斜面倾角θ,车轮对内轨的压力一定增大9.如图所示A、B、C分别是地球表面上北纬、南纬和赤道上的点若已知地球半径为R,自转的角速度为,A、B、C三点的向心加速度大小之比为( )A. 1:1:1B. 1:1:2C. :1:2D. 1::210.如图所示是一个玩具陀螺,、和是陀螺上的三个点,当陀螺绕垂直于水平地面的轴线以角速度稳定旋转时,下列表述正确的是()A. 、和三点的线速度大小相等B. 、和三点的角速度相等C. 、两点的角速度比的大D. 的线速度比、的大11.如图,两根细杆M、N竖直固定在水平地面上,M杆顶端A和N杆中点B之间有一拉直的轻绳。

【高考复习】2020版高考物理 单元测试 曲线运动万有引力与航天(含答案解析)

【高考复习】2020版高考物理 单元测试 曲线运动万有引力与航天(含答案解析)

2020版高考物理 单元测试 曲线运动万有引力与航天1.质量为m 的木块从半径为R 的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使木块的速率不变,那么( )A .因为速率不变,所以木块的加速度为零B .木块下滑过程中所受的合外力越来越大C .木块下滑过程中所受的摩擦力大小不变D .木块下滑过程中的加速度大小不变,方向始终指向球心2.物体做匀速圆周运动时,下列说法中不正确的是( )A .角速度、周期、动能一定不变B .向心力一定是物体受到的合外力C .向心加速度的大小一定不变D .向心力的方向一定不变3.汽车在水平地面上转弯,地面对车的摩擦力已达到最大值.当汽车的速率加大到原来的二倍时,若使车在地面转弯时仍不打滑,汽车的转弯半径应( )A .增大到原来的二倍B .减小到原来的一半C .增大到原来的四倍D .减小到原来的四分之一4.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面。

如图所示,用两根长为l 的细线系一质量为m 的小球,两线上端系于水平横杆上,A 、B 两点相距也为l 。

若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )A.2mgB.3mgC.2.5mgD.mg 37325.如图所示,某同学斜向上抛出一小石块,忽略空气阻力.下列关于小石块在空中运动的过程中,加速度a 随时间t 变化的图象中,正确的是( )6.静止的城市绿化洒水车,由横截面积为S 的水龙头喷嘴水平喷出水流,水流从射出喷嘴到落地经历的时间为t ,水流落地点与喷嘴连线与水平地面间的夹角为θ,忽略空气阻力(重力加速度g 取10 m/s 2),以下说法正确的是( )A .水流射出喷嘴的速度大小为gttan θB .空中水柱的水量为Sgt22tan θC .水流落地时位移大小为gt22cos θD .水流落地时的速度大小为2gtcos θ7.如图所示,河宽为200 m ,一条小船要将货物从A 点运送到河对岸的B 点,已知AB 连线与河岸的夹角 θ=30°,河水的流速v 水=5 m/s ,小船在静水中的速度至少是( )A. m/s B .2.5 m/s C .5 m/s D .5 m/s53238.在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( )A. B. C. D. gRh L gRh d gRL h gRd h9.(多选)如图所示,吊车以v 1的速度沿水平直线向右匀速行驶,同时以v 2的速度匀速收拢绳索提升物体,则下列表述正确的是( )A.物体的实际运动速度为v 1+v 2B.物体的实际运动速度为v 12+v 22C.物体相对地面做曲线运动D.绳索保持竖直状态10.(多选)如图所示,两个半径均为R 的四分之一光滑圆弧对接于O 点,有物体从上面圆弧的某点C 以上任意位置由静止下滑(C 点未标出),都能从O 点平抛出去,则( )A.∠CO1O=60°B.∠CO1O=45°C.落地点距O2最远为2RD.落地点距O2最近为R11. (多选)如图所示,两物块A、B套在水平粗糙的杆CD上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到轴的距离为物块A到轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( )A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大后保持不变C.A受到的静摩擦力先增大后减小再增大D.B受到的合外力先增大后保持不变12. (多选)如图所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、N点,两球运动的最大高度相同.空气阻力不计,则( )A.B的加速度比A的大B.B的飞行时间比A的长C.B在最高点的速度比A在最高点的大D.B在落地时的速度比A在落地时的大13.如图所示,半径为R、内径很小的光滑半圆管竖直放置,两个质量均为m的小球A、B以不同的速度进入管内.A通过最高点C时,对管壁上部压力为3mg,B通过最高点C时,对管壁下部压力为0.75mg,求A、B两球落地点间的距离.14.如图所示,一个质量为M的匀质实心球,半径为R,如果从球中挖去一个直径为R的小球,放在相距为d=2.5R的地方,分别求下列两种情况下挖去部分与剩余部分的万有引力大小(答案必须用分式表示,已知G、M、R).(2)从球心右侧挖去.答案解析1.答案为:D ;解析:由于木块沿圆弧下滑速率不变,木块做匀速圆周运动,存在向心加速度,所以选项A 错误;由牛顿第二定律得F 合=ma n =m ,而v 的大小不变,故合外力的大小不变,选项B 错误;v2R由于木块在滑动过程中与接触面的正压力是变化的,故滑动摩擦力在变化,选项C 错误;木块在下滑过程中,速度的大小不变,所以向心加速度的大小不变,方向始终指向球心,选项D 正确.2.答案为:D ;解析:物体做匀速圆周运动的过程中,线速度的大小不变,但方向改变,所以线速度改变.周期不变,角速度不变,动能也不变.所受合外力提供向心力,大小不变,方向改变,是个变力,向心加速度大小不变,方向始终指向圆心,是个变量,故D 错误,A 、B 、C 正确,选项D 符合题意.3.答案为:C ;解析:汽车转弯时地面的摩擦力提供向心力,则F f =m ,静摩擦力不变,速度加倍,v2r则汽车转弯半径应变化为原来的四倍,C 正确. 4.答案为:A ;解析:由几何知识可得,小球做圆周运动的半径r=l,小球恰好过最高点时,根据牛顿第二定律有32mg=m ①v 1232l小球运动到最低点时,根据动能定理得mg·l=②312mv 22-12mv 12由牛顿第二定律得2F T cos30°-mg=③mv 2232l 联立①②③得F T =2mg 故A 正确,B 、C 、D 错误。

高考物理万有引力与航天题20套(带答案)含解析

高考物理万有引力与航天题20套(带答案)含解析

高考物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-= 解得87R t gπ=2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt =;2hRv =【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt =质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R 月==【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .3.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2324GMT h R π=- 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:2324GMTh R π=-4.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。

高考物理万有引力与航天专项训练及答案含解析

高考物理万有引力与航天专项训练及答案含解析

高考物理万有引力与航天专项训练及答案含解析一、高中物理精讲专题测试万有引力与航天1.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R 月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期2T π=2.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求: (1)该星球表面的重力加速度的大小g (2)该星球的质量M .【答案】(1) 02tan v t θ (2) 202tan v R Gtθ【解析】 【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出. 【详解】(1)物体做平抛运动,水平方向:0x v t =,竖直方向:212y gt = 由几何关系可知:02y gt tan x v θ== 解得:02v g tan tθ=(2)星球表面的物体受到的重力等于万有引力,即:2MmGmg R= 可得:2202v R tan gR M G Gtθ==【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.3.侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全部都拍摄下来,卫星在通过赤道上空时,卫星上的摄影像机至少应拍地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T .【答案】l =【解析】 【分析】 【详解】设卫星周期为1T ,那么:22214()()Mm m R h G R h T π+=+, ① 又2MmGmg R=, ② 由①②得1T =设卫星上的摄像机至少能拍摄地面上赤道圆周的弧长为l ,地球自转周期为T ,要使卫星在一天(地球自转周期)的时间内将赤道各处的情况全都拍摄下来,则12Tl R T π⋅=. 所以12RT l T π==【点睛】摄像机只要将地球的赤道拍摄全,便能将地面各处全部拍摄下来;根据万有引力提供向心力和万有引力等于重力求出卫星周期;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再根据弧长与圆心角的关系求解.4.2019年4月20日22时41分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为r 的匀速圆周运动。

2020年高考物理必考题万有引力与航天猜押试题答案解析与点睛(21页)

2020年高考物理必考题万有引力与航天猜押试题答案解析与点睛(21页)

2020年高考物理必考题万有引力与航天猜押试题考点1宇宙速度的理解与计算1.三种宇宙速度方法一:由G MmR 2=m v 12R得v 1=GMR≈7.9×103 m/s 。

方法二:由mg =m v 12R得v 1=gR ≈7.9×103 m/s 。

第一宇宙速度是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2π R g≈ 5 075 s ≈85 min 。

3.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星在地球表面绕地球做匀速圆周运动(近地卫星)。

(2)7.9 km /s <v 发<11.2 km/s 时,卫星绕地球运动的轨迹为椭圆。

(3)11.2 km /s ≤v 发<16.7 km/s 时,卫星绕太阳做椭圆运动。

(4)v 发≥16.7 km/s 时,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。

【典例1】(2019·怀化模拟)使物体脱离星球的引力束缚,不再绕星球运行,从星球表面发射所需的最小速度称为第二宇宙速度,星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2= 2v 1。

已知某星球的半径为地球半径R 的4倍,质量为地球质量M 的2倍,地球表面重力加速度为g 。

不计其他星球的影响,则该星球的第二宇宙速度为( ) A.12gR B.12gRC.gRD.18gR 【答案】C【解析】设在地球表面飞行的卫星质量为m ,由万有引力提供向心力得G Mm R 2=m v 12R ,又有G MmR 2=mg ,解得地球的第一宇宙速度为v 1=GMR =gR ;设该星球的第一宇宙速度为v 1′,根据题意,有v 1′v 1= 2M M ·R 4R =12;由地球的第一宇宙速度v 1=gR ,再由题意知v 2′=2v 1′,联立得该星球的第二宇宙速度为v 2′=gR ,故A 、B 、D 错误,C 正确。

考点2 卫星运行参量的分析与比较1.物理量随轨道半径变化的规律规律⎩⎪⎪⎨⎪⎪⎧G Mm r2=r =R 地+h ⎩⎪⎪⎨⎪⎪⎧⎭⎪⎪⎪⎪⎫m v 2r→v = GM r →v ∝1rm ω2r →ω= GM r 3→ω∝1r 3m 4π2T 2r →T = 4π2r 3GM→T ∝r 3ma →a =GM r 2→a ∝1r2越高越慢mg =GMmR 地2近地时→GM =gR地22.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合。

2020届高考物理专题训练:万有引力与航天(两套 附详细答案解析)

2020届高考物理专题训练:万有引力与航天(两套 附详细答案解析)

高考物理专题训练:万有引力与航天(基础卷)一、 (本题共13小题,每小题4分,共52分。

在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~13题有多项符合题目要求。

全部选对的得4分,选对但不全的得2分,有选错的得0分)1.人类对天体运动的认识有着漫长艰难的过程,如日心说和地心说。

下列说法不正确的是( )A.地心说认为地球处于宇宙的中心静止不动,太阳、月亮以及其他行星都绕地球运动B.日心说认为太阳是宇宙的中心且静止不动,地球和其他行星都绕太阳运动C.在天文学史上,虽然日心说最终战胜了地心说,但地心说更符合人们的直接经验D.哥白尼经过长期观测和研究,提出了地心说,开普勒在总结前人大量观测资料的基础上,提出了日心说【答案】D【解析】托勒密提出的是地心说,哥白尼提出的是日心说,选项D不正确。

2.德国天文学家开普勒用了20年的时间研究了丹麦天文学家第谷的行星研究资料,提出了开普勒行星运动定律。

下列说法中正确的是( )A.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上B.对任意一个行星来说,在其轨道上运动时,离太阳越近的,其运动速度越慢C.水星绕太阳运动的半长轴比金星的小,所以水星绕太阳运动的周期长D.所有绕不同中心天体运行的天体的轨道半长轴的三次方跟它的公转周期的二次方的比值都相等【答案】A【解析】根据开普勒第一定律得知,选项A正确;开普勒第二定律得知,选项B错误;据开普勒第三定律可知选项C错误;中心天体不同,绕中心天体运动的天体的轨道半长轴的三次方跟它的公转周期的二次方的比值是不相同的,选项D错误。

3.随着科学技术的不断发展,宇宙中飞行的卫星也越来越多。

技术更先进、性能更优越的卫星不断地替代落后的卫星。

一颗报废的卫星由于失去了动力,在空气阻力作用下,其运行高度逐渐降低,在还没有进入大气层烧毁之前,其( )A.周期逐渐增大 B.动能逐渐增大 C.速度逐渐减小 D.加速度逐渐减小【答案】B【解析】由=m r可知,随着卫星高度的逐渐降低,其轨道半径越来越小,周期逐渐减小,选项A错误;由=m得v=,线速度逐渐增大,选项B正确、C错误;因为加速度a=,选项D错误。

2020届高考物理:万有引力和航天专题练习

2020届高考物理:万有引力和航天专题练习

2020届高考物理:万有引力和航天专题练习2020高考物理万有引力与航天专题练习(含答案)1. 火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积答案 C2. 一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是它在地球上所受万有引力的( )A .0.25倍B .0.5倍C .2.0倍D .4.0倍答案 C3. 北斗卫星导航系统是我国自行研制开发的区域性三维卫星定位与通信系统(CNSS),建成后的北斗卫星导航系统包括5颗同步卫星和30颗一般轨道卫星。

对于其中的5颗同步卫星,下列说法正确的是( )A .它们运行的线速度一定不小于7.9 km/sB .地球对它们的吸引力一定相同C .一定位于赤道上空同一轨道上D .它们运行的加速度一定相同答案 C4. 英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人。

若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2。

你能计算出( )A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22C .月球的质量m 月=4π2L 31GT 21D .可求月球、地球及太阳的密度答案 AB5. 过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕。

“51 peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的120。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲万有引力与航天(建议用时:40分钟满分:100分)一、选择题(本大题共8小题,每小题8分,共64分.第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求)1.许多科学家在经典物理学发展中作出了重要贡献,下列叙述中符合史实的是( D )A.哥白尼提出了日心说并发现了行星沿椭圆轨道运行的规律B.开普勒在前人研究的基础上,提出了万有引力定律C.牛顿提出了万有引力定律,并通过实验测出了万有引力常量D.卡文迪许通过扭秤实验测出了引力常量解析:哥白尼提出了日心说,而开普勒发现了行星沿椭圆轨道运行的规律,故A错误;牛顿在前人研究的基础上,提出了万有引力定律,故B 错误;卡文迪许通过扭秤实验测出了引力常量,故C错误,D正确. 2.(2019·山东济南三模)2019年1月3日10时26分,“嫦娥四号”探测器成功在月球背面着陆,标志着我国探月航天工程达到了一个新高度.“嫦娥四号”绕月球做匀速圆周运动时的轨道半径为r,运行周期为T,已知万有引力常量为G,根据以上信息可以求出( C )A.月球的平均密度B.月球的第一宇宙速度C.月球的质量D.月球表面的重力加速度解析:根据万有引力提供向心力可得=m r得,月球的质量M月=,月球的体积V=πR3,由于月球半径不知道,无法求解月球的密度,故A 错误,C正确;月球的第一宇宙速度v 1==,由于月球半径不知道,月球的第一字宙速度无法求解,故B错误;根据g=可知,月球半径不知道,无法求解月球表面的重力加速度,故D错误.3.(2019·江苏泰州模拟)通常情况下中子星的自转速度是非常快的,因此任何的微小凸起都将造成时空的扭曲并产生连续的引力波信号,这种引力辐射过程会带走一部分能量并使中子星的自转速度逐渐下降.现有一中子星(可视为均匀球体),它的自转周期为T0时恰能维持该星体的稳定(不因自转而瓦解),则当中子星的自转周期增为2T0时,某物体在该中子星“两极”所受重力与在“赤道”所受重力的比值为( D )A. B.2 C. D.解析:自转周期为T0时恰能维持星体的稳定,有=m R;当中子星的自转周期增为2T0时,在两极有=mg,在赤道有-mg′=m R,联立解得=,故D正确.4.(2019·河南郑州三模)地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动,地球和太阳中心的连线与地球和行星的连线所成夹角叫做地球对该行星的观察视角,如图中θ所示.当行星处于最大观察视角时是地球上的天文爱好者观察该行星的最佳时机.已知某行星的最大观察视角为θ0,则该行星绕太阳转动的角速度与地球绕太阳转动的角速度之比( A )A. B.C. D.解析:由题意知,当地球与行星的连线与行星轨道相切时,视角最大,则行星的轨道半径r=Rsin θ0,得=sin θ0.设太阳的质量为M,根据万有引力提供向心力有=mω2r,得ω=,则行星绕太阳转动的角速度与地球绕太阳转动的角速度之比为==,故A正确. 5.2019年春节档,科幻电影《流浪地球》红遍大江南北.电影讲述的是太阳即将毁灭,人类在地球上建造出巨大的推进器,使地球经历停止自转、加速逃逸、匀速滑行、减速入轨等阶段,最后成为另一恒星(比邻星)的一颗行星的故事.假设几千年后地球流浪成功,成为比邻星的一颗行星,设比邻星的质量为太阳质量的,地球质量在流浪过程中损失了,地球绕比邻星运行的轨道半径为地球绕太阳运行轨道半径的,则下列说法正确的是( A )A.地球绕比邻星运行的公转周期和绕太阳的公转周期相同B.地球绕比邻星运行的向心加速度是绕太阳运行时向心加速度的C.地球与比邻星间的万有引力为地球与太阳间万有引力的D.地球绕比邻星运行的动能是绕太阳运行时动能的解析:根据万有引力提供向心力,有G=m()2r,解得T=2π,则===1,即T比=T太,故A正确;根据G=ma,得a=,则==×22=,故B错误;万有引力之比===××22=,故C错误;根据G=m,则动能E k=mv2=,动能之比==××2=,故D错误.6.在宇宙中,单独存在的恒星占少数,更多的是双星、三星甚至多星系统.如图所示为一个简化的直线三星系统模型:三个星球的质量均为m,a,b两个星球绕处于二者中心的星球c做半径为r的匀速圆周运动.已知引力常量为G,忽略其他星体对它们的引力作用,则下列说法正确的是( AC )A.星球a做匀速圆周运动的加速度大小为B.星球a做匀速圆周运动的线速度大小为C.星球b做匀速圆周运动的周期为4πD.若因某种原因中心星球c的质量缓慢减小,则星球a,b的线速度均缓慢增大解析:对星球a有+=ma=,解得a=,v=,故A正确,B错误;对星球b有G+G=m r,解得T=4π,故C正确;若因某种原因中心星球c的质量缓慢减小,则星球a,b做离心运动,线速度均缓慢减小,故D错误.7.2018年12月12日,我国发射的“嫦娥四号”探测器进入环月轨道1,12月30日实施变轨进入环月轨道2.其飞行轨道如图所示,P点为两轨道的交点.如果嫦娥四号探测器在环月轨道1和环月轨道2上运动时,只受到月球的万有引力作用,环月轨道1为圆形轨道,环月轨道2为椭圆轨道.则以下说法正确的是( CD )A.若已知嫦娥四号探测器环月轨道1的半径、运动周期和引力常量,则可以计算出月球的密度B.若已知嫦娥四号探测器环月轨道2的近月点到月球球心的距离、运动周期和引力常量,则可以计算出月球的密度C.嫦娥四号探测器在环月轨道2上经过P点的速度小于在环月轨道1上经过P点的速度D.嫦娥四号探测器在环月轨道2时,从近月点向远月点P运动的过程中,加速度变小解析:嫦娥四号探测器在环月轨道1上运行时,有=,则M=,可计算出月球质量M,但月球半径R未知,算不出月球密度,故A错误;因为轨道2为椭圆轨道不适用圆轨道的周期公式,且月球半径R未知,计算不出月球密度,故B错误;探测器在轨道1的P点减速后才能变轨到轨道2,故C正确;由近月点向远月点P运动的过程中,探测器与月心距离增大,则引力减小,由牛顿第二定律知加速度变小,故D正确.8.(2019·重庆模拟)宇航员乘坐航天飞船,在几乎贴着月球表面的圆轨道绕月运行,运动的周期为T.再次变轨登上月球后,宇航员在月球表面做了一个实验:将一个铅球以速度v0竖直向上抛出,经时间t落回抛出点.已知引力常量为G,则下列说法正确的是( ABC )A.月球的质量为B.月球的半径为C.月球的密度为D.在月球表面发射月球卫星的最小速度为解析:由题意知,月球表面的重力加速度g=,根据G=mg,又因为G=m R,联立解得M=,R=,故A,B正确;密度ρ=,V=πR3,联立解得ρ=,故C正确;在月球表面发射月球卫星的最小速度为月球的第一宇宙速度,即v=,且R=,联立解得v=,故D错误.二、非选择题(本大题共2小题,共36分)9.(18分)(2019·湖北宜昌模拟)如图所示,A是地球的同步卫星.另一卫星B的圆形轨道位于赤道平面内.已知地球自转角速度为ω0,地球质量为M,B离地心距离为r,万有引力常量为G,O为地球中心,不考虑A和B之间的相互作用.(1)求卫星A的运行周期T A;(2)求B做圆周运动的周期T B;(3)如卫星B绕行方向与地球自转方向相同,某时刻A,B两卫星相距最近(O,B,A在同一直线上),则至少经过多长时间,它们再一次相距最近?解析:(1)A是地球的同步卫星,其运行周期与地球自转周期相同,为T A=.(2)设B的质量为m,根据万有引力提供向心力,有=m()2r,解得T B=2π.(3)A,B再次相距最近时B比A多转了一圈,有(ωB-ω0)Δt=2π,且ωB=解得Δt=.答案:(1)(2)2π (3)10.(18分)已知地球半径为R,表面的重力加速度为g,引力常量为G,月球绕地球做匀速圆周运动的轨道半径为r,忽略地球自转的影响.(1)求地球质量为M;(2)求月球做圆周运动的周期T;(3)牛顿在建立万有引力定律的时候考虑了苹果落地和月球绕地球运动的问题,他认为使苹果落地与月球绕地球运动受到的是同种性质的力,都是地球对它们的引力,都与距离的二次方成反比关系;牛顿根据当时已知地球表面重力加速度g,月亮的轨道半径r约为地球半径的60倍和公转周期T,就证明他的判断是正确的;请你说明牛顿判断的依据.解析:(1)在地球表面,质量为m的物体其万有引力等于重力,有=mg,解得M=.(2)根据万有引力提供向心力,有=m r由于=mg,解得T=2π.(3)对于苹果有=mg,则苹果下落的加速度g=对于月球有=ma,月球加速度a=所以=,只需根据a=r计算月球的向心加速度并判断=即可. 答案:(1)(2)2π(3)见解析黑洞黑洞是现代广义相对论中,宇宙空间内存在的一种天体.黑洞的引力很大,使得视界内的逃逸速度大于光速.“黑洞是时空曲率大到光都无法从其事件视界逃脱的天体”.1916年,德国天文学家卡尔·史瓦西通过计算得到了爱因斯坦引力场方程的一个真空解,这个解表明,如果将大量物质集中于空间一点,其周围会产生奇异的现象,即在质点周围存在一个界面——“视界”.一旦进入这个界面,即使光也无法逃脱.这种“不可思议的天体”被美国物理学家约翰·阿奇博尔德·惠勒命名为“黑洞”.黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响.借由物体被吸入之前的因高热而放出和γ射线的“边缘讯息”,可以获取黑洞存在的讯息.推测出黑洞的存在也可借由间接观测恒星或星际云气团绕行轨迹取得位置以及质量.2019年4月10日21时,在美国华盛顿、中国上海和台北、智利圣地亚哥、比利时布鲁塞尔、丹麦灵比和日本东京同时召开新闻发布会,以英语、汉语、西班牙语、丹麦语和日语发布首次直接拍摄到黑洞的照片.为了得到这张照片,天文学家动用了遍布全球的8个亚毫米射电望远镜,组成了一个所谓的“事件视界望远镜”.从2017年4月5日起,这8座射电望远镜连续进行了数天的联合观测,随后又经过2年的数据分析才让我们一睹黑洞的真容.[命题视角]对黑洞的理解、对黑洞质量及半径的估算等.[示例] (2019·湖北武汉模拟)北京时间2019年4月10日,人类史上首张黑洞照片面世.黑洞的概念是:如果将大量物质集中于空间一点,其周围会产生奇异的现象,即在质点周围存在一个界面——事件视界面,一旦进入界面,即使光也无法逃脱,即黑洞的逃逸速度大于光速.把上述天体周围事件视界面看作球面,球面的半径称为史瓦西半径.已知地球的半径约为6 400 km,地球的第一宇宙速度为7.9 km/s,天体的第二宇宙速度是第一宇宙速度的倍,光速为3.0×108m/s,假设地球保持质量不变收缩成黑洞,则地球黑洞的史瓦西半径约( B ) A.1 mm B.9 mmC.1 mD.9 m解析:由题可知,地球变成黑洞后,光无法逃脱黑洞的第二宇宙速度,即黑洞的第二宇宙速度大于光速,转换成临界条件如下:光速c ≤;通过临界条件的变形可知,地球形成黑洞的史瓦西半径R max =;又g=GM,解得R max ==9 mm,故只有B正确.。

相关文档
最新文档