高考专题-万有引力与航天

合集下载

06 万有引力与航天高考真题分项详解(解析版)

06 万有引力与航天高考真题分项详解(解析版)

十年高考分类汇编专题06万有引力与航天(2011-2020)目录题型一、考查万有引力定律、万有引力提供物体重力的综合类问题 ............................................ 1 题型二、考查万有引力提供卫星做圆周运动向心力的相关规律 .................................................... 6 题型三、考查飞船的变轨类问题 ...................................................................................................... 18 题型四、考查万有引力与能量结合的综合类问题 .......................................................................... 20 题型五、考查双星与三星系统的规律 .............................................................................................. 21 题型六、关于开普勒三定律的相关考查 .......................................................................................... 22 题型七、天体运动综合类大题 . (25)题型一、考查万有引力定律、万有引力提供物体重力的综合类问题1.(2020全国1).火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( ) A. 0.2B. 0.4C. 2.0D. 2.5【考点】万有引力在非绕行问题中的应用 【答案】B【解析】设物体质量为m ,在火星表面所受引力的大小为F 1,则在火星表面有:1121M mF GR 在地球表面所受引力的大小为F 2,则在地球表面有:2222M mF GR 由题意知有:12110M M ;1212R R故联立以上公式可得:21122221140.4101F M R F M R ==⨯=。

高考物理总复习 5专题五 万有引力与航天 专题五 万有引力与航天(讲解部分)

高考物理总复习 5专题五 万有引力与航天 专题五 万有引力与航天(讲解部分)

,

M' r3
=
M R3
,而该处物体的重力在数值上等于该处的万有引力,则有
GMr3m R3r 2
=
mg‘,得GMm r=mg'。因此球体内距球心r处的重力随着r的增大成正比增加。
R3
例1 已知质量分布均匀的球壳对壳内物体的引力为0。假设地球是一半
径为R的质量分布均匀的球体,地球表面的重力加速度大小为g。试求:
②三颗质量均为m的星体位于等边三角形的三个顶点上,如图乙。
(3)四星模型 ①四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆 形轨道做匀速圆周运动,如图丙。 ②三颗恒星位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕 O点做匀速圆周运动,如图丁。
2.一些物理量的定性分析
(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上 过A点和B点时速率分别为vA、vB。因在A点加速,则vA>v1,因在B点加速,则v 3>vB,又因v1>v3,故有vA>v1>v3>vB。 (2)加速度:因为在A点,卫星只受到万有引力作用,故无论从轨道Ⅰ还是轨
an=G M ,即an∝ 1
r2
r2
v= GM ,即v∝ 1
r
r
ω= GM ,即ω∝ 1
r3
r3
T= 4π 2r3 ,即T∝ r3
GM
2.人造地球卫星的轨道 由于万有引力提供向心力,因此所有人造地球卫星的轨道圆心都在地心上。 (1)赤道轨道:卫星的轨道在赤道平面内,同步卫星轨道就是其中的一种。 (2)极地轨道:卫星的轨道过南北两极,即在垂直于赤道的平面内,如极地气 象卫星轨道。 (3)其他轨道:除以上两种轨道外的卫星轨道,轨道平面一定通过地球的球心。

(完整版)高考专题-万有引力与航天

(完整版)高考专题-万有引力与航天

高考专题-万有引力与航天1.题型特点关于万有引力定律及应用知识的考查,主要表现在两个方面:(1)天体质量和密度的计算:主要考查对万有引力定律、星球表面重力加速度的理解和计算.(2)人造卫星的运行及变轨:主要是结合圆周运动的规律、万有引力定律,考查卫星在轨道运行时线速度、角速度、周期的计算,考查卫星变轨运行时线速度、角速度、周期以及有关能量的变化.以天体问题为背景的信息题,更是受专家的青睐.高考中一般以选择题的形式呈现.2.命题趋势从命题趋势上看,对本部分内容的考查仍将延续与生产、生活以及航天科技相结合,形成新情景的物理题.1.(多选)(2015·新课标全国Ⅰ·21)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s2.则此探测器()A.在着陆前的瞬间,速度大小约为8.9 m/sB.悬停时受到的反冲作用力约为2×103 NC.从离开近月圆轨道到着陆这段时间内,机械能守恒D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度2.(2015·江苏单科·3)过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕.“51 peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的120,该中心恒星与太阳的质量比约为( )A.110B .1C .5D .10 3.(2015·四川理综·5)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( )A.火星的公转周期较小B .火星做圆周运动的加速度较小C .火星表面的重力加速度较大D .火星的第一宇宙速度较大4.(2015·安徽理综·24)由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m 、B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .考题一 万有引力定律的理解1.(2015·安康二模)由中国科学院、中国工程院两院院士评出的2012年中国十大科技进展新闻,于2013年1月19日揭晓,“神九”载人飞船与“天宫一号”成功对接和“蛟龙”号下潜突破7 000米分别排在第一、第二.若地球半径为R ,把地球看做质量分布均匀的球体.“蛟龙”下潜深度为d ,天宫一号轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的加速度之比为( ) A.R -d R +hB.(R -d )2(R +h )2C.(R -d )(R +h )2R 3D.(R -d )(R +h )R 2行星 半径/m 质量/kg 轨道半径/m 地球 6.4×106 6.0×1024 1.5×1011 火星3.4×1066.4×10232.3×10112.(2015·海南单科·6)若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7,已知该行星质量约为地球的7倍,地球的半径为R .由此可知,该行星的半径约为( ) A.12R B.72R C .2R D.72R 3.(2015·崇明模拟)理论上已经证明:质量分布均匀的球壳对壳内物体的万有引力为零.现假设地球是一半径为R 、质量分布均匀的实心球体,O 为球心,以O 为原点建立坐标轴Ox ,如图所示.一个质量一定的小物体(假设它能够在地球内部移动)在x 轴上各位置受到的引力大小用F 表示,则选项所示的四个F 随x 变化的关系图正确的是( )1.辨析下列说法的正误: 由F 万=G m 1m 2r2得①r →∞时,F 万=0( √ ) ②r →0时,F 万=∞( × ) 2.万有引力定律的适用条件:(1)可以看成质点的两个物体之间. (2)质量分布均匀的球体之间.(3)质量分布均匀的球体与球外质点之间.考题二 天体质量和密度的估算4.(2015·湖南五市十校5月模拟)如图3所示,“嫦娥三号”的环月轨道可近似看成是圆轨道,观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t 通过的弧长为l ,该弧长对应的圆心角为θ弧度.已知万有引力常量为G ,则月球的质量是( )A.l 2Gθ3tB.θ3Gl 2tC.l 3Gθt 2D.t 2Gθl3 5.(多选)(2015·淮安四模)木卫一是最靠近木星的卫星,丹麦天文学家罗迈最早在十七世纪通过对木卫一的观测测出了光速.如图所示,他测量了木卫一绕木星的运动周期T 和通过木星影区的时间t .若已知木星的半径R 和万有引力常量G ,T 远小于木星绕太阳的运行周期,根据以上条件可以求出( )A .木星的密度B .木卫一的密度C .木卫一绕木星运动的向心加速度大小D .木卫一表面的重力加速度大小6.(2015·安阳二模)嫦娥五号探测器由轨道器、返回器、着陆器等多个部分组成.探测器预计在2017年由长征五号运载火箭在中国文昌卫星发射中心发射升空,自动完成月面样品采集,并从月球起飞,返回地球,带回约2 kg 月球样品.某同学从网上得到一些信息,如表格中的数据所示.月球半径 R 0 月球表面的重力加速度 g 0 地球和月球的半径之比RR 0=4 地球表面和月球表面的重力加速度之比g g 0=6 请根据题意,判断地球和月球的密度之比为( ) A.23 B.32C .4D .6估算天体质量的两种方法:1.如果不考虑星球的自转,星球表面的物体所受重力等于星球对它的万有引力. mg =G Mm R 2 M =gR 2G2.利用绕行星运转的卫星,F 万提供向心力.G Mm r 2=m 4π2T 2·r M =4π2r 3GT 2 特例:若为近地面卫星r =R ρ=M V =3πGT2 考题三 卫星运行参量的分析7.(多选)(2015·天津·8)P 1、P 2为相距遥远的两颗行星,距各自表面相同高度处各有一颗卫星s 1、s 2做匀速圆周运动.图中纵坐标表示行星对周围空间各处物体的引力产生的加速度a ,横坐标表示物体到行星中心的距离r 的平方,两条曲线分别表示P 1、P 2周围的a 与r 2的反比关系,它们左端点横坐标相同.则( ) A .P 1的平均密度比P 2的大 B .P 1的“第一宇宙速度”比P 2的小 C .s 1的向心加速度比s 2的大 D .s 1的公转周期比s 2的大8.(2015·武汉四月调研)17世纪,英国天文学家哈雷跟踪过一颗慧星,他算出这颗彗星轨道的半长轴约等于地球公转半径的18倍,并预言这颗慧星将每隔一定的时间飞临地球,后来哈雷的预言得到证实,该慧星被命名为哈雷慧星.哈雷彗星围绕太阳公转的轨道是一个非常扁的椭圆,如图所示.从公元前240年起,哈雷彗星每次回归,中国均有记录,它最近一次回归的时间是1986年.从公元前240年至今,我国关于哈雷慧星回归记录的次数,最合理的是( ) A .24次 B .30次 C .124次D .319次9.(2015·襄阳模拟)我国志愿者王跃曾与俄罗斯志愿者一起进行“火星-500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的12,质量是地球质量的19.已知地球表面的重力加速度是g ,地球的半径为R ,忽略火星以及地球自转的影响,求: (1)火星表面的重力加速度g ′的大小;(2)王跃登陆火星后,经测量,发现火星上一昼夜的时间为t ,如果要发射一颗火星的同步卫星,它正常运行时距离火星表面将有多远?1.基本规律F 万=G Mm r 2=ma n =m v 2r =mω2·r =m 4π2T 2·r得:a n =GMr2,v =GMr,ω= GMr 3,T = 4π2r 3GMr 时(a n 、v 、ω),T 2.宇宙速度 (1)v Ⅰ=gR =GMR=7.9 km/s ①最小的发射速度.②(近地面)最大的环绕速度. (2)v Ⅱ=2v Ⅰ=11.2 km/s. (3)v Ⅲ=16.7 km/s.考题四 卫星变轨与对接10.(2015·扬州模拟)如图7所示,有一飞行器沿半径为r 的圆轨道1绕地球运动.该飞行器经过P 点时,启动推进器短时间向前喷气可使其变轨,2、3是与轨道1相切于P 点的可能轨道,则飞行器( ) A .变轨后将沿轨道2运动 B .相对于变轨前运行周期变长C .变轨前、后在两轨道上经P 点的速度大小相等D .变轨前、后在两轨道上经P 点的加速度大小相等11.(2015·黄冈八校第二次联考)美国宇航局的“信使”号水星探测器按计划将在2015年3月份陨落在水星表面.工程师找到了一种聪明的办法,能够使其寿命再延长一个月.这个办法就是通过向后释放推进系统中的高压氦气来提升轨道.如图所示,设释放氦气前,探测器在贴近水星表面的圆形轨道Ⅰ上做匀速圆周运动,释放氦气后探测器进入椭圆轨道Ⅱ上,忽略探测器在椭圆轨道上所受外界阻力.则下列说法正确的是( ) A .探测器在轨道Ⅱ上A 点运行速率小于在轨道Ⅱ上B 点速率 B .探测器在轨道Ⅱ上某点的速率可能等于在轨道Ⅰ上的速率 C .探测器在轨道Ⅱ上远离水星过程中,引力势能和动能都减少 D .探测器在轨道Ⅰ和轨道Ⅱ上A 点加速度大小不同1.变轨问题中,各物理量的变化(1)当v 增大时,所需向心力m v 2r 增大,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由v =GMr知其运行速度要减小,但重力势能、机械能均增加.(2)当卫星的速度突然减小时,向心力m v 2r减小,即万有引力大于卫星所需的向心力,因此卫星将做向心运动,同样会脱离原来的圆轨道,轨道半径变小,进入新轨道运行时由v = GMr知运行速度将增大,但重力势能、机械能均减少. 2.规律总结(1)卫星变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v =GMr判断. (2)卫星绕过不同轨道上的同一点(切点)时,其加速度大小关系可用F =GMmr2=ma 比较得出.考题五 双星与多星问题12.(2015·上饶三模)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此圆周运动的周期为( ) A.nk T B.n 2k T C.n 3k 2T D.n 3kT 13.(2015·衡水高三下学期期中)宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为L ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,万有引力常量为G ,下列说法正确的是( )A .每颗星做圆周运动的角速度为3GmL 3B .每颗星做圆周运动的加速度与三星的质量无关C .若距离L 和每颗星的质量m 都变为原来的2倍,则周期变为原来的2倍D .若距离L 和每颗星的质量m 都变为原来的2倍,则线速度变为原来的4倍1.双星系统具有如下特点:(1)它们以相互间的万有引力来提供向心力.(2)它们共同绕它们连线上某点做圆周运动.(3)它们的周期、角速度相同.(4)r、a n、v与m成反比.2.N星系统(1)向心力由其他星对该星万有引力的合力提供.(力的矢量合成)(2)转动的星的T(ω)相等.注意:运算过程中的几何关系.专题综合练1.(2015·山东理综·15)如图1所示,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动.以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小.以下判断正确的是() A.a2>a3>a1B.a2>a1>a3C.a3>a1>a2D.a3>a2>a12.(多选)(2015·揭阳质检)已知引力常量G、月球中心到地球中心的距离r和月球绕地球运行的周期T.仅利用这三个数据,可以估算的物理量有()A.地球的质量B .地球的密度C .地球的半径D .月球绕地球运行速度的大小3.(2015·泰安二模)设地球半径为R ,质量为m 的卫星在距地面R 高处做匀速圆周运动,地面的重力加速度为g ,则( ) A .卫星的线速度为gR2B .卫星的角速度为 g 4RC .卫星的加速度为g2D .卫星的周期为4πR g4.(2015·雅安三诊)2015年3月5日,国务院总理李克强在十二届全国人民代表大会上所作的政府工作报告中提到:“超级计算、探月工程、卫星应用等重大科研项目取得新突破”,并对我国航天事业2014年取得的发展进步给予了充分肯定.若已知地球半径为R 1,赤道上物体随地球自转的向心加速度为a 1,第一宇宙速度为v 1;地球同步卫星的轨道半径为R 2,向心加速度为a 2,运动速率为v 2,判断下列比值正确的是( ) A.a 1a 2=R 1R 2 B.a 1a 2=(R 1R 2)2 C.v 1v 2=R 1R 2D.v 1v 2= R 1R 25.(2015·龙岩市5月模拟)如图所示,一个质量均匀分布的星球,绕其中心轴PQ 自转,AB 与PQ 是互相垂直的直径.星球在A 点的重力加速度是P 点的90%,星球自转的周期为T ,万有引力常量为G ,则星球的密度为( ) A.0.3πGT 2 B.3πGT 2 C.10π3GT 2D.30πGT2 6.(多选)(2015·南通二模)据报道,一颗来自太阳系外的彗星于2014年10月20日擦火星而过.如图所示,设火星绕太阳在圆轨道上运动,运动半径为r ,周期为T ,该慧星在穿过太阳系时由于受到太阳的引力,轨道发生弯曲,彗星与火星在圆轨道的A 点“擦肩而过”.已知万有引力常量G ,则( ) A .可计算出太阳的质量B .可计算出彗星经过A 点时受到的引力C .可计算出彗星经过A 点的速度大小D .可确定慧星在A 点的速度大于火星绕太阳的速度7.(多选)(2015·绥化二模)我国研制的“嫦娥三号”月球探测器于2013年12月1日发射成功,并成功在月球表面实现软着陆.如图13所示,探测器首先被送到距离月球表面高度为H 的近月轨道做匀速圆周运动,之后在轨道上的A 点实施变轨,使探测器绕月球做椭圆运动,当运动到B 点时继续变轨,使探测器靠近月球表面,当其距离月球表面附近高度为h (h <5 m)时开始做自由落体运动,探测器携带的传感器测得自由落体运动时间为t ,已知月球半径为R ,万有引力常量为G .则下列说法正确的是( ) A .“嫦娥三号”的发射速度必须大于第一宇宙速度 B .探测器在近月圆轨道和椭圆轨道上的周期相等C .“嫦娥三号”在A 点变轨时,需减速才能从近月圆轨道进入椭圆轨道D .月球的平均密度为3h2πGRt 28.(2015·银川二模)我国第一颗绕月探测卫星——嫦娥一号于2007年10月24日成功发射.如图14所示,嫦娥一号进入地月转移轨道段后,关闭发动机,在万有引力作用下,嫦娥一号通过P 点时的运动速度最小.嫦娥一号到达月球附近后进入环月轨道段.若地球质量为M ,月球质量为m ,地心与月球中心距离为R ,嫦娥一号绕月球运动的轨道半径为r ,G 为万有引力常量,则下列说法正确的是( ) A .P 点距离地心的距离为MM +mRB .P 点距离地心的距离为MM +m RC .嫦娥一号绕月运动的线速度为 GMr D .嫦娥一号绕月运动的周期为2πRR Gm9.(多选)(2015·潍坊二模)2015年2月7日,木星发生“冲日”现象.“木星冲日”是指木星和太阳正好分处地球的两侧,三者成一条直线.木星和地球绕太阳公转的方向相同,公转轨迹都近似为圆.设木星公转半径为R 1,周期为T 1;地球公转半径为R 2,周期为T 2,下列说法正确的是( )A.T 1T 2=(R 1R 2)23B.T 1T 2=(R 1R 2)32 C .“木星冲日”这一天象的发生周期为2T 1T 2T 1-T 2D .“木星冲日”这一天象的发生周期为T 1T 2T 1-T 210.(2015·北京朝阳区4月模拟)第一宇宙速度又叫做环绕速度,第二宇宙速度又叫做逃逸速度.理论分析表明,逃逸速度是环绕速度的2倍,这个关系对其他天体也是成立的.有些恒星,在核聚变反应的燃料耗尽而“死亡”后,强大的引力把其中的物质紧紧地压在一起,它的质量非常大,半径又非常小,以致于任何物质和辐射进入其中都不能逃逸,甚至光也不能逃逸,这种天体被称为黑洞.已知光在真空中传播的速度为c ,太阳的半径为R ,太阳的逃逸速度为c 500.假定太阳能够收缩成半径为r 的黑洞,且认为质量不变,则Rr 应大于( )A .500B .500 2C .2.5×105D .5.0×10511.(多选)(2015·陕西西安交大附中四模)物体在万有引力场中具有的势能叫做引力势能.若取两物体相距无穷远时的引力势能为零,一个质量为m 0的质点距质量为M 0的引力中心为r 0时,其万有引力势能E p =-GM 0m 0r 0(式中G 为引力常量).一颗质量为m 的人造地球卫星以半径为r 1圆形轨道环绕地球飞行,已知地球的质量为M ,要使此卫星绕地球做匀速圆周运动的轨道半径增大为r 2,则在此过程中( ) A .卫星势能增加了GMm (1r 1-1r 2)B .卫星动能减少了GMm 3(1r 1-1r 2)C .卫星机械能增加了GMm 2(1r 1-1r 2)D .卫星上的发动机所消耗的最小能量为2GMm 3(1r 2-1r 1)12.(2015·合肥二质检)如图所示,P 是一颗地球同步卫星,已知地球半径为R ,地球表面处的重力加速度为g ,地球自转周期为T .(1)设地球同步卫星对地球的张角为2θ,求同步卫星的轨道半径r 和sin θ的值.(2)要使一颗地球同步卫星能覆盖赤道上A 、B 之间的区域,∠AOB =π3,则卫星可定位在轨道某段圆弧上,求该段圆弧的长度l (用r 和θ表示).答案精析专题4 万有引力与航天真题示例1.BD [在星球表面有GMm R 2=mg ,所以重力加速度g =GM R 2,地球表面g =GMR 2=9.8 m/s 2,则月球表面g ′=G 181M (13.7R )2=3.7×3.781×GM R 2≈16g ,则探测器重力G =mg ′=1 300×16×9.8N ≈2×103 N ,选项B 正确;探测器自由落体,末速度v =2g ′h ≈43×9.8 m /s ≠8.9 m/s ,选项A 错误;关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,所以机械能不守恒,选项C 错误;在近月轨道运动时万有引力提供向心力,有GM ′mR ′2=m v 2R ′,所以v =G 181M 13.7R = 3.7GM81R< GMR,即在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度,选项D 正确.]2.B [根据万有引力提供向心力,有G Mm r 2=m 4π2T 2r ,可得M =4π2r 3GT2,所以恒星质量与太阳质量之比为M 恒M 太=r 3行T 2地 r 3地T 2行=(120)3×(3654)2≈1,故选项B 正确.]3.B [由G Mm r 2=m 4π2T 2r =ma 知,T =2πr 3GM ,a =GMr2,轨道半径越大,公转周期越大,加速度越小,A 错误,B 正确;由G Mm R 2=mg 得g =G M R 2,g 地g 火=M 地M 火·⎝ ⎛⎭⎪⎫R 火R 地2≈2.6,火星表面的重力加速度较小,C 错误;由G MmR 2=m v 2R 得v =GM R ,v 地v 火= M 地M 火·R 火R 地≈2.2,火星的第一宇宙速度较小,D 错误.]4.(1)23G m 2a 2 (2)7G m 2a 2 (3)74a (4)πa 3Gm解析 (1)由万有引力定律,A 星体所受B 、C 星体引力大小为F BA =G m A m B r 2=G 2m 2a2=F CA方向如图所示则合力大小为F A =F BA ·cos 30°+F CA ·cos 30°=23G m 2a 2(2)同上,B 星体所受A 、C 星体引力大小分别为 F AB =G m A m B r 2=G 2m 2a 2F CB =G m C m B r 2=G m 2a 2方向如图由余弦定理得合力F B =F 2AB +F 2CB -2F AB ·F CB ·cos 120°=7G m 2a2 (3)由于m A =2m ,m B =m C =m通过分析可知,圆心O 在BC 的中垂线AD 的中点 则R C =⎝⎛⎭⎫34a 2+⎝⎛⎭⎫12a 2=74a (4)三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m (2πT )2R C可得T =πa 3Gm考题一 万有引力定律的理解1.C [令地球的密度为ρ,则在地球表面,重力和地球的的万有引力大小相等,有:g =G MR 2.由于地球的质量:M =ρ·43πR 3,所以重力加速度的表达式可写成:g =GM R 2=G ·ρ43πR 3R 2=43πGρR .质量分布均匀的球壳对壳内物体的引力为零,故在深度为d 的地球内部,受到地球的万有引力即为半径等于(R -d )的球体在其表面产生的万有引力,故“蛟龙”号所在处的重力加速度g ′=43πGρ(R -d ),所以有g ′g =R -d R .根据万有引力提供向心力G Mm(R +h )2=ma ,“天宫一号”的加速度为a =GM (R +h )2,所以a g =R 2(R +h )2所以g ′a =(R -d )(R +h )2R 3.]2.C [平抛运动在水平方向上为匀速直线运动,即x =v 0t ,在竖直方向上做自由落体运动,即h =12gt 2,所以x =v 02h g ,两种情况下,抛出的速率相同,高度相同,所以g 行g 地=x 2地x 2行=74,根据公式G Mm R 2=mg 可得R 2=GMg ,故R 行R 地=M 行M 地·g 地g 行=2,解得R 行=2R ,故C 正确.] 3.A [设地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等,有:g =GMR 2.由于地球的质量为M =43πR 3·ρ,所以重力加速度的表达式可写成:g =4πGRρ3.根据题意有,质量分布均匀的球壳对壳内物体的万有引力为零,故在深度为(R -r )的地球内部,受到地球的万有引力即为半径等于r 的球体在其表面产生的万有引力,g ′=4πGρ3r ,当r <R 时,g 与r 成正比,当r >R 后,g 与r 的平方成反比.即质量一定的小物体受到的引力大小F 在地球内部与r 成正比,在外部与r 的平方成反比.]考题二 天体质量和密度的估算4.C [l =Rθ则R =l θ;v =lt“嫦娥三号”绕着月球做匀速圆周运动,F =GMmR 2=m v 2R .代入v 与R ,解之可得M =l 3Gθt2]5.AC [如图,通过木星影区的时间为t ,周期为T ,则:θ2π=tT ,解得:θ=t T ×2π,而R r =sin θ2=sin t πT ,解得:r =RsinπtT ,根据万有引力提供向心力:G Mm r 2=m 4π2T 2r ,解得:M =4π2r 3GT 2=4π2R 3GT 2sin 3πt T ,可求得中心天体的质量,木星的体积V =43πR 3,可得:ρ=MV=3πGT 2sin 3πt T ,故A 正确,B 错误;根据万有引力提供向心力:G Mm r 2=ma =m 4π2T2r ,解得:a =4π2r T 2=4π2RT 2sinπt T ,故C 正确;公式只能计算中心天体的物理量,故D 错误.]6.B [在地球表面,重力等于万有引力,故:mg =G MmR2解得:M =gR 2G .故密度:ρ=M V =gR 2G 43πR 3=3g4πGR同理,月球的密度:ρ0=3g 04πGR 0故地球和月球的密度之比:ρρ0=gR 0g 0R =6×14=32.]考题三 卫星运行参量的分析7.AC [由题图可知两行星半径相同,则体积相同,由a =G Mr 2可知P 1质量大于P 2,则P 1平均密度大于P 2,故A 正确;第一宇宙速度v =GMR,所以P 1的“第一宇宙速度”大于P 2,故B 错误;卫星的向心加速度为a =GM(R +h )2,所以s 1的向心加速度大于s 2,故C 正确;由GMm (R +h )2=m 4π2T 2(R +h )得T =4π2(R +h )3GM,故s 1的公转周期比s 2的小,故D 错误.] 8.B [设彗星的周期为T 1,地球的公转周期为T 2,由开普勒第三定律R 3T 2=k 得:T 1T 2= R 31R 32=183≈76, 可知哈雷彗星的周期大约为76年,240+198676≈29.所以最合理的次数是30次.故B 正确,A 、C 、D 错误.] 9.(1)49g (2) 3gR 2t 236π2-12R解析 (1)在地球表面,万有引力与重力相等,GMm 0R 2=m 0g对火星GM ′m 0R ′2=m 0g ′ 联立解得g ′=49g (2)火星的同步卫星做匀速圆周运动的向心力由火星的万有引力提供,且运行周期与火星自转周期相同.设卫星离火星表面的高度为h ,则GM ′m 0(R ′+h )2=m 0(2πt )2(R ′+h ) 解得:h =3gR 2t 236π2-12R考题四 卫星变轨与对接10.D [由于在P 点推进器向前喷气,故飞行器将做减速运动,由公式G mMr 2=m v 2r 可知,飞行器所需向心力减小,而在P 点万有引力保持不变,故飞行器将开始做近心运动,轨道半径减小.因为飞行器做近心运动,轨道半径减小,故变轨后将沿轨道3运动,故A 错误;根据开普勒行星运动定律知,卫星轨道半径减小,则周期减小,故B 错误;因为变轨过程是飞行器向前喷气过程,故是减速过程,所以变轨前后经过P 点的速度大小不相等,故C 错误;飞行器在P 点都是由万有引力产生加速度,因为在同一点P ,万有引力产生的加速度大小相等,故D 正确.]11.B [根据开普勒第二定律知探测器与水星的连线在相等时间内扫过的面积相同,则知A 点速率大于B 点速率,故A 错误;在圆轨道A 点实施变轨成椭圆轨道是做逐渐远离圆心的运动,要实现这个运动必须万有引力小于飞船所需向心力,所以应给飞船加速,故A 点在轨道Ⅱ上的速度大于在轨道Ⅰ上的速度GMr A,在轨道Ⅱ远地点速度最小为 GMr B,故探测器在轨道Ⅱ上某点的速率在这两数值之间,故可能等于在轨道Ⅰ上的速率GMr A,故B 正确;探测器在轨道Ⅱ上远离水星过程中,引力势能增加,动能减小,故C 错误;探测器在轨道Ⅰ和轨道Ⅱ上A 点所受的万有引力相同,根据F =ma 知加速度大小相同,故D 错误.]考题五 双星与多星问题12.D [两恒星之间的万有引力提供各自做圆周运动的向心力,则有Gm 1m 2L 2=m 1r 1(2πT)2,G m 1m 2L 2=m 2r 2(2πT )2,又L =r 1+r 2,M =m 1+m 2,联立以上各式可得T 2=4π2L 3GM ,故当两恒星总质量变为kM ,两星间距变为nL 时,圆周运动的周期T ′变为n 3kT .] 13.C [三星中其中两颗对另外一颗星的万有引力的合力来提供向心力,由于是等边三角形,所以每个角都是60°,根据万有引力提供向心力G m 2L 2×2cos 30°=mω2r ,其中r =L 3,得出ω=3Gm L 3,所以A 项错误;根据G m 2L 2×2cos 30°=ma n ,得出向心加速度的表达式a n = 3GmL 2,圆周运动的加速度与三星的质量有关,所以B 项错误;根据G m 2L 2×2cos 30°=m 4π2T 2r ,解出周期的表达式T =4π2L 33Gm,距离L 和每颗星的质量m 都变为原来的2倍,周期为T ′= 4π3(2L )33G (2m )=2T ,所以C 项正确;根据G m 2L 2×2cos 30°=m v 2r 得出v =GmL,若距离L 和每颗星的质量m 都变为原来的2倍,线速度不变,所以D 项错误.]专题综合练1.D [因空间站建在拉格朗日点,故其周期等于月球的周期,根据a =4π2T2r 可知,a 2>a 1,。

高考物理万有引力与航天试题(有答案和解析)

高考物理万有引力与航天试题(有答案和解析)

高考物理万有引力与航天试题(有答案和解析)一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。

着陆器到达距火星表面高度800m 时速度为60m/s ,在着陆器底部的火箭助推器作用下开始做匀减速直线运动;当高度下降到距火星表面100m 时速度减为10m/s 。

该过程探测器沿竖直方向运动,不计探测器质量的变化及火星表面的大气阻力,已知火星的质量和半径分别为地球的十分之一和二分之一,地球表面的重力加速度为g = 10m/s 2。

求:(1)火星表面重力加速度的大小; (2)火箭助推器对洞察号作用力的大小.【答案】(1)2=4m/s g 火 (2)F =260N 【解析】 【分析】火星表面或地球表面的万有引力等于重力,列式可求解火星表面的重力加速度;根据运动公式求解下落的加速度,然后根据牛顿第二定律求解火箭助推器对洞察号作用力. 【详解】(1)设火星表面的重力加速度为g 火,则2=M m Gmg r火火火2=M mGmg r 地地解得g 火=0.4g=4m/s 2(2)着陆下降的高度:h=h 1-h 2=700m ,设该过程的加速度为a ,则v 22-v 12=2ah 由牛顿第二定律:mg 火-F=ma 解得F=260N3.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)1v =【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R=,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为1v =4.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度0v 竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求: (1)行星的半径R ;(2)小石子能上升的最大高度. 【答案】(1)R = (2)202v h g =【解析】(1)对行星表面的某物体,有:2GMmmg R=-得:R =(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:2002v gh =-+得:202v h g=5.侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全部都拍摄下来,卫星在通过赤道上空时,卫星上的摄影像机至少应拍地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T .【答案】l =【解析】 【分析】 【详解】设卫星周期为1T ,那么:22214()()Mm m R h G R h T π+=+, ① 又2MmGmg R=, ② 由①②得1T =设卫星上的摄像机至少能拍摄地面上赤道圆周的弧长为l ,地球自转周期为T ,要使卫星在一天(地球自转周期)的时间内将赤道各处的情况全都拍摄下来,则12TlR T π⋅=. 所以23124()RT h R l T Tgππ+==. 【点睛】摄像机只要将地球的赤道拍摄全,便能将地面各处全部拍摄下来;根据万有引力提供向心力和万有引力等于重力求出卫星周期;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再根据弧长与圆心角的关系求解.6.利用万有引力定律可以测量天体的质量. (1)测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g ,地球半径为R ,引力常量为G .若忽略地球自转的影响,求地球的质量. (2)测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O 做匀速圆周运动的两个星球A 和B ,如图所示.已知A 、B 间距离为L ,A 、B 绕O 点运动的周期均为T ,引力常量为G ,求A 、B 的总质量.(3)测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统”.已知月球的公转周期为T 1,月球、地球球心间的距离为L 1.你还可以利用(1)、(2)中提供的信息,求月球的质量.【答案】(1)2gR G ;(2)2324L GT π;(3)2321214L gR GT G π-. 【解析】 【详解】(1)设地球的质量为M ,地球表面某物体质量为m ,忽略地球自转的影响,则有2Mm G mg R =解得:M =2gR G; (2)设A 的质量为M 1,A 到O 的距离为r 1,设B 的质量为M 2,B 到O 的距离为r 2, 根据万有引力提供向心力公式得:2121122()M M G M r L Tπ=, 2122222()M M GM r L T π=, 又因为L =r 1+r 2解得:231224L M M GTπ+=; (3)设月球质量为M 3,由(2)可知,2313214L M M GT π+=由(1)可知,M =2gR G解得:23213214L gR M GT Gπ=-7.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。

高考物理 热点4 万有引力与航天

高考物理 热点4 万有引力与航天

热点4万有引力与航天考向一星球表面重力与引力的关系【典例】(2022·山东等级考)“羲和号”是我国首颗太阳探测科学技术试验卫星。

如图所示,该卫星围绕地球的运动视为匀速圆周运动①,轨道平面与赤道平面接近垂直。

卫星每天在相同时刻,沿相同方向经过地球表面A点正上方,恰好绕地球运行n圈②。

已知地球半径为地轴R,自转周期为T,地球表面重力加速度为g③,则“羲和号”卫星轨道距地面高度为()A.(gR2T22n2π2)13-R B.(gR2T22n2π2)13 C.(gR2T24n2π2)13-R D.(gR2T24n2π2)13【审题思维】题眼直击信息转化①万有引力全部提供圆周运动向心力②地球自转周期是卫星周期的n倍③黄金代换GM=gR2涉及地球自转问题的解题流程1.维度:万有引力定律的应用理论上已经证明:质量分布均匀的球壳对壳内物体的万有引力为零。

现假设地球是一半径为R 、质量分布均匀的实心球体,O 为球心,以O 为原点建立坐标轴Ox ,如图所示,一个质量一定的小物体(假设它能够在地球内部移动)在x 轴上各位置受到的引力大小用F 表示,则选项所示的四个F 随x 变化的关系图像中正确的是 ( )2.维度:万有引力定律在火星上的应用“祝融号”火星车搭载着陆平台着陆火星,如图所示为着陆后火星车与着陆平台分离后的“自拍”合影。

着陆火星的最后一段过程为竖直方向的减速运动,且已知火星质量约为地球质量的110,火星直径约为地球直径的12。

则 ( )A .该减速过程火星车处于失重状态B .该减速过程火星车对平台的压力大于平台对火星车的支持力C .火星车在火星表面所受重力约为在地球表面所受重力的25D .火星的第一宇宙速度与地球第一宇宙速度之比约为15考向二 天体质量和密度【典例】(2021·全国乙卷)科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置①如图所示。

专题6 万有引力与航天(解析版)

专题6 万有引力与航天(解析版)

专题6 万有引力与航天一.选择题1. (2021新高考福建)两位科学家因为在银河系中心发现了一个超大质量的致密天体而获得了2020年诺贝尔物理学奖.他们对一颗靠近银河系中心的恒星2S 的位置变化进行了持续观测,记录到的2S 的椭圆轨道如图所示.图中O 为椭圆的一个焦点,椭圆偏心率(离心率)约为0.87.P 、Q 分别为轨道的远银心点和近银心点,Q 与O 的距离约为120AU (太阳到地球的距离为1AU ),2S 的运行周期约为16年.假设2S 的运动轨迹主要受银河系中心致密天体的万有引力影响,根据上述数据及日常的天文知识,可以推出A.2S 与银河系中心致密天体的质量之比B.银河系中心致密天体与太阳的质量之比C.2S 在P 点与Q 点的速度大小之比D.2S 在P 点与Q 点的加速度大小之比【答案】B D【解析】设银河系中心超大质量的致密天体质量为M 银心,恒星2S 绕银河系中心(银心)做椭圆轨道运动的椭圆半长轴为a ,半焦距为c ,根据题述Q 与O 的距离约为120AU ,可得a-c=120AU ,又有椭圆偏心率(离心率)约为c/a=0.87.联立可以解得a 和c ,设想恒星S2绕银心做半径为a 的匀速圆周运动,由开普勒第三定律可知周期也为TS2,因此G 22S M m a 银心=mS2a (22S T π)2,对地球围绕太阳运动,有G 2M m r 太阳地=m 地a (12T π)2,而a=120r ,TS2=16T1,联立可解得银河系中心致密天体与太阳的质量之比,不能得出2S 与银河系中心致密天体的质量之比,选项A 错误B 正确;由于远银心点和近银心点轨迹的曲率半径相同,设为ρ,恒星S2在远银心点,由万有引力提供向心力,G()22S M m a c +银心=mS22Pv ρ,在近银心点由万有引力提供向心力,G()22S M m a c -银心=mS22Qv ρ,联立可解得2S 在P 点与Q 点的速度大小之比为P Qv v =a ca c -+,选项C 正确;在远银心点和近银心点,由万有引力定律和牛顿第二定律,分别有G()22S M m a c +银心=mS2aP ,G()22S M m a c -银心=mS2aQ ,联立可解得2S 在P 点与Q 点的加速度大小之比为P Qa a =()()22a c a c -+,选项D 正确。

万有引力与航天专题(2024高考真题及解析)

万有引力与航天专题(2024高考真题及解析)

万有引力与航天专题1.[2024·安徽卷] 2024年3月20日,我国探月工程四期鹊桥二号中继星成功发射升空.当抵达距离月球表面某高度时,鹊桥二号开始进行近月制动,并顺利进入捕获轨道运行,如图所示,轨道的半长轴约为51 900 km.后经多次轨道调整,进入冻结轨道运行,轨道的半长轴约为9900 km,周期约为24 h.则鹊桥二号在捕获轨道运行时()A.周期约为144 hB.近月点的速度大于远月点的速度C.近月点的速度小于在冻结轨道运行时近月点的速度D.近月点的加速度大于在冻结轨道运行时近月点的加速度1.B[解析] 冻结轨道和捕获轨道的中心天体是月球,根据开普勒第三定律得T12R13=T22R23,整理得T2=T1√R23R13≈288 h,A错误;根据开普勒第二定律得,鹊桥二号在捕获轨道运行时在近月点的速度大于在远月点的速度,B正确;在近月点从捕获轨道到冻结轨道变轨时,鹊桥二号需要减速进行近月制动,故鹊桥二号在捕获轨道近月点的速度大于在冻结轨道运行时近月点的速度,C错误;在两轨道的近月点所受的万有引力相同,根据牛顿第二定律可知,在捕获轨道运行时近月点的加速度等于在冻结轨道运行时近月点的加速度,D错误.2.[2024·北京卷] 科学家根据天文观测提出宇宙膨胀模型:在宇宙大尺度上,所有的宇宙物质(星体等)在做彼此远离运动,且质量始终均匀分布,在宇宙中所有位置观测的结果都一样.以某一点O为观测点,以质量为m的小星体(记为P)为观测对象.当前P到O点的距离为r0,宇宙的密度为ρ0.(1)求小星体P远离到2r0处时宇宙的密度ρ;(2)以O点为球心,以小星体P到O点的距离为半径建立球面.P受到的万有引力相当于球内质量集中于O点对P的引力.已知质量为m1和m2、距离为R的两个质点间的引力势能E p=-G m1m2R,G为引力常量.仅考虑万有引力和P远离O点的径向运动.①求小星体P从r0处远离到2r0处的过程中动能的变化量ΔE k;②宇宙中各星体远离观测点的速率v满足哈勃定律v=Hr,其中r为星体到观测点的距离,H为哈勃系数.H与时间t有关但与r无关,分析说明H随t增大还是减小.2.(1)18ρ0 (2)①-23G πρ0m r 02 ②H 随t 增大而减小[解析] (1)在宇宙中所有位置观测的结果都一样,则小星体P 运动前后距离O 点半径为r 0和2r 0的球内质量相同,即ρ0·43πr 03=ρ·43π(2r 0)3解得小星体P 远离到2r 0处时宇宙的密度ρ=18ρ0(2)①此球内的质量M =ρ0·43πr 03 P 从r 0处远离到2r 0处,由能量守恒定律得 动能的变化量ΔE k =-G Mmr 0-(-GMm 2r 0)=-23G πρ0m r 02 ②由①知星体的速度随r 0增大而减小,星体到观测点距离越大运动时间t 越长,由v =Hr知,H 减小,故H 随t 增大而减小3.[2024·甘肃卷] 小杰想在离地表一定高度的天宫实验室内,通过测量以下物理量得到天宫实验室轨道处的重力加速度,可行的是 ( ) A .用弹簧测力计测出已知质量的砝码所受的重力 B .测量单摆摆线长度、摆球半径以及摆动周期 C .从高处释放一个重物,测量其下落高度和时间D .测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径3.D [解析] 在天宫实验室内,物体处于完全失重状态,重力提供了物体绕地球做匀速圆周运动的向心力,故A 、B 、C 中的实验均无法得到天宫实验室轨道处的重力加速度;物体所受的万有引力提供物体绕地球做匀速圆周运动的向心力,有mg =G Mm r 2=m 4π2T 2r ,整理得轨道处的重力加速度为g =4π2T 2r ,故通过测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径可行,D 正确.4.(多选)[2024·广东卷] 如图所示,探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以60 m/s 的速度竖直匀速下落.此时启动“背罩分离”,探测器与背罩断开连接,背罩与降落伞保持连接.已知探测器质量为1000 kg,背罩质量为50 kg,该行星的质量和半径分别为地球的110和12.地球表面重力加速度大小g 取10 m/s 2.忽略大气对探测器和背罩的阻力.下列说法正确的有 ( )A .该行星表面的重力加速度大小为4 m/s 2B .该行星的第一宇宙速度为7.9 km/sC .“背罩分离”后瞬间,背罩的加速度大小为80 m/s 2D .“背罩分离”后瞬间,探测器所受重力对其做功的功率为30 kW4.AC [解析] 设地球的质量为M ,半径为R ,行星的质量为M',半径为R',在星球表面可近似认为物体所受重力等于其所受万有引力,有GMm R2=mg ,可得GM =gR 2,同理,在该行星表面有GM'=g'R'2,联立得该星球表面的重力加速度g'=M 'R 2MR '2g =110×22×10 m/s 2=4 m/s 2,A 正确;地球的第一宇宙速度v =√GMR=7.9 km/s,则该行星的第一宇宙速度v'=√GM 'R '=√15×GM R =√15×7.9 km/s,B 错误;探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以v =60 m/s 的速度竖直匀速下落,此时背罩受到降落伞的拉力F =(m 探+m 背)g'=4200 N,“背罩分离”后瞬间,由牛顿第二定律有F -m 背g'=m 背a ,解得背罩的加速度大小为a =80 m/s 2,C 正确;“背罩分离”后瞬间,探测器所受重力对其做功的功率为P =m 探g'v =1000×4×60 W=2.4×105 W=240 kW,D 错误.5.[2024·广西卷] 潮汐现象出现的原因之一是在地球的不同位置海水受到月球的引力不相同.图中a 、b 和c 处单位质量的海水受月球引力大小在( )A .a 处最大B .b 处最大C .c 处最大D .a 、c 处相等,b 处最小5.A [解析] 根据万有引力公式F =G Mm R 2,可知图中a 处单位质量的海水受到月球的引力最大,故选A .6.[2024·海南卷] 神舟十七号载人飞船返回舱于2024年4月30日在东风着陆场成功着陆,在飞船返回至离地面十几公里时打开主伞飞船快速减速,返回舱速度大大减小,在减速过程中()A.返回舱处于超重状态B.返回舱处于失重状态C.主伞的拉力不做功D.重力对返回舱做负功6.A[解析] 返回舱在减速过程中,加速度竖直向上,处于超重状态,故A正确,B错误;主伞的拉力与返回舱运动方向相反,对返回舱做负功,故C错误;返回舱的重力与返回舱运动方向相同,重力对返回舱做正功,故D错误.7.[2024·海南卷] 嫦娥六号进入环月圆轨道,周期为T,轨道高度与月球半径之比为k,引力常量为G,则月球的平均密度为 ()A.3π(1+k)3GT2k3B.3πGT2C.π(1+k)3GT2k D.3πGT2(1+k)37.D[解析] 设月球半径为R,质量为M,对嫦娥六号,根据万有引力提供向心力得G Mm [(k+1)R]2=m4π2T2·(k+1)R,月球的体积V=43πR3,月球的平均密度ρ=MV,联立可得ρ=3πGT2(1+k)3,故选D.8.(多选)[2024·河北卷] 2024年3月20日,“鹊桥二号”中继星成功发射升空,为“嫦娥六号”在月球背面的探月任务提供地月间中继通讯.“鹊桥二号”采用周期为24 h的环月椭圆冻结轨道(如图所示),近月点A距月心约为2.0×103 km,远月点B距月心约为1.8×104 km,CD 为椭圆轨道的短轴,下列说法正确的是()A.“鹊桥二号”从C经B到D的运动时间为12 hB.“鹊桥二号”在A、B两点的加速度大小之比约为81∶1C.“鹊桥二号”在C、D两点的速度方向垂直于其与月心的连线D.“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s8.BD[解析] “鹊桥二号”围绕月球沿椭圆轨道运动,根据开普勒第二定律可知,在近地点A处的速度最大,在远地点B处的速度最小,则从C→B→D的平均速率小于从D→A→C 的平均速率,所以从C→B→D的运动时间大于半个周期,即大于12 h,A错误;在A点,根据牛顿第二定律有G Mm(r OA)2=ma A,在B点,根据牛顿第二定律有G Mm(r OB)2=ma B,联立解得“鹊桥二号”在A、B两点的加速度大小之比约为a A∶a B=81∶1,B正确;物体做曲线运动时速度方向沿该点的切线方向,所以“鹊桥二号”在C、D两点的速度方向不垂直于其与月心的连线,C错误;“鹊桥二号”发射后围绕月球沿椭圆轨道运动,并未脱离地球引力束缚,所以“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s,D正确.9.[2024·湖北卷] 太空碎片会对航天器带来危害.设空间站在地球附近沿逆时针方向做匀速圆周运动,如图中实线所示.为了避开碎片,空间站在P点向图中箭头所指径向方向极短时间喷射气体,使空间站获得一定的反冲速度,从而实现变轨.变轨后的轨道如图中虚线所示,其半长轴大于原轨道半径.则()A.空间站变轨前、后在P点的加速度相同B.空间站变轨后的运动周期比变轨前的小C.空间站变轨后在P点的速度比变轨前的小D.空间站变轨前的速度比变轨后在近地点的大9.A[解析] 空间站在P点变轨前、后所受到的万有引力不变,根据牛顿第二定律可知F 万=ma加,则空间站变轨前、后在P点的加速度相同,故A正确;空间站的圆轨道运动可以看作特殊的椭圆轨道运动,因为变轨后其轨道半长轴大于原轨道半径,根据开普勒第三定律可知a 2T2=k,则空间站变轨后的运动周期比变轨前的大,故B错误;变轨后在P点获得方向沿径向指向地球的反冲速度,与原来做圆周运动的速度合成,合速度大于原来的速度,故C错误;由于空间站变轨后在P点的速度比变轨前的大,但变轨后在P点的速度比同一轨道上在近地点的速度小,所以空间站变轨前的速度比变轨后在近地点的小,故D错误.10.(多选)[2024·湖南卷] 2024年5月3日,“嫦娥六号”探测器顺利进入地月转移轨道,正式开启月球之旅.相较于“嫦娥四号”和“嫦娥五号”,本次的主要任务是登陆月球背面进行月壤采集,并通过升空器将月壤转移至绕月运行的返回舱,返回舱再通过返回轨道返回地球.设返回舱绕月运行的轨道为圆轨道,半径近似为月球半径.已知月球表面重力加速度约为地球表面的16,月球半径约为地球半径的14.关于返回舱在该绕月轨道上的运动,下列说法正确的是( )A .其相对于月球的速度大于地球第一宇宙速度B .其相对于月球的速度小于地球第一宇宙速度C .其绕月飞行周期约为地球上近地圆轨道卫星周期的√23倍 D .其绕月飞行周期约为地球上近地圆轨道卫星周期的√32倍10.BD [解析] 返回舱绕月运行的轨道为圆轨道,半径近似为月球半径,则由万有引力提供向心力,有GM 月m r 月2=mv 月2r 月,根据在月球表面万有引力和重力的关系有GM 月m r 月2=mg 月,联立解得v 月=√g 月r 月,由于第一宇宙速度为近地卫星的环绕速度,同理可得v 地=√g 地r 地,则v 月v 地=√g 月g 地·r 月r 地=√16×14=√612,所以v 月<v 地,故A 错误,B 正确;根据线速度和周期的关系有T =2πv ·r ,则T 月T 地=r 月r 地·v 地v 月=14×√6=√32,故C 错误,D 正确.11.[2024·江西卷] “嫦娥六号”探测器于2024年5月8日进入环月轨道,后续经调整环月轨道高度和倾角,实施月球背面软着陆.当探测器的轨道半径从r 1调整到r 2时(两轨道均可视为圆形轨道),其动能和周期从E k1、T 1分别变为E k2、T 2.下列选项正确的是 ( )A .E k1E k2=r 2r 1,T 1T 2=√r 13√r 2B .E k1E k2=r 1r 2,T 1T 2=√r 13√r 2C .E k1E k2=r 2r 1,T 1T 2=√r 23√r 1D .E k1E k2=r 1r 2,T 1T 2=√r 23√r 1311.A [解析] 探测器环月运行,由万有引力提供向心力有G Mmr 2=m v 2r ,得v 2=GMr,其中M 为月球质量,m 为“嫦娥六号”质量,动能E k =12mv 2,则E k1E k2=r2r 1,B 、D错误;同理,由G Mm r 2=m 4π2T2r得T =√4π2r 3GM ,则T 1T 2=√r 13r 23,A 正确,C 错误.12.[2024·辽宁卷] 如图甲所示,将一弹簧振子竖直悬挂,以小球的平衡位置为坐标原点O ,竖直向上为正方向,建立x 轴.若将小球从弹簧原长处由静止释放,其在地球与某球状天体表面做简谐运动的图像如图乙所示(不考虑自转影响).设地球、该天体的平均密度分别为ρ1和ρ2,地球半径是该天体半径的n 倍,ρ1ρ2的值为 ( )A .2nB .n 2C .2n D .12n12.C [解析] 设地球表面的重力加速度为g ,球状天体表面的重力加速度为g',弹簧的劲度系数为k ,根据简谐运动的对称性有k ·4A -mg =mg ,k ·2A -mg'=mg',解得gg '=2,设球状天体的半径为R ,则地球的半径为nR ,在地球表面有G ρ1·43π(nR )3·m(nR )2=mg ,在球状天体表面有G ρ2·43πR 3·mR 2=mg',联立解得ρ1ρ2=2n,故C 正确.13.[2024·全国甲卷] 2024年5月,“嫦娥六号”探测器发射成功,开启了人类首次从月球背面采样返回之旅.将采得的样品带回地球,飞行器需经过月面起飞、环月飞行、月地转移等过程.月球表面自由落体加速度约为地球表面自由落体加速度的16.下列说法正确的是 ( )A .在环月飞行时,样品所受合力为零B .若将样品放置在月球正面,它对月球表面压力等于零C .样品在不同过程中受到的引力不同,所以质量也不同D .样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小13.D [解析] 在环月飞行时,样品所受合力提供所需的向心力,不为零,故A 错误;若将样品放置在月球正面,则它处于平衡状态,它对月球表面压力大小等于它在月球表面的重力大小,由于月球表面自由落体加速度约为地球表面自由落体加速度的16,则样品在地球表面的重力大于在月球表面的重力,所以样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小,故B 错误,D 正确;样品在不同过程中受到的引力不同,但样品的质量不变,故C 错误.14.[2024·山东卷] “鹊桥二号”中继星环绕月球运行,其24小时椭圆轨道的半长轴为a.已知地球同步卫星的轨道半径为r ,则月球与地球质量之比可表示为 ( )A .√r 3a 3 B .√a 3r3C .r 3a3 D .a 3r314.D [解析] “鹊桥二号”中继星环绕月球运动的24小时椭圆轨道的半长轴为a ,则其24小时圆轨道的半径也为a ,由万有引力提供向心力得G M 月m 中a 2=m 中(2πT )2a ,对地球同步卫星,由万有引力提供向心力得GM 地m 同r 2=m 同(2πT )2r ,联立解得M 月M 地=a 3r 3,D 正确.15.[2024·新课标卷] 天文学家发现,在太阳系外的一颗红矮星有两颗行星绕其运行,其中行星GJ1002c 的轨道近似为圆,轨道半径约为日地距离的0.07倍,周期约为0.06年,则这颗红矮星的质量约为太阳质量的 ( ) A .0.001倍 B .0.1倍 C .10倍 D .1000倍15.B [解析] 设红矮星的质量为M 1,行星GJ1002c 的质量为m 1,轨道半径为r 1,运动周期为T 1;太阳的质量为M 2,地球的质量为m 2,日地距离为r 2,地球运动的周期为T 2;根据万有引力定律提供向心力有GM 1m 1r 12=m 14π2T 12r 1,G M 2m 2r 22=m 24π2T 22r 2,联立可得M 1M 2=(r 1r 2)3·(T 2T 1)2,由于行星GJ1002c 的轨道半径约为日地距离的0.07倍,周期约为0.06年,可得M 1M 2≈0.0730.062≈0.1,选B 正确.16.[2024·浙江6月选考] 与地球公转轨道“外切”的小行星甲和“内切”的小行星乙的公转轨道如图所示,假设这些小行星与地球的公转轨道都在同一平面内,地球的公转半径为R ,小行星甲的远日点到太阳的距离为R 1,小行星乙的近日点到太阳的距离为 R 2,则 ( )A .小行星甲在远日点的速度大于近日点的速度B .小行星乙在远日点的加速度小于地球公转加速度C .小行星甲与乙的运行周期之比T1T 2=√R 13R 23D .甲、乙两行星从远日点到近日点的时间之比t 1t 2=√(R 1+R)3(R 2+R)316.D [解析] 由开普勒第二定律知小行星甲在远日点的速度小于在近日点的速度,A 错误;小行星乙在远日点到太阳的距离与地球到太阳的距离相等,由G Mmr 2=ma 可知,小行星乙在远日点的加速度和地球公转加速度大小相等,B 错误;根据开普勒第三定律有(R 1+R 2)3T 12=(R 2+R 2)3T 22,解得T 1T 2=√(R 1+R)3(R 2+R)3,C错误;甲、乙两行星从远日点到近日点的时间之比t 1t 2=T 12T 22=√(R 1+R)3(R 2+R)3,D 正确.。

高考专题-万有引力与航天

高考专题-万有引力与航天

高考专题-万有引力与航天1.题型特点关于万有引力定律及应用知识的考查,主要表现在两个方面:(1)天体质量和密度的计算:主要考查对万有引力定律、星球表面重力加速度的理解和计算.(2)人造卫星的运行及变轨:主要是结合圆周运动的规律、万有引力定律,考查卫星在轨道运行时线速度、角速度、周期的计算,考查卫星变轨运行时线速度、角速度、周期以及有关能量的变化.以天体问题为背景的信息题,更是受专家的青睐.高考中一般以选择题的形式呈现.2.命题趋势从命题趋势上看,对本部分内容的考查仍将延续与生产、生活以及航天科技相结合,形成新情景的物理题.1.(多选)(2015·新课标全国Ⅰ·21)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s2.则此探测器()A.在着陆前的瞬间,速度大小约为8.9 m/sB.悬停时受到的反冲作用力约为2×103 NC.从离开近月圆轨道到着陆这段时间内,机械能守恒D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度2.(2015·江苏单科·3)过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕.“51 peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的120,该中心恒星与太阳的质量比约为()A.110B.1 C.5 D.103.(2015·四川理综·5)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( )A.火星的公转周期较小B .火星做圆周运动的加速度较小C .火星表面的重力加速度较大D .火星的第一宇宙速度较大4.(2015·安徽理综·24)由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m 、B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .考题一 万有引力定律的理解1.(2015·安康二模)由中国科学院、中国工程院两院院士评出的2012年中国十大科技进展新闻,于2013年1月19日揭晓,“神九”载人飞船与“天宫一号”成功对接和“蛟龙”号下潜突破7 000米分别排在第一、第二.若地球半径为R ,把地球看做质量分布均匀的球体.“蛟龙”下潜深度为d ,天宫一号轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的加速度之比为( ) A.R -d R +h B.(R -d )2(R +h )2 C.(R -d )(R +h )2R 3D.(R -d )(R +h )R 22.(2015·海南单科·6)若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7,已知该行星质量约为地球的7倍,地球的半径为R .由此可知,该行星的半径约为( ) A.12R B.72R C .2R D.72R3.(2015·崇明模拟)理论上已经证明:质量分布均匀的球壳对壳内物体的万有引力为零.现假设地球是一半径为R 、质量分布均匀的实心球体,O 为球心,以O 为原点建立坐标轴Ox ,如图所示.一个质量一定的小物体(假设它能够在地球内部移动)在x 轴上各位置受到的引力大小用F 表示,则选项所示的四个F 随x 变化的关系图正确的是( )1.辨析下列说法的正误: 由F 万=G m 1m 2r2得①r →∞时,F 万=0( √ ) ②r →0时,F 万=∞( × ) 2.万有引力定律的适用条件: (1)可以看成质点的两个物体之间. (2)质量分布均匀的球体之间.(3)质量分布均匀的球体与球外质点之间.考题二 天体质量和密度的估算4.(2015·湖南五市十校5月模拟)如图3所示,“嫦娥三号”的环月轨道可近似看成是圆轨道,观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t 通过的弧长为l ,该弧长对应的圆心角为θ弧度.已知万有引力常量为G ,则月球的质量是( ) A.l 2Gθ3t B.θ3Gl 2t C.l 3Gθt 2D.t 2Gθl35.(多选)(2015·淮安四模)木卫一是最靠近木星的卫星,丹麦天文学家罗迈最早在十七世纪通过对木卫一的观测测出了光速.如图所示,他测量了木卫一绕木星的运动周期T 和通过木星影区的时间t .若已知木星的半径R 和万有引力常量G ,T 远小于木星绕太阳的运行周期,根据以上条件可以求出( ) A .木星的密度B .木卫一的密度C .木卫一绕木星运动的向心加速度大小D .木卫一表面的重力加速度大小6.(2015·安阳二模)嫦娥五号探测器由轨道器、返回器、着陆器等多个部分组成.探测器预计在2017年由长征五号运载火箭在中国文昌卫星发射中心发射升空,自动完成月面样品采集,并从月球起飞,返回地球,带回约2 kg 月球样品.某同学从网上得到一些信息,如表格中的数据所示.请根据题意,判断地球和月球的密度之比为( ) A.23B.32C .4D .6估算天体质量的两种方法:1.如果不考虑星球的自转,星球表面的物体所受重力等于星球对它的万有引力. mg =G Mm R 2 M =gR 2G2.利用绕行星运转的卫星,F 万提供向心力.G Mm r 2=m 4π2T 2·rM =4π2r 3GT 2特例:若为近地面卫星r =Rρ=M V =3πGT2 考题三 卫星运行参量的分析7.(多选)(2015·天津·8)P 1、P 2为相距遥远的两颗行星,距各自表面相同高度处各有一颗卫星s 1、s 2做匀速圆周运动.图中纵坐标表示行星对周围空间各处物体的引力产生的加速度a ,横坐标表示物体到行星中心的距离r 的平方,两条曲线分别表示P 1、P 2周围的a 与r 2的反比关系,它们左端点横坐标相同.则( )A .P 1的平均密度比P 2的大B .P 1的“第一宇宙速度”比P 2的小C .s 1的向心加速度比s 2的大D .s 1的公转周期比s 2的大8.(2015·武汉四月调研)17世纪,英国天文学家哈雷跟踪过一颗慧星,他算出这颗彗星轨道的半长轴约等于地球公转半径的18倍,并预言这颗慧星将每隔一定的时间飞临地球,后来哈雷的预言得到证实,该慧星被命名为哈雷慧星.哈雷彗星围绕太阳公转的轨道是一个非常扁的椭圆,如图所示.从公元前240年起,哈雷彗星每次回归,中国均有记录,它最近一次回归的时间是1986年.从公元前240年至今,我国关于哈雷慧星回归记录的次数,最合理的是( )A .24次B .30次C .124次D .319次9.(2015·襄阳模拟)我国志愿者王跃曾与俄罗斯志愿者一起进行“火星-500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的12,质量是地球质量的19.已知地球表面的重力加速度是g ,地球的半径为R ,忽略火星以及地球自转的影响,求: (1)火星表面的重力加速度g ′的大小;(2)王跃登陆火星后,经测量,发现火星上一昼夜的时间为t ,如果要发射一颗火星的同步卫星,它正常运行时距离火星表面将有多远?1.基本规律F 万=G Mm r 2=ma n =m v 2r =mω2·r =m 4π2T 2·r得:a n =GMr2,v =GMr,ω= GMr 3,T = 4π2r 3GMr 时(a n 、v 、ω) ,T 2.宇宙速度(1)v Ⅰ=gR =GMR=7.9 km/s ①最小的发射速度.②(近地面)最大的环绕速度. (2)v Ⅱ=2v Ⅰ=11.2 km/s. (3)v Ⅲ=16.7 km/s.考题四 卫星变轨与对接10.(2015·扬州模拟)如图7所示,有一飞行器沿半径为r 的圆轨道1绕地球运动.该飞行器经过P 点时,启动推进器短时间向前喷气可使其变轨,2、3是与轨道1相切于P 点的可能轨道,则飞行器( ) A .变轨后将沿轨道2运动 B .相对于变轨前运行周期变长C .变轨前、后在两轨道上经P 点的速度大小相等D .变轨前、后在两轨道上经P 点的加速度大小相等11.(2015·黄冈八校第二次联考)美国宇航局的“信使”号水星探测器按计划将在2015年3月份陨落在水星表面.工程师找到了一种聪明的办法,能够使其寿命再延长一个月.这个办法就是通过向后释放推进系统中的高压氦气来提升轨道.如图所示,设释放氦气前,探测器在贴近水星表面的圆形轨道Ⅰ上做匀速圆周运动,释放氦气后探测器进入椭圆轨道Ⅱ上,忽略探测器在椭圆轨道上所受外界阻力.则下列说法正确的是( ) A .探测器在轨道Ⅱ上A 点运行速率小于在轨道Ⅱ上B 点速率B .探测器在轨道Ⅱ上某点的速率可能等于在轨道Ⅰ上的速率C .探测器在轨道Ⅱ上远离水星过程中,引力势能和动能都减少D .探测器在轨道Ⅰ和轨道Ⅱ上A 点加速度大小不同1.变轨问题中,各物理量的变化(1)当v 增大时,所需向心力m v 2r 增大,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由v =GMr知其运行速度要减小,但重力势能、机械能均增加.(2)当卫星的速度突然减小时,向心力m v 2r 减小,即万有引力大于卫星所需的向心力,因此卫星将做向心运动,同样会脱离原来的圆轨道,轨道半径变小,进入新轨道运行时由v = GM r知运行速度将增大,但重力势能、机械能均减少. 2.规律总结(1)卫星变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v =GMr判断. (2)卫星绕过不同轨道上的同一点(切点)时,其加速度大小关系可用F =GMmr2=ma 比较得出.考题五 双星与多星问题12.(2015·上饶三模)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此圆周运动的周期为( ) A.nk T B.n 2k T C.n 3k 2T D.n 3kT 13.(2015·衡水高三下学期期中)宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为L ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,万有引力常量为G ,下列说法正确的是( )A .每颗星做圆周运动的角速度为3GmL 3B .每颗星做圆周运动的加速度与三星的质量无关C .若距离L 和每颗星的质量m 都变为原来的2倍,则周期变为原来的2倍D .若距离L 和每颗星的质量m 都变为原来的2倍,则线速度变为原来的4倍1.双星系统具有如下特点:(1)它们以相互间的万有引力来提供向心力. (2)它们共同绕它们连线上某点做圆周运动. (3)它们的周期、角速度相同. (4)r 、a n 、v 与m 成反比. 2.N 星系统(1)向心力由其他星对该星万有引力的合力提供.(力的矢量合成) (2)转动的星的T (ω)相等. 注意:运算过程中的几何关系.专题综合练1.(2015·山东理综·15)如图1所示,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动.以a 1、a 2分别表示该空间站和月球向心加速度的大小,a 3表示地球同步卫星向心加速度的大小.以下判断正确的是( ) A .a2>a 3>a 1 B .a 2>a 1>a 3 C .a 3>a 1>a 2D .a 3>a 2>a 12.(多选)(2015·揭阳质检)已知引力常量G 、月球中心到地球中心的距离r 和月球绕地球运行的周期T .仅利用这三个数据,可以估算的物理量有( ) A .地球的质量 B .地球的密度 C .地球的半径D .月球绕地球运行速度的大小3.(2015·泰安二模)设地球半径为R ,质量为m 的卫星在距地面R 高处做匀速圆周运动,地面的重力加速度为g ,则( ) A .卫星的线速度为gR2B .卫星的角速度为 g 4RC .卫星的加速度为g2D .卫星的周期为4πR g4.(2015·雅安三诊)2015年3月5日,国务院总理李克强在十二届全国人民代表大会上所作的政府工作报告中提到:“超级计算、探月工程、卫星应用等重大科研项目取得新突破”,并对我国航天事业2014年取得的发展进步给予了充分肯定.若已知地球半径为R 1,赤道上物体随地球自转的向心加速度为a 1,第一宇宙速度为v 1;地球同步卫星的轨道半径为R 2,向心加速度为a 2,运动速率为v 2,判断下列比值正确的是( ) A.a 1a 2=R 1R 2 B.a 1a 2=(R 1R 2)2 C.v 1v 2=R 1R 2D.v 1v 2= R 1R 25.(2015·龙岩市5月模拟)如图所示,一个质量均匀分布的星球,绕其中心轴PQ 自转,AB 与PQ 是互相垂直的直径.星球在A 点的重力加速度是P 点的90%,星球自转的周期为T ,万有引力常量为G ,则星球的密度为( ) A.0.3πGT 2 B.3πGT 2 C.10π3GT 2D.30πGT2 6.(多选)(2015·南通二模)据报道,一颗来自太阳系外的彗星于2014年10月20日擦火星而过.如图所示,设火星绕太阳在圆轨道上运动,运动半径为r ,周期为T ,该慧星在穿过太阳系时由于受到太阳的引力,轨道发生弯曲,彗星与火星在圆轨道的A 点“擦肩而过”.已知万有引力常量G ,则( )A .可计算出太阳的质量B .可计算出彗星经过A 点时受到的引力C .可计算出彗星经过A 点的速度大小D .可确定慧星在A 点的速度大于火星绕太阳的速度7.(多选)(2015·绥化二模)我国研制的“嫦娥三号”月球探测器于2013年12月1日发射成功,并成功在月球表面实现软着陆.如图13所示,探测器首先被送到距离月球表面高度为H 的近月轨道做匀速圆周运动,之后在轨道上的A 点实施变轨,使探测器绕月球做椭圆运动,当运动到B 点时继续变轨,使探测器靠近月球表面,当其距离月球表面附近高度为h (h <5 m)时开始做自由落体运动,探测器携带的传感器测得自由落体运动时间为t ,已知月球半径为R ,万有引力常量为G .则下列说法正确的是( ) A .“嫦娥三号”的发射速度必须大于第一宇宙速度 B .探测器在近月圆轨道和椭圆轨道上的周期相等C .“嫦娥三号”在A 点变轨时,需减速才能从近月圆轨道进入椭圆轨道D .月球的平均密度为3h2πGRt 28.(2015·银川二模)我国第一颗绕月探测卫星——嫦娥一号于2007年10月24日成功发射.如图14所示,嫦娥一号进入地月转移轨道段后,关闭发动机,在万有引力作用下,嫦娥一号通过P 点时的运动速度最小.嫦娥一号到达月球附近后进入环月轨道段.若地球质量为M ,月球质量为m ,地心与月球中心距离为R ,嫦娥一号绕月球运动的轨道半径为r ,G 为万有引力常量,则下列说法正确的是( ) A .P 点距离地心的距离为MM +mRB .P 点距离地心的距离为MM +m RC .嫦娥一号绕月运动的线速度为 GMr D .嫦娥一号绕月运动的周期为2πRR Gm9.(多选)(2015·潍坊二模)2015年2月7日,木星发生“冲日”现象.“木星冲日”是指木星和太阳正好分处地球的两侧,三者成一条直线.木星和地球绕太阳公转的方向相同,公转轨迹都近似为圆.设木星公转半径为R 1,周期为T 1;地球公转半径为R 2,周期为T 2,下列说法正确的是( ) A.T 1T 2=(R 1R 2)23B.T 1T 2=(R 1R 2)32C .“木星冲日”这一天象的发生周期为2T 1T 2T 1-T 2D .“木星冲日”这一天象的发生周期为T 1T 2T 1-T 210.(2015·北京朝阳区4月模拟)第一宇宙速度又叫做环绕速度,第二宇宙速度又叫做逃逸速度.理论分析表明,逃逸速度是环绕速度的2倍,这个关系对其他天体也是成立的.有些恒星,在核聚变反应的燃料耗尽而“死亡”后,强大的引力把其中的物质紧紧地压在一起,它的质量非常大,半径又非常小,以致于任何物质和辐射进入其中都不能逃逸,甚至光也不能逃逸,这种天体被称为黑洞.已知光在真空中传播的速度为c ,太阳的半径为R ,太阳的逃逸速度为c 500.假定太阳能够收缩成半径为r 的黑洞,且认为质量不变,则Rr 应大于( )A .500B .500 2C .2.5×105D .5.0×10511.(多选)(2015·陕西西安交大附中四模)物体在万有引力场中具有的势能叫做引力势能.若取两物体相距无穷远时的引力势能为零,一个质量为m 0的质点距质量为M 0的引力中心为r 0时,其万有引力势能E p =-GM 0m 0r 0(式中G 为引力常量).一颗质量为m 的人造地球卫星以半径为r 1圆形轨道环绕地球飞行,已知地球的质量为M ,要使此卫星绕地球做匀速圆周运动的轨道半径增大为r 2,则在此过程中( ) A .卫星势能增加了GMm (1r 1-1r 2)B .卫星动能减少了GMm 3(1r 1-1r 2)C .卫星机械能增加了GMm 2(1r 1-1r 2)D .卫星上的发动机所消耗的最小能量为2GMm 3(1r 2-1r 1)12.(2015·合肥二质检)如图所示,P 是一颗地球同步卫星,已知地球半径为R ,地球表面处的重力加速度为g ,地球自转周期为T .(1)设地球同步卫星对地球的张角为2θ,求同步卫星的轨道半径r 和sin θ的值.(2)要使一颗地球同步卫星能覆盖赤道上A 、B 之间的区域,∠AOB =π3,则卫星可定位在轨道某段圆弧上,求该段圆弧的长度l (用r 和θ表示).答案精析专题4 万有引力与航天真题示例1.BD [在星球表面有GMm R 2=mg ,所以重力加速度g =GM R 2,地球表面g =GMR 2=9.8 m/s 2,则月球表面g ′=G 181M (13.7R )2=3.7×3.781×GM R 2≈16g ,则探测器重力G =mg ′=1 300×16×9.8N ≈2×103 N ,选项B 正确;探测器自由落体,末速度v =2g ′h ≈43×9.8 m /s ≠8.9 m/s ,选项A 错误;关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,所以机械能不守恒,选项C 错误;在近月轨道运动时万有引力提供向心力,有GM ′mR ′2=m v2R ′,所以v =G 181M 13.7R = 3.7GM81R < GMR,即在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度,选项D 正确.]2.B [根据万有引力提供向心力,有G Mm r 2=m 4π2T 2r ,可得M =4π2r 3GT2,所以恒星质量与太阳质量之比为M 恒M 太=r 3行T 2地r 3地T 2行=(120)3×(3654)2≈1,故选项B 正确.]3.B [由G Mm r 2=m 4π2T 2r =ma 知,T =2πr 3GM ,a =GMr2,轨道半径越大,公转周期越大,加速度越小,A 错误,B 正确;由G Mm R 2=mg 得g =G M R 2,g 地g 火=M 地M 火·⎝ ⎛⎭⎪⎫R 火R 地2≈2.6,火星表面的重力加速度较小,C 错误;由G MmR 2=m v 2R 得v =GM R ,v 地v 火= M 地M 火·R 火R 地≈2.2,火星的第一宇宙速度较小,D 错误.]4.(1)23G m 2a 2 (2)7G m 2a 2 (3)74a (4)πa 3Gm解析 (1)由万有引力定律,A 星体所受B 、C 星体引力大小为F BA =G m A m B r 2=G 2m 2a2=F CA方向如图所示则合力大小为F A =F BA ·cos 30°+F CA ·cos 30°=23G m 2a 2(2)同上,B 星体所受A 、C 星体引力大小分别为 F AB =G m A m B r 2=G 2m 2a 2F CB =G m C m B r 2=G m 2a 2方向如图由余弦定理得合力F B =F 2AB +F 2CB -2F AB ·F CB ·cos 120°=7G m 2a2 (3)由于m A =2m ,m B =m C =m通过分析可知,圆心O 在BC 的中垂线AD 的中点 则R C =⎝⎛⎭⎫34a 2+⎝⎛⎭⎫12a 2=74a (4)三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m (2πT )2R C可得T =πa 3Gm考题一 万有引力定律的理解1.C [令地球的密度为ρ,则在地球表面,重力和地球的的万有引力大小相等,有:g =G MR 2.由于地球的质量:M =ρ·43πR 3,所以重力加速度的表达式可写成:g =GM R 2=G ·ρ43πR 3R 2=43πGρR .质量分布均匀的球壳对壳内物体的引力为零,故在深度为d 的地球内部,受到地球的万有引力即为半径等于(R -d )的球体在其表面产生的万有引力,故“蛟龙”号所在处的重力加速度g ′=43πGρ(R -d ),所以有g ′g =R -d R .根据万有引力提供向心力G Mm(R +h )2=ma ,“天宫一号”的加速度为a =GM (R +h )2,所以a g =R 2(R +h )2所以g ′a =(R -d )(R +h )2R 3.]2.C [平抛运动在水平方向上为匀速直线运动,即x =v 0t ,在竖直方向上做自由落体运动,即h =12gt 2,所以x =v 02h g ,两种情况下,抛出的速率相同,高度相同,所以g 行g 地=x 2地x 2行=74,根据公式G Mm R 2=mg 可得R 2=GMg ,故R 行R 地=M 行M 地·g 地g 行=2,解得R 行=2R ,故C 正确.] 3.A [设地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等,有:g =GMR 2.由于地球的质量为M =43πR 3·ρ,所以重力加速度的表达式可写成:g =4πGRρ3.根据题意有,质量分布均匀的球壳对壳内物体的万有引力为零,故在深度为(R -r )的地球内部,受到地球的万有引力即为半径等于r 的球体在其表面产生的万有引力,g ′=4πGρ3r ,当r <R 时,g 与r 成正比,当r >R 后,g 与r 的平方成反比.即质量一定的小物体受到的引力大小F 在地球内部与r 成正比,在外部与r 的平方成反比.]考题二 天体质量和密度的估算4.C [l =Rθ则R =l θ;v =lt“嫦娥三号”绕着月球做匀速圆周运动,F =GMmR 2=m v 2R .代入v 与R ,解之可得M =l 3Gθt2]5.AC [如图,通过木星影区的时间为t ,周期为T ,则:θ2π=tT ,解得:θ=t T ×2π,而R r =sin θ2=sin t πT ,解得:r =RsinπtT ,根据万有引力提供向心力:G Mm r 2=m 4π2T 2r ,解得:M =4π2r 3GT 2=4π2R 3GT 2sin 3πt T ,可求得中心天体的质量,木星的体积V =43πR 3,可得:ρ=MV=3πGT 2sin3πt T ,故A 正确,B 错误;根据万有引力提供向心力:G Mm r 2=ma =m 4π2T 2r ,解得:a =4π2r T 2=4π2RT 2sinπt T ,故C 正确;公式只能计算中心天体的物理量,故D 错误.]6.B [在地球表面,重力等于万有引力,故:mg =G MmR 2解得:M =gR 2G .故密度:ρ=M V =gR 2G 43πR 3=3g4πGR同理,月球的密度:ρ0=3g 04πGR 0故地球和月球的密度之比:ρρ0=gR 0g 0R =6×14=32.]考题三 卫星运行参量的分析7.AC [由题图可知两行星半径相同,则体积相同,由a =G Mr 2可知P 1质量大于P 2,则P 1平均密度大于P 2,故A 正确;第一宇宙速度v =GMR,所以P 1的“第一宇宙速度”大于P 2,故B 错误;卫星的向心加速度为a =GM(R +h )2,所以s 1的向心加速度大于s 2,故C 正确;由GMm (R +h )2=m 4π2T 2(R +h )得T =4π2(R +h )3GM,故s 1的公转周期比s 2的小,故D 错误.] 8.B [设彗星的周期为T 1,地球的公转周期为T 2,由开普勒第三定律R 3T2=k 得:T 1T 2= R 31R 32=183≈76, 可知哈雷彗星的周期大约为76年,240+198676≈29.所以最合理的次数是30次.故B 正确,A 、C 、D 错误.] 9.(1)49g (2) 3gR 2t 236π2-12R解析 (1)在地球表面,万有引力与重力相等,GMm 0R 2=m 0g对火星GM ′m 0R ′2=m 0g ′ 联立解得g ′=49g (2)火星的同步卫星做匀速圆周运动的向心力由火星的万有引力提供,且运行周期与火星自转周期相同.设卫星离火星表面的高度为h ,则GM ′m 0(R ′+h )2=m 0(2πt )2(R ′+h ) 解得:h =3gR 2t 236π2-12R考题四 卫星变轨与对接10.D [由于在P 点推进器向前喷气,故飞行器将做减速运动,由公式G mMr 2=m v 2r 可知,飞行器所需向心力减小,而在P 点万有引力保持不变,故飞行器将开始做近心运动,轨道半径减小.因为飞行器做近心运动,轨道半径减小,故变轨后将沿轨道3运动,故A 错误;根据开普勒行星运动定律知,卫星轨道半径减小,则周期减小,故B 错误;因为变轨过程是飞行器向前喷气过程,故是减速过程,所以变轨前后经过P 点的速度大小不相等,故C 错误;飞行器在P 点都是由万有引力产生加速度,因为在同一点P ,万有引力产生的加速度大小相等,故D 正确.]11.B [根据开普勒第二定律知探测器与水星的连线在相等时间内扫过的面积相同,则知A 点速率大于B 点速率,故A 错误;在圆轨道A 点实施变轨成椭圆轨道是做逐渐远离圆心的运动,要实现这个运动必须万有引力小于飞船所需向心力,所以应给飞船加速,故A 点在轨道Ⅱ上的速度大于在轨道Ⅰ上的速度GMr A,在轨道Ⅱ远地点速度最小为 GMr B,故探测器在轨道Ⅱ上某点的速率在这两数值之间,故可能等于在轨道Ⅰ上的速率GMr A,故B 正确;探测器在轨道Ⅱ上远离水星过程中,引力势能增加,动能减小,故C 错误;探测器在轨道Ⅰ和轨道Ⅱ上A 点所受的万有引力相同,根据F =ma 知加速度大小相同,故D 错误.]考题五 双星与多星问题12.D [两恒星之间的万有引力提供各自做圆周运动的向心力,则有Gm 1m 2L 2=m 1r 1(2πT)2,G m 1m 2L 2=m 2r 2(2πT )2,又L =r 1+r 2,M =m 1+m 2,联立以上各式可得T 2=4π2L 3GM,故当两恒星总质量变为kM ,两星间距变为nL 时,圆周运动的周期T ′变为n 3kT .] 13.C [三星中其中两颗对另外一颗星的万有引力的合力来提供向心力,由于是等边三角形,所以每个角都是60°,根据万有引力提供向心力G m 2L 2×2cos 30°=mω2r ,其中r =L 3,得出ω=3Gm L 3,所以A 项错误;根据G m 2L 2×2cos 30°=ma n ,得出向心加速度的表达式a n = 3GmL 2,圆周运动的加速度与三星的质量有关,所以B 项错误;根据G m 2L 2×2cos 30°=m 4π2T 2r ,解出周期的表达式T =4π2L 33Gm,距离L 和每颗星的质量m 都变为原来的2倍,周期为T ′= 4π3(2L )33G (2m )=2T ,所以C 项正确;根据G m 2L 2×2cos 30°=m v 2r 得出v =GmL,若距离L 和每颗星的质量m 都变为原来的2倍,线速度不变,所以D 项错误.]专题综合练1.D [因空间站建在拉格朗日点,故其周期等于月球的周期,根据a =4π2T 2r 可知,a 2>a 1,对空间站和地球的同步卫星而言,由于同步卫星的轨道半径较空间站的小,根据a =GMr 2可知a 3>a 2,故选项D 正确.]2.AD [根据万有引力提供向心力有:G Mm r 2=m 4π2T 2r ,得地球的质量为:M =4π2r 3GT 2,故A 正确.根据题目条件无法求出地球的半径,故也无法求得地球的密度,故B 、C 错误.根据v =2πrT,则可求得月球绕地球运行速度的大小,故D 正确.故选A 、D.] 3.A [对地面上的物体有:G Mm 0R 2=m 0g ;对卫星G Mm(2R )2=m v 22R ,联立解得:v =gR 2,选项A 正确;卫星的角速度为ω=v2R= g 8R ,选项B 错误;卫星的加速度为a =ωv =g4,选项C 错误;卫星的周期为T =2πω=4π2Rg,选项D 错误.] 4.A [因为地球同步卫星的角速度和地球赤道上的物体随地球自转的角速度相同,由a 1=ω2R 1,a 2=ω2R 2可得:a 1a 2=R 1R 2,故A 正确,B 错误;对于地球同步卫星和以第一宇宙速度运动的近地卫星,由万有引力提供做匀速圆周运动所需向心力得到:。

备战2023年物理高考复习必备(全国通用)专题06 万有引力与航天的最新“新情景问题”(解析版)

备战2023年物理高考复习必备(全国通用)专题06  万有引力与航天的最新“新情景问题”(解析版)
A. 恒星A的质量大于恒星B的质量
B. 恒星B的质量为
C. 若知道C的轨道半径,则可求出C的质量
D. 三星A、B、C相邻两次共线的时间间隔为
【答案】AB【解析】因为双星系统的角速度相同,故对A、B可得

即恒星A的质量大于恒星B的质量,故A正确;对恒星A可得
解得恒星B的质量为
故B正确;
C.对卫星C满足

联立解得
故B正确;根据

可知神舟十二号飞船沿轨道Ⅰ运行的周期小于天和核心舱沿轨道Ⅲ运行的周期,故C错误;
根据

可知正常运行时,神舟十二号飞船在轨道Ⅱ上经过B点的加速度等于在轨道Ⅲ上经过B点的加速度,故D错误。
12.中国航空领域发展迅猛,2022年2月27日,中国航天人又创造奇迹,长征八号遥二运载火箭搭载22颗卫星从海南文昌航天发射场挟烈焰一飞冲天,创造了我国“一箭多星”单次发射卫星数量最多的纪录,如图所示。其中“泰景三号01”卫星是可见光遥感卫星,分辨率达到0.5米,能用于资源详查、城市规划、环境保护等诸多领域,其轨道高度为几百千米。关于“泰景三号01”卫星,下列说法正确的是( )
在甲抬高轨道的过程中,离月球的距离r逐渐增大,由 可知月球对卫星的万有引力逐渐减小,故C错误;因地球表面的重力加速度比月球表面的重力加速度大,则由 可知月壤样品的重量在地表比在月表要大,故D正确。
6.(2022·广东深圳市第一次调研考试)2021年10月16日神舟十三号飞船顺利将3名航天员送入太空,并与天和核心舱对接。已知核心舱绕地球运行近似为匀速圆周运动,离地面距离约为390km,地球半径约为6400km,地球表面的重力加速度g取10m/s2,下列说法正确的是( )
A.两黑洞质量之间的关系一定是M1>M2

2022物理新高考《专题5 万有引力与航天》

2022物理新高考《专题5  万有引力与航天》
方法
已知量
r、T、R
利用运
r、v、R
行天体
v、T、R
利用公式
质量表达式
密度表达式
考点帮 必备知识通关
方法
已知量
利用天

表面的

力加速

g、R
利用公式
质量表达式
密度表达式
考法帮 解题能力提升
考法1
示例1
开普勒行星运动定律的应用
[2020湖南长沙联考]哈雷彗星绕太阳运动的轨道G 2 =m( ) r


3

化简得 2 = 2 M

由此可看出常量k只与中心天体的质量有关.
考法帮 解题能力提升
考法2
示例2
天体重力加速度的应用问题
1
1
火星质量是地球质量的 ,半径是地球半径的 ,火星被认为是除地球
10
2
之外最可能有水(有生命)的星球,经过了4.8亿千米星际旅行的美国火星探测
器“勇气号”成功在火星表面着陆.据介绍,“勇气号”在进入火星大气层之前的
速度大约是声速的1.6倍,为了保证“勇气号”安全着陆,科学家给它配备了隔
热舱、降落伞、减速火箭和气囊等.进入火星大气层后,先后在不同的时刻,
探测器上的降落伞打开,气囊开始充气,减速火箭点火.当探测器在着陆前3 s
时,探测器的速度减为零,此时降落伞的绳子被切断,探测器自由落下,求
(3)在一般位置:万有引力G 2 等于重力mg与向心力F向的矢量和.

考点帮 必备知识通关
(4)在地球表面上,由于物体随地球自转所需的向心力较小,常忽略不计,


因此认为万有引力近似等于重力,即G 2 =mg.由此得g= 2 或GM=gR2.

高三物理 万有引力与航天

高三物理  万有引力与航天

高三物理万有引力与航天1.我国的“神舟”系列航天飞船的成功发射和顺利返回,显示了我国航天事业取得的巨大成就.已知地球的质量为M,引力常量为G,飞船的质量为m,设飞船绕地球做匀速圆周运动的轨道半径为r,则()A. 飞船在此轨道上的运行速率为B. 飞船在此圆轨道上运行的向心加速度为C. 飞船在此圆轨道上运行的周期为D. 飞船在此圆轨道上运行所受的向心力为2. 为了探测某星球,某宇航员乘探测飞船先绕该星球表面附近做匀速圆周运动,测得运行周期为T,然后登陆该星球,测得一物体在此星球表面做自由落体运动的时间是在地球表面同一高度处做自由落体运动时间的一半,已知地球表面重力加速度为g,引力常量为G,则由此可得该星球的质量为( )A. B. C. D.3.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射.量子卫星成功运行后,我国将在世界上首次实现卫星和地面之间的量子通信,构建天地一体化的量子保密通信与科学实验体系.假设量子卫星轨道在赤道平面,如图所示.已知量子卫星的轨道半径是地球半径的m 倍,同步卫星的轨道半径是地球半径的n倍,图中P点是地球赤道上一点,由此可知()A. 同步卫星与量子卫星的运行周期之比为B. 同步卫星与P点的速度之比为C. 量子卫星与同步卫星的速度之比为D. 量子卫星与P点的速度之比为4.一宇航员在一星球上以速度v0竖直上抛一物体,经t秒钟后物体落回手中,已知星球半径为R,使物体不再落回星球表面,物体抛出时的速度至少为()A. B. C. D.5. 有一星球的密度与地球的密度相同,但它表面处的重力加速度是地球表面处的重力加速度的4倍,则该星球的质量是地球质量的()A. 倍B. 4倍C. 16倍D. 64倍6.天文学家新发现了太阳系外的一颗行星,这颗行星的体积是地球的a倍,质量是地球的b倍已知某一近地卫星绕地球运动的周期约为T,已知引力常量为G,则该行星的平均密度为A. B.C. D. 条件不足,无法判断7. 2019年1月3日嫦娥四号月球探测器成功软着陆在月球背面的南极—艾特肯盆地冯卡门撞击坑,成为人类历史上第一个在月球背面成功实施软着陆的人类探测器。

高考物理热点快速突破必考部分专题万有引力定律与航天

高考物理热点快速突破必考部分专题万有引力定律与航天

专题06 万有引力定律与航天【高考命题热点】主要考查以航天为背景计算线速度、角速度、向心加速速、向心力、周期表达式及讨论变化、变轨技术及各能量变化、地球同步卫星、赤道和南北两极万有引力和重力关系的选择题。

【知识清单】1. 万有引力定律:自然界中任何两物体间都存在万有引力,大小跟两物体质量乘积成正比, 跟距离的平方成反比,即221rm m GF = 其中G 为引力常量,2211kg /m N 1067.6⋅⨯- G 由英国物理学家卡文迪许用扭秤装置第一次精确测量得到。

21m m 、为两物体质量, kg ;r 为两物体间距离,m 。

注:r 趋近于0时F 无穷大是错误的,因为当r =0时相当于 两物体成为一物体,无物理意义。

2. 行星或目标飞行器绕中心天体做匀速圆周运动模型:由万有引力提供向心力,即:n n ma T mr mr r v m r Mm G F F =⎪⎭⎫⎝⎛===⇒=22222πω万r 为轨道半径;m 为行星或目标飞行器质量。

则r GM v = 3r GM =ω 2r GM a n = GMr T 322πωπ== 即当↑↓↓↓↑⇒T a v r n ω(当轨道半径增大时带有“速度”的量均减小只有周期增大,即“三减一增”) 例:如右图所示,b a 、两颗人造卫星分别绕地球做匀速圆周运动,则:3.黄金代换式:2gR GM =(2r GM a n =2R GM g Rr =−−→−=即当轨道半径等于中心天体半 径时对应向心加速度为该中心天体表面重力加速度)。

说明:2gR GM =适用于任意天体,只要R g M 、、对应即可。

由于21r r <,所以:21v v >,21ωω>,21a a >21T T <4. 三大宇宙速度:km/s9.7=vkm/s2.11<<v5. 地球同步卫星(静止轨道卫星):相对地球静止的卫星,跟地球具有相同角速度,具有以下3个特点:(1)周期T一定:h24d1===地同TT;(2)位置一定:地球同步卫星一定位于赤道正上空;(3)高度h一定:km6400km36000)2)(()(22=>=⇒+=+⇒=RhThRmhRMmGFFnπ万(形成空间概念)6. 变轨技术(1)高轨道→低轨道:向前喷出物质→减速说明:为减速前rv m F F n 2==万,瞬间减速万F F v n ↓⇒↓⇒不变,即⇒>)(供过于求万n F F 近心(向心)运动,地球通过万有引力把卫星从高轨道吸到低轨道,万F 对卫星做正功,待卫星稳定后↓↑↑↑↓⇒T a v r n ω,动能↑k E ,引力势能↓p E ,若考虑稀薄空气阻力,则机械能有损失,即机械能减小(摩擦生热转化为内能)。

2024新高考物理第一轮章节复习--专题五万有引力与航天

2024新高考物理第一轮章节复习--专题五万有引力与航天

专题五万有引力与航天基础篇考点一开普勒三定律1.(2022河北唐山期末,2)如图所示,八大行星沿椭圆轨道绕太阳公转,下列说法中正确的是()A.太阳处在椭圆的中心B.火星绕太阳运行过程中,速率不变C.土星比地球的公转周期大D.地球和土星分别与太阳的连线在相同时间内扫过的面积相等答案 C2.(2022广东,2,4分)“祝融号”火星车需要“休眠”以度过火星寒冷的冬季。

假设火星和地球的冬季是各自公转周期的四分之一,且火星的冬季时长约为地球的1.88倍。

火星和地球绕太阳的公转均可视为匀速圆周运动。

下列关于火星、地球公转的说法正确的是()A.火星公转的线速度比地球的大B.火星公转的角速度比地球的大C.火星公转的半径比地球的小D.火星公转的加速度比地球的小答案 D3.(2022江苏模拟预测,5)2020年7月,我国用长征运载火箭将“天问一号”探测器发射升空,探测器在星箭分离后,进入地火转移轨道,如图所示,2021年5月在火星乌托邦平原着陆。

则探测器()A.与火箭分离时的速度小于第一宇宙速度B.每次经过P点时的速度相等C.绕火星运行时在捕获轨道上的周期最大D.绕火星运行时在不同轨道上与火星的连线每秒扫过的面积相等答案 C4.(2022浙江宁波期末,3)北京冬奥会开幕式二十四节气倒计时惊艳全球,如图是地球沿椭圆轨道绕太阳运行所处不同位置对应的节气,下列说法正确的是()A.夏至时地球的运行速度最大B.从冬至到春分的运行时间为公转周期的14C.若用a代表椭圆轨道的半长轴,T代表公转周期,则a3=k,地球和火星对应的k值是不同的T2D.太阳既在地球公转轨道的焦点上,也在火星公转轨道的焦点上答案 D考点二万有引力定律1.(2022全国乙,14,6分)2022年3月,中国航天员翟志刚、王亚平、叶光富在离地球表面约400 km的“天宫二号”空间站上通过天地连线,为同学们上了一堂精彩的科学课。

通过直播画面可以看到,在近地圆轨道上飞行的“天宫二号”中,航天员可以自由地漂浮,这表明他们()A.所受地球引力的大小近似为零B.所受地球引力与飞船对其作用力两者的合力近似为零C.所受地球引力的大小与其随飞船运动所需向心力的大小近似相等D.在地球表面上所受引力的大小小于其随飞船运动所需向心力的大小答案 C2.(2021山东,5,3分)从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越。

五年2024_2025高考物理真题专题点拨__专题05万有引力定律与航天含解析

五年2024_2025高考物理真题专题点拨__专题05万有引力定律与航天含解析

专题05 万有引力定律与航天【2024年】1.(2024·新课标Ⅰ)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A. 0.2B. 0.4C. 2.0D. 2.5【答案】B【解析】设物体质量为m ,则在火星表面有1121M mF GR 在地球表面有2222M mF GR 由题意知有12110M M 1212R R = 故联立以上公式可得21122221140.4101F M R F M R ==⨯=,故选B 。

2.(2024·新课标Ⅱ)若一匀称球形星体的密度为ρ,引力常量为G ,则在该星体表面旁边沿圆轨道绕其运动的卫星的周期是()D.【答案】A【解析】卫星在星体表面旁边绕其做圆周运动,则2224GMm m R R T, 343V R π= ,M Vρ=知卫星该星体表面旁边沿圆轨道绕其运动的卫星的周期T =3.(2024·新课标Ⅲ)“嫦娥四号”探测器于2024年1月在月球背面胜利着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K 倍。

已知地球半径R 是月球半径的P 倍,地球质量是月球质量的Q 倍,地球表面重力加速度大小为g 。

则“嫦娥四号”绕月球做圆周运动的速率为( )A.RKgQPB.RPKgQC.RQgKPD.RPgQK【答案】D【解析】假设在地球表面和月球表面上分别放置质量为m 和m 0的两个物体,则在地球和月球表面处,分别有2Mm Gmg R =,002M m QG m g R P '=⎛⎫⎪⎝⎭解得2P g g Q'= 设嫦娥四号卫星的质量为m 1,依据万有引力供应向心力得1212Mm v QG m R R KK P P =⎛⎫ ⎪⎝⎭解得RPgv QK=,故选D 。

4.(2024·浙江卷)火星探测任务“天问一号”的标识如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.规律总结
(1)卫星变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上 GM
的运行速度变化由 v= r 判断. GMm
(2)卫星绕过不同轨道上的同一点(切点)时,其加速度大小关系可用 F= r2 =ma 比较得 出.
A.探测器在轨道Ⅱ上 A 点运行速率小于在轨道Ⅱ上 B 点速率
B.探测器在轨道Ⅱ上某点的速率可能等于在轨道Ⅰ上的速率
C.探测器在轨道Ⅱ上远离水星过程中,引力势能和动能都减少
D.探测器在轨道Ⅰ和轨道Ⅱ上 A 点加速度大小不同
1.变轨问题中,各物理量的变化 v2
(1)当 v 增大时,所需向心力 m r 增大,即万有引力不足以提供向心力,卫星将做离心运动, GM
脱离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由 v= r 知其运行速 度要减小,但重力势能、机械能均增加.
mv2 (2)当卫星的速度突然减小时,向心力 r 减小,即万有引力大于卫星所需的向心力,因此卫 星将做向心运动,同样会脱离原来的圆轨道,轨道半径变小,进入新轨道运行时由 v=
GM r 知运行速度将增大,但重力势能、机械能均减少.
gR2
mg=G R2 M= G
2.利用绕行星运转的卫星,F 万提供向心力.
Mm 4π2 G r2 =m T2 ·r
4π2r3 M= GT2
特例:若为近地面卫星 r=R
M 3π ρ= V =GT2
考题三 卫星运行参量的分析
7.(多选)(2015·天津·8)P1、P2 为相距遥远的两颗行星,距各自表面相同高度处各有一颗卫 星 s1、s2 做匀速圆周运动.图中纵坐标表示行星对周围空间各处物体的引力产生的加速度
17
7
A.2R B.2R C.2R D. 2 R
3.(2015·崇明模拟)理论上已经证明:质量分布均匀的球壳对壳内物体的万有引力为零.现 假设地球是一半径为 R、质量分布均匀的实心球体,O 为球心,以 O 为原点建立坐标轴 Ox,如图所示.一个质量一定的小物体(假设它能够在地球内部移动)在 x 轴上各位置受到的 引力大小用 F 表示,则选项所示的四个 F 随 x 变化的关系图正确的是( )
1
hing at a time and All things in their being are good for somethin
peg b”的发现拉开了研究太阳系外行星的序幕.“51 peg b”绕其中心恒星做匀速圆周运动, 1
周期约为 4 天,轨道半径约为地球绕太阳运动半径的20,该中心恒星与太阳的质量比约为( ) 1
D.s1 的公转周期比 s2 的大
8.(2015·武汉四月调研)17 世纪,英国天文学家哈雷跟踪过一颗慧星,他算出这颗彗星轨道 的半长轴约等于地球公转半径的 18 倍,并预言这颗慧星将每隔一定的时间飞临地球,后来 哈雷的预言得到证实,该慧星被命名为哈雷慧星.哈雷彗星围绕太阳公转的轨道是一个非常 扁的椭圆,如图所示.从公元前 240 年起,哈雷彗星每次回归,中国均有记录,它最近一次 回归的时间是 1986 年.从公元前 240 年至今,我国关于哈雷慧星回归记录的次数,最合理 的是( )
行星 半径/m 质量/kg 轨道半径/m 地球 6.4×106 6.0×1024 1.5×1011 火星 3.4×106 6.4×1023 2.3×1011
4.(2015·安徽理综·24)由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运 动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某 一共同的圆心 O 在三角形所在的平面内做相同角速度的圆周运动(图为 A、B、C 三颗星体质 量不相同时的一般情况).若 A 星体质量为 2m、B、C 两星体的质量均为 m,三角形的边长 为 a,求:
从命题趋势上看,对本部分内容的考查仍将延续与生产、生活以及航天科技相结合,形 成新情景的物理题.
1.(多选)(2015·新课标全国Ⅰ·21)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月 球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面 4 m 高处做一次悬 停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为 1.3×103 kg,地球质量约为月球的 81 倍,地球半径约为月球的 3.7 倍,地球表面的重力加 速度大小约为 9.8 m/s2.则此探测器( ) A.在着陆前的瞬间,速度大小约为 8.9 m/s B.悬停时受到的反冲作用力约为 2×103 N C.从离开近月圆轨道到着陆这段时间内,机械能守恒 D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度 2.(2015·江苏单科·3)过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51
θ3 B.Gl2t
l3 C.Gθt2
t2 D.Gθl3
5.(多选)(2015·淮安四模)木卫一是最靠近木星的卫星,丹麦天文学 家罗迈最早在十七世纪通过对木卫一的观测测出了光速.如图所示, 他测量了木卫一绕木星的运动周期 T 和通过木星影区的时间 t.若已 知木星的半径 R 和万有引力常量 G,T 远小于木星绕太阳的运行周 期,根据以上条件可以求出( )
闻,于 2013 年 1 月 19 日揭晓,“神九”载人飞船与“天宫一号”成功对接和“蛟龙”号下
潜突破 7
000 米分别排在第一、第二.若地球半径为 R,把地球看做质量分布均匀的球
体.“蛟龙”下潜深度为 d,天宫一号轨道距离地面高度为 h,“蛟龙”号所在处与“天宫一
号”所在处的加速度之比为( )
R-d A.R+h
(1)A 星体所受合力大小 FA;
(2)B 星体所受合力大小 FB; (3)C 星体的轨道半径 RC; (4)三星体做圆周运动的周期 T.
考题一 万有引力定律的理解
1.(2015·安康二模)由中国科学院、中国工程院两院院士评出的 2012 年中国十大科技进展新
2
hing at a time and All things in their being are good for somethin
R-d2 B.R+h2
R-dR+h2 C. R3
R-dR+h D. R2
2.(2015·海南单科·6)若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相 同的速率平抛一物体,它们在水平方向运动的距离之比为 2∶ 7,已知该行星质量约为地球 的 7 倍,地球的半径为 R.由此可知,该行星的半径约为( )
(2)vⅡ= 2vⅠ=11.2 km/s. (3)vⅢ=16.7 km/s.
考题四 卫星变轨与对接
10.(2015·扬州模拟)如图 7 所示,有一飞行器沿半径为 r 的圆轨道 1 绕地球运动.该飞行器 经过 P 点时,启动推进器短时间向前喷气可使其变轨,2、3 是与轨道 1 相切于 P 点的可能 轨道,则飞行器( ) A.变轨后将沿轨道 2 运动 B.相对于变轨前运行周期变长 C.变轨前、后在两轨道上经 P 点的速度大小相等 D.变轨前、后在两轨道上经 P 点的加速度大小相等 11.(2015·黄冈八校第二次联考)美国宇航局的“信使”号水星探测器按计划将在 2015 年 3 月份陨落在水星表面.工程师找到了一种聪明的办法,能够使其寿命再延长一个月.这个办
A.24 次
B.30 次
C.124 次
D.319 次
9.(2015·襄阳模拟)我国志愿者王跃曾与俄罗斯志愿者一起进行“火星-500”的实验活
1
1
动.假设王跃登陆火星后,测得火星的半径是地球半径的2,质量是地球质量的9.已知地球
表面的重力加速度是 g,地球的半径为 R,忽略火星以及地球自转的影响,求:
1.基本规律
Mm
mv2
4π2
F 万=G r2 =man= r =mω2·r=m T2 ·r
GM
GM
GM
4π2r3
得:an= r2 ,v= r ,ω= r3 ,T= GM
r时(an、v、ω),T
2.宇宙速度
GM (1)vⅠ= gR= R =7.9 km/s
①最小的发射速度.②(近地面)最大的环绕速度.
7
hing at a time and All things in their being are good for somethin
法就是通过向后释放推进系统中的高压氦气来提升轨道.如图所示,设释放氦气前,探测器 在贴近水星表面的圆形轨道Ⅰ上做匀速圆周运动,释放氦气后探测器进入椭圆轨道Ⅱ上,忽 略探测器在椭圆轨道上所受外界阻力.则下列说法正确的是( )
3
hing at a time and All things in their being are good for somethin
1.辨析下列说法的正误: m1m2
由 F 万=G r2 得 ①r→∞时,F 万=0( √ ) ②r→0 时,F 万=∞( × ) 2.万有引力定律的适用条件: (1)可以看成质点的两个物体之间. (2)质量分布均匀的球体之间. (3)质量分布均匀的球体与球外质点之间.
A.10 B.1 C.5 D.10
3.(2015·四川理综·5)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于 2020 年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火 星和地球相比( )
A.火星的公转周期较小 B.火星做圆周运动的加速度较小 C.火星表面的重力加速度较大 D.火星的第一宇宙速度较大
5
hing at a time and All things in their being are good for somethin
a,横坐标表示物体到行星中心的距离 r 的平方,两条曲线分别表示 P1、P2 周围的 a 与 r2 的 反比关系,它们左端点横坐标相同.则( )
A.P1 的平均密度比 P2 的大 B.P1 的“第一宇宙速度”比 P2 的小 C.s1 的向心加速度比 s2 的密度
相关文档
最新文档