《概率论与数理统计》学习指导
上海交通大学概率论与数理统计学习指导与课外习题
(A) P{X ≤ 0} = P{X ≥ 0} = 0.5
(B) f (x) = f (−x)
(C) P{X ≤ 1} = P{X ≥ 1} = 0.5
(D) F (x) = 1 − F (−x)
5. 设随机变量 X 的密度函数为ϕ(x) ,且ϕ(−x) = ϕ(x) , F (x) 是 X 的分布函数,
一元件损坏仪器即停止工作,求仪器正常工作 1000 小时以上的概率。
解:设 Ai 表示第 i 个元件的寿命( i = 1,2,",5 ),则 Ai 相互独立,且
{ } P
Ai
> 1000
=
∫+∞
1000
f
(x)dx
=
∫+∞
1000
1 1000
e −x 1000 dx
=
−e −x 1000
+∞ 1000
上海交通大学概率论与数理统计学习指导与课外习题第二章第二章第二章一维随机变量及其分布一维随机变量及其分布一内容提要与大纲要求一内容提要与大纲要求内容提要内容提要1
上海交通大学《概率论与数理统计》学习指导与课外习题 第二章
第二章 一维随机变量及其分布
一、内容提要与大纲要求
内容提要
1. 随机变量及其概率分布; 2. 随机变量分布函数的概念及性质; 3. 离散型随机变量的分布; 4. 连续型随机变量的概率密度; 5. 常见随机变量的概率分布; 6. 随机变量函数的概率分布。
= 1 − 0.98400 − 400 × 0.02 × 0.98399 ≈ 0.997165 。
或:用泊松近似, λ = np = 8 ,
P{X ≥ 2} = 1− P{X < 2} = 1− (P{X = 0}+ P{X = 1})
概率论与数理统计复习“小技巧”
概率论与数理统计复习“小技巧”概率论与数理统计是大多数学科中一门非常重要的基础课程,对于理解和应用统计方法有着重要的意义。
然而,由于其内容广泛,理论较多,所以学习起来可能有一定的难度。
下面将分享一些复习技巧,帮助大家更好地掌握概率论与数理统计。
1.理解基本概念:在学习概率论和数理统计之前,必须首先理解基本概念。
概率、随机变量、概率分布、样本空间等是概率论和数理统计中的基础概念。
弄清楚这些概念的含义和相互关系,可以为后续学习打下坚实的基础。
2.制定学习计划:复习概率论与数理统计时,不要盲目地阅读教材。
应该提前制定一个复习计划,并按照计划进行学习。
可以根据自己的理解程度和时间安排,将内容分为几个阶段,逐个击破,确保每个阶段都能够掌握。
3.多做例题:概率论与数理统计是一门非常注重实际应用的学科,在学习的过程中,要多做例题。
通过做例题,可以帮助我们更好地理解和应用相关的概念和方法。
可以选择一些典型的例题进行尝试,同时也可以寻找一些辅助教材或者网上资源,多做一些相关的习题。
4.注重理论与实践相结合:概率论与数理统计的学习不仅仅局限于理论知识的掌握,还需要将所学的理论知识应用到实际问题中。
在学习的过程中,要多关注实际问题的分析和解决方法。
可以通过一些案例和实例来巩固所学的知识。
5.关注核心内容:在学习概率论与数理统计的时候,要有所侧重,注重理解一些核心的概念和方法。
这样可以避免被琐细的理论内容所困扰,更好地掌握主要的知识点。
要善于将抽象概念转化为具体的问题,通过问题的实质来理解和运用相关的知识。
6.做好笔记:在学习的过程中,要做好笔记。
可以将重点、难点和要点等内容进行归纳和整理,形成系统的笔记。
这样可以帮助我们更好地回顾和巩固所学的知识,并在复习的时候提供方便。
7.理论与实际结合:概率论与数理统计这门学科的一个重要特点是理论与实际的结合,在学习的过程中要善于将理论与实际问题相结合。
可以通过阅读相关的案例和实例,从实际问题的角度出发,探讨和应用相关的概率和统计方法。
概率论与数理统计学习指导
《概率论与数理统计》学习指导·内容提要·疑难分析·例题解析·自测试题安徽工业大学应用数学系编目录第一章随机事件及其概率.................... 错误!未定义书签。
第二章随机变量及其分布.................... 错误!未定义书签。
第三章多维随机变量及其分布................ 错误!未定义书签。
第四章随机变量的数字特征.................. 错误!未定义书签。
第五章大数定律和中心极限定理.............. 错误!未定义书签。
第六章数理统计的基本概念.................. 错误!未定义书签。
第七章参数估计............................ 错误!未定义书签。
第八章假设检验............................ 错误!未定义书签。
第五章 大数定律和中心极限定理内 容 提 要1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式22{}P X σμεε-≥≤或22{}1P X σμεε-<>-成立.2、大数定律(1)切贝雪夫大数定理:设ΛΛ,,,,21n X X X 是相互独立的随机变量序列,数学期望)(i X E 和方差)(i X D 都存在,且C X D i <)(),2,1(Λ=i ,则对任意给定的0>ε,有1}|)]([1{|lim 1=<∑-=∞→εni i i n X E X n P . (2)贝努利大数定理:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp nn P An . 贝努利大数定理给出了当n 很大时,A 发生的频率A n A /依概率收敛于A 的概率,证明了频率的稳定性.3、中心极限定律(1)独立同分布中心极限定理:设ΛΛ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2Λ=≠=i X D i σ.则对任意实数x ,随机变量σμσμn n X n X Y ni i ni i n ∑-=∑-===11)(的分布函数)(x F n 满足⎰=≤=∞--∞→∞→xtn n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:设ΛΛ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2Λ=≠=i X D i i σ .记 ∑==ni i nB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→∑-=++ni ii nX E B δδμ, 则随机变量nni in i i ni i ni i n i i n B X X D X E X Z ∑-∑=∑∑-∑======11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤∑-∑=∞--==∞→∞→x t n n i i n i i n n n dt e x B X x F 2/11221lim )(lim πμ. 当n 很大时,),(~),1,0(~12.1.∑∑==ni n i ni i n B N X N Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1(Λ=n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有⎰=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞--∞→x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法. 2、大数定律在概率论中有何意义大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律. 3、中心极限定理有何实际意义许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据. 4、大数定律与中心极限定理有何异同相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析例1.设X 为连续型随机变量,c 为常数,0>ε,求证εε||}|{|c X E c X P -≤≥-分析 此类概率不等式的证明,一般考虑用切比雪夫不等式或直接从定义用类似切比雪夫不等式的方法来证.证 设X 的密度函数为)(x f ,则⎰=≥-≥-εε||)(}|{|c x dx x f c X P||1)(||1)(||)(||||c X E dx x f c x dxx f c x dx x f c x c x -=⎰-=⎰-≤⎰-≤∞∞-∞∞-≥-εεεεε例2.设随机变量X 和Y 的数学期望都是2,方差分别为1和4,相关系数为,则根据切比雪夫不等式有≤≥-}6{Y X P .解121. 由于 ,0)(=-Y X E ,32)(=-+=-DXDY DY DX Y X D XY ρ 故≤≥-}6{Y X P 12/136/3=.例3.设在独立重复试验中,每次试验中事件A 发生的概率为1/4.问是否用的概率确信在1000次试验中A 发生的次数在200到300之间分析 在1000次试验中事件A 发生的次数)4/1,1000(~B X ,且2/375)4/11(4/11000,2504/11000=-⨯⨯==⨯=DX EX 而 }50250{}300200{≤-=≤≤X P X P 利用Chebychev 不等式得}50250{}300200{≤-=≤≤X P X P 925.050)(12=-≥X D所以可用的概率确信在1000次试验中A 发生的次数在200到300之间. 解 如分析所述,由Chebychev 不等式即可得例4.分布用切比雪夫不等式与隶美弗—拉普拉斯中心极限定理确定:当掷一枚硬币时,需要掷多少次,才能保证出现正面的频率在~之间的概率不小于90%.解 设X 为n 次掷硬币正面出现的次数,则),(~p n B X ,其中21=p (1)由切比雪夫不等式知{}n n X P n X P n X P 1.0|5.0|1.0|5.0|6.04.0≤-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧≤≤n n n n X D 25101.0411)1.0()(122-=⋅⨯-=-≥ 令 %.90251≥-n则得250≥n . (2) 由隶美弗-拉普拉斯的中心极限定理,得:}6.04.0{≤≤nXP.95.0)5(%901)5(21)5.01.0(225.05.06.025.05.025.05.04.0{}6.04.0{≥Φ⇒≥-Φ=-Φ≈-≤-≤-=≤≤=n n n n nn n nn X n n n P n X n P查表知:6.15≥n. 6864.67≥⇒≥n n例5. (1)一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度;(2)上述系统假如由n 个相互独立的元件组成,而且又要求至少有80%的元件工作才能使整个系统正常运行,问n 至少为多大时才能保证系统的可靠度不小于.解 (1)设⎩⎨⎧=个元件损坏第个元件没有损坏第i i X i ,0,1,S 为系统正常运行时完好的元件个数,于是∑==1001i i X S 服从)9.0,100(b ,因而.91.09.0100,909.0100=⨯⨯===⨯=npq DS ES 故所求的概率为.952.0351990859901)85(1)85(=⎪⎭⎫⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤-==≤-=>S P S P S P(2)此时)9.0,(~n b S ,要求95.0)8.0(≥≥n S P ,而.3313.09.08.03.09.01)8.0(⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤--=≥n n n n n n n S P n S P 故95.03≥⎪⎪⎭⎫⎝⎛Φn ,查表得,5.24,65.13≥⇒≥n n 取n =25 例6. 一加法器同时收到20个噪声电压)20,,2,1(,Λ=i V i ,设它们是相互独立且都服从区间(0,10)上的均匀分布,求总和噪声电压超过计划105(伏)的概率.解 记∑==201i i V V ,因2021,,,V V V Λ是相互独立且都服从(0,10)上的均匀分布,且20,,2,1,12100)(,5)(Λ=====i V D V E i i i σμ 由独立同分布中心极限定理知),3500,100()1210020,520(201N N V V n i i =⨯⨯−−→−∑=∞→= 故.3483.0)39.0(1)3/500100105(1)105(1)105(=Φ-=-Φ-=≤-≈>V P V P例7.假设n X X X ,.,21Λ是来自总体X 的简单随机样本;已知),4,3,2,1(==k EX k k α证明当n 充分大时,随机变量∑==n i i n X n Z 121近似服从正态分布,并指出其分布参数.分析 此题主要考查对中心极限定理的理解与运用.解 依题意知n X X X ,,,21Λ独立同分布,从而其函数22221,,,n X X X Λ也是独立同分布,且)(11)1(,1,)(,224122122122242242222αααααα-=∑=∑==∑=-=-======n DX n X n D DZ EX n EZ EX EX DX EX EX n i i n i i n n i i n i i i i由中心极限定理nZ U n n /)(2242ααα--=的极限分布为标准正态分布,即当n 充分大时,n Z 近似地服从参数为),(2242nααα-的正态分布.例8.设随机变量,1,n i X i ≤≤独立同分布,且分布密度为)(x f ,记}{1x X P p n i i ≤∑==,当n 充分大时,则有A. p 可以根据)(x f 计算; B . p 不可以根据f (x)计算;C. p 一定可以用中心极限定理近似计算;D. p 一定不可以用中心极限定理近似计算解 由于,1,n i X i ≤≤独立同分布,它们的联合概率密度等于各边缘密度的乘积.因此p 可以如下计算:⎰⎰=≤++n n n xxx dx dx x f x f p n ΛΛΛΛ111)()(1由于不知道.1,n i X i ≤≤的期望和方差是否存在,故无法判断能否用中心极限定理. 综上所述,选A.测 试 题一、填空题1.随机变量X 的方差为2,则根据切比雪夫不等式估计≤≥-}2|{|)(X E X P .2.设随机变量X 和Y 的期望都是2,方差分别为1和4,而其相关系数为,则根据切比雪夫不等式≤≥-}6|{|Y X P .3.设n X 是n 重贝努里试验中事件A 出现的次数,又A 在每次实验中出现的概率为)10(<<p p ,则对任意的0>ε,有=⎪⎪⎭⎫⎝⎛≥-∞→εp n X P n n lim . 4.设随机变量ΛΛ,,,1n X X 相互独立同分布,且具有有限的均值与方差,0)(,)(2≠==σμi i X D X E ,随机变量σμn n X Y ni i n -∑==1的分布函数)(x F n ,对任意的x ,满足P x F n n =∞→)(lim { }= .5.设随机变量序列ΛΛ,,,,21n X X X 相互独立同分布,且0)(=n X E ,则=∑<=∞→)(lim 1ni i n n X P .二、选择题6.设随机变量),(~211σμN X ,),(~222σμN Y ,且}1|{|}1|{|21<-><-μμY P X P ,则必有( ).(A)21σσ>; (B) 21σσ<; (C) 21μμ<; (D) 21μμ>.7.设随机变量序列}{n X 相互独立,],[~n n U X n -,Λ,2,1=n ,则对}{n X ( ).(A)可使用切比雪夫大数定律; (B) 不可使用切比雪夫大数定律; (C) 可使用辛钦大数定律; (D) 不可使用辛钦大数定律.8.设随机事件A 在第i 次独试验中发生的概率为i p ,n i ,,2,1Λ=.m 表示事件A 在n 次试验中发生的次数,则对于任意正数ε恒有=⎪⎪⎭⎫⎝⎛<∑-=∞→εni i n p n n mP 11lim ( ). (A)1; (B) 0; (C)21; (D)不可确定. 9.设ΛΛ,,,,21n X X X 相互独立且都服从参数为λ的指数分布,则下述选项中成立的是( ).(A) )(lim 1x x n X Pn i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ; (B) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→; (C) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λ; (D) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ. 10.设随机变量序列ΛΛ,,,,21n X X X 相互独立同分布, 0)(=i X E ,2)(σ=i X D ,且)(4i X E 存在,则对任意0>ε,下述选项中正确的是( ).(A) 11lim 21=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (B) 11lim 212≤⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P ; (C) 11lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (D) 01lim 212=⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P . 三、解答题11.某年的统计资料表示,在索赔户中被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中因盗窃而向保险公司索赔的户数. (1)写出X 的概率分布;(2)求被盗索赔户不少于14户且不多于30户的概率的近似值. 12.某单位设置一电话总机,共有200架分机.设每个电话分机是否使用外线通话是相互独立的.设每时刻每个分机有5%的概率要使用外线通话.问总机需要多少外线才能以不低于90%的概率保证每个分机要使用外线时可供使用13.设5021,,,X X X Λ是相互独立的随机变量,且都服从参数为03.0=λ的泊松分布,记∑==501i i X Y ,试计算}3{≥Y P .14.一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度.第六章 数理统计的基本概念内 容 提 要1、总体与样本在数理统计中,将研究对象的全体称为总体;组成总体的每个元素称为个体.从总体中抽取的一部分个体,称为总体的一个样本;样本中个体的个数称为样本的容量. 从分布函数为)(x F 的随机变量X 中随机地抽取的相互独立的n 个随机变量,具有与总体相同的分布,则n X X X ,,,21Λ称为从总体X 得到的容量为n 的随机样本.一次具体的抽取记录n x x x ,,,21Λ是随机变量n X X X ,,,21Λ的一个观察值,也用来表示这些随机变量.2、统计量设n X X X ,,,21Λ是总体X 的一个样本,则不含未知参数的样本的连续函数),,,(21n X X X f Λ称为统计量.统计量也是一个随机变量,常见的统计量有(1)样本均值(2)样本方差(3)样本标准差(4)样本k 阶原点矩(5)样本k 阶中心矩 2、经验分布函数设n x x x ,,,21Λ是总体X 的一组观察值将它们按大小顺序排列为:**2*1n x x x ≤≤≤Λ,称它为顺序统计量.则称⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<=+**1**2*1*1,1,,1,0)(n k k n x x x x x nk x x x n x x x F ΛΛ为经验分布函数(或样本分布函数).3、一些常用统计量的分布(1)2χ分布设)1,0(~N X ,n X X X ,,,21Λ是X 的一个样本,n 的2χ分布,记作)(~22n χχ.(2)t 分布设)1,0(~N X ,)(~2n Y χ,且YX ,n 的t 分布,记作)(~n t t .t 分布又称为学生分布.(3)F 分布设)(~12n X χ,)(~22n Y χ,且Y X ,),(21n n 的F 分布,记作),(~21n n F F .4、正态总体统计量的分布设),(~2σμN X ,n X X X ,,,21Λ是X 的一个样本,则 (1)样本均值X 服从正态分布,有),(~2nN X σμ(2)样本方差(3)统计量设),(~),,(~222211σμσμN Y N X ,1,,,21n X X X Λ是X 的一个样本, 2,,,21n Y Y Y Λ是Y 的一个样本,两者相互独立.则(1)统计量(2)当21σσ=时,统计量2)1()1(21222211-+-+-=n n S n Sn S w ;(3)统计量(4)统计量疑难分析1、数理统计的研究对象和目的是什么“数理统计学”是数学的一个分支,它的任务是研究怎样用有效的方法去收集和使用带随机性影响的数据,它的具体含义包括以下几层意思:1)能否假定数据有随机性,是区别数理统计方法与其他数据处理方法的根本点。
(完整版)《概率论与数理统计》讲义
第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。
例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。
例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
《概率论与数理统计》学习指导(5,6)
《概率论与数理统计》学习指导·内容提要·疑难分析·例题解析·自测试题安徽工业大学应用数学系编目录第一章随机事件及其概率.................................. 错误!未定义书签。
第二章随机变量及其分布.................................. 错误!未定义书签。
第三章多维随机变量及其分布........................... 错误!未定义书签。
第四章随机变量的数字特征 .............................. 错误!未定义书签。
第五章大数定律和中心极限定理 .. (2)第六章数理统计的基本概念 (9)第七章参数估计 ................................................ 错误!未定义书签。
第八章假设检验 ................................................ 错误!未定义书签。
第五章 大数定律和中心极限定理内 容 提 要1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式22{}P X σμεε-≥≤或22{}1P X σμεε-<>-成立.2、大数定律(1)切贝雪夫大数定理:设 ,,,,21n X X X 是相互独立的随机变量序列,数学期望)(i X E 和方差)(i X D 都存在,且C X D i <)(),2,1( =i ,则对任意给定的0>ε,有1}|)]([1{|lim 1=<∑-=∞→εni i i n X E X n P . (2)贝努利大数定理:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp nn P An . 贝努利大数定理给出了当n 很大时,A 发生的频率A n A /依概率收敛于A 的概率,证明了频率的稳定性.3、中心极限定律(1)独立同分布中心极限定理:设 ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2 =≠=i X D i σ.则对任意实数x ,随机变量σμσμn n X n X Y ni i ni i n ∑-=∑-===11)(的分布函数)(x F n 满足⎰=≤=∞--∞→∞→xtn n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:设 ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2 =≠=i X D i i σ .记 ∑==ni i nB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→∑-=++ni ii nX E B δδμ, 则随机变量nni in i i ni i ni i n i i n B X X D X E X Z ∑-∑=∑∑-∑======11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤∑-∑=∞--==∞→∞→x t n n i i n i i n n n dt e x B X x F 2/11221lim )(lim πμ. 当n 很大时,),(~),1,0(~12.1.∑∑==ni n i ni i n B N X N Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1( =n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有⎰=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞--∞→x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法. 2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律. 3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据. 4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析例1.设X 为连续型随机变量,c 为常数,0>ε,求证εε||}|{|c X E c X P -≤≥-分析 此类概率不等式的证明,一般考虑用切比雪夫不等式或直接从定义用类似切比雪夫不等式的方法来证.证 设X 的密度函数为)(x f ,则⎰=≥-≥-εε||)(}|{|c x dx x f c X P||1)(||1)(||)(||||c X E dx x f c x dxx f c x dx x f c x c x -=⎰-=⎰-≤⎰-≤∞∞-∞∞-≥-εεεεε例2.设随机变量X 和Y 的数学期望都是2,方差分别为1和4,相关系数为0.5,则根据切比雪夫不等式有≤≥-}6{Y X P .解121. 由于 ,0)(=-Y X E ,32)(=-+=-DXDY DY DX Y X D XY ρ 故≤≥-}6{Y X P 12/136/3=.例3.设在独立重复试验中,每次试验中事件A 发生的概率为1/4.问是否用0.925的概率确信在1000次试验中A 发生的次数在200到300之间?分析 在1000次试验中事件A 发生的次数)4/1,1000(~B X ,且2/375)4/11(4/11000,2504/11000=-⨯⨯==⨯=DX EX而 }50250{}300200{≤-=≤≤X P X P 利用Chebychev 不等式得}50250{}300200{≤-=≤≤X P X P 925.050)(12=-≥X D所以可用0.925的概率确信在1000次试验中A 发生的次数在200到300之间.解 如分析所述,由Chebychev 不等式即可得例4.分布用切比雪夫不等式与隶美弗—拉普拉斯中心极限定理确定:当掷一枚硬币时,需要掷多少次,才能保证出现正面的频率在0.4~0.6之间的概率不小于90%.解 设X 为n 次掷硬币正面出现的次数,则),(~p n B X ,其中21=p (1)由切比雪夫不等式知{}n n X P n X P n X P 1.0|5.0|1.0|5.0|6.04.0≤-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧≤≤n n n n X D 25101.0411)1.0()(122-=⋅⨯-=-≥令 %.90251≥-n则得250≥n . (2) 由隶美弗-拉普拉斯的中心极限定理,得:}6.04.0{≤≤nXP .95.0)5(%901)5(21)5.01.0(225.05.06.025.05.025.05.04.0{}6.04.0{≥Φ⇒≥-Φ=-Φ≈-≤-≤-=≤≤=n n n n nn n nn X n n n P n X n P查表知:6.15≥n. 6864.67≥⇒≥n n例5. (1)一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为0.10,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度;(2)上述系统假如由n 个相互独立的元件组成,而且又要求至少有80%的元件工作才能使整个系统正常运行,问n 至少为多大时才能保证系统的可靠度不小于0.95.解 (1)设⎩⎨⎧=个元件损坏第个元件没有损坏第i i X i ,0,1,S 为系统正常运行时完好的元件个数,于是∑==1001i i X S 服从)9.0,100(b ,因而.91.09.0100,909.0100=⨯⨯===⨯=npq DS ES 故所求的概率为.952.0351990859901)85(1)85(=⎪⎭⎫⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤-==≤-=>S P S P S P(2)此时)9.0,(~n b S ,要求95.0)8.0(≥≥n S P ,而.3313.09.08.03.09.01)8.0(⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤--=≥n n n n n n n S P n S P 故95.03≥⎪⎪⎭⎫⎝⎛Φn ,查表得,5.24,65.13≥⇒≥n n 取n =25 例6. 一加法器同时收到20个噪声电压)20,,2,1(, =i V i ,设它们是相互独立且都服从区间(0,10)上的均匀分布,求总和噪声电压超过计划105(伏)的概率.解 记∑==201i i V V ,因2021,,,V V V 是相互独立且都服从(0,10)上的均匀分布,且20,,2,1,12100)(,5)( =====i V D V E i i i σμ 由独立同分布中心极限定理知),3500,100()1210020,520(201N N V V n i i =⨯⨯−−→−∑=∞→= 故.3483.0)39.0(1)3/500100105(1)105(1)105(=Φ-=-Φ-=≤-≈>V P V P例7.假设n X X X ,.,21 是来自总体X 的简单随机样本;已知),4,3,2,1(==k EX k k α证明当n 充分大时,随机变量∑==n i i n X n Z 121 近似服从正态分布,并指出其分布参数.分析 此题主要考查对中心极限定理的理解与运用.解 依题意知n X X X ,,,21 独立同分布,从而其函数22221,,,n X X X 也是独立同分布,且)(11)1(,1,)(,224122122122242242222αααααα-=∑=∑==∑=-=-======n DX n X n D DZ EX n EZ EX EX DX EX EX n i i n i i n n i i n i i i i由中心极限定理nZ U n n /)(2242ααα--=的极限分布为标准正态分布,即当n 充分大时,n Z 近似地服从参数为),(2242nααα-的正态分布.例8.设随机变量,1,n i X i ≤≤独立同分布,且分布密度为)(x f ,记}{1x X P p n i i ≤∑==,当n 充分大时,则有A. p 可以根据)(x f 计算; B . p 不可以根据f (x)计算;C. p 一定可以用中心极限定理近似计算;D. p 一定不可以用中心极限定理近似计算解 由于,1,n i X i ≤≤独立同分布,它们的联合概率密度等于各边缘密度的乘积.因此p 可以如下计算:⎰⎰=≤++n n n xxx dx dx x f x f p n 111)()(1由于不知道.1,n i X i ≤≤的期望和方差是否存在,故无法判断能否用中心极限定理. 综上所述,选A.测 试 题一、填空题1.随机变量X 的方差为2,则根据切比雪夫不等式估计≤≥-}2|{|)(X E X P .2.设随机变量X 和Y 的期望都是2,方差分别为1和4,而其相关系数为0.5,则根据切比雪夫不等式≤≥-}6|{|Y X P .3.设n X 是n 重贝努里试验中事件A 出现的次数,又A 在每次实验中出现的概率为)10(<<p p ,则对任意的0>ε,有=⎪⎪⎭⎫⎝⎛≥-∞→εp n X P n n lim .4.设随机变量 ,,,1n X X 相互独立同分布,且具有有限的均值与方差,0)(,)(2≠==σμi i X D X E ,随机变量σμn n X Y ni i n -∑==1的分布函数)(x F n ,对任意的x ,满足P x F n n =∞→)(lim { }= .5.设随机变量序列 ,,,,21n X X X 相互独立同分布,且0)(=n X E ,则=∑<=∞→)(l i m 1ni i n n X P .二、选择题6.设随机变量),(~211σμN X ,),(~222σμN Y ,且}1|{|}1|{|21<-><-μμY P X P ,则必有( ).(A)21σσ>; (B) 21σσ<; (C) 21μμ<; (D) 21μμ>.7.设随机变量序列}{n X 相互独立,],[~n n U X n -, ,2,1=n ,则对}{n X ( ).(A)可使用切比雪夫大数定律; (B) 不可使用切比雪夫大数定律; (C) 可使用辛钦大数定律; (D) 不可使用辛钦大数定律.8.设随机事件A 在第i 次独试验中发生的概率为i p ,n i ,,2,1 =.m 表示事件A 在n 次试验中发生的次数,则对于任意正数ε恒有=⎪⎪⎭⎫⎝⎛<∑-=∞→εni i n p n n mP 11lim ( ). (A)1; (B) 0; (C)21; (D)不可确定. 9.设 ,,,,21n X X X 相互独立且都服从参数为λ的指数分布,则下述选项中成立的是( ).(A) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λλ; (B) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→; (C) )(lim 1x x n n X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λ; (D) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ. 10.设随机变量序列 ,,,,21n X X X 相互独立同分布, 0)(=i X E ,2)(σ=i X D ,且)(4i X E 存在,则对任意0>ε,下述选项中正确的是( ).(A) 11lim 21=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (B) 11lim 212≤⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P ; (C) 11lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσn i i n X n P ; (D) 01lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσn i i n X n P . 三、解答题11.某年的统计资料表示,在索赔户中被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中因盗窃而向保险公司索赔的户数.(1)写出X 的概率分布;(2)求被盗索赔户不少于14户且不多于30户的概率的近似值. 12.某单位设置一电话总机,共有200架分机.设每个电话分机是否使用外线通话是相互独立的.设每时刻每个分机有5%的概率要使用外线通话.问总机需要多少外线才能以不低于90%的概率保证每个分机要使用外线时可供使用?13.设5021,,,X X X 是相互独立的随机变量,且都服从参数为03.0=λ的泊松分布,记∑==501i i X Y ,试计算}3{≥Y P .14.一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为0.10,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度.第六章 数理统计的基本概念内 容 提 要1、总体与样本在数理统计中,将研究对象的全体称为总体;组成总体的每个元素称为个体.从总体中抽取的一部分个体,称为总体的一个样本;样本中个体的个数称为样本的容量. 从分布函数为)(x F 的随机变量X 中随机地抽取的相互独立的n 个随机变量,具有与总体相同的分布,则n X X X ,,,21 称为从总体X 得到的容量为n 的随机样本.一次具体的抽取记录n x x x ,,,21 是随机变量n X X X ,,,21 的一个观察值,也用来表示这些随机变量.2、统计量设n X X X ,,,21 是总体X 的一个样本,则不含未知参数的样本的连续函数),,,(21n X X X f 称为统计量.统计量也是一个随机变量,常见的统计量有(1)样本均值(2)样本方差(3)样本标准差(4)样本k 阶原点矩(5)样本k 阶中心矩2、经验分布函数设n x x x ,,,21 是总体X 的一组观察值将它们按大小顺序排列为:**2*1n x x x ≤≤≤ ,称它为顺序统计量.则称⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<=+**1**2*1*1,1,,1,0)(n k k n x x x x x nk x x x n x x x F 为经验分布函数(或样本分布函数).3、一些常用统计量的分布(1)2χ分布设)1,0(~N X ,n X X X ,,,21 是X 的一个样本,n 的2χ分布,记作)(~22n χχ.(2)t 分布设)1,0(~N X ,)(~2n Y χ,且Y X,n 的t 分布,记作)(~n t t .t 分布又称为学生分布.(3)F 分布设)(~12n X χ,)(~22n Y χ,且Y X ,),(21n n 的F 分布,记作),(~21n n F F .4、正态总体统计量的分布设),(~2σμN X ,n X X X ,,,21 是X 的一个样本,则 (1)样本均值X 服从正态分布,有),(~2nN X σμ(2)样本方差(3)统计量设),(~),,(~222211σμσμN Y N X ,1,,,21n X X X 是X 的一个样本, 2,,,21n Y Y Y 是Y 的一个样本,两者相互独立.则(1)统计量(2)当21σσ=时,统计量2)1()1(21222211-+-+-=n n S nS n S w ;(3)统计量(4)统计量疑难分析1、数理统计的研究对象和目的是什么?“数理统计学”是数学的一个分支,它的任务是研究怎样用有效的方法去收集和使用带随机性影响的数据,它的具体含义包括以下几层意思:1)能否假定数据有随机性,是区别数理统计方法与其他数据处理方法的根本点。
《概率论与数理统计》课程自学指导书
《概率论与数理统计》课程自学指导书《概率论与数理统计》课程自学指导书前言.. 《概率论与数理统计》是城市规划专业和地理信息系统专业的专业必修课。
《概率统计》教材系统阐述了概率论和数理统计的基本内容、理论和应用方法。
概率统计是研究随机现象客观规律的数学学科,它的应用非常广泛,并具有独特的思维和方法。
通过概率论的学习能使学生了解概率与数理统计的基本概念和基本理论,初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
通过本课程的学习,能够为学生学习后继课程及进一步提高打下必要的数学基础。
其内容可分为三大部分。
第一部分概率论部分,包括第一、二、三、四、五章。
作为基础知识,为读者提供了必要的理论基础。
第二部分数理统计部分,包括第六、七、八、九章,主要讲述参数估计和假设检验,并介绍了方差分析和回归分析。
第三部分随机过程部分,主要讨论了平稳随机过程,还介绍了马尔可夫过程。
本指导书是作为函授学员在集中授课后,指导自学而编制的。
内容较为简明扼要。
主要是为了让学员能够抓住要领,掌握重点,理解难点,从而达到能够融会贯通、灵活掌握概率统计的基本概念、基本理论从而解决实际问题的目的。
本指导书的主要参考书目:1.景泰等编。
概率论与数理统计.上海科学技术文献出版社,1991.2.玉麟主编。
概率论与数理统计.复旦大学出版社,1995。
3.大茵,陈永华编。
概率论与数理统计。
浙江大学出版社.1996本课程的考核内容以教学大纲为依据,注重基本概念、基本理论的掌握和应用的考核。
主要考核方式为笔试。
第一章概率论的基本概念一、内容概述 #本章介绍了概率论的基本概念:随机试验、样本空间、随机事件、频率与概率,讨论研究等可能概型问题、条件概率及独立性问题。
二、教学目的要求 #(1)理解并掌握概率论的基本概念。
(2)理解掌握等可能概型问题。
(3)理解并掌握条件概率。
(4)了解独立性。
三、重、难点内容解析 #1.随机试验,样本空间,概率的概念。
概率论与数理统计自学指导书
《概率论与数理统计》自学指导书一、课程名称:槪率论与数理统讣二、自学学时:120三、课件学时:四、教材名称:《概率论与数理统讣》,袁荫棠编,中国人民大学出版社。
五、参考资料:六、考核方式:章节同步习题(10%) +笔试(90%)七、课程简介本课程主要讲解概率统汁的基本概念、理论与方法。
内容主要包括:随机事件及其概率、随机变量及其分布、随机变量的数字特征、几种常见的分布、大数泄律与中心极限立理、样本分布、参数估计、假设检验以及回归分析等。
八、自学内容指导第一章随机事件及其概率(一)本章内容概述本章主要讲授随机试验、样本空间、古典概型、概率的立义和性质,加法及乘法公式、条件概率公式、全概率公式及贝叶斯公式,事件的独立性及独立试验概型等。
(二)自学课时安排(三)知识点1、随机事件(1)随机试验是指具有下列特点的试验:•在相同条件下可重复进行;•每次试验的结果不唯一,且试验前可确知所有可能结果;•每次试验前不可准确预知该次试验会岀现哪一种结果。
(2)随机事件在每次试验中,可能发生也可能不发生,而在大量试验中具有某种规律性的事件。
必然事件一一每次试验中一泄发生的事件,记不可能事何一每次试验中一定不发生的事件,记①。
基本事件与样本空间。
(3)事件的关系和运算①熟悉两个事件的和事件、积事件、差事件的含义及符号表示,并熟悉推广到多个事件的情形。
②此外,还有互斥事件、对立事件以及完备事件组的槪念。
互斥事件:如果事件A与B不能同时发生,即= ©,称事件A与B互不相容(也称互斥)。
对立事件:事件“非A”称为A的对立事件(或逆事件),记作7。
注意:AA=^,A + A = Q.,A = Q.-A,A = A O③事件的运算规律:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律、对偶律,特别要注意对偶律:2、概率注意:三种概率的泄义(概率三种定义:统计泄义、古典定义、公理化左义),但重点是概率的古典左义,它是我们计算事件概率的主要依据。
《概率论与数理统计》教案
《概率论与数理统计》教案第一章:概率论的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量函数的分布第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 多维随机变量函数的分布第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的估计第五章:数理统计的基本概念5.1 统计量与抽样分布5.2 参数估计与点估计5.3 置信区间与置信水平5.4 假设检验与p值第六章:参数估计6.1 总体参数与样本参数6.2 估计量的性质6.3 最大似然估计6.4 点估计与区间估计第七章:假设检验7.1 假设检验的基本概念7.2 检验的错误与功效7.3 常用检验方法7.4 似然比检验与正态分布检验第八章:回归分析8.1 线性回归模型8.2 回归参数的估计8.3 回归模型的检验与诊断8.4 多元线性回归分析第九章:方差分析9.1 方差分析的基本概念9.2 单因素方差分析9.3 多因素方差分析9.4 协方差分析与重复测量方差分析第十章:时间序列分析10.1 时间序列的基本概念10.2 平稳性检验与时间序列模型10.3 自回归模型与移动平均模型10.4 指数平滑模型与状态空间模型第十一章:非参数统计11.1 非参数统计的基本概念11.2 非参数检验方法11.3 非参数回归分析11.4 非参数时间序列分析第十二章:生存分析12.1 生存分析的基本概念12.2 生存函数与生存曲线12.3 生存分析的统计方法12.4 生存分析的应用实例第十三章:贝叶斯统计13.1 贝叶斯统计的基本原理13.2 贝叶斯参数估计13.3 贝叶斯假设检验13.4 贝叶斯回归分析第十四章:多变量分析14.1 多变量数据分析的基本概念14.2 多元散点图与主成分分析14.3 因子分析与聚类分析14.4 判别分析与典型相关分析第十五章:统计软件与应用15.1 统计软件的基本使用方法15.2 R语言与Python在统计分析中的应用15.3 统计软件的实际操作案例15.4 统计分析在实际领域的应用重点和难点解析本《概率论与数理统计》教案涵盖了概率论的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、方差分析、时间序列分析、非参数统计、生存分析、贝叶斯统计、多变量分析以及统计软件与应用等多个方面。
《概率论与数理统计》知识点整理
《概率论与数理统计》知识点整理概率论与数理统计是数学中的一个重要分支,它研究随机现象发生的规律以及对这些规律的推断和决策问题。
在现代科学、金融、医学、工程等领域中都有广泛的应用。
下面是《概率论与数理统计》的一些重要知识点:一、概率论:1.概率的基本概念:随机试验、样本空间、事件、概率公理化定义等。
2.条件概率与概率的乘法定理:条件概率的定义、条件概率的乘法定理、独立事件的定义与性质等。
3.全概率公式与贝叶斯公式:全概率公式的推导与应用、贝叶斯公式的推导与应用等。
4.随机变量与概率分布:随机变量的定义与分类、概率分布的基本性质、离散型随机变量与连续型随机变量的概率分布等。
5.两随机变量函数的概率分布:随机变量的函数、数学期望的定义与性质、方差的定义与性质等。
6.多维随机变量及其分布:二维随机变量的概率分布、联合分布函数与边缘分布、条件分布等。
二、数理统计:1.统计数据的描述:数据的集中趋势度量(均值、中位数、众数)、数据的离散程度度量(极差、方差、标准差)、数据的分布形态度量(偏度、峰度)等。
2.参数估计:点估计的概念与方法、矩估计法、极大似然估计法、最小二乘估计法等。
3.假设检验:假设检验的基本概念、显著性水平与拒绝域、假设检验的步骤、单侧检验与双侧检验等。
4.统计分布:正态分布的性质与应用、t分布与χ²分布的概念与性质、F分布的概念与性质等。
5.方差分析与回归分析:方差分析的基本原理与应用、单因素方差分析、回归分析的基本原理与应用、简单线性回归分析等。
三、随机过程:1.随机过程的基本概念与性质:随机过程的定义、状态与状态转移概率、齐次性与非齐次性等。
2.马尔可夫链:马尔可夫链的定义与性质、状态空间的分类、平稳分布与极限等。
3.随机过程的描述:概率密度函数、概率生成函数、随机过程的矩、协方差函数等。
4.随机过程的分类:齐次与非齐次、连续与间断、宽离散与窄离散等。
【学习】概率论与数理统计学习指导34
【关键字】学习《概率论与数理统计》学习指导·内容提要·疑难分析·例题解析·自测试题安徽工业大学应用数学系编目录第三章多维随机变量及其分布内容提要1、二维随机变量及其联合分布函数设,为随机变量,则称它们的有序数组()为二维随机变量.设()为二维随机变量,对于任意实数、,称二元函数为()的联合分布函数.联合分布函数具有以下基本性质:(1)是变量或的非减函数;(2)且;(3)关于右连续,关于也右连续;(4)对任意点,若,则.上式表示随机点落在区域内的概率为:.2、二维离散型随机变量及其联合分布律如果二维随机变量所有可能取值是有限对或可列对,则称为二维离散型随机变量.设为二维离散型随机变量,它的所有可能取值为将或表3.1称为的联合分布律.表3.1联合分布律具有下列性质:(1);(2).3、二维连续型随机变量及其概率密度函数如果存在一个非负函数,使得二维随机变量的分布函数对任意实数有,则称是二维连续型随机变量,称为的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)对一切实数,有;(2);(3)在任意平面域上,取值的概率;(4)如果在处连续,则.4、二维随机变量的边缘分布设为二维随机变量,则称,分别为关于和关于的边缘分布函数.当为离散型随机变量,则称分别为关于和关于的边缘分布律.当为连续型随机变量,则称分别为关于和关于的边缘密度函数.5、二维随机变量的条件分布(1)离散型随机变量的条件分布设为二维离散型随机变量,其联合分布律和边缘分布律分别为),2,1,(}{,}{,},{.. ========j i p y Y P p x X P p y Y x X P j j i i ij j i ,则当j 固定,且0}{.>==j j p y Y P 时,称,2,1,}{},{}|{.========i p p y Y P y Y x X P y Y x X P jij j j i j i 为j y Y =条件下随机变量X 的条件分布律.同理,有 ,2,1,}|{.====j p p x X y Y P i ij i j(2)连续型随机变量的条件分布设),(Y X 为二维连续型随机变量,其联合密度函数和边缘密度函数分别为:)(),(),,(y p x p y x p Y X .则当0)(>y p Y 时,在),(y x p 和)(x p X 的连续点处,),(Y X 在条件y Y =下,X 的条件概率密度函数为:)(),()|(|y p y x p y x p Y Y X =.同理,有)(),()|(|x p y x p y x p X X Y =. 6、随机变量的独立性设),(y x F 及)()(y F x F Y X 、分别是),(Y X 的联合分布函数及边缘分布函数.如果对任何实数y x ,有)()(),(y F x F y x F Y X ⋅=则称随机变量X 与Y 相互独立.设),(Y X 为二维离散型随机变量,X 与Y 相互独立的充要条件是),2,1,(.. ==j i p p p j i ij . 设),(Y X 为二维连续型随机变量,X 与Y 相互独立的充要条件是对任何实数y x ,,有)()(),(y p x p y x p Y X =.7、两个随机变量函数的分布设二维随机变量),(Y X 的联合概率密度函数为),(y x p ,),(Y X Z ϕ=是Y X ,的函数,则Z 的分布函数为dxdy y x p z F zy x Z ⎰⎰=≤),(),()(ϕ.(1)Y X Z +=的分布若),(Y X 为离散型随机变量,联合分布律为ij p ,则Z 的概率函数为: ∑-=ii k i k Z x z x p z P ),()(或∑-=jj k j k Z y z y p z P ),()(.若),(Y X 为连续型随机变量,概率密度函数为),(y x p ,则Z 的概率函数为:dy y y z p dx x z x p z p Z ⎰-=⎰-=+∞∞-+∞∞-),(),()(.(2)YXZ =的分布 若),(Y X 为连续型随机变量,概率密度函数为),(y x p ,则Z 的概率函数为:⎰=+∞∞-dy y yz p y z p Z ),()(.疑 难 分 析1、事件},{y Y x X ≤≤表示事件}{x X ≤与}{y Y ≤的积事件,为什么},{y Y x X P ≤≤不一定等于}{}{y Y P x X P ≤⋅≤?如同仅当事件B A 、相互独立时,才有)()()(B P A P AB P ⋅=一样,这里},{y Y x X P ≤≤依乘法原理}|{}{},{x X y Y P x X P y Y x X P ≤≤⋅≤=≤≤.只有事件}{x X P ≤与}{y Y P ≤相互独立时,才有}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤,因为}{}|{y Y P x X y Y P ≤=≤≤.2、二维随机变量),(Y X 的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布.反之,边缘分布与条件分布都不能唯一确定联合分布.但由)|()(),(|x y p x p y x p X Y X ⋅=知,一个条件分布和它对应的边缘分布,能唯一确定联合分布.但是,如果Y X 、相互独立,则}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤,即)()(),(y F x F y x F Y X ⋅=.说明当Y X 、独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布. 3、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?两个随机变量Y X 、相互独立,是指组成二维随机变量),(Y X 的两个分量Y X 、中一个分量的取值不受另一个分量取值的影响,满足}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤.而两个事件的独立性,是指一个事件的发生不受另一个事件发生的影响,故有)()()(B P A P AB P ⋅=.两者可以说不是一个问题.但是,组成二维随机变量),(Y X 的两个分量Y X 、是同一试验E 的样本空间上的两个一维随机变量,而B A 、也是一个试验1E 的样本空间的两个事件.因此,若把“x X ≤”、“y Y ≤”看作两个事件,那么两者的意义近乎一致,从而独立性的定义几乎是相同的.例 题 解 析例 1 设某班车起点站上的乘客数X 服从参数为)0(>λλ的泊松分布,每位乘客中途下车的概率为)10(<<p p ,且中途下车与否相互独立,以Y 表示中途下车的人数,求二维随机变量),(Y X 的分布律.解例2 设随机变量),(Y X 的概率密度为 试求(1)系数c ;(2)),(Y X 落在圆)0(222R r r y x <<≤+内的概率.解 所以 33Rc π=(2) 设{},:,222r y x y)(x D ≤+=注: 利用分布函数的基本性质可以确定待定系数,从而可以计算二维随机变量落在某一区域内的概率,值得注意的是计算过程中,由于),(y x f 通常是分区域函数,故积分区域要特别小心,以免出错.例3 考虑一元二次方程02=++C Bx x ,其中C B ,分别是将一枚骰子接连掷两次先后出现的点数,求该方程有实根的概率p 和有重根的概率q .解 方程02=++C Bx x 有实根的充要条件是判别式042≥-=∆C B 或4/2B C ≤,由条件知,0+1+2+4+6+6=19所以36/19=p ,使方程有重根的充要条件是C B 42=,满足此条件的基本事件个数为0+1+0+1+0+0=2因此 18/136/2==q例4 设随机变量),(Y X 均匀分布于以)1,0(),0,1(),1,0(),0,1(--四项点所构成的正方形中,求X 与Y 的边缘密度函数.解1º当01<<x -时,⎰+==⎰=+--∞∞-11121),()(x x X x dy dy y x f x f当10<≤x 时,121),()(11+-=⎰=⎰=+--∞∞-x dy dy y x f x f x x X 所以2º类似1º可得例5 随机变量),(Y X 的密度函数为⎪⎩⎪⎨⎧>>++= 其它,00,0,)1/(2),(3y x y x y x p ,求1=X 条件下Y 的条件分布密度.分析:通过),(Y X 的联合密度和边缘密度函数,来求在1=X 条件下Y 条件分布密度.解:当0>x 时,有203)1/(1)1/(2)(x dy y x x p X +=⎰++=∞,故 .例6 在),0(a 线段上任意抛两个点(抛掷二点的位置在),0(a 上独立地服从均匀分布),试求两点间距离的分布函数.解 设抛掷两点的坐标分别为X 和Y ,则X 与Y 相互独立,且都服从)(a ,0上的均匀分布,故),(Y X 的联合概率密度为记两点距离为Z ,则||Y X Z -=的分布函数为 )|(|)(z Y X P z F Z ≤-=当0<z 时,显然0)(=z F Z ; 当a z <≤0时,当a z ≥时,1)(=z F Z 故两点距离Z 的分布函数为例7 假设一电路装有三个同种电气元件,其工作状态相互独立,且无故障时间都服从参数为0>λ的指数分布,当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作的时间T 的概率分布.解 设)3,2,1(=i X i 为第i 个电子元件无故障工作的时间,则321,,X X X 是独立同分布的随机变量,其分布函数为记)(t G 为了T 的分布函数,则 当0<t ,0)(=t G ; 当0≥t 时,所以 ⎪⎩⎪⎨⎧<≥-=λ-0,00,1)(3t t e t G t即电路正常工作时间T 服从参数为λ3的指数分布.例8 设随机变量X 与Y 独立同分布,其概率密度为 求随机变量22Y X Z +=的概率密度.解 由于X 与Y 独立同分布,故),(Y X 的联合概率密度为当0≤z 时,显然0)(=z F Z 当0>z 时,故22Y X Z +=的概率密度为例9.已知随机变量1}2/1{,4/34/110~=-=⎥⎦⎤⎢⎣⎡Y P X ,又n 维向量123,,a a a 线性无关。
《概率论与数理统计》笔记
《概率论和数理统计》笔记一、课程导读“概率论和数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●使用例子摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:结果(比数) A(8:0)B(7:1)C(6:2)D(5:3)E(4:4)奖金(元)10 1 0.5 0.2 -2 注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体使用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。
《概率论与数理统计》教案
《概率论与数理统计》教案一、教学目标1. 了解概率论与数理统计的基本概念,理解随机现象的统计规律性。
2. 掌握概率论的基本计算方法,包括组合、排列、概率公式等。
3. 熟悉数理统计的基本方法,包括描述性统计、推断性统计、假设检验等。
4. 能够运用概率论与数理统计的方法解决实际问题。
二、教学内容1. 概率论的基本概念:随机试验、样本空间、事件、概率等。
2. 概率计算方法:组合、排列、概率公式、条件概率、独立性等。
3. 数理统计的基本概念:总体、样本、描述性统计、推断性统计等。
4. 假设检验:卡方检验、t检验、F检验等。
5. 实际问题应用:概率论与数理统计在实际问题中的举例分析。
三、教学方法1. 讲授法:讲解概率论与数理统计的基本概念、原理和方法。
2. 案例分析法:通过具体案例,让学生了解概率论与数理统计在实际问题中的应用。
3. 互动教学法:引导学生参与课堂讨论,提问、解答问题,提高学生的思考能力。
4. 实践操作法:引导学生利用统计软件进行数据分析和处理,提高学生的实际操作能力。
四、教学环境1. 教室环境:宽敞、明亮,教学设备齐全,包括投影仪、计算机等。
2. 教材和辅导资料:选用合适的教材和辅导资料,为学生提供丰富的学习资源。
3. 统计软件:安装统计分析软件,如Excel、SPSS等,方便学生进行实践操作。
五、教学评价1. 平时成绩:考察学生的出勤、课堂表现、作业完成情况等。
2. 期中考试:设置期中考试,检验学生对概率论与数理统计知识的掌握程度。
3. 课程设计:布置课程设计项目,让学生运用概率论与数理统计的方法解决实际问题。
4. 期末考试:全面考察学生对概率论与数理统计知识的掌握程度。
六、教学资源1. 教材:选用权威、适合教学的的概率论与数理统计教材。
2. 辅导资料:提供习题集、案例分析集等辅导资料,帮助学生巩固知识。
3. 在线资源:推荐优秀的在线课程、教学视频、学术文章等,方便学生自主学习。
4. 软件工具:介绍和使用统计软件工具,如R、Python等,提高学生数据分析能力。
《概率论与数理统计》教学方法
教学方法1.精讲、多练,注重学生基本知识的掌握概率统计课程理论性和应用强,内容较多,难度较大,而教学时数有限。
采用按单元组织教学的教学方法有利于帮助学生逐步接受和强化学习内容。
每一教学单元即章节包含了课堂讲授、练习、章节习题评讲等环节,让学生对每一阶段的学习进行总结,及时发现问题,解决问题。
实践表明,这种方法取得了良好的教学效果。
2.激发学习兴趣,加强自主学习教学过程中教师灵活地采用回忆式提问、理解式提问、应用式提问等方法,积极引导学生主动思考,改变传统的教学方式。
在教学过程中注意引入有趣的、与日常生活、工程技术相关的应用案例,激发了学生的学习兴趣和学习的主动性。
3.注意学习方法指导,培养自学能力在教学过程中十分重视讲述相关内容知识上的相似性,如一维随机变量的性质与二维随机变量的性质相同点和不同点,启发学生对相关知识点作对比分析,以利于深入理解,举一反三。
随时开展与学生之间的交流,利用网上资源,对学生在学习过程中出现的问题给予指导,从而增强了学生的自学能力。
教学手段:概率统计课程的内容多、难度大、学时短。
为了在有限的学时内增加课堂教学的信息量,长期以来,我们一直将多种现代教育技术和手段应用于教学过程中,将传统教学方法与多媒体技术相结合,针对应用案例和部分知识点利用多媒体技术手段生动、形象、直观的特点,通过视觉和听觉,全方位地加强学生对知识的理解和记忆。
以课程教学改革为重点。
引进先进的教学思想、教学理念和教学方法,使教学研究逐步与国际前沿接轨。
推进教学内容、教学方法和教学手段的改革,在课堂讲授中将传统的教学方法与现代化教学手段(如多媒体教学、网上课堂等)恰当地结合起来,将教师讲授与学生自学、讨论和研究有机地结合起来;利用Excel、Matlab等数理统计软件设计概率论与数理统计实验,将理论学习与解决实际问题紧密的结合起来,培养学生灵活运用课程知识的能力。
一、课程在本专业的定位与课程目标概率论与数理统计是研究随机现象统计规律的数学学科,在信息与计算科学专业教学计划中是一门基础理论课。
《概率论与数理统计B》实验教学指导书分析
《概率论与数理统计B》实验教学指导书实验类别:课内实验所属课程名称:概率论与数理统计B实验学时:16学时所属课程编码:N02081404实验室名称:大学数学实验中心实验室类别:基础实验教学中心参考书目:《概率论与数理统计教程》(第二版),茆诗松、程依明、濮晓龙等编著,高等教育出版社、《数理统计理论、应用与软件实现》,宋爱斌主编,国防工业出版社适用专业:应用数学、信息与计算科学实验一 各种分布的密度函数与分布函数一、实验目的使学生了解MATLAB 系统,熟练掌握MATLAB 中基本语句以及分布律,概率密度函数和分布函数的相关命令并运用这些命令进行简单的相关概率运算。
二、实验内容及要求1、会利用 MATLAB 软件计算离散型随机变量的概率、连续型随机变量概率密度值, 以及产生离散型随机变量的概率分布(即分布律);2、会利用 MATLAB 软件计算分布函数值,即:计算形如事件{}X x 的概率;3、给出概率p 和分布函数,会求下侧p 分位数;4、会利用 MATLAB 软件画出各种常见分布图形。
三、实验的重点和难点实验的重点和难点是要求学生掌握基本的MATLAB 软件的编程语言,掌握基本的调用命令。
四、实验准备实验室电脑需要安装MATLAB 软件。
五、实验步骤1、通过MATLAB 函数计算概率分布律及密度函数值 函数:pdf 或者namepdf格式:Y=pdf(‘name',K,A,B)或者:namepdf (K,A,B)说明:(1)上述函数表示返回在X=K 处、参数为A 、B 、C 的概率值或密度值,对于不同的分布,参数个数是不同;name 为分布函数名,其取值如表1。
(2)第一个函数名加' ',第二个无需加。
表1-1 常见分布名称表注意以下几个分布的分布律和密度定义: ①几何分布:(),k P X k pq ==0,1,k =L ,(),qE X p=2()q Var X p =;②正态分布:第二个参数是σ;③指数分布:1,0()0,0xe x p x x θθ-⎧>⎪=⎨⎪≤⎩,参数是θ;例1.事件A 在每次试验中发生的概率是0.3,计算在10次试验中A 恰好发生6次的概率。
《概率论与数理统计》第一章知识点
第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。
《概率论与数理统计》学习指南
第一章随机事件及其概率一、基本要求1、了解基本事件空间(样本空间)的概念,理解随机事件的概念,掌握事件的关系和运算及其基本性质;2、理解事件概率、条件概率的概念和独立性的概念;掌握概率的基本性质和基本运算公式;掌握与条件概率有关的三个基本公式(乘法公式、全概率公式和贝叶斯公式).3、掌握计算事件概率的基本计算方法:(1) 概率的直接计算:古典型概率和几何型概率;(2) 概率的推算:利用概率的基本性质、基本公式和事件的独立性,由较简单事件的概率推算较复杂事件的概率.(3) 利用概率分布:利用随机变量的概率分布计算有关事件的概率.二、概念网络图第二章随机变量及其分布一、基本要求1、理解概率分布的概念,掌握其三种基本形式:离散型概率分布,连续型概率密度,分布函数;掌握概率分布的特点、性质,会根据概率分布计算有关事件的概率;2、掌握常用的概率分布:0-1分布、二项分布、超几何分布和泊松分布等离散型概率分布,以及均匀分布、指数分布和正态分布等连续型概率分布,包括分布的表达式、特点、性质、数字特征和典型应用,以及与其他分布的关系;3、理解0-1分布、二项分布、超几何分布和泊松分布等离散型概率分布之间的关系;4、会根据随机自变量的分布,求其函数的分布的方法.二、概念网络图第三章多维随机变量及其分布一、基本要求1、理解二维随机变量的联合分布函数的基本概念和性质;离散型随机变量联合分布律、边缘分布律和条件分布律;连续型随机变量联合概率密度、边缘密度和条件密度;会利用二维概率分布求有关事件的概率.2、理解随机变量的独立性的概念,掌握随机变量独立的条件;3、掌握二维均匀分布;了解二维正态分布的概率密度,理解其中参数的概率意义;4、掌握根据两个随机变量的联合分布的基本方法,熟练掌握两个随机变量和、商、以及最大值和最小值的分布的求解;会根据两个或多个独立随机变量的分布求其较简单函数的分布.二、概念网络图第四章随机变量的数字特征一、基本要求1、理解随机变量的数字特征(数学期望、方差,标准差、矩、协方差、相关系数)的概念,并会运用数字特征定义和基本性质计算具体分布的数字特征;掌握常用分布(二项分布、超几何分布、泊松分布、一维和二维均匀分布、指数分布、一维和二维正态分布)的数字特征.2、会根据随机变量的概率分布求其函数的数学期望;会根据二维随机变量的概率分布求其函数的数学期望.3、理解两个随机变量相关性的概率含义,以及与独立性的联系和区别.4、理解有关数字特征的概率意义.二、概念网络图第五章大数定律与中心极限定理一、基本要求1、理解大数定律的概率含义,掌握切比雪夫大数定律、伯努利大数定律和辛钦大数定律成立的条件及结论.大数定律多用于进行理论的论证,一般不便于处理具体问题.会证明切比雪夫大数定律和伯努利大数定律.2、理解中心极限定理的定义,掌握棣莫弗-拉普拉斯中心极限定理以及独立同分布中心极限定理的结论和应用条件,并会应用这两个定理进行近似计算.二、概念网络图第六章 数理统计的基本概念一、基本要求1、理解总体、简单随机样本和统计量的概念,掌握常用统计量和样本数字特征——样本均值、样本方差和样本矩的概念及其基本性质,其中样本方差定义为 ∑=--=n i i X Xn S 122)(11.2、了解统计推断常用的2χ分布、t 分布、F 分布,理解服从2χ分布、t 分布、F 分布的随机变量的定义含义,会用相应的分位数;3、了解正态总体的常用抽样分布:正态分布、2χ分布、t 分布、F 分布.4、掌握与常见统计量相关的分布定理结论.二、概念网络图第七章参数估计一、基本要求1、理解参数的点估计、估计量与估计值的概念,了解评选估计量的基本标准——无偏性、有效性与相合性(一致性)的概念,并会证明估计量的无偏性;会比较两个无偏估计量的方差;会利用大数定律证明估计量的相合性.2、掌握求估计量的方法——矩估计法和最大似然估计法;矩估计法一般只涉及一阶和二阶矩.3、掌握建立未知参数的(单侧或双侧)置信区间的一般方法,掌握正态总体的均值、方差、标准差和矩,以及与其相联系的特征的置信区间的求法.4、掌握建立两个正态总体的均值差和方差比,以及与其相联系的特征的置信区间的一般求法.二、概念网络图第八章假设检验一、基本要求1、理解“假设检验”的概念及其类型,理解显著性检验的基本思想,掌握假设检验的基本步骤,会构造简单假设的显著性检验;2、理解假设检验的两类错误;3、熟练掌握正态总体参数的假设检验;4、熟练掌握分布的卡尔方拟合检验以及随机变量独立性的拟合检验.二、概念网络图第九章方差分析与线性回归一、基本要求1、理解单因子方差分析的概念及其类型,熟练掌握检验多正态总体均值是否相等的方法;2、熟练掌握线性回归模型的参数估计,以及正态线性回归模型参数估计量的性质.二、概念网络图。
考研数学《概率论与数理统计》知识点总结
考研数学《概率论与数理统计》知识点总结引言《概率论与数理统计》是考研数学中的一个重要分支,它不仅要求学生掌握理论知识,还要求能够运用这些知识解决实际问题。
本文档旨在对《概率论与数理统计》的核心知识点进行总结,帮助考生系统复习。
第一部分:概率论基础1. 随机事件与样本空间随机事件:在一定条件下可能发生也可能不发生的事件。
样本空间:所有可能结果的集合。
2. 概率的定义古典定义:适用于有限样本空间,每个样本点等可能发生。
频率定义:长期频率的极限。
主观定义:基于个人信念或偏好。
3. 概率的性质非负性:概率值非负。
归一性:所有事件的概率之和为1。
加法定理:互斥事件概率的和。
4. 条件概率与独立性条件概率:已知一个事件发生的情况下,另一个事件发生的概率。
独立性:两个事件同时发生的概率等于各自概率的乘积。
5. 随机变量及其分布离散型随机变量:可能取有限个或可数无限个值。
连续型随机变量:可能取无限连续区间内的任何值。
分布函数:随机变量取值小于或等于某个值的概率。
第二部分:随机变量及其分布1. 离散型随机变量的分布概率质量函数:描述离散型随机变量取特定值的概率。
常见分布:二项分布、泊松分布、几何分布等。
2. 连续型随机变量的分布概率密度函数:描述连续型随机变量在某区间的概率密度。
常见分布:均匀分布、正态分布、指数分布等。
3. 多维随机变量及其分布联合分布:描述多个随机变量联合取值的概率。
边缘分布:从联合分布中得到的单一随机变量的分布。
条件分布:给定一个随机变量的条件下,另一个随机变量的分布。
第三部分:数理统计基础1. 数理统计的基本概念总体与样本:总体是研究对象的全体,样本是总体中所抽取的一部分。
统计量:根据样本数据计算得到的量。
2. 参数估计点估计:用样本统计量估计总体参数的单个值。
区间估计:在一定概率下,总体参数落在某个区间的估计。
3. 假设检验原假设与备择假设:研究问题中的两个对立假设。
检验统计量:用于决定是否拒绝原假设的量。
概率论与数理统计学习指导参考答案-常州大学
同步练习参考答案练习 1-11. (1)是;(2)是;(3)是.练习1-21. (1)123456{,,,,,}S e e e e e e =, 其中i e =‘出现i 点’1,2,,6i =,246{,,}A e e e =;(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =;(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)};{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =; (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------.(5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===.2. (1)ABC ; (2)AB AC BC 或ABCABC ABC ABC ; (3)AB C 或ABC ABC ABCABCABCABC ABC ; (4)ABC ABCABC ;(5)AB AC BC 或ABCABCABCABC .3. (1)123A A A ;(2)123A A A ;(3)123123123A A A A A A A A A ;(4)121323A A A A A A .4.(C)5. 甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中.6.,,.ABC ABC ABC ABC ABC ABC ABC ABC C BC ABC ++++++++7. 略.8. 略.练习1-31. 0.3.2. 2. 30%.3. 3. 5/8.4. 4. )()(AB P A P -.5. 5.0,,q p +,p ).(1q p +- 6 .0.6, 0.1. 7. 0.3,0.6. 8. 1.p -9.,1.p q r p r +-+- 10.0.1,0.1.练习1-41. 0.054.2. (1 )0.662; (2) 0.0354.3.(1) 112;(2)1.204.(1) 365;365rrP (2) 41.965. 0.01107.6.1.12607. 7147,,1515308.2!.(2)!n n n ⋅9. 797.9A 10. 491.10⎛⎫- ⎪⎝⎭11.3.1012.(1) 0.41; (2) 0.00061;(3) 0.0073. 13. 0.0602.练习1-51. 3.52. 0.121.3. 0.25.4. (1)1;3 (2) 1.25. 0.2.练习1-61.2.3 2.76. 3. 0.6148.4.(1) 0.862; (2)0.058; (3)0.8286.5. (1)1;1n k -+ (2) 1.n 6. 0.645. 7. 0.64.8. (1) 0.0125; (2) 0.24: 0.64: 0.12 或 6:16:3. 9. (1)5;12(2)24.7510. (1) 0.10034; (2) 0.0038. 11. (C).练习1-71.0.5,0.5.2.证明略.3. 0.902.4. (1) 0.5; (2) 0.4.5.(1)0.84;(2)6.6. (1)0.0168;(2) 0.1557; (3) 0.8587. 7.(1) 0.3087;(2)0.371.8.(1)0.9;(2)0.887.9. 0.542.练习2-1, 2-22.{}2.3125,100.32.c P X X =<≠= 3.分布列为{}1112P X -<≤=, {}5116P X -≤<=. 4.(1) 12a =; (2)2023(31)a =⋅-; (3) 14a =. 5.1927. 6. 0.9972. 7. 0120.80.80.80.810.04740!1!2!e-⎛⎫-++≈ ⎪⎝⎭. 8. 2λ=, {}42240.09024!P X e -==≈.练习2-31. 6k =, 0, 0.784.2. 2a π=. 3. 12c =, 11e -.4. 0.578125.5. 100a =, {}21503P X >=, 3280.296327P ⎛⎫=== ⎪⎝⎭.6.45. 7. 0.268.8. 0.60.5488e -≈.练习2-41. A.2. B.3. C.4. (1) 0.2; (2) {}0.5P X >={}050.5P X <≤=; (3) 0, 1,0.5, 11,()0.7, 12,1 2.x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩ 分布函数()F x 的图像略.5. 0.5.6. ,0,2()1,0.2xxe x F x e x ⎧<⎪⎪=⎨⎪-≥⎪⎩ 7.220, 0,, 01,2()21, 12,21,2.x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩8. (1) 1A =; (2) 11124P x ⎧⎫-<<=⎨⎬⎩⎭, 18239P x ⎧⎫<<=⎨⎬⎩⎭;(3) 2,01,()0,.x x f x ≤<⎧=⎨⎩其他9. (1) 11,2A B π==; (2) 1122P x ⎧⎫≤=⎨⎬⎩⎭; (3) 22()14f x x =+.10. 0.682.练习2-5(2) 2Y =2. (1) 3A =; (2) 23(1),11,()80,Y y y f y ⎧--≤≤⎪=⎨⎪⎩其他;(3) 01,()0,Y y f y ≤≤=⎪⎩其他.3. (1) ()21ln 2,0,()0,0;y Y y f y y -⎧>=≤⎩(2) 14,1,()0,1;y Y y f y y -->=≤⎩(3) 22,0,()0,0.yY y f y y ->=≤⎩练习4-14.2435;32;31.5.0;2. 6.3;2.7.121;31;31-. 8.18.4.练习4-24.8;0.2. 5.2;41. 67.4.练习4-38. (1) 21221)(x ex f -=π22221)(y ey f -=πp =0 (2) 不独立.9.181 10. (1)(2) 151512. (Ⅰ)n 1-; (Ⅱ)n-; (Ⅲ)213. ⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y ),cov(Y X =32 )4,21(-F练习5-14.221d t xt --⎰; 0.5.5.≤94. 6.0.983 8. 7. 0.997 7. 8. 0.952 5.练习6-34. 0.829 3.5. (1) 0.2628;(2) 0.2923;(3) 0.5785.6. 0;n31. 7.0.6744. 8.220,()00y n Y y f y y σ-⎧>=⎪⎪<⎩.9.λ;nλ;λ.10. (1) 0.99;(2) 4152σ. 11. 35. 12.(1)1n n -;(2)1n-.练习7-11.A .2.矩估计值:ˆx θ=,极大似然估计值:ˆx θ=. 3.矩估计量:ˆln X θ=,极大似然估计量:12ˆmin{,,,}n X X X θ=.4.矩估计值:ˆ0.67θ=,极大似然估计值:9ˆ13θ=. 5.1XX -;1ln nii nX=∑;12min{,,,}n X X X .6.ˆ3X θ=. 7.(1) 2ˆXλ=;(2) 2ˆXλ=. 8.(1) ˆx x cθ=+,ˆX X c θ=+;(2) 1ˆln ln nii nx n cθ==-∑,1ˆln ln nii nXn cθ==-∑.9.(1) ˆX μ=,ˆθ= (2) 12ˆmin{,,,}n X X X μ=,ˆˆX θμ=-. 10.(1) ˆ2X θ=,(2) 2ˆ().5D nθθ=练习7-21.D . 2.2. 3.2σ 4.A5.215ˆ()9D μσ=,225ˆ()8D μσ=,231ˆ()2D μσ= 6.1n X + 7.112n a n n =+,212n b n n =+8.(1) 1ˆ22X θ=-;(2) 不是无偏估计量,因为22(4)E X θ≠.练习7-31.C . 2.C .3.(992.16, 1007.84). 4.(2818.54, 3295.46). 5.22224()u n Lασ≥.6. (1) (68.11, 85.089);(2) (190.33, 702.01). 7.(1)(5.608,6.392);(2)(5.558,6.442). 8.(4.098,9.108). 9.(-0.002,0.006). 10.(0.45,2.79).练习8-11. A2. 第一类错误(弃真错误);第二类错误(取伪错误). 3. ˆXT =,t 分布,自由度1n -. 4. C5. 可以认为包装机不正常工作. 6. 接受.7. 厂家的声称属实. 8. 可以认为无系统误差. 9. 可以.10.认为电池的寿命不比该公司宣称的短. 11.可以认为其平均电阻有明显的提高. 12.拒绝.13.可以认为无显著差异.练习8-21.2220(1)ˆn S χσ-=;221/2/2(0,(1)][(1),)n n ααχχ---+∞.2.D3.不正常.4.与通常无显著差异.5.不能.6.可以认为溶液水分含量不合格.练习8-31.(1) 接受0H ;(2) 接受0H .2.无显著差异.3.接受.4.接受.5.认为X Y 和的方差无明显差异.6.未达到公布的疗效.7.接受H 0.友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》学习指导
一、教学目的与课程性质、任务。
教学目的:本课程为学生讲授概率论与数理统计的基本概念、基本方法、基本技巧和基本理论。
主要培养学生对随机数学理论的掌握和实际问题的分析与理解能力,尽量引导学生针对实际随机现象进行科学的分析,从而达到增强学生动手能力和提高学生数学思维能力。
二、教学要求
概率论与数理统计是在理论基础上实践性很强的课程,它主要讲授随机现象统计规律性的一门数学科学。
要求学生能够奠定较扎实的概率论理论基础,同时也能利用随机变量及其分布有关理论知识讨论数理统计中的有关统计推断问题.要求学生能对现实中的工程实际问题、保险问题、金融问题、可靠性问题等方面利用合理的概率论和数理统计有关理念予以解释和分析.
在教学环节上,对学生的学习提出“掌握”和“了解”两个层次上要求,所谓“掌握”,是指学生在课后,必须能将所学内容用自己理解后的数学术语复述出来,这是将所学知识熟练应用到实践中的基础。
所谓“了解”,是要求学生对所学内容有初步的认知,不要求完全复述出来,但在遇到相关问题时要求能够辨识。
教学以课堂讲授为主,辅之以课堂具体的事例分析等方式。
三、教学进度表
四、教学内容与讲授方法
五、课程的重点内容及习题(一) 课程的重点内容
(二) 课程的习题(71道题)[2]第一章随机事件与概率
P28—31 2、6、10、11、13、14、15、16、18、20
第二章条件概率与独立性
P53—56 2、4、6、7、10、12、13、17、18、23、25
第三章随机变量及其分布
P88—92 3、5、7、9、10、15、16、17、24、27、30
第四章多维随机变量及其分布
P124—128 1、3、5、7、13、15、20、26
第五章随机变量的数字特征
P155—159 2、5、11、13、15、17
20、21、23、25、28、29
第七章数理统计的基本概念
P200—203 6、8、9、10、12、13、15
第八章参数估计
P224—227 1、2、4、5、8、19、20
第九章假设检验
P254—257 1、3、5、7、8
六、本课程的几点说明
1. 本课程的板书为中英文
目的是了解概率论与数理统计常用词汇、为将来外文文献的阅读与相关问题研究打下扎实的基本功。
2. 关于学习概率论与数理统计应该具备的基础
概率论与数理统计是属于现代数学的一个重要分支,其研究和学习必须具备良好的高等数学和线性代数理论基础。
3. 关于概率论与数理统计的研究对象
是一门研究随机现象统计规律性的、理论与实际相结合的、应用性很强的数学学科。
4. 关于先行和后续课程
先行课程:《高等数学》、《线性代数》等;
后续课程:《数理统计》、《随机过程》、《随机分析》、《时间序列分析》、《应
用概率统计》等。
5. 本课程的教学计划
本课程分概率论(随机事件与概率、条件概率与独立性、随机变量及其分布、多位随机变量及其分布、随机变量的数字特征、大数定理及中心极限定理)和数理统计(数理统计的基本概念、参数估计、假设检验、一元线性回归)两大部分.
6. 使用教材:
[1]许承德王勇,概率论与数理统计,科学出版社,2001年
[2]曹彬许承德主编,概率论与数理统计,哈尔滨工业大学出版社,1997年
[3]哈工大数学系概率与复变教研室编,概率论与数理统计习题解答,
哈工大出版社,2003年
7. 对学生的修课建议
建议学生温习高等数学和线代的内容,并要求预先掌握排列与组合基本内容和主要结论。
七、学习主要参考书
[1]许承德王勇,概率论与数理统计,科学出版社,2001年
[2]曹彬许承德主编,概率论与数理统计,哈尔滨工业大学出版社,1997年
[3]哈工大数学系概率与复变教研室编,概率论与数理统计习题解答,
哈工大出版社,2003年
[4]浙江大学数学系高等数学教研组编,工程数学概率论与数理统计,人
民教育出版社,1980年
[5]袁荫棠编,经济应用数学基础(三):概率论与数理统计,中国人民
大学出版社,1989年
[6]陆璇编著,数理统计基础,清华大学出版社,2001年
[7]M i c h a e l A.B e a n,P r o b a b i l i t y:T h e S c i e n c e o f U n c e r t a i n t y w i t h A p p l i c a t i o n s
t o I n v e s t m e n t s,I n s u r a n c e,a n d E n g i n e e r i n g,B r o o k s/C o l e,2003
[8]J o h n A.R i c e,M a t h e m a t i c a l S t a t i s t i c s a n d D a t a A n a l y s i s,2E,T h o m s o n,2003
八、成绩考核办法
1.平时成绩20分
2.期末结业考试80分
10。