铝件散热器热阻计算公式

合集下载

散热器散热量计算

散热器散热量计算

散热器散热量计算散热器散热量计算00散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。

但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。

现介绍几种简单的计算方法:(一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。

在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是:Q=5.8259×△T (十柱)1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃十柱散热量:Q=5.8259×64.5 =1221.4W每柱散热量1224.4 W÷10柱=122 W/柱2.当进水温度80℃,出水温度60℃,室内温度18℃时:△T =(80℃+60℃)/2-18℃=52℃十柱散热量:Q=5.8259×52 =926W每柱散热量926 W÷10柱=92.6W/柱3.当进水温度70℃,出水温度50℃,室内温度18℃时:△T =(70℃+50℃)/2-18℃=42℃十柱散热量:Q=5.8259×42 =704.4W每柱散热量704.4W ÷10柱=70.4W/柱(二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量:我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M点,从M点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。

(三)利用传热系数Q=K·F·△T一般来说△T已经计算出来,F是散热面积,传热系数K,可通过类似散热器中计算出来或者从经验得到的,这种计算方法一般用在还没有经过热工检验,正在试制的散热器中。

散热器散热量计算

散热器散热量计算

散热器散热量计算散热器散热量计算;散热量是散热器的一项重要技术参数,每一种散热器出;现介绍几种简单的计算方法:;(一)根据散热器热工检验报告中,散热量与计算温差;铜铝复合74×60的热工计算公式(十柱)是:;Q=5.8259×△T(十柱);1.标准散热热量:当进水温度95℃,出水温度70;十柱散热量:;Q=5.8259×64.5=1221.4W;每柱散热量;1224.4W÷散热器散热量计算散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。

但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。

现介绍几种简单的计算方法:(一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。

在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是:Q=5.8259×△T (十柱)1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃十柱散热量:Q=5.8259×64.5 =1221.4W每柱散热量1224.4 W÷10柱=122 W/柱2.当进水温度80℃,出水温度60℃,室内温度18℃时:△T =(80℃+60℃)/2-18℃=52℃十柱散热量:Q=5.8259×52 =926W每柱散热量926 W÷10柱=92.6W/柱3.当进水温度70℃,出水温度50℃,室内温度18℃时:△T =(70℃+50℃)/2-18℃=42℃十柱散热量:Q=5.8259×42 =704.4W每柱散热量704.4W ÷10柱=70.4W/柱(二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量:我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M点,从M点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。

散热器简化计算方法

散热器简化计算方法

立式散热器简化价格计算方法一. 散热量Q的计算1.基本计算公式:Q=S×W×K×4.1868÷3600 (Kw)式中:①.Q —金旗舰散热器散热量(KW)=发动机水套发热量×(1.1~1.3)②.S —散热器散热面积(㎡)=散热器冷却管的表面积+2×散热带的表面积。

③.W —散热器进出水、进出风的算术或对数平均液气温差(℃),设计标准工况分为:60℃、55℃、45℃、35℃、25℃。

它们分别对应散热器允许适用的不同环境大气压和自然温度工况条件。

④.K —散热系数(Kcal/m.h.℃)。

它对应关联为:散热器冷却管、1. 散热带、钎焊材料选用的热传导性能质量的优劣;冷却管与散热带钎焊接合率的质量水平的优劣;产品内外表面焊接氧化质量水平的优劣;冷却管内水阻值(通水断面积与水流量的对应关联—水与金属的摩擦流体力学),暖气片品牌金旗舰暖气片,一线明星代言,暖通O2O第一品牌,散热带风阻值(散热带波数、波距、百叶窗开窗的翼宽、角度的对应关联—空气与金属的摩擦流体阻力学)质量水平的优劣。

总体讲:K值是代表散热器综合质量水平的关键参数,它包容了散热器从经营管理理念、设计、工装设备、物料的选用、采购供应、制造管理控制全过程的综合质量水平。

根据多年的经验以及数据收集,铜软钎焊散热器的K值为:65~95 Kcal/m2.h.℃;改良的簿型双波浪带铜软钎焊散热器的K值为:85~105 Kcal/m2.h.℃;铝硬钎焊带电子风扇系统的散热器的K值为:120~150 Kcal/m2.h.℃。

充分认识了解掌握利用K值的内涵,可科学合理的控制降低散热器的设计和制造成本。

暖气片品牌金旗舰暖气片,一线明星代言,暖通O2O第一品牌准确的K值需作散热器风洞试验来获取。

⑤.4.1868和3600 —均为热能系数单位与热功率单位系数换算值⑥.发动机水套散热量=发动机台架性能检测获取或根据发动机升功率、气门结构×经验单位系数值来获取。

LED散热器各部分热阻及其影响因素

LED散热器各部分热阻及其影响因素
⑵.对流系数的影响:散热器周围环境通风越好,自然对流系数越大,散热器热阻越小
⑶.产热功率的影响:同一散热器,同样环境下,实际产热功率越大,散热器的热阻反而略有减小。
所以散热器的总热阻不仅与散热器的散热面积、几何尺寸、表面材料的辐射系数等自身因素有关,还受LED的产热功率以及周围环境的对流系数等外部因素的影响,并不是一个恒定的数值。但一般来说,在自然对流情况下对流系数变化并不大,正常情况下LED产热功率的变化也不会太大,对热阻的影响应该很小。为便于分析和计算,我们在应用时可近似认为散热器的总热阻是一定的。
Q产=a.W⑵
Q导=b.s.(T1-T2)/L⑶
式中
Q产——LED工作时产生的热量
Q导——散热器本身导出的热量
T1——与铝基板接触点处散热器的温度
T2——散热器外表面平均温度
a——LED产热系数
W——为LED灯实际功率
b——散热器材料综合导热系数
s——散热器平均传热面积
L——散热器热传导平均距离
对于特定散热器b、s、L是一定的,因此公式⑶可简化为Q导=m.(T1-T2),其中m=b.s/L,经推导可知m.(T1-T2)=a.W,因此(T1-T2)=a.W/m,带入公式⑴可知R导=a/m,由此公式可以看出对于特定散热器,在LED灯源一定的情况下,散热器的热阻是一个定值。另外,在热阻计算公式中W代表的是LED的总功率,而LED在工作中一部分功率用于发光,一部分功率转变为热能,因此既然是计算热阻,公式中的W换成产热功率(a.W)更为科学,这样R导=1/m=L/(b.s),就是说散热器本身热阻与电阻一样,是一个仅跟散热器本身参数有关的常数,它与散热器平均传热距离成正比,与散热器平均传热面积、散热器材料导热系数成反比。
LED散热器各部分热阻及其影响因素

铝基板及导热界面材料使用说明

铝基板及导热界面材料使用说明

热阻 3 [℃in2/W]
导热系数 4 [W/m-K]
击穿电压 5 [KVAC]
介电常数 6
剥离ቤተ መጻሕፍቲ ባይዱ度 7 [N/cm]
玻璃化转变温度 8 UL 温度指数 9 燃烧等级 10
[℃]
[℃]
IMS-H01
6/150
1.1
0.21
1.1
6.0
7
22
90
130
94V-0
Power-LED
3/76
0.85
0.13
¾ 6061T6 是 Al-Mg-Si 合金,中等强度,有比较良好的切削性能,特别适合 CNC,V-CUT 加工,但价格昂贵。 ¾ 5052H34 是 Al-Mg 合金,中等强度,具有良好的折弯性能,适应于模具(Punch)冲切成型价格适中。 ¾ 1050H18 和 1060H18 是纯铝,导热性能优良,机械加工性能适中,价格低廉。 ¾ C11000 是纯铜, 1/4~1/2 硬度的纯铜最为适合,适合于模具(Punch)冲切成型,但对于机械加工来说有些困难。选择 C11000 的理由,常常首要的考虑
9/35
铝基板介绍
贝格斯 Thermal Clad HT 系列,MP 系列以及 HR T30.20 绝缘层都是聚合
物与陶瓷的混合物所构成,不仅导热性能优异,而且电绝缘强度都很高,尽管 Thermal Clad 的绝缘层厚度只有 3mil(76μm),但导热系数高达 1.3W/m-K~ 2.2W/m-K,其绝缘强度最低仍可达 6KVAC 以上,在业界备受推崇。贝格斯 Thermal Clad HT 系列已获得 140℃的 UL 全性能认证,MP 系列和 HR T30.20 获得 130℃的 UL 全性能认证。

散热器的散热量计算公式

散热器的散热量计算公式

散热器的散热量计算公式散热器是一种用于降低电子设备或机械设备温度的装置。

它通过将设备产生的热量转移到周围环境中,从而保持设备的正常运行温度。

散热器的散热量计算公式可以帮助我们了解散热器的散热能力和热量传递效率。

散热器的散热量计算公式如下:Q = U * A * ΔT其中,Q表示散热器的散热量,U表示散热器的传热系数,A表示散热器的表面积,ΔT表示散热器与环境之间的温度差。

我们来了解一下散热器的传热系数U。

传热系数是指单位时间内通过单位面积的热量传递量与温度差之间的比值。

它决定了散热器传热的效率和能力。

散热器的传热系数受到散热器材料、散热片结构和流体状态等因素的影响。

散热器的表面积A也是计算散热量的重要参数。

表面积越大,散热器与周围环境之间的热交换面积就越大,从而能够更快地将热量散发出去。

温度差ΔT是指散热器表面温度与环境温度之间的差值。

温度差越大,散热器的散热能力越强。

散热器的散热量计算公式可以帮助我们评估散热器的散热性能。

通过调整散热器材料、改进散热片结构和优化流体状态,可以提高散热器的传热系数和表面积,从而提高散热器的散热能力。

除了散热器自身的设计和性能,散热器的散热量还受到其他因素的影响。

例如,周围环境的温度和湿度、设备的功率和工作状态等都会对散热器的散热效果产生影响。

在实际应用中,我们可以根据设备的功率、工作温度和环境温度等参数,计算出散热器所需的散热量。

然后,根据散热器的传热系数和表面积,选择合适的散热器型号和规格。

散热器的散热量计算公式是评估散热器散热性能的重要工具。

通过合理选择散热器和优化散热系统设计,可以有效降低设备温度,提高设备的可靠性和稳定性。

在未来的发展中,我们可以期待散热器技术的进一步创新和提高,以满足不断增长的散热需求。

有关铜管铝翅片散热器理论计算方面的研究

有关铜管铝翅片散热器理论计算方面的研究

铜管铝翅片散热器理论计算1.概述随着人类生活质量与文化素质的提高,住宅对散热器的需求呈现多样化趋势。

所以各种新型的散热器不断涌现,铜管铝翅片散热器就是在这种大形式影响下应运而生的一种新型的铜铝对流式散热器。

它以其成本低、耐腐蚀、散热性能好等众多优点赢得了各层次居民及众多生产厂家的青睐,因而蕴藏着广大的市场潜力及无限的发展前景。

铜管铝翅片散热器主要由两大部分组成:外罩和内部的铜管铝翅片组(如图1所示)。

铜管铝翅片组有两管式和四管式。

外罩是由薄钢板做成,兼有美观和强化对流的作用。

因为外罩在工作时的温度不高,对房间的辐射热量很小,所以铜管铝翅片散热器可认为是纯对流式散热器。

图1 铜管铝翅片散热器结构示意图2.换热机理及分析铜管铝翅片散热器的对流换热机理是:铜管内热水通过对流换热和导热过程将热量传到管外,再在外罩抽吸力的作用下,通过空气对流将翅片管外的热量带到室内2.1 铜管内壁水的对流换热过程铜管铝翅片散热器的铜管内壁为光管,水在管内的流动属于受迫紊流流动,故选用管内受迫紊流流动换热准则关联式来计算水在铜管内的对流换热系数。

当管壁温度低于流体温度时,管内受迫紊流流动换热准则关联式为:(1)2.2 通过铜管管壁和翅片基管的导热过程铜管铝翅片的大样图如图2所示。

因为铝片基管与铜管不是一体材料,所以在二者之间一定存在着接触热阻。

接触热阻的大小与加工工艺有着很大的关系,对于缠绕式翅片管和整体轧制双金属翅片管,在基管与外部翅片管之间,由于氧化、表面粗糙度等因素引起的表面间轻微的接触不良而引起的接触热阻,已有人进行了专门的研究,研究结果表明:缠绕式翅片管束的传热性能比整体轧制单金属翅片管束(无接触热阻)低约30%,整体轧制双金属翅片管束的传热性能比整体轧制单金属翅片管束低12%左右[2]。

可见翅片管的接触热阻问题绝对不可以忽视。

因为这里所研究的翅片管是通过热套胀接的方法进行加工的,所以接触热阻应该比缠绕式翅片管小,而比整体轧制双金属翅片管大。

散热器散热计算公式:

散热器散热计算公式:

(一)散热器选择通用原则 散热器热阻Rsa 是选择散热器的主要依据。

Rsa=c ajm P TT−-(R jc+R cs)式中:R sa────散热器热阻,℃/W;R jc────半导体器件结壳热阻,℃/W;R cs────接触热阻,℃/W;T jm ────半导体器件最高工作结温,℃;T a────环境温度,℃;P c ────半导体器件耗散功率,W;T jm,P c,R jc可以从器件技术参数表中查到,或计算得到;T a是实际工作环境温度;R cs与接触材料的种类和接触压力有关,可以根据接触材料(如硅脂)的热阻参数估算得到。

所选择的散热器,其热阻值应小于以上的计算值,就可满足散热的要求。

散热器的热阻与材质,结构,表面状态,表面颜色,几何尺寸及冷却条件等有关;应该按照有关的标准用实验的方法测试得到,常用的散热器热阻曲线有3种,(1)热阻——长度曲线,(2)热阻——风速曲线,(3)功耗——温升曲线。

用CFD技术模拟仿真运算可以得到散热器的热阻值,风压及温度分布状况,为散热器选择提供参考依据。

(二)电力半导体用散热器的选择和使用原则 摘自JB/T9684-2000一﹑散热器选择的基本原则电力半导体器件用散热器选择要根据器件的耗散功率,器件结壳热阻,接触热阻,以及器件最高工作结温和冷却介质温度来综合考虑。

选用散热器时要了解散热器的散热能力范围,冷却方式,技术参数和结构特点,一种器件仅从热阻参数看,可能有多种散热器均能满足散热要求,但应结合冷却,安装,通用互换和经济性来综合考虑。

二﹑器件与散热器紧固力的要求为使器件与散热器组装后又良好的热接触,必须采用合适的安装力或安装力矩,其值由器件制造厂或器件标准给出,具有较小的范围,组装时应严格遵守不要超出范围,当器件厂未给出紧固力时,按照器件管壳与散热器接触的面积,可采用1~1.5KN/cm2的紧固力。

为了改善散热器与器件的接触,增加有效接触面积,提高散热效果,在散热器和器件之间可涂一薄层导电导热性物质如硅脂。

散热计算

散热计算

散热的最一般的方法是把器件安装在散热器上,散热板将热量辐射到周围的空气中去,以及通过自然对流来散发热量。

一般地说,从散热器到周围的空气的热流量(P)可由下例表示:P=hA η△T式中h为散热器总的传热导率(W/cm2 ℃),A为散热器的表面积(cm2),η为散热器效率,△T为散热器的最高温度与环境温度之差(℃)。

上式中h是由辐射及对流来决定,η是由散热器的形状来决定。

总之,散热器的表面积越大,与环境温度之差越大,散热板的热量辐射越有效。

散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。

但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。

现介绍几种简单的计算方法:(一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。

在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是:Q=5.8259×△T(十柱)1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃十柱散热量:Q=5.8259×64.5=1221.4W每柱散热量1224.4 W÷10柱=122 W/柱2.当进水温度80℃,出水温度60℃,室内温度18℃时:△T =(80℃+60℃)/2-18℃=52℃十柱散热量:Q=5.8259×52=926W每柱散热量926 W÷10柱=92.6W/柱3.当进水温度70℃,出水温度50℃,室内温度18℃时:△T =(70℃+50℃)/2-18℃=42℃十柱散热量:Q=5.8259×42=704.4W每柱散热量704.4W ÷10柱=70.4W/柱(二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量:我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M 点,从M点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。

散热器的计算

散热器的计算

散热器的计算散热器厂的计算金旗舰散热器的计算设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出.正确的设计方法是:首先确定最高的环境温度,比如60℃,查出7805的最高结温TJM AX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/ W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻.计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54/ /x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足.散热器的计算:总热阻RQj-a=(Tjmax-Ta)/PdTjmax :芯组最大结温150℃Ta :环境温度85℃Pd : 芯组最大功耗Pd=输入功率-输出功率={24×0.75+(-24)×(-0.25)}-9.8×0.25×2=5.5℃/W总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知 RQj-C=1.0 R QC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd) 1/2+650/A]C其中k:导热率铝为2.08d:散热器厚度cmA:散热器面积cm2C:修正因子取1按现有散热器考虑,d=1.0 A=17.6×7+17.6×1×13算得散热器热阻RQd-a=4.1℃/W,散热器选择及散热计算目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。

热阻的计算方法

热阻的计算方法

热阻的计算方法首先确定要散热的电子元器件,明确其工作参数,工作条件,尺寸大小,安装方式,选择散热器的底板大小比元器件安装面略大一些即可,因为安装空间的限制,散热器主要依靠与空气对流来散热,超出与元器件接触面的散热器,其散热效果随与元器件距离的增加而递减。

对于单肋散热器,如果所需散热器的宽度在表中空缺,可选择两倍或三倍宽度的散热器截断即可。

关于散热器选择的计算方法参数定义:Rt -------- 总内阻,C /W ;Rtj -------- 半导体器件内热阻,C /W;Rte ------- 半导体器件与散热器界面间的界面热阻,C /W;Rtf -------- 散热器热阻,C /W;Tj --------- 半导体器件结温,C;Te -------- 半导体器件壳温,C;Tf --------- 散热器温度,C;Ta -------- 环境温度,C;Pe -------- 半导体器件使用功率,W ;△Tfa -------- 散热器温升,C;散热计算公式:Rtf =(Tj-Ta) / Pe - Rtj -Rte散热器热阻Rff是选择散热器的主要依据。

Tj和Rtj是半导体器件提供的参数,Pe是设计要求的参数,Rte可从热设计专业书籍中查表。

(1)计算总热阻Rt: Rt= (Tjmax-Ta) / Pe(2)计算散热器热阻Rtf 或温升△ Tfa : Rtf = Rt —Rtj —Rte △ Tfa = Rtf x Pe(3)确定散热器:按照散热器的工作条件(自然冷却或强迫风冷),根据Rtf或厶Tfa和Pe选择散热器,查所选散热器的散热曲线(Rtf曲线或△ Tfa线),曲线上查出的值小于计算值时,就找到了合适的散热器。

对于型材散热器,当无法找到热阻曲线或温升曲线时,可以按以下方法确定:按上述公式求出散热器温升△ Tfa,然后计算散热器的综合换热系数 a :a = 7.2 2 1 2 2 2 3{ W [(Tf-Ta) / 20]} 式中:2 1 ------- 描写散热器L/b对a的影响,(L为散热器的长度,b为两肋片的间距);2 2 ------- 描写散热器h/b对a的影响,(h为散热器肋片的高度);2 3 ------- 描写散热器宽度尺寸W增加时对a的影响;W [(Tf-Ta) /20] -------------- 描写散热器表面最高温度对周围环境的温升对a的影响;以上参数可以查表得到。

大功率半导体器件用散热器风冷热阻计算公式和应用软件

大功率半导体器件用散热器风冷热阻计算公式和应用软件

大功率半导体器件用散热器风冷热阻计算公式和应用软件2012-03-12 14:17:31 作者:来源:中国电力电子产业网文章概要如下:一、计算公式为了推导风冷散热器热阻计算公式作如下设定:1,散热器是由很多块金属平板组成,平板一端连在一起成一块有一定厚度的基板,平板之间存在间隙,散热器的基本单元是一块平板;2,平板本身具有一定的长度、宽度和厚度(L×l×b)。

平板的横截面积A =L ×b;3,由n个平板(齿片)组成的散热器如图一所示,平板(齿片)数为n ;4,由此可见,参数L即为散热器长,或称“截长”;5,设散热器端面周长为“S”。

大功率半导体器件安装在基板上,工作时产生的热通过接触面传到散热器的过程属于固体导热。

散热器平板周围是空气。

风冷条件下平板上的热要传到空气中属于固体与流体间的传热。

所以风冷散热器总热阻等于两部分热阻之和:Rzo(总热阻)= Rth(散热器内固体传热)+ Rthk(散热器与空气间的传热热阻)引用E.R.G.埃克尔特和R.M..德雷克著的“传热与传质”中的基本原理和公式。

推导出如下实用公式:Ks 为散热器金属材料的导热系数。

20℃时,纯铝:KS = 175.6 千卡/ 小时米℃;纯铜:Ks = 332 千卡/ 小时米℃;参数L、l、b、S的单位:米;风速us 单位:米/秒如散热器端面的周边长为S 、散热器的长为L,忽略两端面的面积,散热器的总表面积为:A = S L 。

代入上式后,强迫风冷条件下散热器总热阻公式也可写成:对某一型号的散热器来说参数Ks、b、n、S 都是常数。

用此公式即可求出不同长度L、不同风速us条件下的总热阻,并可作出相应曲线。

本公式的精确性受到多种因素的影响存在一定误差。

主要有:ⅰ,受到环境空气的温度、湿度、气压等自然因素的影响。

如散热器金属的热导系数“Ks”与金属成分及散热器工作时温度有关,本文选用的是20℃时的纯铝。

ⅱ,文中所用的“风速”是指“平均风速”。

大功率半导体器件用散热器风冷热阻计算公式和应用软件

大功率半导体器件用散热器风冷热阻计算公式和应用软件

大功率半导体器件用散热器风冷热阻计算公式和应用软件2012-03-12 14:17:31 作者:来源:中国电力电子产业网文章概要如下:一、计算公式为了推导风冷散热器热阻计算公式作如下设定:1,散热器是由很多块金属平板组成,平板一端连在一起成一块有一定厚度的基板,平板之间存在间隙,散热器的基本单元是一块平板;2,平板本身具有一定的长度、宽度和厚度(L×l×b)。

平板的横截面积A =L × b;3,由n个平板(齿片)组成的散热器如图一所示,平板(齿片)数为n ;4,由此可见,参数L即为散热器长,或称“截长”;5,设散热器端面周长为“S”。

大功率半导体器件安装在基板上,工作时产生的热通过接触面传到散热器的过程属于固体导热。

散热器平板周围是空气。

风冷条件下平板上的热要传到空气中属于固体与流体间的传热。

所以风冷散热器总热阻等于两部分热阻之和:Rzo(总热阻)= Rth(散热器内固体传热)+ Rthk(散热器与空气间的传热热阻)引用埃克尔特和..德雷克著的“传热与传质”中的基本原理和公式。

推导出如下实用公式:Ks 为散热器金属材料的导热系数。

20℃时,纯铝:KS = 千卡/ 小时米℃;纯铜:Ks = 332 千卡/ 小时米℃;参数L、l、b、S的单位:米;风速us 单位:米/秒如散热器端面的周边长为S 、散热器的长为L,忽略两端面的面积,散热器的总表面积为: A = S L 。

代入上式后,强迫风冷条件下散热器总热阻公式也可写成:对某一型号的散热器来说参数Ks、b、n、S 都是常数。

用此公式即可求出不同长度L、不同风速us条件下的总热阻,并可作出相应曲线。

本公式的精确性受到多种因素的影响存在一定误差。

主要有:ⅰ,受到环境空气的温度、湿度、气压等自然因素的影响。

如散热器金属的热导系数“Ks”与金属成分及散热器工作时温度有关,本文选用的是20℃时的纯铝。

ⅱ,文中所用的“风速”是指“平均风速”。

铝基板散热设计方案

铝基板散热设计方案

铝 基 板 散 热 设 计 方 案以LDM150-48S5/LDM150-48S3V3为例一、计算两种产品在自然风冷状态下需配散热器的散热尺寸:LDM150-48S5的功耗为P D =150/0.87-150=22.4W ,△T=95-55=40℃,Rth=△T/P D =1.786/W ℃;LDM150-48S3V3的功耗为P D =100/0.86-100=16.28W ,△T=95-55=40℃,Rth=△T/P D =2.46/W ℃;考虑10%的安全余量:LDM150-48S5的热阻取1.6/W ℃,LDM150-48S3V3 的热阻取2.2/W ℃,根据此热阻估算散热器的散热面积,数据如表一: 表一热阻(/W ℃)水平放置时的散热面积(cm 2)垂直放置时的散热面积(cm 2)型号1.6900500LDM150-48S52.2500350LDM150-48S3V3二、我公司现有的散热器的现状:与此两种电源模块安装尺寸配套的散热器有两种,型号分别为:AHS -107H 、AHS -LDG100,表二为两种散热器的指标参数:表二型号外型尺寸(mm )散热面积估算值(cm 2)AHS-107H 61×58×11113AHS-LDG10087×80×36650三、方案阐述:有两种方案:第一种、从经济角度来看,最好采用我公司的散热器,不仅减少了对外采购时散热器供应商针对本产品的研发费用,而一些用户根据实际使用情况愿意自己选配散热器。

对于型号为LDM100-48S3V3的电源模块,我们推荐型号为AHS -107H 的散热器,如果用户空间允许,我们推荐型号为AHS -LDG100的散热器,这样散热效果比较好,并且我们提供给用户关于使用AHS -107H 这种散热器的温度曲线。

以下为配这种散热器的温度曲线:对于型号为LDM150-48S5的电源模块,我们推荐型号为AHS -LDG100的散热器,并且我们提供给用户关于使用这种散热器的温度曲线。

(完整版)散热器设计的基本计算

(完整版)散热器设计的基本计算

? 条件
Rthjc——器件手册查询
Rthcs——材料热阻:
R =L /( K ·S ) th 绝缘垫
绝缘垫厚度
绝缘垫
绝缘垫接触 c 的面积
Rthsa——散热器热阻曲线图查询
T 结温——器件手册查询(待计算数值)
T 环温——任务指标中的工作环境要求
P ——电路设计计算
? 计算
T 结温 =( Rthjc+Rthcs+Rthsa)· P+ T 环温 <手册推荐结温
电流 VabI (A) 电压 Vab=Va- Vb (V) 电阻 R=Vab/I (Ω) 电阻串联 R=R1+R2+… 电阻并联 1/R=1/R1+ 1/ R2+…
2、 热阻:在热路中,各种介质及接触状态,对热量的传递表现出的不同阻碍作用—— 在热路中产生温度差 , 形成对热路中两点间指标性的评价。
绝缘垫厚度
绝缘垫
绝缘垫接触 c 的面积
Rthsa——散热器热阻曲线图查询
T 环境 ——任务指标中的工作环境要求
? 计算
J1 的最大结温: Tjmax1=( Rthjc1+Rthcs1)·Pj1+Rthsa·( Pj1+Pj2)+ T 环境
J2的最大结温: Tjmax2=(Rthjc2+ Rthcs2)·Pj2+Rthsa·( Pj1+Pj2)+ T 环境 ? 注: 判定计算出的最大结温,是否小于手册推荐结温;
符号—— Rth
单位——℃ /W。
? 稳态热传递的热阻计算 : Rth= (T1-T2)/P
T1——热源温度(无其他热源) (℃ ) T2——导热系统端点温度 (℃ ) ? 热路中材料热阻的计算 : Rth=L/(K·S)
L——材料厚度 (m) S——传热接触面积 ( m2)

散热器散热量计算

散热器散热量计算

散热器散热量计算散热器散热量计算;散热量是散热器的一项重要技术参数,每一种散热器出;现介绍几种简单的计算方法:;(一)根据散热器热工检验报告中,散热量与计算温差;铜铝复合74×60的热工计算公式(十柱)是:;Q=5.8259×△T(十柱);1.标准散热热量:当进水温度95℃,出水温度70;十柱散热量:;Q=5.8259×64.5=1221.4W;每柱散热量;1224.4W÷散热器散热量计算散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。

但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。

现介绍几种简单的计算方法:(一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。

在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是:Q=5.8259×△T (十柱)1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃十柱散热量:Q=5.8259×64.5 =1221.4W每柱散热量1224.4 W÷10柱=122 W/柱2.当进水温度80℃,出水温度60℃,室内温度18℃时:△T =(80℃+60℃)/2-18℃=52℃十柱散热量:Q=5.8259×52 =926W每柱散热量926 W÷10柱=92.6W/柱3.当进水温度70℃,出水温度50℃,室内温度18℃时:△T =(70℃+50℃)/2-18℃=42℃十柱散热量:Q=5.8259×42 =704.4W每柱散热量704.4W ÷10柱=70.4W/柱(二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量:我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M点,从M点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。

[定稿]散热器设计计算公式2

[定稿]散热器设计计算公式2

散热器设计计算书中性层半径展开公式:ρ=R+Ktρ——中性层半径(mm)R——弯曲内半径(mm)K——中性层位置系数(0.01745)t——材料厚度(mm)经验公式ρ=0.01745*R*ø(角度数)散热面积计算:S=2S f+S tS——散热面积m2S f——散热带散热面积m2S t——散热管散热面积m2S f =T*L*N*tT——芯厚mmL——散热带展开长度mmN——散热带条数t——散热带波峰数S t =W*L0*HW——散热管数量L0——散热管外周长mmH——散热管有效长度(芯高)mm散热器的散热量Qn:Qn=K*S*(t uxp -t acp)Qn——散热量KJ/hK——散热系数KJ/ m2h℃(铝:450---550 铜:350—400)S——散热面积m2(t uxp -t acp)——液气平均温差℃当系统压力提高后t uxp随之增大,在其他参数不变的情况下,液气平均温差的值必然增加,从而实现了提高散热能力的目标。

提高系统压力不仅有利于增大散热能力,而且有利于提高发动机燃烧效率,减少水泵气蚀倾向。

但是,提高系统压力会使散热器渗漏机率随之增加。

一般情况下,轿车、轻型车的系统压力为70kpa~110kpa中型车的系统压力为50kpa~70kpa重型车的系统压力为30kpa~50kpa散热量结构参数中对散热性能影响最大的是芯子正面面积F f通常总是希望在安装尺寸允许的前提下,尽可能把正面面积F f选择大一些。

并接近正方形。

散热器发展趋势之一是扩大正面面积并减少芯厚。

采用增加芯厚的措施来提高散热能力是不允许的。

散热器冷却水管多采用扁管式,扁管可以在相同流通截面时获取与空气最大的接触面积。

从而实现最大的接触面积而空气阻力小的最佳效果。

提高散热系数K值可以实现在不增加生产成本和不增大空间尺寸的前提下提高散热能力。

如改善二次换热表面(散热带)的换热条件,即在二次换热表面上冲击一系列密集的有一定角度的百叶窗孔。

散热面积计算

散热面积计算

散热器选择的计算方法一,各热参数定义:Rja———总热阻,℃/W;Rjc———器件的内热阻,℃/W;Rcs———器件与散热器界面间的界面热阻,℃/W;Rsa———散热器热阻,℃/W;Tj———发热源器件内结温度,℃;Tc———发热源器件表面壳温度,℃;Ts———散热器温度,℃;Ta———环境温度,℃;Pc———器件使用功率,W;ΔTsa ———散热器温升,℃;二,散热器选择:Rsa =(Tj-Ta)/Pc - Rjc -Rcs式中:Rsa(散热器热阻)是选择散热器的主要依据。

Tj 和Rjc 是发热源器件提供的参数,Pc 是设计要求的参数,Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X接触材料导热系数)。

(1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc(2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-RtcΔTsa=Rsa×Pc(3)确定散热器按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。

散热器热阻曲线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~三,散热器尺寸设计:对于散热器,当无法找到热阻曲线或温升曲线时,可以按以下方法确定:按上述公式求出散热器温升ΔTsa,然后计算散热器的综合换热系数α:α=7.2ψ1ψ2ψ3{√√ [(Tf-Ta)/20]}式中:ψ1———描写散热器L/b 对α的影响,(L 为散热器的长度,b 为两肋片的间距);ψ2———描写散热器h/b 对α的影响,(h 为散热器肋片的高度);ψ3———描写散热器宽度尺寸W 增加时对α的影响;√√ [(Tf-Ta)/20]———描写散热器表面最高温度对周围环境的温升对α的影响;以上参数可以查表得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档