专题1-2 解三角形 重难点、易错点突破(含答案)
常见常新题型__注重解题方法——解三角形易错点扫描
ʏ江苏省高邮市第一中学 袁达飞解三角形问题是高考中的常见题型,主要利用正弦定理㊁余弦定理来求解未知边角的关系或具体值,由于解三角形需要综合应用正余弦定理和有关角的一些变换,所以经常会出现一些顾此失彼的错误,现归纳如下,供同学们学习时参考㊂易错点一㊁忽视解的讨论致误例1 在әA B C中,已知a =2,b =2,A =45ʎ,求B ㊂错解:由正弦定理知s i n B =b s i n Aa=2s i n 45ʎ2=12㊂又0<B <180ʎ,故B =30ʎ或150ʎ㊂剖析:上述解法中忽现了A +B +C =180ʎ这一隐含条件,当B =150ʎ时,A +B =195ʎ,与三角形的内角和为180ʎ矛盾㊂正解:由正弦定理知s i n B =b s i n Aa=2s i n 45ʎ2=12㊂又0<B <180ʎ,故B =30ʎ或B =150ʎ㊂若B =150ʎ,则A +B >180ʎ,应舍去㊂故B =30ʎ㊂易错点二㊁忽视三角形中角的范围致误例2 在әA B C 中,已知(a 2+b 2)㊃s i n (A -B )=(a 2-b 2)s i n C ,判断әA B C 的形状㊂错解:原式可化为(a 2+b 2)(s i n A c o s B-c o s A c o s B )=(a 2-b 2)(s i n A c o s B +c o s A s i n B ),即a 2s i n B c o s A =b 2s i n A c o s B ㊂由正弦定理得b 2s i n 2As i n 2B㊃s i n B c o s A =b 2s i n A c o s B ,化简得s i n A c o s A =s i n B c o s B ,即s i n 2A =s i n 2B ,所以A =B ㊂所以әA B C 是等腰三角形㊂剖析:上述解法忽略了角的范围,s i n 2A=s i n 2B 是2A =2B 的必要但不充分条件,另外,有些同学也可能由于逻辑关系不清而出现以下错误的判断:由s i n 2A =s i n 2B ,得2A =2B ,又2A +2B =π,且A =B ,A +B =π2,所以әA B C 是等腰直角三角形㊂正解:将条件都化为有关角的关系形式,前面同错解,得s i n 2A =s i n 2B ㊂因为A ,B 是三角形的内角,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2㊂故әA B C 是等腰三角形或直角三角形㊂易错点三㊁忽视隐含条件致误例3 在不等边әA B C中,a 为最大边,若a 2<b 2+c 2,则角A 的取值范围是㊂错解:因为a 2<b 2+c 2,所以b 2+c 2-a2>0,则c o s A =b 2+c 2-a22b c>0㊂又因为A 为әA B C 的内角,故A 为锐角,所以0<A <90ʎ㊂剖析:上述解法忽视了隐含条件:三角形的内角和为180ʎ,所以最大边所对的角应该大于60ʎ㊂正解:前面同错解,得0ʎ<A <90ʎ㊂又因为a 为最大边,所以A >60ʎ㊂所以60ʎ<A <90ʎ㊂故A 的取值范围是(60ʎ,90ʎ)㊂易错点四㊁忽视角之间的关系致误例4 在әA B C 中,若s i n 2A s i n 2B =t a n Ata n B ,则әA B C 的形状为㊂错解:已知s i n 2A s i n 2B =t a n A ta n B =s i n A c o s Bc o s A s i n B ㊂因为s i n A >0,s i n B >0,所以s i n A c o s A =s i n B c o s B ,即s i n 2A =s i n 2B ,所以2A =2B ,即A =B ㊂故әA B C 为等腰三角形㊂剖析:上述解法忽视了 在әA B C 中,由72解题篇 易错题归类剖析 高考数学 2023年10月Copyright ©博看网. All Rights Reserved.s i n 2A =s i n 2B ,可以得到2A +2B =π这种情况,导致漏解,结果错误㊂正解:前面同错解,得s i n 2A =s i n 2B ㊂所以2A =2B 或2A +2B =π,则A =B 或A +B =π2,故әA B C 为等腰三角形或直角三角形㊂易错点五㊁忽视三角形中三边的基本关系致误例5 已知钝角三角形的三边长分别是2a +1,a ,2a -1,求实数a 的取值范围㊂错解:因为2a +1,a ,2a -1是三角形的三边,所以2a +1>0,a >0,2a -1>0,解得a >12㊂又2a +1是三边长的最大值,设该边所对的角为θ,则c o s θ=a 2+(2a -1)2-(2a +1)22a (2a -1)<0,解得12<a <8㊂剖析:不是任意的三个正数都能作为三角形的三条边长,还需要满足三角形三边的基本关系,即两边之和大于第三边㊂上述解法中少了这个约束条件㊂正解:前面同错解,得12<a <8㊂又a +(2a -1)>2a +1,解得a >2㊂综上可得,实数a 的取值范围是(2,8)㊂易错点六㊁实际问题中题意不明致误图1例6 如图1,在海岛A 上有一座海拔1k m的山,山顶设有一个观察站P ,上午11时,测得一轮船在岛北30ʎ东㊁俯角为60ʎ的B 处,到11时10分,又测得该船在岛北60ʎ西㊁俯角为30ʎ的C 处㊂(1)求该船的航行速度;(2)又经过一段时间后,船到达海岛的正西方向的D 处,试问:此时船距海岛A 有多远?易错分析:有的同学对题意没有理解透彻,方位确定不了,不能观察出әB A C 是直角三角形;有的同学在求A D 的长时不能放在әA C D 中利用正弦定理求解㊂剖析:实际应用问题中的有关名词㊁术语不能混淆㊂①仰角和俯角:与目标视线在同一铅直平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫做仰角,目标视线在水平视线下方时叫做俯角㊂②方向角:从指定方向线到目标方向线的水平角㊂③方位角:从指定方向线顺时针到目标方向线的水平角㊂④坡度:坡面与水平面所成的二面角的度数㊂正解:(1)在R tәP A B 中,øA P B =60ʎ,P A =1,所以A B =3(k m )㊂在R t әP A C 中,øA P C =30ʎ,所以A C=P A ㊃t a n 30ʎ=33(k m )㊂在әA C B 中,øC A B =30ʎ+60ʎ=90ʎ,所以B C =A C 2+A B 2=332+32=303(k m )㊂所以该船的航行速度为303ː16=230(k m /h)㊂(2)øD A C =90ʎ-60ʎ=30ʎ㊂s i n øD C A =s i n (180ʎ-øA C B )=s i n øA C B =A B B C =3303=31010㊂s i n øC D A =s i n (øA C B -30ʎ)=s i n øA C B ㊃c o s 30ʎ-c o s øA C B ㊃s i n 30ʎ=31010㊃32-1-310102㊃12=33-11020㊂在әA C D 中,由正弦定理得A Ds i n øD C A=A C s i n øC D A ,所以A D =A C ㊃s i n øD C As i n øC D A=33㊃3101033-11020=9+313(k m )㊂故当船到达海岛的正西方向的D 处时,船与海岛A 的距离为9+313k m ㊂(责任编辑 王福华)82 解题篇 易错题归类剖析 高考数学 2023年10月Copyright ©博看网. All Rights Reserved.。
突破三角形学习难关经典题目与答案
突破三角形学习难关经典题目与答案三角形是几何学中的基础概念之一,对于初学者来说可能会遇到一些难题。
本文将针对三角形学习中的常见难题进行解析,并提供详细答案,帮助读者突破学习困境。
一、相似三角形相似三角形是初学者容易混淆的一个概念。
在解决相似三角形的题目时,有几个要点需要注意。
1.判断相似三角形:两个三角形相似的条件是:对应角相等,并且对应边的比值相等。
如果对应角不相等或对应边的比值不相等,则两个三角形不相似。
2.比例关系:在解决相似三角形的题目时,我们可以利用比例关系来解题。
例如,若已知两个三角形相似,可以根据已知条件求出其他未知的边长或角度。
二、三角形的性质三角形的性质是学习三角形的基础,理解了三角形的性质,解题就会变得更加容易。
下面是一些经典的三角形性质及其应用。
1.角的性质:三角形的内角和为180°。
根据这个性质,我们可以轻松求解三角形中缺失的角度。
例如,如果已知两个角的度数,只需用180°减去这两个角度的和,就可以计算出第三个角的度数。
2.边的性质:三角形的两边之和大于第三边。
根据这个性质,我们可以判断给定的边长是否能够构成一个三角形。
例如,如果两边之和小于或等于第三边的长度,则无法构成三角形。
三、解题方法学习三角形时,解题方法是不可或缺的。
下面介绍几种常用的解题方法。
1.直接计算:有些三角形题目给出了足够的信息,可以直接使用计算方法求解。
例如,已知两边的长度和夹角时,可以使用三角函数来计算第三边的长度。
2.利用已知条件:在一些题目中,已知的条件可能是三角形的性质或者相似三角形的关系。
我们可以利用这些已知条件来解题。
例如,已知两个三角形相似,可以根据相似三角形的性质来推导出其他未知的边长或角度。
与题目相关的答案如下:题目1:已知三角形ABC中,角A=30°,边AC=5cm,边BC=8cm,求边AB的长度。
解答1:由三角形的角度和性质可知,角B=180°-90°-30°=60°。
(完整版)高三复习:解三角形-知识点、题型方法归纳,推荐文档
333绵阳市开元中学高 2014 级高三一轮复习③ tan (A + B )= - tan C ;④sinA + BC = cos , ⑤cosA +B = sinC 《解三角形》知识点、题型与方法归纳制卷:王小凤学生姓名:7.实际问题中的常用角 (1)仰角和俯角2 22 2 一、知识点归纳(★☆注重细节,熟记考点☆★)1. 正弦定理及其变形在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)asin A = b sin B = c sin C= 2R (R 为三角形外接圆半径) 变式:(1) a = 2R sin A , b = 2R sin B , c = 2R sin C (边化角公式)(2)sin A = a ,sin B =2Rb , sin C =c 2R 2R (角化边公式) (2) 方位角(3)a : b : c = sin A : sin B : sin C(4) a = sin A , a = sin A , b =sin B b sin B c sin C c sin C2. 正弦定理适用情况: (1) 已知两角及任一边;(2) 已知两边和一边的对角(需要判断三角形解的情况). 3. 余弦定理及其推论从指北方向顺时针转到目标方向线的水平角,如 B 点的方位角为 α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
仰角与俯角是相对于水平线而言的, 而方位角是相对于正北方向而言的。
(3) 方向角:相对于某一正方向的水平角(如图③)如: ①北偏东 即由指北方向顺时针旋转到达目标方向;a 2 =b 2 +c 2 - 2bc cos Acos A =b 2 +c 2 - a 22bc②“东北方向”表示北偏东(或东偏北) 45︒ .(4) 坡度:坡面与水平面所成的二面角的度数(如图④,角 θ 为坡角)b 2 = a 2 +c 2 - 2ac cos B c 2 = a 2 + b 2 - 2ab cos Ccos B =a 2 + c 2 -b 22ac a 2 + b 2 - c 2二、题型示例(★☆注重基础,熟记方法☆★)4. 余弦定理适用情况:cos C =2ab1.在V ABC 中,若∠A =60°,∠B =45°,BC =3 2,则 AC = ()(1)已知两边及夹角;(2)已知三边.注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式.5. 常用的三角形面积公式A.4B .2C .D . 2 2.在V ABC 中, a 2 = b 2 + c 2 + 3bc ,则∠A 等于()A .60°B .45°C .120°D .150°(1) S ∆ABC = 1 ⨯ 底⨯高;2 (2) 1 1 1 abcS = ab sin C = ac sin B = bc sin A = (R 为∆A 接BC 圆半径 )(两边夹一角);2 2 2 4R6. 三角形中常用结论(1) a + b > c , b + c > a , a + c > b (即两边之和大于第三边,两边之差小于第三边) (2) 在∆A ,BC 即大边A 对> 大B ⇔角,a >大b 角⇔对s 大in 边A >)sin B ( (3) 在∆ABC 中, A + B + C = ,所以①sin (A + B )= sin C ;② cos (A + B )= -cos C ;3. 设V ABC 的内角 A , B , C 所对的边分别为a , b , c , 若b cos C + c cos B = a sin A , 则V ABC 的形状为( )A. 锐角三角形B .直角三角形C .钝角三角形D .不确定4. 若△ABC 的三个内角满足sin A : sin B : sin C = 3 : 5 : 7 ,则△ABC ()3考点一:正弦定理、余弦定理的简单应用 考点二:利用正弦定理、余弦定理判断三角形的形状3 3 33 3 14 15 3 14 15考点四:利用正余弦定理求角2 考点三:利用正余弦定理求三角形的面积A. 一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形∴∠ADB =180°-(45°+30°)=105°.DBAB在△DAB 中,由正弦定理,得sin ∠DAB =sin ∠ADB ,cos A bAB ·sin ∠DAB 5(3+\r(3))·sin 45°5. 在∆ABC 中,若cos B =a ,则△ABC 是()A. 等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形6. 在∆ABC 中, AB =, AC = 1 , ∠A = 30︒ ,则∆ABC 面积为() ∴DB =sin ∠ADB = sin 105°5(3+\r(3))·sin 45°=sin 45°cos 60°+cos 45°sin 60°=2=10 3(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =20 3(海里), 在△DBC 中,由余弦定理,得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBCA.B.C.或 D .或 12424 2=300+1 200-2×10 3×20 3×2=900, 7. 已知∆ABC 的三边长a = 3, b = 5, c = 6 ,则∆ABC 的面积为() ∴CD =30(海里),A .B . 2C .D . 2 30∴需要的时间 t =30=1(小时).故救援船到达 D 点需要 1 小时.8. 在锐角中∆ABC ,角 A , B 所对的边长分别为a , b .若2a sin B = 3b ,则角等于 ()三、高考真题赏析A.B.C.D.1.(2016 年ft 东)在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,已知tan A tan B126 4 3 2(tan A + tan B ) = + cos B .cos A9.在△ABC 中,若 a =18,b =24,A =45°,则此三角形有 ( )(Ⅰ)证明:a +b =2c ;(Ⅱ)求 cos C 的最小值.A .无解B .两解C .一解D .解的个数不确定1【解析】(Ⅰ)由2(tanA + tanB) = tanA tanB+ 得10. 在∆ABC ,内角 A , B , C 所对的边长分别为a , b , c . a sin B cos C + c sin B cos A = ∠B = ()b , 且a > b ,则2 2 ⨯ sinC =sinA cosB+ sinB cosA, A.B.C. 2D. 5cosAcosB cosAcosB cosAcosB 2sin C = sin B + sin C a + b = 2c633 6所以,由正弦定理,得.a 2 +b 2 -c 2 (a + b )2 - 2ab - c32c 3c 23 1(Ⅱ)由cos C == = - 1 ≥ - 1 = - 1 = .11. 如图:A ,B 是海面上位于东西方向相距5(3 + 3 )海里的两个观测点,现位于 A 点北偏东45︒ ,B 点2ab2ab2ab 2( a + b )2 2 2 2北偏西60︒ 的 D 点有一艘轮船发出求救信号,位于 B 点南偏西60︒ 且与 B 点相距20 船立即前往营救,其航行速度为每小时 30 海里,该救援船到达 D 点需要多长时间?解 由题意知 AB =5(3+ 3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,1海里的 C 点的救援所以cos C 的最小值为 .22.(2016 年四川)在△ABC 中,角 A ,B ,C 所对的边分别是 a ,b ,c ,且cos A + cos B = sin C. a b c3 3 5 3(\r(3)+1)3+1 考点五:正余弦定理实际应用问题(I)证明:sin A sin B sin C ;3 3 Ctan tan tan 5(II )若b 2 + c 2 - a 2 = 6bc ,求tan B .5∆ABC 中, D 是 BC 上的点, AD 平分∠BAC , ∆ABD 面积是∆ADC 面积的 2 倍.a =b =c (Ⅰ) 求sin ∠B ;(Ⅱ)若 AD = 1 , DC =2 ,求 BD 和 AC 的长.【解析】(I )证明:由正弦定理 sin A sin Bsin C 可知sin ∠C2cos A + cos B = sin C = 1原式可以化解为 sin A sin B sin C∵ A 和 B 为三角形s i 内n A 角sin , B ∴sin A sin B ≠ 0 则,两边同时乘以,可得sin B cos A + sin A cos B = sin A sin B 由和角公式可知, sin B cos A + sin A cos B = sin (A + B )= sin (- C )= sin C原式得证。
高考数学压轴专题(易错题)备战高考《三角函数与解三角形》知识点总复习含答案
【高中数学】数学《三角函数与解三角形》复习知识点(1)一、选择题1.已知ππ43πsin()cos(),0,322ααα++-=--<<则2πcos()3α+等于( )A .5B .35-C .45D .35【答案】C 【解析】 【分析】首先根据等式化简,得到4sin 65πα⎛⎫+=- ⎪⎝⎭,再利用诱导公式化简2cos 3πα⎛⎫+ ⎪⎝⎭求值. 【详解】解析:∵ππ43sin cos 32αα⎛⎫⎛⎫++-=- ⎪ ⎪⎝⎭⎝⎭133343sin cos sin sin cos 22225ααααα++=+=-433sin 65πα⎛⎫=+=-⎪⎝⎭ ∴π4sin 65()α+=-.又2ππππcos cos sin 32()())6(6ααα+=++=-+, ∴2π4co (s 35)α+=. 故选:C 【点睛】本题考查三角恒等变换,化简求值,重点考查转化与变形,计算能力,属于基础题型.2.若θ是第二象限角,则下列选项中能确定为正值的是( ) A .sin B .cosC .tanD .cos2θ【答案】C 【解析】 【分析】直接利用三角函数象限角的三角函数的符号判断即可. 【详解】由θ是第二象限角可得为第一或第三象限角,所以tan >0.故选C 【点睛】本题考查三角函数值的符号的判断,是基础题.3.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3C π<”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项. 【详解】充分性:由余弦定理,2222cos c a b ab C =+-, 所以2ab c >,即222cos ab a b ab C >+-,整理得,2212cos a b C ab++>,由基本不等式,222a b ab +≥=,当且仅当a b =时等号成立, 此时,12cos 2C +>,即1cos 2C >,解得3C π<, 充分性得证;必要性:取4a =,7b =,6c =,则164936291cos 247562C +-==>⨯⨯,故3C π<,但228ab c =<,故3C π<推不出2ab c >.故必要性不成立; 故p 是q 的充分不必要条件. 故选:A 【点睛】本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.4.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C++的最小值为( )A B C D .【答案】A【解析】 【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求. 【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =, ∴tan 2tan C B =.又A B C π++=, ∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B BB C B B +=-=-=---,∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B -++=++27tan 36tan B B =+. 又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan B B +≥=,当且仅当tan B =时取等号,∴min111tan tan tan A B C ⎛⎫++=⎪⎝⎭ A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.5.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩的图像关于y 轴对称,则sin y x =的图像向左平移( )个单位,可以得到cos()y x a b =++的图像( ).A .4π B .3π C .2π D .π【答案】D 【解析】 【分析】根据条件确定,a b 关系,再化简()cos y x a b =++,最后根据诱导公式确定选项. 【详解】因为函数()()(),0,0sin x a x f x cos x b x ⎧+≤⎪=⎨+>⎪⎩的图像关于y 轴对称,所以sin cos 22a b ππ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,()()sin cos a b ππ-+=+,即sin cos sin cos b a a b ,==,因此π2π()2a b k k Z +=+∈, 从而()()cos sin y x a b sinx x π=++=-=+,选D. 【点睛】本题考查偶函数性质、诱导公式、三角函数图象变换,考查基本分析识别能力,属中档题.6.已知函数f (x )=2x -1,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是()A .1,2⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞⎪⎝⎭C .[]1,1,22⎛⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U 【答案】C 【解析】 【分析】对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围. 【详解】当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意. 当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2],因为a +2-2a =2-a >0,所以a +2>2a , 所以此时函数g (x )的值域为(2a ,+∞), 由题得2a <1,即a <12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2], 当a ≥23时,-a +2≤2a ,由题得21,1222a a a a-+≤⎧∴≤≤⎨+≥⎩. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12. 综合得a 的范围为a <12或1≤a ≤2, 故选C . 【点睛】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.将函数cos y x =的图象先左移4π,再纵坐标不变,横坐标缩为原来的12,所得图象的解析式为( ) A .sin 24y x π⎛⎫=+ ⎪⎝⎭B .13sin 24y x π⎛⎫=+⎪⎝⎭C .1sin 24y x π⎛⎫=+ ⎪⎝⎭D .3sin 24y x π⎛⎫=+⎪⎝⎭【答案】D 【解析】 【分析】根据三角函数的平移伸缩变换法则得到答案. 【详解】cos sin 2y x x π⎛⎫==+ ⎪⎝⎭向左平移4π个单位,故变为3sin 4y x π⎛⎫=+ ⎪⎝⎭,纵坐标不变,横坐标缩为原来的12,变为3sin 24y x π⎛⎫=+ ⎪⎝⎭. 故选:D . 【点睛】本题考查了三角函数的平移伸缩变换,意在考查学生对于平移伸缩变换的理解和掌握.8.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦故选D 【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.9.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .83【答案】C 【解析】 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 3cos 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭Q ,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>Q ,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.10.已知函数()sin()f x x πϕ=+某个周期的图象如图所示,A ,B 分别是()f x 图象的最高点与最低点,C 是()f x 图象与x 轴的交点,则tan ∠BAC =( )A .12B .47C 255D 76565【答案】B 【解析】 【分析】过A 作AD 垂直于x 轴于点D ,AB 与x 轴交于E ,设C (a ,0),可得32CD =,11,2AD DE ==,3tan 2CD CAD AD ∠==,1tan 2ED EAD AD ∠==,再利用tan tan()BAC CAD EAD ∠=∠-∠计算即可.【详解】过A 作AD 垂直于x 轴于点D ,AB 与x 轴交于E , 由题可得周期为2,设(,0)C a ,则1(,1)2B a +-,3(,1)2A a +, 所以32CD =,11,2AD DE ==,3tan 2CD CAD AD ∠==,1tan 2ED EAD AD ∠== 所以tan tan tan tan()1tan tan CAD EADBAC CAD EAD CAD EAD∠-∠∠=∠-∠=+∠⋅∠31422317122-==+⨯. 故选:B【点睛】本题主要考查两角差的正切公式,涉及到正弦型函数图象等知识,考查学生数学运算能力,是一道中档题.11.在△ABC 中,7b =,5c =,3B π∠=,则a 的值为 A .3 B .4C .7D .8【答案】D 【解析】 【分析】根据题中所给的条件两边一角,由余弦定理可得2222cos b a c ac B =+-,代入计算即可得到所求的值. 【详解】因为7,5,3b c B π==∠=,由余弦定理可得2222cos b a c ac B =+-,即214925252a a =+-⨯⨯,整理得25240a a --=, 解得8a =或5a =-(舍去),故选D. 【点睛】该题考查的是有关解三角形的问题,在解题的过程中,涉及到的知识点有余弦定理,解三角形所用的就是正弦定理和余弦定理,结合题中的条件,选择适当的方法求得结果.12.锐角ABC ∆中,角A 、B 、C 所对的边分别为,,a b c,若()sin 03A B C π⎛⎫+++= ⎪⎝⎭,b =c =,则角B =( )A .6π B .4π C .3π D .512π 【答案】B 【解析】 【分析】先由()sin 03A B C π⎛⎫+++= ⎪⎝⎭求出3A π=,然后用余弦定理算出a =再用余弦定理算出cos B 即可. 【详解】因为()sin 03A B C π⎛⎫+++= ⎪⎝⎭所以11sin cos sin 02222A A A A A +=-=所以tan A =0,2A π⎛⎫∈ ⎪⎝⎭,所以3A π=所以由余弦定理得:22222co 1232222s a b c bc A ⎛-=+-=+⨯= ⎝⎭所以a =所以222232cos 22a c b B ac +-+-===因为0,2B π⎛⎫∈ ⎪⎝⎭,所以4B π=故选:B 【点睛】本题考查的是利用余弦定理解三角形,数据不特殊,计算能力是解题的关键.13.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+若2sin sin sin B C A ⋅=,则ABC ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C 【解析】 【分析】直接利用余弦定理的应用求出A 的值,进一步利用正弦定理得到:b =c ,最后判断出三角形的形状. 【详解】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , 且b 2+c 2=a 2+bc .则:2221222b c a bc cosA bc bc +-===,由于:0<A <π,故:A 3π=.由于:sin B sin C =sin 2A , 利用正弦定理得:bc =a 2, 所以:b 2+c 2﹣2bc =0, 故:b =c ,所以:△ABC 为等边三角形. 故选C . 【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.14.已知函数()()sin x f x x R ωφ+=∈,,其中0ωπφπ>-<,≤.若函数()f x 的最小正周期为4π,且当23x π=时,()f x 取最大值,是( ) A .()f x 在区间[]2ππ--,上是减函数 B .()f x 在区间[]0π-,上是增函数 C .()f x 在区间[]0π,上是减函数 D .()f x 在区间[]02π,上是增函数 【答案】B 【解析】 【分析】先根据题目所给已知条件求得()f x 的解析式,然后求函数的单调区间,由此得出正确选项. 【详解】由于函数()f x 的最小正周期为4π,故2π14π2ω==,即()1sin 2f x x φ⎛⎫=+ ⎪⎝⎭,2ππsin 1,33π6f φφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭=⎭⎝.所以()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭.由π1ππ2π2π2262k x k -≤+≤+,解得4π2π4π4π33k x k -≤≤+,故函数的递增区间是4π2π4π,4π33k k ⎡⎤-+⎢⎥⎣⎦,令0k =,则递增区间为4π2π,33⎡⎤-⎢⎥⎣⎦,故B 选项正确.所以本小题选B. 【点睛】本小题主要考查三角函数解析式的求法,考查三角函数单调区间的求法,属于基础题.15.已知曲线1:sin C y x =,21:cos 23C y x π⎛⎫=- ⎪⎝⎭,则下面结论正确的是( )A .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移3π个单位长度,得到曲线2CD .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移3π个单位长度,得到曲线2C 【答案】D 【解析】 【分析】根据三角函数的周期变换和左右平移变换依次得到各选项中所得的函数解析式,从而得到正确选项. 【详解】A 中,将sin y x =横坐标缩短到原来的12倍得:sin 2y x =;向右平移3π个单位长度后得:2sin 2sin 2sin 2cos 233266y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-=--=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 错误;B 中,将sin y x =横坐标伸长到原来的2倍得:1sin2y x =;向右平移3π个单位长度后得:11121sin sin cos cos 232622632y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-=--=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,B 错误;C 中,将sin y x =横坐标缩短到原来的12倍得:sin 2y x =;向左平移3π个单位长度后得:2sin 2sin 2sin 2cos 233266y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,C 错误;D 中,将sin y x =横坐标伸长到原来的2倍得:1sin2y x =;向左平移3π个单位长度后得:1111sin sin cos cos 232622623y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=+=-+=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,D 正确. 故选:D 【点睛】本题考查三角函数的周期变换和平移变换的问题,关键是能够准确掌握变换原则,得到变换后的函数解析式.16.4cos2d cos sin xx x xπ=+⎰( )A.1) B1C1D.2【答案】C 【解析】 【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分. 【详解】因为22cos2cos sin cos sin cos sin cos sin x x xx x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0xx x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.17.设函数()()sin f x x x x R =∈,则下列结论中错误的是( ) A .()f x 的一个周期为2π B .()f x 的最大值为2 C .()f x 在区间2,63ππ⎛⎫⎪⎝⎭上单调递减 D .3f x π⎛⎫+⎪⎝⎭的一个零点为6x π=【答案】D【解析】 【分析】先利用两角和的正弦公式化简函数()f x ,再由奇偶性的定义判断A ;由三角函数的有界性判断B ;利用正弦函数的单调性判断C ;将6x π=代入 3f x π⎛⎫+ ⎪⎝⎭判断D .【详解】()sin f x x x = 23sin x π⎛⎫=+⎪⎝⎭, ()f x 周期22,1T A ππ==正确; ()f x 的最大值为2,B 正确,25,,,63326x x πππππ⎛⎫⎛⎫∈∴+∈ ⎪⎪⎝⎭⎝⎭Q , ()f x ∴在2,63ππ⎛⎫⎪⎝⎭上递减,C 正确; 6x π=时,1032f x f ππ⎛⎫⎛⎫+==≠ ⎪ ⎪⎝⎭⎝⎭,6x π=不是3f x π⎛⎫+⎪⎝⎭的零点,D 不正确. 故选D. 【点睛】本题通过对多个命题真假的判断,综合考查两角和的正弦公式以及三角函数的单调性、三角函数的周期性、三角函数的最值与零点,意在考查对基础知识掌握的熟练程度,属于中档题.18.关于函数()()()sin tan cos tan f x x x =-有下述四个结论: ①()f x 是奇函数; ②()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增; ③π是()f x 的周期; ④()f x 的最大值为2.其中所有正确结论的个数是( ) A .4 B .3C .2D .1【答案】C 【解析】 【分析】计算()()()sin tan cos tan f x x x -=--得到①错误,根据复合函数单调性判断法则判断②正确,()()f x f x π+=③正确,假设()f x 的最大值为2,取()2f a =,得到矛盾,④错误,得到答案. 【详解】()()()sin tan cos tan f x x x =-,()()()sin tan cos tan f x x x -=---⎡⎤⎡⎤⎣⎦⎣⎦()()sin tan cos tan x x =--,所以()f x 为非奇非偶函数,①错误; 当0,4x π⎛⎫∈ ⎪⎝⎭时,令tan t x =,()0,1t ∈, 又()0,1t ∈时sin y t =单调递增,cos y t =单调递减,根据复合函数单调性判断法则, 当0,4x π⎛⎫∈ ⎪⎝⎭时,()sin tan y x =,()cos tan y x =-均为增函数, 所以()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增,所以②正确;()()()sin tan cos tan f x x x πππ+=+-+⎡⎤⎡⎤⎣⎦⎣⎦()()()sin tan cos tan x x f x =-=,所以π是()f x 的周期,所以③正确;假设()f x 的最大值为2,取()2f a =,必然()sin tan 1a =,()cos tan 1a =-, 则tan 22a k ππ=+,k Z ∈与tan 2a k ππ=+,k Z ∈矛盾,所以()f x 的最大值小于2,所以④错误. 故选:C . 【点睛】本题考查了三角函数奇偶性,单调性,周期,最值,意在考查学生对于三角函数知识的综合应用.19.设2α是第一象限角,且cos cos αα=-,则α是第( )象限角 A .一 B .二C .三D .四【答案】B 【解析】 【分析】计算得到720180720k k α︒<<︒+︒,k Z ∈,再根据cos 0α<得到答案. 【详解】 ∵2α是第一象限角,∴360903602k k α︒<<︒+︒,k Z ∈,∴720180720k k α︒<<︒+︒,k Z ∈,∴α为第一象限角或第二象限角或终边在y 轴正半轴上的轴线角, ∵cos cos αα=-,∴cos 0α<,∴α是第二象限角. 故选:B . 【点睛】本题考查了角度所在象限,意在考查学生的计算能力和转化能力.20.将函数sin(2)4y x π=-的图象向左平移4π个单位,所得图象对应的函数在区间(,)m m -上无极值点,则m 的最大值为( )A .8π B .4π C .38π D .2π 【答案】A 【解析】 【分析】由三角函数的图象变换,求得函数sin 24y x π⎛⎫=+ ⎪⎝⎭,求得增区间3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,令0k =,可得函数的单调递增区间为3,88ππ⎡⎤-⎢⎥⎣⎦,进而根据函数sin 24y x π⎛⎫=+ ⎪⎝⎭在区间(),m m -上无极值点,即可求解. 【详解】由题意,将函数sin 24y x π⎛⎫=- ⎪⎝⎭的图象向左平移4π个单位, 可得函数sin 2sin 2444y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令222,242k x k k Z πππππ-+≤+≤+∈,解得3,88k x k k Z ππππ-+≤≤+∈ 即函数sin 24y x π⎛⎫=+⎪⎝⎭的单调递增区间为3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,令0k =,可得函数的单调递增区间为3,88ππ⎡⎤-⎢⎥⎣⎦, 又由函数sin 24y x π⎛⎫=+ ⎪⎝⎭在区间(),m m -上无极值点,则m 的最大值为8π,故选A. 【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟练应用三角函数的图象变换得到函数的解析式,再根据三角函数的性质,求得其单调递增区间是解答的关键,着重考查了运算与求解能力,属于中档试题.。
高考数学压轴专题(易错题)备战高考《三角函数与解三角形》知识点训练附答案
【最新】数学《三角函数与解三角形》专题解析(1)一、选择题1.在ABC ∆中,若2sin sin cos 2CA B =,则ABC ∆是( ) A .等边三角形 B .等腰三角形C .不等边三角形D .直角三角形【答案】B 【解析】试题分析:因为2sin sin cos2CA B =,所以,1cos sin sin 2C A B +=,即2sin sin 1cos[()],cos()1A B A B A B π=+-+-=,故A=B ,三角形为等腰三角形,选B 。
考点:本题主要考查和差倍半的三角函数,三角形内角和定理,诱导公式。
点评:简单题,判断三角形的形状,一般有两种思路,一种是从角入手,一种是从边入手。
2.小赵开车从A 处出发,以每小时40千米的速度沿南偏东40︒的方向直线行驶,30分钟后到达B 处,此时,小王发来微信定位,显示他自己在A 的南偏东70︒方向的C 处,且A 与C 的距离为153千米,若此时,小赵以每小时52千米的速度开车直线到达C 处接小王,则小赵到达C 处所用的时间大约为( )()7 2.6≈A .10分钟B .15分钟C .20分钟D .25分钟【答案】B 【解析】 【分析】首先根据题中所给的条件,得到30BAC ∠=︒,20AB =,153AC =,两边和夹角,之后应用余弦定理求得5713BC =≈(千米),根据题中所给的速度,进而求得时间,得到结果. 【详解】根据条件可得30BAC ∠=︒,20AB =,153AC =, 由余弦定理可得2222cos30175BC AB AC AB AC ︒=+-⋅⋅=, 则5713BC =≈(千米),由B 到达C 所需时间约为130.2552=(时)15=分钟. 故选:B . 【点睛】该题是一道关于解三角形的实际应用题,解题的关键是掌握余弦定理的应用,属于简单题目.3.已知函数()()03f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,若()()122f x f x ⋅=-,则12x x -的最小值为( )A .2π B .3π C .πD .4π【答案】A 【解析】 【分析】由正弦型函数的最小正周期可求得ω,得到函数解析式,从而确定函数的最大值和最小值;根据()()122f x f x ⋅=-可知1x x =和2x x =必须为最大值点和最小值点才能够满足等式;利用整体对应的方式可构造方程组求得()12122x x k k ππ-=-+,12,k k Z ∈;从而可知120k k -=时取最小值. 【详解】由()f x 最小正周期为π可得:2ππω= 2ω∴= ()23f x x π⎛⎫∴=- ⎪⎝⎭()max f x ∴,()min f x =()()122f x f x ⋅=-Q 1x x ∴=和2x x =分别为()f x 的最大值点和最小值点设1x x =为最大值点,2x x =为最小值点()1112222232,2232x k k k Z x k ππππππ⎧-=+⎪⎪∴∈⎨⎪-=-⎪⎩()12122x x k k ππ∴-=-+,当120k k -=时,12min2x x π-=本题正确选项:A 【点睛】本题考查正弦型函数性质的综合应用,涉及到正弦型函数最小正周期和函数值域的求解;关键是能够根据函数的最值确定1x 和2x 为最值点,从而利用整体对应的方式求得结果.4.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点,即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦故选D 【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.5.已知函数()sin()R,0,0,||2f x A x x A πωϕωϕ⎛⎫=+∈>>< ⎪⎝⎭的图象(部分)如图所示,则ω,ϕ分别为( )A .,3πωπϕ==B .2,3πωπϕ==C .,6πωπϕ==D .2,6πωπϕ==【答案】C 【解析】 【分析】由最大值可确定振幅A ,由周期确定ω,由1()23f =确定ϕ. 【详解】 由图可得,2A =,5114632T =-=,所以22T πω==,ωπ=,又1()23f =,所以12sin()23πϕ⨯+=,2,32k k Z ππϕπ+=+∈,即2,6k k Z πϕπ=+∈, 又2πϕ<,故6π=ϕ. 故选:C 【点睛】本题考查由图象确定正弦型函数解析式中的参数问题,考查学生逻辑推理能力,是一道中档题.6.已知函数()()πsin 06f x x ωω⎛⎫=-> ⎪⎝⎭,若()π02f f ⎛⎫=- ⎪⎝⎭在π0,2⎛⎫⎪⎝⎭上有且仅有三个零点,则ω= ( ) A .23B .2C .143D .263【答案】C 【解析】∵函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭,()02f f π⎛⎫=-⎪⎝⎭∴1sin()sin()6262πππω-=--=- ∴2266k πππωπ-=+或52,266k k Z πππωπ-=+∈ ∴243k ω=+或42,k k ω=+∈Z ∵函数()f x 在0,2π⎛⎫⎪⎝⎭上有且仅有三个零点 ∴(,)6626x ππωππω-∈-- ∴2326ωππππ<-≤∴131933ω<≤ ∴143ω=或6ω= 故选C.7.锐角ABC ∆中,角A 、B 、C 所对的边分别为,,a b c ,若()sin 03A B C π⎛⎫+++= ⎪⎝⎭,b =2c =,则角B =( )A .6π B .4π C .3π D .512π 【答案】B 【解析】 【分析】先由()sin 03A B C π⎛⎫+++= ⎪⎝⎭求出3A π=,然后用余弦定理算出a =再用余弦定理算出cos B 即可. 【详解】因为()sin 03A B C π⎛⎫+++= ⎪⎝⎭所以11sin sin 022A A A A A +==所以tan A =0,2A π⎛⎫∈ ⎪⎝⎭,所以3A π=所以由余弦定理得:22222co 12322s a b c bc A -=+-=+=⎝⎭所以a =所以222232cos 22a c b B ac +-+-===因为0,2B π⎛⎫∈ ⎪⎝⎭,所以4B π=故选:B 【点睛】本题考查的是利用余弦定理解三角形,数据不特殊,计算能力是解题的关键.8.已知πππsin()cos()0,322ααα++-=-<<则2πcos()3α+等于( )AB .35-C .45D .35【答案】C 【解析】 【分析】首先根据等式化简,得到4sin 65πα⎛⎫+=- ⎪⎝⎭,再利用诱导公式化简2cos 3πα⎛⎫+ ⎪⎝⎭求值. 【详解】解析:∵ππsin cos 32αα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭13sin sin sin 22225ααααα++=+=-65πα⎛⎫=+=-⎪⎝⎭ ∴π4sin 65()α+=-.又2ππππcos cos sin 32()())6(6ααα+=++=-+, ∴2π4co (s 35)α+=. 故选:C 【点睛】本题考查三角恒等变换,化简求值,重点考查转化与变形,计算能力,属于基础题型.9.在∆ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .则“sin >sin A B ”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】由正弦定理得sin sin 22a bA B a b R R>⇔>⇔> ,所以“sin sin A B >”是“a b >”的充要条件,选C.10.已知函数f (x )=sin 2x +sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14CD.2【答案】A 【解析】 【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值. 【详解】已知函数f (x )=sin 2x +sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+⎪-⎝⎭+,=1cos 2111cos 22223x x π⎛⎛⎫-=-+ ⎪ ⎝⎭⎝⎭, 因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A 【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.11.若函数()y f x =同时满足下列三个性质:①最小正周期为π;②图象关于直线3x π=对称;③在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增,则()y f x =的解析式可以是( ) A .sin 26y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=- ⎪⎝⎭C .cos 26y x π⎛⎫=- ⎪⎝⎭D .cos 23y x π⎛⎫=+⎪⎝⎭【答案】A 【解析】 【分析】利用性质①可排除B ,利用性质②可排除C ,利用性质③可排除D ,通过验证选项A 同时满足三个性质. 【详解】逐一验证,由函数()f x 的最小正周期为π,而B 中函数最小正周期为2412ππ=,故排除B ;又cos 2cos 0362πππ⎛⎫⨯-== ⎪⎝⎭,所以cos 26y x π⎛⎫=- ⎪⎝⎭的图象不关于直线3x π=对称,故排除C ; 若63x ππ-≤≤,则023x ππ≤+≤,故函数cos 23y x π⎛⎫=+ ⎪⎝⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递减,故排除D ; 令2262x πππ-≤-≤,得63x ππ-≤≤,所以函数sin 26y x π⎛⎫=- ⎪⎝⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增.由周期公式可得22T ππ==,当3x π=时,sin(2)sin 1362πππ⨯-==, 所以函数sin 26y x π⎛⎫=- ⎪⎝⎭同时满足三个性质.故选A . 【点睛】本题考查了三角函数的周期性,对称性,单调性,属于中档题.12.已知sin α,sin()αβ-=,,αβ均为锐角,则β=( ) A .512πB .3π C .4π D .6π 【答案】C 【解析】 【分析】 由题意,可得22ππαβ-<-<,利用三角函数的基本关系式,分别求得cos ,cos()ααβ-的值,利用sin[(]sin )ααββ=--,化简运算,即可求解.【详解】由题意,可得α,β均为锐角,∴-2π <α-β<2π.又s in(α-β),∴cos(α-β).又sin α=5,∴cos α=5, ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=5×10-5×10⎛⎫- ⎪ ⎪⎝⎭=2.∴β=4π. 【点睛】本题主要考查了三角函数的化简、求值问题,其中熟记三角函数的基本关系式和三角恒等变换的公式,合理构造sin[(]sin )ααββ=--,及化简与运算是解答的关键,着重考查了推理与运算能力,属于基础题.13.已知函数()3cos(2)2f x x π=+,若对于任意的x ∈R ,都有12()()()f x f x f x 剟成立,则12x x -的最小值为( ) A .4 B .1C .12D .2【答案】D 【解析】【分析】由题意得出()f x 的一个最大值为()2f x ,一个最小值为()1f x ,于此得出12x x -的最小值为函数()y f x =的半个周期,于此得出答案. 【详解】对任意的x ∈R ,()()()12f x f x f x 剟成立. 所以()()2min 3f x f x ==-,()()2max 3f x f x ==,所以12min22Tx x -==,故选D . 【点睛】本题考查正余弦型函数的周期性,根据题中条件得出函数的最值是解题的关键,另外就是灵活利用正余弦型函数的周期公式,考查分析问题的能力,属于中等题.14.已知π1cos 25α⎛⎫-= ⎪⎝⎭,则cos2α=( )A .725B .725-C .2325D .2325-【答案】C 【解析】 【分析】由已知根据三角函数的诱导公式,求得sin α,再由余弦二倍角,即可求解. 【详解】 由π1cos α25⎛⎫-=⎪⎝⎭,得1sin α5=,又由2123cos2α12sin α122525=-=-⨯=. 故选C . 【点睛】本题主要考查了本题考查三角函数的化简求值,其中解答中熟记三角函数的诱导公式及余弦二倍角公式的应用是解答的关键,着重考查了推理与计算能力,属于基础题.15.已知2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,则tan 14πα⎛⎫-= ⎪⎝⎭( )A .53-B .35-C .35D .53【答案】B 【解析】 【分析】根据诱导公式计算得到35tan 73πα⎛⎫+= ⎪⎝⎭,故3tan tan 1472πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,解得答案. 【详解】由诱导公式可知24333sin 3sin 33sin 777πππαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 又2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+⎪ ⎪⎝⎭⎝⎭得333sin 5cos 77ππαα⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭, 所以35tan 73πα⎛⎫+= ⎪⎝⎭,313tan tan 314725tan 7πππααπα⎡⎤⎛⎫⎛⎫-=+-=-=- ⎪⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+ ⎪⎝⎭. 故选:B . 【点睛】本题考查了三角恒等变换,意在考查学生的计算能力和转化能力.16.若θ是第二象限角,则下列选项中能确定为正值的是( ) A .sin B .cosC .tanD .cos2θ【答案】C 【解析】 【分析】直接利用三角函数象限角的三角函数的符号判断即可. 【详解】由θ是第二象限角可得为第一或第三象限角,所以tan >0.故选C 【点睛】本题考查三角函数值的符号的判断,是基础题.17.已知曲线1:sin C y x =,21:cos 23C y x π⎛⎫=- ⎪⎝⎭,则下面结论正确的是( )A .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移3π个单位长度,得到曲线2CD .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移3π个单位长度,得到曲线2C 【答案】D【解析】 【分析】根据三角函数的周期变换和左右平移变换依次得到各选项中所得的函数解析式,从而得到正确选项. 【详解】A 中,将sin y x =横坐标缩短到原来的12倍得:sin 2y x =;向右平移3π个单位长度后得:2sin 2sin 2sin 2cos 233266y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-=--=-- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 错误;B 中,将sin y x =横坐标伸长到原来的2倍得:1sin2y x =;向右平移3π个单位长度后得:11121sin sin cos cos 232622632y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-=--=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,B 错误;C 中,将sin y x =横坐标缩短到原来的12倍得:sin 2y x =;向左平移3π个单位长度后得:2sin 2sin 2sin 2cos 233266y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=++=+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,C 错误;D 中,将sin y x =横坐标伸长到原来的2倍得:1sin2y x =;向左平移3π个单位长度后得:1111sin sin cos cos 232622623y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=+=-+=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,D 正确. 故选:D 【点睛】本题考查三角函数的周期变换和平移变换的问题,关键是能够准确掌握变换原则,得到变换后的函数解析式.18.已知函数()sin()f x x ωϕ=+(0>ω,2πω<)的最小正周期为π,且其图象向左平移3π个单位后,得到函数()cos g x x ω=的图象,则函数()f x 的图象( ) A .关于直线12x π=对称B .关于直线512x π=对称 C .关于点(,0)12π对称D .关于点5(,0)12π对称 【答案】C 【解析】试题分析:依题意()()2,sin 2f x x ωϕ==+,平移后为2sin 2cos 2,36x x ππϕϕ⎛⎫++==- ⎪⎝⎭,()sin 26f x x π⎛⎫=- ⎪⎝⎭,关于,012π⎛⎫⎪⎝⎭对称.考点:三角函数图象与性质.19.在ABC V 中,角A 的平分线交边BC 于D ,4AB =,8AC =,2BD =,则ABD △的面积是( )A .15B .315C .1D .3【答案】A 【解析】 【分析】先根据正弦定理求得DC ,再结合余弦定理求得cos B ,进而求出ABD S V ,即可求得结论. 【详解】 如图:()sin sin sin ADC ADB ADB π∠=-∠=∠,在ABD △中,由正弦定理得sin sin BD ABBAD ADB=∠∠,同理可得sin sin CD ACCAD ADC=∠∠,因为ABC V 中,角A 的平分线交边BC 于D ,上述两个等式相除得BD ABCD AC=, 4AB =Q ,8AC =,2BD =,8244AC BD CD AB ⋅⨯∴===,6BC ∴=. 2222224681cos 22464AB BC AC B AB BC +-+-∴===-⋅⨯⨯,2115sin 14B ⎛⎫=--=⎪⎝⎭ 1sin 152ABD S AB BD B ∴=⋅⋅=V 故选:A . 【点睛】本题考查三角形面积的求法以及角平分线的性质应用,是中档题,解题时要注意余弦定理的合理运用,考查计算能力,属于中等题.20.在三棱锥P ABC -中,PA ⊥平面ABC ,2π,43BAC AP ∠==,23AB AC ==,则三棱锥P ABC -的外接球的表面积为( )A .32πB .48πC .64πD .72π【答案】C 【解析】 【分析】先求出ABC V 的外接圆的半径,然后取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==,由于PA ⊥平面ABC ,故点O 为三棱锥P ABC -的外接球的球心,OA 为外接球半径,求解即可. 【详解】在ABC V 中,23AB AC ==,23BAC π∠=,可得6ACB π∠=, 则ABC V 的外接圆的半径2323π2sin 2sin6AB r ACB ===,取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==, 因为PA ⊥平面ABC ,所以点O 为三棱锥P ABC -的外接球的球心, 则222OA OG AG =+,即外接球半径()222234R =+=,则三棱锥P ABC -的外接球的表面积为24π4π1664πR =⨯=. 故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.。
解三角形解答题易错点剖析
2
0
°+θ)⇒
2
1
3
2
2
c
o
s θ- s
i
nθ =
4
4
s
i
n
·
θ
3
1
2
t
a
n θ+ 3t
a
nθ-1
c
o
sθ- s
i
nθ ⇒2
2
2
=0⇒t
a
nθ=
- 3± 1
1
。
4
又θ 为锐角,
故t
a
nθ=
- 3+ 1
1
。
4
二、解三角形的最值问题易错点
例 3
已 知 锐 角 △ABC 的 内 角 A ,
B,
2
2
C 所对的边分别 为a,
1,
3,
2;
4,
2,
1,
创新定义的数列抽象 出 其 中 内 含 的 等 差 (比)
4,
3,
1;
3,
1,
2,
4;
3,
1,
4,
2;
3,
2,
1,
4;
3,
2,
4,
1;
共2
3;
4,
2,
3,
1;
4,
3,
1,
2;
4,
3,
2,
1,
4 个 数 列,
然后借助 数 列 的 性 质 或 基 本 量 运 算 求 解;将
数列,
培养同学们
运用数学 知 识 解 决 实 际 问 题 的 能 力,积 累 数
学活动经 验。 并 把 知 识 应 用 于 实 践,提 升 同
2023年新高考重难点汇编重难点:三角函数与解三角形(解析版)
新高考中,三角函数与解三角形依然会作为一个重点参与到高考试题中,熟练掌握三角函数的图象与性质、三角恒等变换公式及正、余弦定理,在此基础上掌握一些三角恒变换的技巧,如角的变换,函数名称的变换等,此外,还要注意题目中隐含的各种限制条件,选择合理的解决方法,灵活实现问题的转化。
1、三角函数的图象与性质1、已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin (ωx +φ)或y =A cos (ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2、求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)的形式,再分别应用公式T =2|| ,T =2|| ,T =||求解.3、对于函数y =A sin (ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否为函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.4、若f (x )=A sin (ωx +φ)为偶函数,则φ=k π+2(k Z ),同时当x =0时,f (x )取得最大或最小值.若f (x )=A sin (ωx +φ)为奇函数,则φ=k π(k ∈Z ),同时当x =0时,f (x )=0.2、利用正、余弦定理求边和角的方法(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.(2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.重难点02三角函数与解三角形3、求三角形面积的方法:1)若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.热点1、新题型的考查(1)以数学文化和实际为背景的题型;(2)多选题的题型;(3)多条件的解答题题型。
部编数学八年级上册专题02三角形的全等六大重难模型(期末真题精选)(解析版)含答案
专题02 三角形的全等六大重难模型一.一线三等角模型1.如图,在平面直角坐标系中,点A 的坐标是(4,0),点B 的坐标是(0,3),把线段BA 绕点B 逆时针旋转90°后得到线段BC ,则点C 的坐标是( )A .(3,4)B .(4,3)C .(4,7)D .(3,7)试题分析:过点C 作CD ⊥y 轴,垂足为D ,根据垂直定义可得∠CDB =90°,从而利用直角三角形的两个锐角互余可得∠CBD +∠DCB =90°,再利用旋转的性质可得CB =BA ,∠CBA =90°,然后利用平角定义可得∠CBD +∠ABO =90°,从而利用同角的余角相等可得∠ABO =∠DCB ,进而可得△BOA ≌△CDB ,最后利用全等三角形的性质可得CD =BO =3,DB =OA =4,从而求出DO =7,即可解答.实战训练答案详解:解:过点C作CD⊥y轴,垂足为D,∴∠CDB=90°,∴∠CBD+∠DCB=180°﹣∠CDB=90°,∵点A的坐标是(4,0),点B的坐标是(0,3),∴OA=4,OB=3,由旋转得:CB=BA,∠CBA=90°,∴∠CBD+∠ABO=180°﹣∠ABC=90°,∴∠ABO=∠DCB,∵∠CDB=∠AOB=90°,∴△BOA≌△CDB(AAS),∴CD=BO=3,DB=OA=4,∴DO=DB+OB=4+3=7,∴点C的坐标是(3,7),所以选:D.2.已知正方形OBCD在平面直角坐标系中的位置如图所示M为边OB上一点,且点M的坐标为(a,b).将正方形OBCD绕原点O顺时针旋转,每秒旋转45°,则旋转2022秒后,点M的坐标为( )A.(b,a)B.(﹣a,b)C.(﹣b,a)D.(﹣a,﹣b)试题分析:先确定此时点M对应的位置即点M所在的位置,如图,过点M,M′分别作ME⊥x 轴于点E,MF⊥x轴于点F,证明△M′OF≌△OME,得到M′F=OE=a,OF=ME=b,由此求解即可.答案详解:解:∵正方形OBCD绕原点O顺时针旋转,每秒旋转45°,∴旋转8秒恰好旋转360°.∵2022÷8=252……6,∴旋转2022秒,即点M旋转了252圈后,又旋转了6次.∵6×45°=270°,∴此时点M对应的位置即点M’所在的位置,如图.过点M,M'分别作ME⊥x轴于点E,M'F⊥x轴于点F,∴∠M′FO=∠OEM=90°,∴∠EOM+∠EMO=90°,∵四边形OBCD是正方形,∴∠BOD=90°,∴∠FOM′+∠MOE=90°,∴∠M′OF=∠OME.在△M′OF和△MOE中,∠FM'O=∠OEM∠M′OF=∠OME,OM=OM′∴△M′FO≌△OEM(AAS),∵点M的坐标为(a,b),∴OF=ME=b,M′F=OE=a.又点M′在第二象限,∴旋转2022秒后,点M的坐标为(﹣b,a).所以选C.3.问题提出在等腰Rt△ABC中,AB=BC,∠ABC=90°,点D,E分别在边AB,AC上(不同时在点A),连接DE,将线段DE绕点E顺时针旋转90°,得到线段FE,连接AF,探究AF与BC的位置关系.问题探究(1)先将问题特殊化,如图1,点D,E分别与点B,C重合,直接写出AF与BC的位置关系;(2)再探讨一般情形,如图2,证明(1)中的结论仍然成立.问题拓展如图3,在等腰Rt△ABC中,AB=BC,∠ABC=90°,D为AB的中点,点E在边AC上,连接DE,将线段DE绕点E顺时针旋转90°,得到线段FE,点G是点C关于直线AB的对称点,若点G,D,F在一条直线上,求AEEC的值.试题分析:(1)先证CF∥AB,再证AB=CF,则四边形ABCF是平行四边形,即可得出结论;(2)过E作EM⊥AC交AB的延长线于点M,证△AEF≌△MED(SAS),得∠EAF=∠EMD=45°,则∠EAF=∠BCA,即可得出结论;(3)连接AF、CF,过E作EG⊥AB于点G,延长GE交CF于点H,证四边形ABCF是正方形,得AB∥CF,∠BCF=90°,∠ACF=45°,再证△EFH≌△DEG(AAS),得EH=DG,然后证△ECH是等腰直角三角形,得EH=CH,进而得AG=3BG,即可解决问题.答案详解:问题探究(1)解:AF∥BC,理由如下:由旋转的性质得:∠DEF=90°,DE=FE,∵∠ABC=90°,∴∠ABC+∠DEF=180°,∴CF∥AB,∵AB=BC,∴AB=CF,∴四边形ABCF是平行四边形,∴AF∥BC;(2)证明:如图2,过E作EM⊥AC交AB的延长线于点M,则∠AEM=90°,∵∠ABC=90°,AB=BC,∴∠BAC=∠BCA=45°,∴△AEM是等腰直角三角形,∴ME=AE,∠AME=45°,由旋转的性质得:FE=DE,∠DEF=90°,∴∠DEF=∠AEM,∴∠DEF﹣∠AED=∠AEM﹣∠AED,即∠AEF=∠MED,∴△AEF≌△MED(SAS),∴∠EAF=∠EMD=45°,∴∠EAF=∠BCA,∴AF∥BC;问题拓展解:如图3,连接AF、CF,过E作EG⊥AB于点G,延长GE交CF于点H,则∠EGD=90°,由(1)可知,AF∥BX,∴∠DAF=∠DBG,∠AFD=∠G,∵D为AB的中点,∴AD=BD,∴△ADF≌△BDG(AAS),∴AF=BG,∵点G是点C关于直线AB的对称点,∴BG=BC,∴AF=BG,∴四边形ABCF是平行四边形,∵AB=BC,∠ABC=90°,∴平行四边形ABCF是正方形,∴AB∥CF,∠BCF=90°,∠ACF=45°,∵GH⊥AB,∴GH⊥CF,∴BG=CH,∠CHE=∠FHE=90°,∴∠EFH+∠FEH=90°,由旋转的性质得:FE=DE,∠DEF=90°,∴∠DEG+∠FEH=90°,∴∠EFH=∠DEG,∵∠EGD=∠FHE=90°,∴△EFH≌△DEG(AAS),∴EH=DG,∵∠ACF=45°,∴△ECH是等腰直角三角形,∴EH=CH,∴DG=BG=12BD=12AD,∴AG=3BG,∵∠EGD=∠ABC=90°,∴EG∥BC,∴AEEC=AGBG=3.4.如图,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点.已知A,B,C都是格点.(1)小明发现图2中∠ABC是直角,请在图1补全他的思路;(2)请借助图3用一种不同于小明的方法说明∠ABC是直角.先利用勾股定理求出△ABC的三条边长,可得AB= 10 ,BC= 10 ,AC= 25 .从而可得三边数量关系为 AB2+BC2=AC2 ,根据 勾股定理的逆定理 ,可以证明∠ABC是直角.试题分析:(1)先利用勾股定理求出AB,BC,AC的长,然后利用勾股定理的逆定理,进行计算即可解答;(2)根据题意可得:AD=BE=3,BD=CE=1,∠ADB=∠BEC=90°,从而利用SAS可得△ADB≌△BEC,然后利用全等三角形的性质可得∠ABD=∠BCE,再利用直角三角形的两个锐角互余可得∠BCE+∠EBC=90°,从而可得∠ABD+∠EBC=90°,最后利用平角定义进行计算即可解答.答案详解:解:(1)由题意得:BC=AC=AB根据勾股定理的逆定理:△ABC是直角三角形,∴∠ABC=90°,A B2+BC2=AC2,勾股定理的逆定理;(2)由题意得:AD=BE=3,BD=CE=1,∠ADB=∠BEC=90°,在△ADB和△BEC中,AD=BE∠ADB=∠BEC,BD=CE∴△ADB≌△BEC(SAS),∴∠ABD=∠BCE,∵∠BEC=90°,∴∠BCE+∠EBC=180°﹣∠BEC=90°,∴∠ABD+∠EBC=90°,∴∠ABC=180°﹣(∠ABD+∠EBC)=90°,∴∠ABC是直角.5.如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:△ABE≌△CAF.试题分析:根据已知可得∠CAF+∠BAE=90°,根据垂直定义可得∠CFA=∠BEA=90°,然后利用直角三角形的两个锐角互余可得∠C+∠CAF=90°,从而利用同角的余角相等可得∠C=∠BAE,即可解答.答案详解:证明:∵∠BAC=90°,∴∠CAF+∠BAE=90°,∵BE⊥AD,CF⊥AD,∴∠CFA=∠BEA=90°,∴∠C+∠CAF=90°,∴∠C=∠BAE,∴△ABE≌△CAF(AAS).6.【问题提出】(1)已知:如图1,AD⊥DE于点D,BE⊥DE于点E,点C在线段DE上,AC=BC且AC⊥BC,求证:△ADC≌△CEB.【问题解决】(2)如图2,点D,C,E在直线l上.点A,B在l的同侧,AC⊥BC,若AD=AC=BC=BE=5cm,CD=6cm,求CE的长.试题分析:(1)根据同角的余角相等可得∠A=∠BCE,然后利用AAS即可证明结论;(2)作AG⊥CD于G,BH⊥CE于H,根据等腰三角形的性质得CG=3cm,利用勾股定理得AG =4cm,由(1)同理得,△ACG≌△CBH(AAS),得CH=AG=4cm,从而得出答案.答案详解:(1)证明:∵AD⊥DE于点D,BE⊥DE,∴∠D=∠E=90°,∴∠ACD+∠BCE=90°,∠ACD+∠A=90°,∴∠A=∠BCE,在△ADC和△CEB中,∠D=∠E∠A=∠BCE,AC=BC∴△ADC≌△CEB(AAS);(2)解:作AG⊥CD于G,BH⊥CE于H,∵AD=AC,AG⊥CD,在Rt △ACG 中,由勾股定理得,AG =4cm ,由(1)同理得,△ACG ≌△CBH (AAS ),∴CH =AG =4cm ,∵BC =BE ,BH ⊥CE ,∴CE =2CH =8cm .二.手拉手模型--旋转7.如图,C 为线段AB 上一动点(不与点A 、B 重合),在AB 的上方分别作△ACD 和△BCE ,且AC =DC ,BC =EC ,∠ACD =∠BCE ,AE 、BD 交于点P .有下列结论:①AE =DB ;②∠APB =2∠ADC ;③当AC =BC 时,PC ⊥AB ;④PC 平分∠APB .其中正确的是 ①②③④ .(把你认为正确结论的序号都填上)试题分析:由“SAS ”可证△ACE ≌△DCB ,可得AE =DB ,可判断①;由△ACE ≌△DCB ,可得∠CAE =∠CDB ,由AC =DC ,可得∠CAD =∠ADC ,利用三角形内角和定理即可判断②;由AC =BC ,AC =DC ,BC =EC ,可得:AC =BC =DC =EC ,进而得出∠CAE =∠CBD ,再运用等腰三角形性质即可判断③;由全等三角形的性质可得S △ACE =S △DCB ,由三角形的面积公式可求CG =CH ,由角平分线的性质可得PC 平分∠APB ,可判断④,即可求解.答案详解:解:∵∠ACD =∠BCE ,∴∠ACD +∠DCE =∠BCE +∠DCE ,即∠ACE =∠DCB ,在△ACE 和△DCB 中,AC =DC∠ACE =∠DCB EC =BC,∴△ACE ≌△DCB (SAS ),∴AE =DB ,故①正确;∵△ACE ≌△DCB ,∴∠CAE =∠CDB ,∵∠ACD =∠CDB +∠CBD ,∴∠ACD =∠CAE +∠CBD ,∵∠CAE +∠CBD +∠APB =180°,∴∠ACD +∠APB =180°,∵AC =DC ,∴∠CAD =∠ADC ,∵∠ACD +∠CAD +∠ADC =180°,∴∠ACD +2∠ADC =180°,∴∠APB =2∠ADC ,故②正确;∵AC =BC ,AC =DC ,BC =EC ,∴AC =BC =DC =EC ,∴∠CAE =∠CBD ,∴PA =PB ,∵AC =BC ,∴PC ⊥AB ,故③正确;如图,连接PC ,过点C 作CG ⊥AE 于G ,CH ⊥BD 于H ,∵△ACE ≌△DCB ,∴S △ACE =S △DCB ,AE =BD ,∴12×AE ×CG =12×DB ×CH ,∴CG =CH ,∵CG ⊥AE ,CH ⊥BD ,∴PC 平分∠APB ,故④正确,所以答案是:①②③④.8.如图所示,已知△ABC 和△BDE 均为等边三角形,连接AD 、CE ,若∠BAD =α,则∠BCE = α .试题分析:因为△ABC和△BDE均为等边三角形,由等边三角形的性质得到AB=BC,∠ABC=∠EBD,BE=BD.再利用角与角之间的关系求得∠ABD=∠EBC,则△ABD≌△EBC,故∠BCE可求.答案详解:解:∵△ABC和△BDE均为等边三角形,∴AB=BC,∠ABC=∠EBD=60°,BE=BD,∵∠ABD=∠ABC+∠DBC,∠EBC=∠EBD+∠DBC,∴∠ABD=∠EBC,在△ABD和△EBC中,AB=BC∠ABD=∠EBC,BE=BD∴△ABD≌△EBC(SAS),∴∠BCE=∠BAD=α.所以答案是:α.9.如图,在△ABC中,∠ACB=90°,∠B=30°,AC=6,点D是边CB上的动点,连接AD,将线段AD绕点A顺时针旋转60°,得到线段AP,连接CP,则线段CP的最小值 3 .试题分析:延长AC到点E,使CE=AC,可得△ABE是等边三角形,利用SAS证明△BAD≌△EAP,得∠AEP=∠ABD=30°,当CP⊥EP时,CP最小,从而解决问题.答案详解:解:延长AC到点E,使CE=AC,∵∠ACB=90°,∠B=30°,∴BC垂直平分AE,∠BAE=60°,∴BA=BE,∴△ABE是等边三角形,∴AB=AE,∵线段AD绕点A顺时针旋转60°,得到线段AP,∴AD=AP,∠DAP=60°,∴∠PAE=∠DAB,∴△BAD≌△EAP(SAS),∴∠AEP=∠ABD=30°,∴当CP⊥EP时,CP最小,∴CP=12CE=12AC=3,所以答案是:3.10.已知点D是△ABC外一点,连接AD,BD,CD,∠BAC=∠BDC=α.(1)【特例体验】如图1,AB=BC,α=60°,则∠ADB的度数为 60° ;(2)【类比探究】如图2,AB=BC,求证:∠ADB=∠BDC;(3)【拓展迁移】如图3,α=60°,∠ACB+∠BCD=180°,CE⊥BD于点E,AC=kDE,直接写出CDAB的值(用k的代数式表示).试题分析:(1)在BD上取点E,使BE=CD,证明△ABE≌△ACD(SAS),由全等三角形的性质得出∠BAE=∠CAD,AE=AD,由等边三角形的性质可得出答案;(2)在DC的延长线上取一点H,使BD=BH,证明△ABD≌△CBH(SAS),由全等三角形的性质得出∠ADB=∠H=α,则可得出结论;(3)延长DC至H,使CH=AC,连接BH,证明△ABC≌△HBC(SAS),由全等三角形的性质得出AB=BH,设ED=m,则CE=2m,证出△BDH为等边三角形,由等边三角形的性质得出DH=BH=AB=km+2m,则可得出答案.答案详解:(1)解:在BD上取点E,使BE=CD,∵AB=BC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC,∵∠BAC=∠BDC,∠AOB=∠COD,∴∠ABE=∠ACD,∴△ABE≌△ACD(SAS),∴∠BAE=∠CAD,AE=AD,∴∠EAD=∠EAC+∠CAD=∠EAC+∠BAE=∠BAC=60°,∴△AED是等边三角形,∴∠ADB=60°.所以答案是:60°;(2)证明:在DC的延长线上取一点H,使BD=BH,∴∠BDH=∠H=α,∵∠BAC=∠BDC=α,∠AOB=∠COD,∴∠ABD=∠ACD,∴∠BCD=∠ACD+α=α+∠CBH,∴∠ACD=∠CBH=∠ABD,∴△ABD≌△CBH(SAS),∴∠ADB=∠H=α,∴∠ADB=∠BDC;(3)解:延长DC至H,使CH=AC,连接BH,∵∠ACB+∠BCD=180°,∠BCH+∠BCD=180°,∴∠ACB=∠BCH,∵AC=CH,BC=BC,∴△ABC≌△HBC(SAS),∴AB=BH,∴∠H=∠BAC=∠BDC=60°,∵CE⊥BD,∠ECD=30°,∴CD=2ED,设ED=m,则CD=2m,∵AC=kED=km,∴CH=km,∴DH=2m+km,又∵∠BDH=∠H=60°,∴△BDH为等边三角形,∴DH=BH=AB=km+2m,∴CDAB=2mkm2m=2k2.三.倍长中线模型11.如图,在△ABC中,∠ABC=45°,AM⊥BC于点M,点D在AM上,且DM=CM,F是BC 的中点,连接FD并延长,在FD的延长线上有一点E,连接CE,且CE=CA,∠BDF=36°,则∠E= 36° .试题分析:先证明△AMC≌△BMD,延长EF到点G,使得FG=EF,连接BG.再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠CEF.答案详解:解:∵∠ABM=45°,AM⊥BM,∴∠BMD=∠AMC,BM=AM,在△BMD和△AMC中,DM=CM∠BMD=∠AMCBM=AM,∴△BMD≌△AMC(SAS),延长EF到点G,使得FG=EF,连接BG.如图所示:∵△BMD≌△AMC∴BD=AC,又∵CE=AC,∴BD=CE,在△BFG和△CFE中,BF=FC∠BFG=∠EFC,FG=FE∴△BFG≌△CFE(SAS),∴BG=CE,∠G=∠CEF,∴BD=CE=BG,∴∠BDF=∠G=∠CEF.∴∠BDF=∠CEF,∴∠E=36°.所以答案是:36°.12.如图,△ABC中,AB=6,AC=4,D是BC的中点,AD的取值范围为 1<AD<5 .试题分析:延长AD到E,使DE=AD,连接BE,证明△BDE≌△CDA,得出AC=BE,再根据三角形的三边关系得到结论.答案详解:解:延长AD到E,使DE=AD,连接BE,在△ACD与△EBD中,BD=CD∠BDE=∠ADC,AD=DE∴△BDE≌△CDA(SAS),∴BE=AC,∵AB=6,AC=4,∴2<AE<10,∴1<AD<5.所以答案是:1<AD<5.13.(1)方法呈现:如图①:在△ABC中,若AB=6,AC=4,点D为BC边的中点,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,可证△ACD≌△EBD,从而把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是(直接写出范围即可).这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在△ABC中,点D是BC的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F、点E是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.试题分析:(1)由已知得出AB﹣BE<AE<AB+BE,即6﹣4<AE<6+4,AD为AE的一半,即可得出答案;(2)延长FD至点M,使DM=DF,连接BM,EM,可得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AE,DF交于点G,根据平行和角平分线可证AF=FG,也可证得△ABE≌△GCE,从而可得AB=CG,即可得到结论.答案详解:解:(1)1<AD<5.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDA(SAS),∴BE=AC=4,在△ABE中,AB﹣BE<AE<AB+BE,∴6﹣4<AE<6+4,∴2<AE<10,∴1<AD<5.证明:(2)延长FD至点M,使DM=DF,连接BM、EM,如图②所示.同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF.(3)如图③,延长AE,DF交于点G,∵AB∥CD,∴∠BAG=∠G,在△ABE和△GCE中,CE=BE,∠BAG=∠G,∠AEB=∠GEC,∴△ABE≌△GEC(AAS),∴CG=AB,∵AE是∠BAF的平分线,∴∠BAG=∠GAF,∴∠FAG=∠G,∴AF=GF,∵FG+CF=CG,∴AF+CF=AB.四.平行+中点模型14.如图,公园有一条“Z”字形道路AB﹣BC﹣CD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,连接EM、MF,请问石凳M到石凳E、F的距离ME、MF是否相等?说出你推断的理由.试题分析:首先连接EM、MF,再证明△BEM≌△CFM可得ME=MF.答案详解:解:石凳M到石凳E、F的距离ME、MF相等.理由如下:∵AB∥CD,∴∠B=∠C,又∵M为BC中点,∴BM=MC.在△BEM和△CFM中,BE=CF∠B=∠C,BM=CM∴△BEM≌△CFM(SAS),∴ME=MF.即石凳M到石凳E、F的距离ME、MF相等.15.△ABC中,P是BC边上的一点,过P作直线交AB于M,交AC的延长线于N,且PM=PN,MF∥AN,(1)求证:△PMF≌△PNC;(2)若AB=AC,求证:BM=CN.试题分析:(1)由平行线的性质得出∠MFP=∠NCP,由AAS证明△PMF≌△PNC即可;(2)由全等三角形的性质得出FM=CN,由等腰三角形的性质和平行线的性质得出∠B=∠MFB,证出BM=FM,即可得出结论.答案详解:(1)证明:∵MF∥AN,∴∠MFP=∠NCP,在△PMF和△PNC中,∠MFP=∠NCP∠MPF=∠NPC,PM=PN∴△PMF≌△PNC(AAS);(2)证明:由(1)得:△PMF≌△PNC,∴FM=CN,∵AB=AC,∴∠B=∠ACB,∵MF∥AN,∴∠MFB=∠ACB,∴∠B=∠MFB,∴BM=FM,∴BM=CN.16.如图,已知梯形ABCD中,AD∥BC,E为AB中点,DE⊥EC.求证:(1)DE平分∠ADC;(2)AD+BC=DC.试题分析:(1)延长DE交CB的延长线于F,可证得△AED≌△BEF,根据三线合一的性质可得出CD=CF,推出∠CDF=∠F,由∠ADF=∠F即可证明;(2)由△AED≌△BEF,根据三线合一的性质可得出CD=CF,进而利用等线段的代换可证得结论;答案详解:证明:(1)延长DE交CB的延长线于F,∵AD∥CF,∴∠A=∠ABF,∠ADE=∠F.在△AED与△BEF中,∠A=∠ABFAE=BE,∠ADE=∠F∴△AED≌△BEF,∴AD=BF,DE=EF,∵CE⊥DF,∴∠CDF=∠F,∵AD∥CF,∴∠ADE=∠F,∴∠ADE=∠CDF,∴ED平分∠ADC.(2)∵△AED≌△BEF,∴AD=BF,DE=EF,∵CE⊥DF,∴CD=CF=BC+BF,∴AD+BC=DC.五.角平分线+垂直模型17.已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且∠ADC+∠B=180°.(1)若AB=12,AD=8,则AF= 10 .(2)若△ABC的面积是24,△ADC的面积是16,则△BEC的面积等于 4 .试题分析:(1)利用角平分线的性质可得CE =CF ,∠F =∠CEB =90°,根据等角的补角相等得∠B =∠CDF ,利用AAS 证出两三角形全等,求出DF =BE ,证Rt △AFC ≌Rt △AEC ,推出AF =AE ,由BE =DF 可得AB ﹣AE =AF ﹣AD =AB ﹣AF ,即可得AB +AD =2AF ;(2)利用全等三角形的面积相等,设△BEC 的面积为x ,列出方程可得结果.答案详解:解:(1)∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,∴CE =CF ,∠CEB =∠F =90°,∵∠ADC +∠B =180°,∠ADC +∠CDF =180°,∴∠B =∠CDF ,在Rt △BCE 与Rt △DCF 中,∠B =∠CDF∠CEB =∠F CE =CF,∴Rt △BCE ≌Rt △DCF (AAS ),∴DF =BE ,CE =CF ,CE ⊥AB 于E ,CF ⊥AD 于F ,在Rt △ACE 与Rt △ACF 中,CE =CFAC =AC ,∴Rt △ACE ≌Rt △ACF (HL ),∴AF =AE ,∴AB ﹣AE =AF ﹣AD =AB ﹣AF ,∴AB +AD =2AF ,∵AB =12,AD =8,∴AF =10,所以答案是:10.(2)∵Rt △BCE ≌Rt △DCF ,∴S △BCE =S △DCF ,设△BEC 的面积为x ,∵△ABC 的面积是24,△ADC 面积是16,∴24﹣x =16+x ,∴x =12×(24﹣16)=4.即△BEC的面积等于4,所以答案是:4.18.如图,AD是△ABC的角平分线,过点C作CE⊥AD,垂足为点E,延长CE与AB相交于点F,连接DF,若∠BAC=60°,∠B=40°,则∠BDF的度数为 40 °.试题分析:首先利用已知条件可以证明△AFE≌△ACE,然后利用全等三角形的性质和等腰三角形的性质可以求出∠ACD=∠AFD,最后利用四边形的内角和求出∠CDF即可解决问题.答案详解:解:∵AD是△ABC的角平分线,∴∠FAD=∠CAD,∵CE⊥AD,∴∠AEF=∠AEC=90°,在△AFE和△ACE中,∠FAD=∠CADAE=AE,∠AEF=AEC∴△AFE≌△ACE(ASA),∴EF=CE,AF=CF,∴∠AFE=∠ACE,∵CE⊥AD,∴CD=FD,∴∠DFC=DCF,∴∠AFD=∠ACD,∵∠BAC=60°,∠B=40°,∴∠ACD=∠AFD=180°﹣60°﹣40°=80°,∴∠CDF=360°﹣∠BAC﹣∠ACD﹣∠AFD=140°,∴∠BDF=180°﹣∠CDF=180°﹣140°=40°.所以答案是:40.19.如图:在∠EAF的平分线上取点B作BC⊥AF于点C,在直线AC上取一动点P.在直线AE上取点Q使得BQ=BP.(1)如图1,当点P在点线段AC上时,∠BQA+∠BPA= 180 °;(2)如图2,当点P在CA延长线上时,探究AQ、AP、AC三条线段之间的数量关系,说明理由;(3)在满足(1)的结论条件下,当点P运动到在射线AC上时,直接写出AQ、AP、PC三条线段之间的数量关系为: AQ﹣AP=2PC或AP﹣AQ=2PC .试题分析:(1)作BM⊥AE于点M,根据角平分线的性质得到BM=BC,证明Rt△BMQ≌Rt△BPC(HL),进而证明∠BQA=∠BPC即可得出答案;(2)作BM⊥AE于点M,证明Rt△ABM≌Rt△ABC(HL),得到∠ABM=∠ABC,AM=AC,BM =BC,再证明Rt△BMQ≌Rt△BCP(HL),从而得出PC=QM即可;(3)分两种情况进行讨论,P在线段AC上或P在线段AC的延长线上,作出图后,由△QBM≌△PBC(AAS),得∠QBC=∠PBC,QM=PC,BM=BC,结合Rt△ABM≌Rt△ABC(HL),得出AM=AC,利用线段和差计算即可.答案详解:解:(1)作BM⊥AE于点M,∵AB平方∠EAF,BC⊥AF,∴BM=BC,在Rt△BMQ和Rt△BPC中,BQ=BPBM=BC,∴Rt△BMQ≌Rt△BPC(HL),∴∠BQA=∠BPC,又∵∠BPC+∠BPA=180°,∴∠BQA+∠BPA=180°,所以答案是:180;(2)AQ﹣AP=2AC,理由如下,作BM⊥AE于点M,∵AB平方∠EAF,BC⊥AF,∴BM=BC,∠BMA=∠BCA=90°,在Rt△ABM和Rt△ABC中,BM=BCAB=AB,∴Rt△ABM≌Rt△ABC(HL),∴∠ABM=∠ABC,AM=AC,在Rt△BMQ和Rt△BCP中,BQ=BPBM=BC,∴Rt△BMQ≌Rt△BCP(HL),∴PC=QM,∴AQ﹣QP=(AM+QM)﹣(PC﹣AC)=AM+AC=2AC;(3)当点P在线段AC上时,如图,AQ﹣AP=2PC,作BM⊥AE于点M,∵BC⊥AF,∴,∠BMA=∠BCA=90°,∵∠BQA+∠BPA=180°,∠BPC+∠BPA=180°,∴∠BPC=∠BQM,在△QBM和△PBC中,∠BMQ=∠BCP∠BQM=∠BPC,QB=PB∴△QBM≌△PBC(AAS),∴∠QBC=∠PBC,QM=PC,BM=BC,在Rt△ABM和Rt△ABC中,BM=BCAB=AB,∴Rt△ABM≌Rt△ABC(HL),∴AM=AC,∴AQ﹣AP=AM+QM﹣(AC﹣PC)=QM+PC=2PC;当P在线段AC的延长线上,如图,AP﹣AQ=2PC,作BM⊥AE于点M,∵BC⊥AF,∴∠BMA=∠BCA=90°,∵∠BQA+∠BPA=180°,∠BQM+∠BQA=180°,∴∠BPC=∠BQM,在△QBM和△PBC中,∠BMQ=∠BCP∠BQM=∠BPCQB=PB,∴△QBM≌△PBC(AAS),∴∠QBC=∠PBC,QM=PC,BM=BC,在Rt△ABM和Rt△ABC中,BM=BCAB=AB,∴Rt△ABM≌Rt△ABC(HL),∴AM=AC,∴AP﹣AQ=AC+CP﹣(AM﹣QM)=MQ+PC=2PC.所以答案是:AQ﹣AP=2PC或AP﹣AQ=2PC.六.半角模型20.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,线段EF、BE、FD之间的关系是 EF=BE+FD ;(不需要证明)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.试题分析:(1)延长CB至G,使BG=DF,连接AG,证明△ABG≌△ADF,根据全等三角形的性质得到AG=AF,∠BAG=∠DAF,再证明△GAE≌△FAE,根据全等三角形的性质得出EF=EG,结合图形计算,证明结论;(2)延长CB至M,使BM=DF,连接AM,仿照(1)的证明方法解答;(3)在EB上截取BH=DF,连接AH,仿照(1)的证明方法解答.答案详解:解:(1)EF=BE+FD,理由如下:如图1,延长CB至G,使BG=DF,连接AG,在△ABG和△ADF中,AB=AD∠ABG=∠D=90°BG=DF,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵∠EAF=12∠BAD,∴∠DAF+∠BAE=∠EAF,∴∠GAE=∠BAG+∠BAE=∠DAF+∠BAE=∠EAF,在△GAE和△FAE中,AG=AF∠GAE=∠FAEAE=AE,∴△GAE≌△FAE(SAS),∴EF=EG,∵EG=BG+BE=BE+DF,∴EF=BE+FD,所以答案是:EF=BE+FD;(2)(1)中的结论仍然成立,理由如下:如图2,延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠1=180°,∴∠1=∠D,在△ABM和△ADF中,AB=AD∠1=∠DBM=DF,∴△ABM≌△ADF(SAS),∴AM=AF,∠3=∠2,∵∠EAF=12∠BAD,∴∠3+∠4=∠EAF,∴∠EAM=∠3+∠4=∠2+∠4=∠EAF,在△MAE和△FAE中,AM=AF∠MAE=∠FAEAE=AE,∴△MAE≌△FAE(SAS),∴EF=EM,∵EM=BM+BE=BE+DF,∴EF=BE+FD;(3)(1)中的结论不成立,EF=BE﹣FD,理由如下:如图3,在EB上截取BH=DF,连接AH,同(2)中证法可得,△ABH≌△ADF,∴AH=AF,∠BAH=∠DAF,∴∠HAE=∠FAE,在△HAE和△FAE中,AH=AF∠HAE=∠FAEAE=AE,∴△HAE≌△FAE(SAS),∴EF=EH,∵EH=BE﹣BH=BE﹣DF,∴EF=BE﹣FD.21.(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°,请探究图中线段BE,EF,FD之间的数量关系是什么?小明探究此问题的方法是:延长FD到点G,使DG=BE,连接AG.先证明△ABE≌△ADG,得AE=AG;再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是 EF=BE+DF .(2)拓展应用:如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD.问(1)中的线段BE,EF,FD之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.试题分析:(1)延长FD到点G.使DG=BE.连接AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连接AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;答案详解:解:(1)EF=BE+DF,理由如下:在△ABE和△ADG中,DG=BE∠B=∠ADG=90°AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,AE=AG∠EAF=∠GAFAF=AF,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;所以答案是:EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连接AG,如图2,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,DG=BE∠B=∠ADGAB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,AE=AG∠EAF=∠GAFAF=AF,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;。
收集2解三角形重难点,易错点突破(含答案解析)
专题1-2 解三角形重难点、易错点突破(建议用时:60分钟)三角形定“形”记根据边角关系判断三角形的形状是一类热点问题.解答此类问题,一般需先运用正弦、余弦定理转化已知的边角关系,再进一步判断三角形的形状,这种转化一般有两个通道,即化角为边或化边为角.下面例析这两个通道的应用.1.通过角之间的关系定“形”例1 在△ABC 中,已知2sin A cos B =sin C ,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形2.通过边之间的关系定“形”例2 在△ABC 中,若sin A +sin C sin B =b +ca ,则△ABC 是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形细说三角形中解的个数解三角形时,处理“已知两边及其一边的对角,求第三边和其他两角”问题需判断解的个数,这是一个比较棘手的问题.下面对这一问题进行深入探讨. 1.出现问题的根源我们作图来直观地观察一下.不妨设已知△ABC 的两边a ,b 和角A ,作图步骤如下:①先做出已知角A ,把未知边c 画为水平的,角A 的另一条边为已知边b ;②以边b 的不是A 点的另外一个端点为圆心,边a 为半径作圆C ;③观察圆C 与边c 交点的个数,便可得此三角形解的个数. 显然,当A 为锐角时,有如图所示的四种情况:当A 为钝角或直角时,有如图所示的两种情况:根据上面的分析可知,由于a ,b 长度关系的不同,导致了问题有不同个数的解.若A 为锐角,只有当a 不小于b sin A 时才有解,随着a 的增大得到的解的个数也是不相同的.当A 为钝角时,只有当a 大于b 时才有解. 2.解决问题的策略 (1)正弦定理法已知△ABC 的两边a ,b 和角A ,求B . 根据正弦定理a sin A =b sin B,可得sin B =b sin A a.若sin B>1,三角形无解;若sin B=1,三角形有且只有一解;若0<sin B<1,B有两解,再根据a,b的大小关系确定A,B的大小关系(利用大边对大角),从而确定B的两个解的取舍.(2)余弦定理法已知△ABC的两边a,b和角A,求c.利用余弦定理可得a2=b2+c2-2bc cos A,整理得c2-2bc cos A-a2+b2=0.适合问题的上述一元二次方程的解c便为此三角形的解.(3)公式法当已知△ABC的两边a,b和角A时,通过前面的分析可总结三角形解的个数的判断公式如下表:A<90°A≥90°a≥ba<ba>b a≤b a>b sin A a=b sin A a<b sin A一解二解一解无解一解无解3.实例分析例在△ABC中,已知A=45°,a=2,b=2(其中角A,B,C的对边分别为a,b,c),试判断符合上述条件的△ABC有多少个?挖掘三角形中的隐含条件解三角形是高中数学的重要内容,也是高考的一个热点.由于我们对三角公式比较熟悉,做题时比较容易入手.但是公式较多且性质灵活,解题时稍有不慎,常会出现增解、错解现象,其根本原因是对题设中的隐含条件挖掘不够.下面结合例子谈谈解三角形时,题目中隐含条件的挖掘. 隐含条件1.两边之和大于第三边例1 已知钝角三角形的三边a =k ,b =k +2,c =k +4,求k 的取值范围.隐含条件2.三角形的内角范围 例2 已知△ABC 中,B =30°,AB =23,AC =2,则△ABC 的面积是________.例3 在△ABC 中,tan A tan B =a 2b 2,试判断三角形的形状.例4 在△ABC 中,B =3A ,求b a的取值范围.正弦、余弦定理三应用有些题目,表面上看不能利用正弦、余弦定理解决,但若能构造适当的三角形,就能利用两定理,题目显得非常容易,本文剖析几例. 1.平面几何中的长度问题例1 如图,在梯形ABCD 中,CD =2,AC =19,∠BAD =60°,求梯形的高.2.求范围例2 如图,等腰△ABC 中,底边BC =1,∠ABC 的平分线BD 交AC 于点D ,求BD 的取值范围(注:0<x <1时,f (x )=x -1x为增函数).3.判断三角形的形状例3 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=k ,(k ∈R ). (1)判断△ABC 的形状; (2)若c =2,求k 的值.专题1-2 解三角形重难点、易错点突破参考答案三角形定“形”记例1 分析 通过三角形恒等变换和正弦、余弦定理,把条件式转化,直至能确定两角(边)的关系为止,即可判断三角形的形状.解析 方法一 利用正弦定理和余弦定理 2sin A cos B =sin C 可化为2a ·a 2+c 2-b 22ac=c ,即a 2+c 2-b 2=c 2,即a 2-b 2=0,即a 2=b 2,故a =b . 所以△ABC 是等腰三角形.故选B. 方法二 因为在△ABC 中,A +B +C =π, 即C =π-(A +B ),所以sin C =sin(A +B ). 由2sin A cos B =sin C ,得2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =0,即sin(A -B )=0. 又因为-π<A -B <π, 所以A -B =0,即A =B . 所以△ABC 是等腰三角形,故选B. 答案 B点评 根据角的三角函数之间的关系判断三角形的形状,一般需通过三角恒等变换,求出角(边)之间的关系. 例2分析 先运用正弦定理化角为边,根据边之间的关系即可判断三角形的形状. 解析 在△ABC 中,由正弦定理,可得sin A +sin C sin B =a +c b =b +ca ,整理得a (a +c )=b (b +c ),即a 2-b 2+ac -bc =0,(a -b )(a +b +c )=0. 因为a +b +c ≠0,所以a -b =0,即a =b ,所以△ABC 是等腰三角形.故选C. 答案 C点评 本题也可化边为角,但书写复杂,式子之间的关系也不易发现.细说三角形中解的个数例 分析 此题为“已知两边和其中一边的对角”解三角形的问题,可以利用上述办法来判断△ABC 解的情况.解 方法一 由正弦定理a sin A =bsin B ,可得sin B =22sin 45°=12<1. 又因为a >b ,所以A >B ,故B =30°, 符合条件的△ABC 只有一个. 方法二 由余弦定理得 22=c 2+(2)2-2×2×c cos 45°,即c 2-2c -2=0,解得c =1±3.而1-3<0,故仅有一解,符合条件的△ABC 只有一个.方法三 A 为锐角,a >b ,故符合条件的△ABC 只有一个.挖掘三角形中的隐含条件例1 [错解] ∵c >b >a 且△ABC 为钝角三角形, ∴C 为钝角. 由余弦定理得cos C =a 2+b 2-c 22ab=k 2+(k +2)2-(k +4)22k (k +2)=k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6. 又∵k 为三角形的边长, ∴k >0.综上所述,0<k <6.[点拨] 忽略了隐含条件:k ,k +2,k +4构成一个三角形,需满足k +(k +2)>k +4.即k >2而不是k >0. [正解] ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角. 由余弦定理得cos C =a 2+b 2-c 22ab=k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6.由两边之和大于第三边得k +(k +2)>k +4,∴k >2, 综上所述,k 的取值范围为2<k <6.温馨点评 虽然是任意两边之和大于第三边,但实际应用时通常不用都写上,只需最小两边之和大于最大边就行了.例2 [错解] 由正弦定理,得sin C =AB sin B AC =32. ∴C =60°,∴A =90°.则S △ABC =12AB ·AC ·sin A =12×23×2×1=23.[点拨] 上述解法中在用正弦定理求C 时丢了一解.实际上由sin C =32可得C =60°或C =120°,它们都满足条件.[正解] 由正弦定理,得sin C =AB sin B AC=32.∴C =60°或C =120°. 当C =60°时,A =90°,∴S △ABC =12AB ·AC ·sin A =23.当C =120°时,A =30°, ∴S △ABC =12AB ·AC ·sin A =3. 故△ABC 的面积是23或3.温馨点评 利用正弦定理理解“已知两边及其中一边对角,求另一角”问题时,由于三角形内角的正弦值都为正的,而这个内角可能为锐角,也可能为钝角,容易把握不准确出错.例3 [错解] tan A tan B =a 2b 2⇔sin A cos B cos A sin B =sin 2A sin 2B ⇔cos B cos A =sin Asin B ⇔sin A cos A =sin B cos B ⇔sin 2A =sin2B , ∴A =B .∴△ABC 是等腰三角形.[点拨] 上述错解忽视了满足sin 2A =sin 2B 的另一个角之间的关系:2A +2B =180°. [正解] tan A tan B =a 2b 2⇔sin A cos B cos A sin B =sin 2A sin 2B ⇔cos B cos A =sin Asin B ⇔sin A cos A =sin B cos B⇔sin 2A =sin 2B ⇔2A =2B 或2A +2B =180°. ∴A =B 或A +B =90°.∴△ABC 是等腰三角形或直角三角形.温馨点评 在△ABC 中,sin A =sin B ⇔A =B 是成立的,但sin 2A =sin 2B ⇔2A =2B 或2A +2B =180°. 例4 [错解] 由正弦定理得b a =sin B sin A =sin 3A sin A =sin (A +2A )sin A=sin A cos 2A +cos A sin 2Asin A=cos 2A +2cos 2A =4cos 2A -1. ∵0≤cos 2A ≤1, ∴-1≤4cos 2A -1≤3, ∵b a>0,∴0<b a≤3.[点拨] 忽略了三角形内角和为180°,及角A 、B 的取值范围,从而导致b a 取值范围求错. [正解] 由正弦定理得b a =sin B sin A =sin 3A sin A=sin (A +2A )sin A =sin A cos 2A +cos A sin 2A sin A=cos 2A +2cos 2A =4cos 2A -1. ∵A +B +C =180°,B =3A .∴A +B =4A <180°,∴0°<A <45°.∴22<cos A <1, ∴1<4cos 2 A -1<3,∴1<ba <3.温馨点评 解三角形问题,角的取值范围至关重要.一些问题,角的取值范围隐含在题目的条件中,若不仔细审题,深入挖掘,往往疏漏而导致解题失败.正弦、余弦定理三应用例1 分析 如图,过点D 作DE ⊥AB 于点E ,则DE 为所求的高.由∠BAD =60°,知∠ADC =120°,又边CD 与AC 的长已知,故△ACD 为已知两边和其中一边的对角,可解三角形.解Rt △ADE ,需先求AD 的长,这只需在△ACD 中应用余弦定理.解 由∠BAD =60°,得∠ADC =120°,在△ACD 中,由余弦定理得AC 2=AD 2+CD 2-2AD ·CD ·cos ∠ADC ,即19=AD 2+4-2AD ×2×⎝ ⎛⎭⎪⎫-12, 解得AD =3或AD =-5(舍去).在△ADE 中,DE =AD ·sin 60°=332.点评 依据余弦定理建立方程是余弦定理的一个妙用,也是函数与方程思想在解三角形中的体现.2.求范围例2 分析 把BD 的长表示为∠ABC 的函数,转化为求函数的值域.解 设∠ABC =α.因为∠ABC =∠C ,所以∠A =180°-2α,∠BDC =∠A +∠ABD =180°-2α+α2=180°-3α2, 因为BC =1,在△BCD 中,由正弦定理得BD =sin αsin 3α2=2sin α2cos α2sin αcos α2+cos αsin α2=2cos α24cos 2α2-1=24cos α2-1cos α2, 因为0°<α2<45°,所以22<cos α2<1, 而当cos α2增大时,BD 减小,且当cos α2=22时, BD =2;当cos α2=1时,BD =23, 故BD 的取值范围是⎝ ⎛⎭⎪⎫23,2. 点评 本题考查:(1)三角知识、正弦定理以及利用函数的单调性求值域的方法;(2)数形结合、等价转化等思想.例3 解 (1)∵AB →·AC →=cb cos A ,BA →·BC →=ca cos B .又AB →·AC →=BA →·BC →,∴bc cos A =ac cos B ,∴b cos A =a cos B .方法一 ∴sin B cos A =sin A cos B ,即sin A cos B -cos A sin B =0,∴sin(A -B )=0,∵-π<A -B <π,∴A =B .∴△ABC 为等腰三角形.方法二 利用余弦定理将角化为边, ∵b cos A =a cos B ,∴b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 22ac ,∴b 2+c 2-a 2=a 2+c 2-b 2,∴a 2=b 2,∴a =b .∴△ABC 为等腰三角形.(2)由(1)知:a =b .∴AB →·AC →=bc cos A =bc ·b 2+c 2-a 22bc =c 22=k , ∵c =2,∴k =1.。
解三角形常见易错点
解三角形常见易错点作者:刘艳丽来源:《中学课程辅导高考版·学生版》2012年第11期解三角形是在学习了三角函数、平面向量的基础上,通过对任意三角形边角关系的探究,得到正余弦定理,并用它们解决一些与几何计算和测量有关的实际问题.这类问题在近几年高考题中都有涉及.同学们在求解三角形中的几何计算问题时往往造成错解,以下就解三角形问题中常见易错点整理如下,以期对错解者起到警示.易错点1 利用正弦定理求三角形的内角和时丢解易错点警示:在利用正弦定理求角时,由于正弦函数在[0,π]内不严格单调,所以角的个数可以不唯一,这时应借助已知条件加以验证,务必做到不漏解、不多解.例1 在△ABC中,B=30°,AB=23,AC=2,求△ABC的面积.错解:由正弦定理,得sinC=ABsinBAC=32,∴C=60°,A=90°,∴S△ABC=12AB·AC·sinA=12×23×2×1=23.分析:本题错误的原因是利用正弦定理求C时丢了一解.事实上,由sinC=32 可得C=60°或C=120°,这两个结果都符合题意.正解:由正弦定理,得sinC=ABsinBAC=32,又AB>AC,∴C=60°或C=120°,当C=60°时A=90°,∴S△ABC=12AB·AC·sinA=23;当C=120°时,A=30°,∴S△ABC=12AB·AC·sinA=3∴△ABC的面积为23或3.【技巧领悟】本题实质是三角形中已知两边及其中一边的对角(如已知a,b和A)解三角形中的相关问题,用正弦定理求解时,可能有两解、一解或无解.判断解的个数可由“三角形中大边对大角”(A为锐角)来判定:若a≥b,则A≥B,从而B为锐角,有一解;若a1,无解;②sinB=1一解;③0易错点2 易忽略隐含条件,从而导致错误易错点警示:在解三角形中,要注意挖掘题中的隐含条件,否则范围将扩大或缩小,导致错解.例2 在△ABC中,若C=3B,求cb的取值范围.错解:∵cb=sinCsinB=sin3BsinB=3-4sin2B,0分析:错解忽略了隐含条件中B的取值范围.∵C=3B∴A=π-4B>0即0正解:因为A+B+C=π,C=3B∴A=π-4B>0∴0【技巧领悟】凡是求最值、值域或取值范围的问题,都应注意题中是否含有隐含条件,以便加强对自变量取值范围即定义域的限制.易错点3 忽略三角形边的限制而导致出错易错点警示:解题时,易忽略三角形的三边满足两边之和大于第三边,而使某些字母的范围变大.例3 设2a+1,a,2a-1为钝角三角形的三边,求实数a的取值范围错解:∵2a+1,a,2a-1是三角形的三边,∴2a+1>0a>02a-1>0,解得a>12,∴2a+1是三角形的最大值,设其所对角为θ∵2a+1,a,2a-1是钝角三角形的三边,∴cosθ∴实数a的取值范围是12分析:错解中求得的a>12不是2a+1,a,2a-1表示三角形的充要条件.如当a=1时a+(2a-1)正解:∵2a+1,a,2a-1是三角形的三边,∴2a+1>0a>02a-1>0,解得a>12,此时2a+1最大,要使2a+1,a,2a-1表示三角形的三边,还需a+(2a-1)>2a+1,解得a>2,设最长边所对的对角为θ,则cosθ=a2+(2a-1)2-(2a+1)22a(2a-1)=a(a-8)2a(2a-1)【技巧领悟】本题实质上是求能构成钝角三角形的三边的充要条件,除了要保证三边长均为正数外,还应满足构成三角形的条件即两边之和大于第三边.易错点4 性质应用错误易错点警示:三角形中根据已知角的函数值求未知角的三角函数值时,常错判三角函数值的符号,产生错解.例4 已知在△ABC中,cosA=513,sinB=35.求cosC.错解:由sinB=35, 0∴cosC=-cos(A+B)=-cosAcosB+sinAsinB=1665或5665.分析:错解中忽视了在三角形中sinA>sinBA>B这一性质的应用,从而导致多解.正解:∵0又∵sinA>sinB,∴A>B,∴0由sinB=35,可得cosB=45.∴cosC=-cos(A+B)=-cosAcosB+sinAsinB=1665【技巧领悟】在三角形中根据已知角的三角函数值,都可求得已知角的正弦值,再比较正弦值的大小,由性质sinA>sinBA>B可避免多解或错解.。
查补易混易错点02 三角函数与解三角形(解析版)
查补易混易错点02 三角函数、平面向量与解三角形 1.三角函数(1)角与弧度:了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性。
(2)三角函数概念和性质①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,能画出这些三角函数的图象,了解三角函数的周期性、奇偶性、最大(小)值。
借助单位圆的对称性,利用定义推导出诱导公式(α ±2π,α ±π的正弦、余弦、正切)。
②借助图象理解正弦函数在、余弦函数[0,2]π上、正切函数在(,)22ππ-上的性质。
③结合具体实例,了解sin()y A x ωϕ=+的实际意义;能借助图象理解参数ω,φ,A 的意义,了解参数的变化对函数图象的影响。
(3)同角三角函数的基本关系式:理解同角三角函数的基本关系式22sin sin cos 1,tan cos xx x x x+==。
(4)三角恒等变换①经历推导两角差余弦公式的过程,知道两角差余弦公式的意义。
②能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。
③能运用上述公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆)。
2.平面向量及应用 (1)向量概念①通过对力、速度、位移等的分析,了解平面向量的实际背景,理解平面向量的意义和两个向量相等的含义。
②理解平面向量的几何表示和基本要素。
(2)向量运算①借助实例和平面向量的几何表示,掌握平面向量加、减运算及运算规则,理解其几何意义。
②通过实例分析,掌握平面向量数乘运算及运算规则,理解其几何意义。
理解两个平面向量共线的含义。
③了解平面向量的线性运算性质及其几何意义。
④通过物理中功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积。
STEP01 课标解读⑤通过几何直观,了解平面向量投影的概念以及投影向量的意义(参见案例9)。
第1部分 板块2 核心考点突破拿高分 专题1 第2讲 三角恒等变换与解三角形(小题)
第2讲 三角恒等变换与解三角形(小题)热点一 三角恒等变换 1.三角求值“三大类型”“给角求值”“给值求值”“给值求角”. 2.三角恒等变换“四大策略”(1)常值代换:常用到“1”的代换,1=sin 2θ+cos 2θ=tan 45°等.(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化.例1 (1)(2019·榆林模拟)若α,β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255C.2525或255D.55或525(2)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则β等于( ) A.5π12 B.π3 C.π4D.π6(3)3sin 220°-1cos 220°+64sin 220°=________. 跟踪演练1 (1)已知sin ⎝⎛⎭⎫π6-α=33,则cos ⎝⎛⎭⎫2α+2 018π3等于( ) A.23 B.13 C.-23D.-13(2)(2019·吕梁模拟)已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,tan α=cos 2β1-sin 2β,则( ) A.α+β=π2B.α-β=π4C.α+β=π4D.α+2β=π2热点二 利用正弦、余弦定理解三角形 1.正弦定理:在△ABC 中,a sin A =b sin B =c sin C=2R (R 为△ABC 的外接圆半径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C ,sin A =a 2R ,sin B =b 2R ,sin C =c2R,a ∶b ∶c =sin A ∶sin B ∶sin C 等.2.余弦定理:在△ABC 中,a 2=b 2+c 2-2bc cos A . 变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc. 3.三角形的面积公式:S =12ab sin C =12ac sin B =12bc sin A .例2 (1)(2019·东北师大附中、重庆一中、吉大附中、长春十一中联考)在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,B =π3,AB →·BC →=-2,且满足sin A +sin C =2sin B ,则该三角形的外接圆的半径R 为( ) A.433 B.233C. 3D.2(2)(2019·葫芦岛调研)△ABC 的周长为10+27,且满足sin A ∶sin B ∶sin C =2∶3∶7,则△ABC 的面积为( ) A.6 3 B.47 C.87 D.12跟踪演练2 (1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为S ,且a =1,4S =b 2+c 2-1,则△ABC 外接圆的面积为( ) A.4π B.2π C.π D.π2(2)(2019·广州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =3B ,则ab 的取值范围是( )A.(0,3)B.(1,3)C.(0,1]D.(1,2] 热点三 正弦、余弦定理的实际应用1.用正弦定理和余弦定理可解决距离问题、高度问题、角度问题、计算面积问题、航海问题或物理问题等.2.解决三角形应用题的基本思路实际问题――→画图数学问题―――→解三角形数学问题的解――→检验实际问题的解. 3.用正、余弦定理解决问题的一般步骤:(1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知,则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,选择便于计算的定理.例3(1)某游轮在A处看灯塔B在A的北偏东75°的方向上,距A 12 6 海里处,灯塔C在A的北偏西30°的方向上,距A 8 3 海里处,游轮由A处向正北方向航行到D处时再看灯塔B在南偏东60°的方向上,则此时灯塔C与游轮的距离为()A.20 海里B.8 3 海里C.23 2 海里D.24 海里(2)如图,某学生社团在校园内测量远处某栋楼CD的高度,D为楼顶,线段AB的长度为600 m,在A处测得∠DAB=30°,在B处测得∠DBA=105°,且此时看楼顶D的仰角∠DBC=30°,已知楼底C和A,B在同一水平面上,则此楼高度CD=________m.(精确到1 m)跟踪演练3(1)如图所示,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔15 000 m,速度为1 000 km/h,飞行员先看到山顶的俯角为15°,经过108 s后又看到山顶的俯角为75°,则山顶的海拔高度为________m.(取3=1.732)(2)如图所示,为测量竖直旗杆CD的高度,在旗杆底部C所在水平地面上选取相距421m 的两点A,B,在A处测得旗杆底部C在西偏北20°的方向上,旗杆顶部D的仰角为60°;在B处测得旗杆底部C在东偏北10°的方向上,旗杆顶部D的仰角为45°,则旗杆CD的高度为________m.真题体验1.(2017·山东,理,9)在△ABC中,角A,B,C的对边分别为a,b,c.若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin A cos C+cos A sin C,则下列等式成立的是()A.a=2bB.b=2aC.A=2BD.B=2A2.(2019·全国Ⅱ,理,10)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α等于( ) A.15 B.55 C.33 D.2553.(2019·全国Ⅱ,理,15)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 押题预测1.已知sin 2α=45,α∈⎝⎛⎭⎫0,π4,则sin ⎝⎛⎭⎫π4-α的值为________. 2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b cos C c cos B =1+cos 2C1+cos 2B ,C 是锐角,且a=27,cos A =13,则△ABC 的面积为________.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,A =30°,C =45°,c =3,点P 是平面ABC 内的一个动点,若∠BPC =60°,则△PBC 面积的最大值是________.A 组 专题通关1.(2019·沈阳市东北育才学校模拟)已知cos ⎝⎛⎭⎫π2-α=15,则cos 2α等于( ) A.725 B.-725C.2325D.-23252.tan 70°+tan 50°-3tan 70°tan 50°的值为( ) A. 3 B.33C.-33D.- 33.(2019·吕梁模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若2cos B =ac ,则该三角形一定是( ) A.等腰三角形 B.直角三角形 C.等边三角形D.等腰直角三角形4.(2019·黄冈调研)已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,且C =π4,c =2,a =x ,若满足条件的三角形有两个,则x 的取值范围是( )A.2<x <1B.2<x <2C.1<x <2D.1<x < 25.(2019·甘肃省静宁县第一中学模拟)某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15 km 后,看见灯塔在正西方向,则这时船与灯塔的距离是( ) A.5 km B.5 2 km C.5 3 kmD.10 km6.(2019·韶关调研)已知2cos ()α-βcos β-cos ()α-2β=24,则1-tan 2α1+tan 2α等于( )A.-34B.-43C.34D.437.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a cos B +b cos A =2c cos C ,c =7,且△ABC 的面积为332,则△ABC 的周长为( )A.1+7B.2+7C.4+7D.5+78.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a cos B -b cos A =c2,则a cos A +b cos B a cos B 的最小值为( ) A. 3 B.433C.33D.2339.已知2sin θ=1-cos θ,则tan θ等于( ) A.-43或0B.43或0C.-43D.4310.(2019·安徽省合肥一中、马鞍山二中等六校联考)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,则下列命题正确的是( ) ①若a 2+b 2<c 2,则C >π2;②若ab >c 2,则C >π3;③若a 3+b 3=c 3,则C <π2;④若2ab >(a +b )c ,则C >π2;⑤若()a 2+b 2c 2<2a 2b 2,则C <π3.A.①②③B.①②⑤C.①③④D.①③⑤11.在△ABC 中,A ,B ,C 的对边分别是a ,b ,c .若A =120°,a =1,则2b +3c 的最大值为( ) A.3 B.2213C.3 2D.35212.(2019·黄冈调研)已知圆C :x 2+(y -1)2=R 2与函数y =2sin x 的图象有唯一交点,且交点的横坐标为α,则4cos 2α2-α-2sin 2α等于( )A.-2B.2C.-3D.313.(2019·洛阳统考)已知tan ⎝⎛⎭⎫α+π4=2,则2sin α3sin α+cos α=________. 14.(2019·韶关调研)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b +a sin C =2a sin B -csin B -sin A ,则A =________.15.(2019·茂名模拟)《九章算术》中记载了一个“折竹抵地”问题,今年超强台风“山竹”登陆时再现了这一现象(如图所示),不少大树被大风折断.某路边一树干被台风吹断后(没有完全断开),树干与底面成75°角,折断部分与地面成45°角,树干底部与树尖着地处相距10米,则大树原来的高度是________米(结果保留根号).16.如图,在△ABC 中,BC =2,∠ABC =π3,AC 的垂直平分线DE 与AB ,AC 分别交于点D ,E ,且DE =62,则BE 2=________.B 组 能力提高17.(2019·广东省中山一中等七校联考)如图所示,在平面直角坐标系xOy 中,点B, C 分别在x轴和y 轴非负半轴上,点A 在第一象限,且∠BAC =π2, AB =AC =4,那么O, A 两点间距离的( )A.最大值是42,最小值是4B.最大值是8,最小值是4C.最大值是42,最小值是2D.最大值是8,最小值是218.已知在△ABC 中,∠ABC =90°,AB =3,BC =2,P 为△ABC 内一点,∠BPC =135°,则AP 的最小值为________.。
高考数学压轴专题(易错题)备战高考《三角函数与解三角形》知识点总复习含答案
新数学《三角函数与解三角形》期末复习知识要点一、选择题1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.2.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是( ) A .①②③ B .①③④C .①④D .③④【答案】B 【解析】 【分析】 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证.【详解】 ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫=⎪⎝⎭,即-1a =,①正确; ∴()sin 2sin 3π⎛⎫=-=- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈,当0k =时,12x x +取最小值23π,所以①③④正确,②错误. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a ﹣c cos B )sin A =c cos A sin B ,则△ABC 的形状一定是( ) A .钝角三角形 B .直角三角形 C .等腰三角形 D .锐角三角形【答案】C 【解析】 【分析】根据题意,由(cos )sin cos sin a c B A c A B -=变形可得sin sin a A c C =,进而由正弦定理可得22a c =,即a c =,即可得答案. 【详解】根据题意,在ABC ∆中,(cos )sin cos sin a c B A c A B -=, 变形可得:sin cos sin cos sin (cos sin cos sin )sin()sin a A c B A c A B c B A A B c A B c C =+=+=+=,即有sin sin a A c C =,又由正弦定理可得22a c =,即a c =. 故选:C . 【点睛】本题主要考查三角形的形状判断,考查正弦定理的应用,意在考查学生对这些知识点的理解掌握水平,属于基础题.4.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C++的最小值为( )A B C D .【答案】A 【解析】 【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求. 【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =, ∴tan 2tan C B =.又A B C π++=, ∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B BB C B B +=-=-=---,∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B-++=++27tan 36tan B B =+.又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan 3B B +≥=,当且仅当tan 2B =时取等号,∴min111tan tan tan 3A B C ⎛⎫++=⎪⎝⎭,故选A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.5.已知函数()()03f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,若()()122f x f x ⋅=-,则12x x -的最小值为( )A .2π B .3π C .πD .4π【答案】A 【解析】 【分析】由正弦型函数的最小正周期可求得ω,得到函数解析式,从而确定函数的最大值和最小值;根据()()122f x f x ⋅=-可知1x x =和2x x =必须为最大值点和最小值点才能够满足等式;利用整体对应的方式可构造方程组求得()12122x x k k ππ-=-+,12,k k Z ∈;从而可知120k k -=时取最小值. 【详解】由()f x 最小正周期为π可得:2ππω= 2ω∴= ()23f x x π⎛⎫∴=- ⎪⎝⎭()max f x ∴,()min f x =()()122f x f x ⋅=-Q 1x x ∴=和2x x =分别为()f x 的最大值点和最小值点设1x x =为最大值点,2x x =为最小值点()1112222232,2232x k k k Z x k ππππππ⎧-=+⎪⎪∴∈⎨⎪-=-⎪⎩()12122x x k k ππ∴-=-+,当120k k -=时,12min2x x π-=本题正确选项:A【点睛】本题考查正弦型函数性质的综合应用,涉及到正弦型函数最小正周期和函数值域的求解;关键是能够根据函数的最值确定1x 和2x 为最值点,从而利用整体对应的方式求得结果.6.已知函数f (x )=2x -1,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是()A .1,2⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞⎪⎝⎭C .[]1,1,22⎛⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U 【答案】C 【解析】 【分析】对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围. 【详解】当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意. 当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2],因为a +2-2a =2-a >0,所以a +2>2a , 所以此时函数g (x )的值域为(2a ,+∞), 由题得2a <1,即a <12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2], 当a ≥23时,-a +2≤2a ,由题得21,1222a a a a-+≤⎧∴≤≤⎨+≥⎩. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12. 综合得a 的范围为a <12或1≤a ≤2, 故选C . 【点睛】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.设函数())cos(2)f x x x ϕϕ=+++(||)2πϕ<,且其图像关于直线0x =对称,则( )A .()y f x =的最小正周期为π,且在(0,)2π上为增函数B .()y f x =的最小正周期为2π,且在(0,)4π上为增函数 C .()y f x =的最小正周期为π,且在(0,)2π上为减函数D .()y f x =的最小正周期为2π,且在(0,)4π上为减函数【答案】C 【解析】试题分析:())cos(2)f x x x ϕϕ=+++2sin(2)6x πϕ=++,∵函数图像关于直线0x =对称,∴函数()f x 为偶函数,∴3πϕ=,∴()2cos 2f x x =,∴22T ππ==, ∵02x π<<,∴02x π<<,∴函数()f x 在(0,)2π上为减函数.考点:1.三角函数式的化简;2.三角函数的奇偶性;3.三角函数的周期;4.三角函数的单调性.8.在ABC ∆中,060,A BC D ∠==是边AB 上的一点,CD CBD =∆的面积为1,则BD 的长为( )A .32B .4C .2D .1【答案】C 【解析】 1sin 1sin2BCD BCD ∠=∴∠=2242BD BD ∴=-=∴=,选C9.要得到函数y =sin (2x +9π)的图象,只需将函数y =cos (2x ﹣9π)的图象上所有点( ) A .向左平移518π个单位长度 B .向右平移518π个单位长度 C .向左平移536π个单位长度 D .向右平移536π个单位长度【答案】D 【解析】 【分析】先将函数cos 29y x π⎛⎫=- ⎪⎝⎭转化为7sin 218y x π⎛⎫=+⎪⎝⎭,再结合两函数解析式进行对比,得出结论. 【详解】 函数75cos 2sin 2sin 2sin 299218369y x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+=+=++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ∴要得到函数sin 29y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数cos 29y x π⎛⎫=- ⎪⎝⎭的图象上所有点向右平移536π个单位长度,故选D . 【点睛】本题考查函数()sin y A x b ωϕ=++的图象变化规律,关键在于能利用诱导公式将异名函数化为同名函数,再根据左右平移规律得出结论.10.如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =u u u v( )A .3155AB AC +u u uv u u u vB .2155AB AC +u u uv u u u vC .481515AB AC +u u uv u u u v D .841515AB AC +u u uv u u u v 【答案】D 【解析】 【分析】设出等腰直角三角形ABC 的斜边长,由此结合余弦定理求得各边长,并求得cos DAE ∠,由此得到45AF AD =u u u r u u u r,进而利用平面向量加法和减法的线性运算,将45AF AD =u u u r u u u r 表示为以,AB AC u u u r u u u r为基底来表示的形式.【详解】设6BC =,则32,2AB AC BD DE EC =====,AD AE ===,101044cos 2105DAE +-∠==⨯, 所以45AF AF AD AE ==,所以45AF AD =u u u r u u u r . 因为()1133AD AB BC AB AC AB =+=+-u u u r u u u r u u u r u u u r u u u r u u u r 2133AB AC =+u u ur u u u r , 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r. 故选:D 【点睛】本小题主要考查余弦定理解三角形,考查利用基底表示向量,属于中档题.11.在∆ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .则“sin >sin A B ”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】由正弦定理得sin sin 22a bA B a b R R>⇔>⇔> ,所以“sin sin A B >”是“a b >”的充要条件,选C.12.函数()2sin sin cos y x x x =+的最大值为( ) A.1B1 CD .2【答案】A 【解析】由题意,得()22sin sin cos 2sin 2sin cos sin2cos21y x x x x x x x x =+=+=-+π2114x ⎛⎫=-+≤ ⎪⎝⎭;故选A.13.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,则ABC ∆的面积S =根据此公式,若()cos 3cos 0a B b c A ++=,且2222a b c --=,则ABC ∆的面积为( )AB.CD.【答案】A 【解析】 【分析】根据()cos 3cos 0a B b c A ++=,利用正弦定理边化为角得sin cos cos sin 3sin cos 0A B A B C A ++=,整理为()sin 13cos 0C A +=,根据sin 0C ≠,得1cos 3A =-,再由余弦定理得3bc =,又2222a b c --=,代入公式=S . 【详解】由()cos 3cos 0a B b c A ++=得sin cos cos sin 3sin cos 0A B A B C A ++=, 即()sin 3sin cos 0A B C A ++=,即()sin 13cos 0C A +=, 因为sin 0C ≠,所以1cos 3A =-, 由余弦定理22222cos 23a b c bc A bc --=-==,所以3bc =, 由ABC ∆的面积公式得S ===故选:A 【点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.14.将函数cos y x =的图象先左移4π,再纵坐标不变,横坐标缩为原来的12,所得图象的解析式为( )A .sin 24y x π⎛⎫=+ ⎪⎝⎭B .13sin 24y x π⎛⎫=+⎪⎝⎭C .1sin 24y x π⎛⎫=+ ⎪⎝⎭D .3sin 24y x π⎛⎫=+⎪⎝⎭【答案】D 【解析】 【分析】根据三角函数的平移伸缩变换法则得到答案. 【详解】cos sin 2y x x π⎛⎫==+ ⎪⎝⎭向左平移4π个单位,故变为3sin 4y x π⎛⎫=+ ⎪⎝⎭,纵坐标不变,横坐标缩为原来的12,变为3sin 24y x π⎛⎫=+ ⎪⎝⎭. 故选:D . 【点睛】本题考查了三角函数的平移伸缩变换,意在考查学生对于平移伸缩变换的理解和掌握.15.函数()22sin 3cos 2f x x x =+-,2,36x ππ⎡⎤∈-⎢⎥⎣⎦的值域为( ) A .40,3⎡⎤⎢⎥⎣⎦B .41,3⎡⎤⎢⎥⎣⎦C .51,4⎡⎤⎢⎥⎣⎦D .50,4⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】化简得到()23sin 2sin 1f x x x =-++,设sin t x =,利用二次函数性质得到答案. 【详解】根据22sin cos 1x x +=,得()23sin 2sin 1f x x x =-++,2,36x ππ⎡⎤∈-⎢⎥⎣⎦, 令sin t x =,由2,36x ππ⎡⎤∈-⎢⎥⎣⎦,得1sin 1,2x ⎡⎤∈-⎢⎥⎣⎦, 故[]0,1t ∈,有2321y t t =-++,[]0,1t ∈,二次函数对称轴为13t =, 当13t =时,最大值43y =;当1t =时,最小值0y =, 综上,函数()f x 的值域为40,3⎡⎤⎢⎥⎣⎦. 故选:A . 【点睛】本题考查了三角函数值域,换元可以简化运算,是解题的关键.16.若,2παπ⎛⎫∈ ⎪⎝⎭,2cos2sin 4παα⎛⎫=- ⎪⎝⎭,则sin 2α的值为( ) A .78-B .78C .18-D .18【答案】A 【解析】 【分析】利用二倍角公式及两角差的正弦公式化简得到cos sin 4αα+=,再将两边平方利用二倍角正弦公式计算可得;【详解】 解:因为2cos2sin 4παα⎛⎫=- ⎪⎝⎭所以()222cos sin sin cos cos sin 44ππαααα-=-所以()())2cos sin cos sin cos sin αααααα-+=- ,cos sin 02παπαα⎛⎫∈-≠ ⎪⎝⎭Q ,所以cos sin 4αα+=所以()21cos sin 8αα+=,即221cos 2cos sin sin 8αααα++=,11sin 28α+= 所以7sin 28α=-故选:A【点睛】 本题考查两角和差的正弦公式、二倍角公式的应用,属于中档题;17.关于函数()()()sin tan cos tan f x x x =-有下述四个结论:①()f x 是奇函数;②()f x 在区间0,4π⎛⎫ ⎪⎝⎭单调递增; ③π是()f x 的周期;④()f x 的最大值为2.其中所有正确结论的个数是( )A .4B .3C .2D .1【答案】C【解析】【分析】计算()()()sin tan cos tan f x x x -=--得到①错误,根据复合函数单调性判断法则判断②正确,()()f x f x π+=③正确,假设()f x 的最大值为2,取()2f a =,得到矛盾,④错误,得到答案.()()()sin tan cos tan f x x x =-,()()()sin tan cos tan f x x x -=---⎡⎤⎡⎤⎣⎦⎣⎦()()sin tan cos tan x x =--,所以()f x 为非奇非偶函数,①错误; 当0,4x π⎛⎫∈ ⎪⎝⎭时,令tan t x =,()0,1t ∈, 又()0,1t ∈时sin y t =单调递增,cos y t =单调递减,根据复合函数单调性判断法则, 当0,4x π⎛⎫∈ ⎪⎝⎭时,()sin tan y x =,()cos tan y x =-均为增函数, 所以()f x 在区间0,4π⎛⎫ ⎪⎝⎭单调递增,所以②正确; ()()()sin tan cos tan f x x x πππ+=+-+⎡⎤⎡⎤⎣⎦⎣⎦()()()sin tan cos tan x x f x =-=, 所以π是()f x 的周期,所以③正确;假设()f x 的最大值为2,取()2f a =,必然()sin tan 1a =,()cos tan 1a =-, 则tan 22a k ππ=+,k Z ∈与tan 2a k ππ=+,k Z ∈矛盾,所以()f x 的最大值小于2,所以④错误.故选:C .【点睛】本题考查了三角函数奇偶性,单调性,周期,最值,意在考查学生对于三角函数知识的综合应用.18.设2α是第一象限角,且cos cos αα=-,则α是第( )象限角 A .一B .二C .三D .四【答案】B【解析】【分析】计算得到720180720k k α︒<<︒+︒,k Z ∈,再根据cos 0α<得到答案.【详解】 ∵2α是第一象限角,∴360903602k k α︒<<︒+︒,k Z ∈, ∴720180720k k α︒<<︒+︒,k Z ∈,∴α为第一象限角或第二象限角或终边在y 轴正半轴上的轴线角, ∵cos cos αα=-,∴cos 0α<,∴α是第二象限角.【点睛】本题考查了角度所在象限,意在考查学生的计算能力和转化能力.19.将函数sin(2)4y x π=-的图象向左平移4π个单位,所得图象对应的函数在区间(,)m m -上无极值点,则m 的最大值为( ) A .8π B .4π C .38π D .2π 【答案】A【解析】【分析】 由三角函数的图象变换,求得函数sin 24y x π⎛⎫=+ ⎪⎝⎭,求得增区间3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,令0k =,可得函数的单调递增区间为3,88ππ⎡⎤-⎢⎥⎣⎦,进而根据函数sin 24y x π⎛⎫=+⎪⎝⎭在区间(),m m -上无极值点,即可求解. 【详解】 由题意,将函数sin 24y x π⎛⎫=-⎪⎝⎭的图象向左平移4π个单位, 可得函数sin 2sin 2444y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令222,242k x k k Z πππππ-+≤+≤+∈,解得3,88k x k k Z ππππ-+≤≤+∈ 即函数sin 24y x π⎛⎫=+ ⎪⎝⎭的单调递增区间为3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 令0k =,可得函数的单调递增区间为3,88ππ⎡⎤-⎢⎥⎣⎦, 又由函数sin 24y x π⎛⎫=+⎪⎝⎭在区间(),m m -上无极值点,则m 的最大值为8π,故选A. 【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟练应用三角函数的图象变换得到函数的解析式,再根据三角函数的性质,求得其单调递增区间是解答的关键,着重考查了运算与求解能力,属于中档试题.20.在三棱锥P ABC -中,PA ⊥平面ABC ,2π,43BAC AP ∠==,23AB AC ==,则三棱锥P ABC -的外接球的表面积为( )A .32πB .48πC .64πD .72π【答案】C【解析】【分析】先求出ABC V 的外接圆的半径,然后取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==,由于PA ⊥平面ABC ,故点O 为三棱锥P ABC -的外接球的球心,OA 为外接球半径,求解即可.【详解】 在ABC V 中,23AB AC ==,23BAC π∠=,可得6ACB π∠=, 则ABC V 的外接圆的半径2323π2sin 2sin 6AB r ACB ===,取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==, 因为PA ⊥平面ABC ,所以点O 为三棱锥P ABC -的外接球的球心,则222OA OG AG =+,即外接球半径()222234R =+=,则三棱锥P ABC -的外接球的表面积为24π4π1664πR =⨯=.故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.。
部编数学八年级上册专题01三角形六大重难题型(期末真题精选)(解析版)含答案
专题01 三角形六大重难题型一.中线分周长(分类讨论)1.如图,已知BD 是△ABC 的中线,AB =5,BC =3,且△ABD 的周长为12,则△BCD 的周长是 10 .试题分析:先根据三角形的中线、线段中点的定义可得AD =CD ,再根据三角形的周长公式即可求出结果.答案详解:解:∵BD 是△ABC 的中线,即点D 是线段AC 的中点,∴AD =CD.实战训练∵AB=5,△ABD的周长为12,∴AB+BD+AD=12,即5+BD+AD=12.解得BD+AD=7.∴BD+CD=7.则△BCD的周长是BC+BD+CD=3+7=10.所以答案是:10.2.已知AD是△ABC的中线,若△ABD与△ACD的周长分别是17和15,△ABC的周长是22,则AD的长为 5 .试题分析:根据三角形的周长公式列式计算即可得解.答案详解:解:∵△ABD与△ACD的周长分别是17和15,∴AB+BC+AC+2AD=17+15=32,∵△ABC的周长是22,∴AB+BC+AC=22,∴2AD=32﹣22=10,∴AD=5.所以答案是:5.3.如图所示,AD是△ABC的中线.若AB=7cm,AC=5cm,则△ABD和△ADC的周长的差为 2 cm.试题分析:根据三角形中线的定义得到BD=CD,求得△ABD和△ACD的周长差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,于是得到结论.答案详解:解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD的周长差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵AB=7cm,AC=5cm,∴△ABD和△ACD的周长差=7﹣5=2cm.所以答案是:2.二.中线之等分面积4.如图,已知△ABC 中,点D 、E 分别是边BC 、AB 的中点.若△ABC 的面积等于8,则△BDE 的面积等于( )A .2B .3C .4D .5试题分析:根据三角形的面积公式即可得到结论.答案详解:解:∵点D 是边BC 的中点,△ABC 的面积等于8,∴S △ABD =12S △ABC =4,∵E 是AB 的中点,∴S △BDE =12S △ABD =12×4=2,所以选:A .5.已知:如图所示,在△ABC 中,点D ,E ,F 分别为BC ,AD ,CE 的中点,且S △ABC =4cm 2,则阴影部分的面积为 1 cm 2.试题分析:易得△ABD ,△ACD 为△ABC 面积的一半,同理可得△BEC 的面积等于△ABC 面积的一半,那么阴影部分的面积等于△BEC 的面积的一半.答案详解:解:∵D 为BC 中点,根据同底等高的三角形面积相等,∴S △ABD =S △ACD =12S △ABC =12×4=2(cm 2),同理S △BDE =S △CDE =12S △BCE =12×2=1(cm 2),∴S △BCE =2(cm 2),∵F 为EC 中点,∴S △BEF =12S △BCE =12×2=1(cm 2).所以答案是1.三.三角形的高的辨别6.如图,△ABC中,AD⊥BC于D,点E在CD上,则图中以AD为高的三角形有 6 个.试题分析:由于AD⊥BC于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.答案详解:解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.所以答案是:6.7.如图,△ABC中,BC边所在直线上的高是线段 AD .试题分析:根据三角形的高的概念解答即可.答案详解:解:△ABC中,BC边所在直线上的高是线段AD,所以答案是:AD四.多边形的内角和与外角和8.若一个多边形的内角和是540°,则这个多边形是 五 边形.试题分析:根据多边形的内角和公式求出边数即可.答案详解:解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,所以答案是:五.9.如图,∠A+∠B+∠C+∠D+∠E+∠F的值是( )A.240°B.360°C.540°D.720°试题分析:根据四边形的内角和及三角形的外角定理即可求解.答案详解:解:如图,AC、DF与BE分别相交于点M、N,在四边形NMCD中,∠MND+∠CMN+∠C+∠D=360°,∵∠CMN=∠A+∠E,∠MND=∠B+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,所以选:B.10.一个多边形的内角和等于1260°,从它的一个顶点出发,可以作对角线的条数是( )A.4B.6C.7D.9试题分析:设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=1260°,然后解方程即可.答案详解:解:设这个多边形的边数为n,∴(n﹣2)×180°=1260°,解得n=9,∴这个多边形为九边形;从这个多边形的一个顶点出发共有:9﹣3=6(条).所以选:B.五.三角形的内角和11.如图,在△ABC中,D是AC上一点,E是AB上一点,BD,CE相交于点F,∠A=60°,∠ABD=20°,∠ACE=35°,则∠EFD的度数是( )A.115°B.120°C.135°D.105°试题分析:由△ABD的内角和为180°,可以求∠ADB,由△AEC内角和为180°,可以求∠AEC,再根据四边形AEFD内角和为360°,可求∠EFD.答案详解:解:在△AEC中,∠A+∠ACE+∠AEC=180°,∴∠AEC=180°﹣∠A﹣∠ACE=180°﹣60°﹣35°=85°,在△ABD中,∠A+∠ABD+∠ADB=180°,∴∠ADB=180°﹣∠A﹣∠ABD=180°﹣60°﹣20°=100°,在四边形AEFD中,∠A+∠AEC+∠ADB+2∠EFD=360°,∴∠EFD=360°﹣∠A﹣∠AEC﹣∠ADB=360°﹣60°﹣85°﹣100°=115°,所以选:A.12.如图,△ABC中,∠BAC>∠B,∠C=70°,将△ABC折叠,使得点B与点A重合,折痕PD 分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为( )A.35°或20°B.20°或27.5°C.35°或25°或32.5°D.35°或20°或27.5°试题分析:分三种情况,利用三角形的内角和定理、等腰三角形的性质先求出∠APC的度数,再利用折叠的性质和三角形的内角和定理求出∠B.答案详解:解:由折叠的性质知:∠BPD=∠APD=12∠BPA,∠BDP=∠ADP=90°.当AP=AC时,∠APC=∠C=70°,∵∠BPD=12(180°﹣∠APC)=55°,∴∠B=90°﹣55°=35°;当AP=PC时,∠PAC=∠C=70°,则∠APC=40°.∵∠BPD=12(180°﹣∠APC)=70°,∴∠B=90°﹣70°=20°;当PC=AC时,∠APC=∠PAC,则∠APC=55°.∵∠BPD=12(180°﹣∠APC)=62.5°,∴∠B=90°﹣62.5°=27.5°.所以选:D.13.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=48°,∠D=10°,则∠P的度数为( )A.19°B.20°C.22°D.25°试题分析:延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=12(∠A﹣∠D),然后代入数据计算即可得解.答案详解:解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=12(∠A﹣∠D),∵∠A=48°,∠D=10°,∴∠P=12(48°﹣10°)=19°.所以选:A.14.如图,在△ABC中,∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是( )A.42°B.46°C.52°D.56°试题分析:根据折叠得出∠D=∠B=28°,根据三角形的外角性质得出∠1=∠B+∠BEF,∠BEF =∠2+∠D,求出∠1=∠B+∠2+∠D即可.答案详解:解:∵∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1﹣∠2=∠B+∠D=28°+28°=56°,所以选:D.15.如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=131°,则∠2的度数为( )A.49°B.50°C.51°D.52°试题分析:先根据折叠性质得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,根据三角形内角和为180°和周角360°求出结论.答案详解:解:由折叠得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,∵∠A+∠B+∠C=180°,∴∠HOG+∠DOE+∠EOF=180°,∵∠1+∠2+∠HOG+∠DOE+∠EOF=360°,∴∠1+∠2=180°,∵∠1=131°,∴∠2=180°﹣131°=49°,所以选:A.16.如图,在△ABC中,∠1=100°,∠C=80°,∠2=12∠3,BE平分∠ABC交AD于E,求∠4的度数.试题分析:首先根据三角形的外角的性质求得∠3,再根据已知条件求得∠2,进而根据三角形的内角和定理求得∠ABD,再根据角平分线的定义求得∠ABE,最后根据三角形的外角的性质求得∠4.答案详解:解:∵∠1=∠3+∠C,∠1=100°,∠C=80°,∴∠3=20°,∵∠2=12∠3,∴∠2=10°,∴∠ABC=180°﹣100°﹣10°=70°,∵BE平分∠ABC,∴∠ABE=35°,∵∠4=∠2+∠ABE,∴∠4=45°.17.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于 22.5 度.试题分析:在直角三角形中,设最小的锐角的度数为x,则另一个锐角的度数则为3x.由“直角三角形的两个锐角互余”的性质知,x+3x=90°.通过解方程即可求得x的值.答案详解:解:在直角三角形中,设最小的锐角的度数为x,则另一个锐角的度数则为3x.则x+3x=90°,即4x=90°,解得,x=22.5°,即这个直角三角形中最小的一个角等于22.5°.所以答案是:22.5.六.新定义类18.新定义:在△ABC中,若存在最大内角是最小内角度数的n倍(n为大于1的正整数),则称△ABC为“n倍角三角形”.例如,在△ABC中,若∠A=90°,∠B=60°,则∠C=30°,因为∠A最大,∠C最小,且∠A=3∠C,所以△ABC为“3倍角三角形”.(1)在△DEF中,若∠E=40°,∠F=60°,则△DEF为“ 2 倍角三角形”.(2)如图,在△ABC中,∠C=36°,∠BAC、∠ABC的角平分线相交于点D,若△ABD为“6倍角三角形”,请求出∠ABD的度数.试题分析:(1)根据三角形内角和定理求出∠D,根据n倍角三角形的定义判断;(2)根据角平分线的定义、三角形内角和定理求出∠ADB,n倍角三角形的定义分情况讨论计算,得到答案.答案详解:解:(1)在△DEF中,∠E=40°,∠F=60°,则∠D=180°﹣∠E﹣∠F=80°,∴∠D=2∠E,∴△DEF为“2倍角三角形”,所以答案是:2;(2)∵∠C=36°,∴∠BAC+∠ABC=180°﹣36°=144°,∵∠BAC、∠ABC的角平分线相交于点D,∴∠DAB=12∠BAC,∠DBA=12∠ABC,∴∠DAB+∠DBA=12×144°=72°,∴∠ADB=180°﹣72°=108°,∵△ABD为“6倍角三角形”,∴∠ADB=6∠ABD或∠ADB=6∠BAD,当∠ADB=6∠ABD时,∠ABD=18°,当∠ADB=6∠BAD时,∠BAD=18°,则∠ABD=180°﹣108°﹣18°=54°,综上所述,∠ABD的度数为18°或54°.19.在△ABC中,若存在一个内角角度是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=80°,∠B=60°,则△ABC为 2 倍角三角形;(2)若锐角三角形MNP是3倍角三角形,且最小内角为α,请直接写出α的取值范围为 22.5°<α<30° .(3)如图,直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,若△AEF为4倍角三角形,求∠ABO 的度数.试题分析:(1)由∠A=80°,∠B=60°,可求∠C的度数,发现内角之间的倍数关系,得出答案,(2)△DEF是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答,(3)首先证明∠EAF=90°,分两种情形分别求出即可.答案详解:解:(1)∵∠A=80°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=40°,∴∠A=2∠C,∴△ABC为2倍角三角形,所以答案是:2;(2)∵最小内角为α,∴3倍角为3α,由题意可得:3α<90°,且180°﹣4α<90°,∴最小内角的取值范围是22.5°<α<30°.所以答案是22.5°<α<30°.(3)∵AE平分∠BAO,AF平分∠AOG,∴∠EAB=∠EAO,∠OAF=∠FAG,∴∠EAF=∠EAO+∠OAF=12(∠BAO+∠OAG)=90°,∵△EAF是4倍角三角形,∠F显然大于∠E,∴∠E=14×90°或15×90°,∵AE平分∠BAO,OE平分∠BOQ,∴∠E=12∠ABO,∴∠ABO=2∠E,∴∠ABO=45°或36°.20.在△ABC中,若存在一个内角角度,是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=55°,∠B=25°,则△ABC为 4 倍角三角形;(2)若△DEF是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求△DEF的最小内角;(3)若△MNP是2倍角三角形,且∠M<∠N<∠P<90°,请直接写出△MNP的最小内角的取值范围.试题分析:(1)由∠A=55°,∠B=25°,可求∠C的度数,发现内角之间的倍数关系,得出答案,(2)△DEF是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答,(3)可设未知数表示2倍角三角形的各个内角,然后列不等式组确定最小内角的取值范围.答案详解:解:(1)∵∠A=55°,∠B=25°,∴∠C=180°﹣∠A﹣∠B=100°,∴∠C=4∠B,所以答案是:4(2)设最小的内角为x°,则3倍角为3x°①当最小的内角的度数是3倍内角的余角的度数的13时,即:x=13(90°﹣3x),解得:x=15°②3倍内角的度数是最小内角的余角的度数的13时,即:3x=13(90°﹣x),解得:x=9°,因此,△DEF的最小内角是9°或15°.(3)设∠M的度数为x,则其它的两个角分别为2x,(180°﹣3x),由∠M<∠N<∠P<90°可得:2x<90°且180°﹣3x<90°且2x≠180°﹣3x∴30°<x<45°且x≠36°.答:△MNP的最小内角的取值范围是30°<x<45°且x≠36°.21.若△ABC中刚好有∠B=2∠C,则称此三角形为“可爱三角形”,并且∠A称作“可爱角”.现有一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是( )A.45°或36°B.72°或36°C.45°或72°D.45°或36°或72°试题分析:分设三角形底角为α,顶角为2α或设三角形的底角为2α,顶角为α,根据三角形的内角和为180°,得出答案.答案详解:解:①设三角形底角为α,顶角为2α,则α+α+2α=180°,解得:α=45°,②设三角形的底角为2α,顶角为α,则2α+2α+α=180°,解得:α=36°,∴2α=72°,∴三角形的“可爱角”应该是45°或72°,所以选:C.22.若三角形满足一个角α是另一个角β的3倍,则称这个三角形为“智慧三角形”,其中α称为“智慧角”.在有一个角为60°的“智慧三角形”中,“智慧角”是 60或90 度.试题分析:根据“智慧三角形”及“智慧角”的意义,列方程求解即可.答案详解:解:在有一个角为60°的三角形中,①当另两个角分别是100°、20°时,“智慧角”是60°;②α+β=120°且α=3β,∴α=90°.,即“智慧角”是90°.所以答案是:60或90.。
重难点12 解三角形-2023年高考数学(热点 重点 难点)专练(全国通用)(解析版)
重难点12 解三角形1.正弦定理(1)定理:在△ABC 中,a sin A =b sin B =csin C =2R (其中R 为△ABC 的外接圆半径)。
(2)运用方法适用情形:两角A ,B 及其对边a ,b (知三求一)。
列方程:a sin A =bsin B 。
(3)变形:a =2R sin_A ,sin A =a2R ,a ∶b ∶c =sin_A ∶sin_B ∶sin_C 等等。
2.余弦定理(1)定理:在△ABC 中,a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ac cos B ,c 2=a 2+b 2-2ab cos_C 。
(2)运用方法适用情形:三边a ,b ,c ,任一内角A (知三求一)。
列方程:a 2=b 2+c 2-2bc cos A 或cos A =b 2+c 2-a22bc 。
(3)变形:cos A =b 2+c 2-a 22bc ,b 2+c 2-a 2=2bc cos A 等等。
3.三角形面积公式(1)正弦定理推论:S △ABC =12ab sin C =12bc sin A =12ac sin B 。
(2)其他常用公式方法:S =12底×高;S =12×C ×r (C 为周长,r 为内切圆半径)等等。
4.判断三角形的形状主要从两个角度考虑(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状。
(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论。
无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,避免漏掉一些可能情况。
解题时注意挖掘隐含条件,重视角的范围对三角函数值的限制。
5.破解平面向量与“三角”相交汇题的常用方法是“化简转化法”(1)先利用三角公式对三角函数式进行“化简”;然后把以向量共线、向量垂直、向量的数量积运算等形式出现的条件转化为三角函数式; (2)再活用正、余弦定理对边、角进行互化.2023年高考仍将重点考查已知三角形边角关系利用正弦定理解三角形及利用正余弦定理解平面图形的边、角与面积,题型既有选择也有填空更多是解答题;若考解答题,主要放在第17题位置,为中档题,若为选(填)题可以为基础题,多为中档题,也可为压轴题.(建议用时:40分钟)一、单选题1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知A = 3π,a 3b = 1,则c =( ) A 31 B 3C .1 D .2【答案】D【解析】解法一:(余弦定理)由2222cos a b c bc A =+-得: 223121cos13c c c c π=+-⨯⨯=+-,220c c ∴--=,2c ∴=或1-(舍).解法二:(正弦定理)由sin sin a b A B=,得:31sin sin 3B π=,1sin 2B ∴=, b a <,6B π∴=,从而2C π=,2224c a b ∴=+=,2c ∴=.故选:D2.在△ABC 中,cos C =3,AC =4,BC =3,则cos B =( ) A .19B .13C .12D .23【答案】A【解析】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅ 2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB = 由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A.3.如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===, 则sin C 的值为( )A 3B 6C 3D .无解【答案】D【解析】3,23,2AB CD AB BD CD BD ==∴=22222234534cos 12?832?22BD BD BD BC DC BD C DC BC BD BD+-+-∴===>⨯,无解.故选D..ABC 的内角,ABC 的面积为32,则b =( )A 13+ B .13C 23+D .23【答案】B 【解析】a ,b ,c 成等差数列,2b a c ∴=+,平方得22242a c b ac +=-,又ABC 的面积为32,且30B =︒,故由1113sin sin 302242S ac B ac ac ==︒==,得6ac =,222412a c b ∴+=-,由余弦定理得22222241243cos 22642a cb b b b B ac +----====⨯, 解得2423b =+,又b 为边长,13b ∴=+, 故选B .5.魏晋南北朝时期,中国数学的测量学取得了长足进展.刘徽提出重差术,应用中国传统的出入相补原理,因其第一题为测量海岛的高度和距离,故题为《海岛算经》.受此题启发,某同学依照此法测量郑州市二七纪念塔的高度.如图,点D ,G ,F 在水平线DH 上,CD 和EF 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”测得以下数据(单位:米):前表却行DG =1,表高CD =EF =2,后表却行FH =3,表距DF =61.则塔高AB =( )A .60米B .61米C .62米D .63米【答案】D【解析】解:根据题意,CDG ABG ∽△△,EFH ABH ∽, 所以22,1643AB AB BD BD ==++,解得63AB =. 故选:D.6.在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若32a b =,则22sin sin sin B A A -的值为( ) A .19B .13C .1D .72【答案】D【解析】由正弦定理有22222222sin sin 221sin B A b a b A a a --⎛⎫==- ⎪⎝⎭.又3322b a b a =⇒=,故297212142b a ⎛⎫-=⨯-= ⎪⎝⎭.故选:D7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =A .6B .5C .4D .3【答案】A【解析】详解:由已知及正弦定理可得2224a b c -=,由余弦定理推论可得 22222141313cos ,,,464224242b c a c c c b A bc bc b c +---==∴=-∴=∴=⨯=,故选A . 8.在中,若,则的形状是 ( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定.【答案】A【解析】由条件结合正弦定理,得,再由余弦定理,得,所以三角形是钝角三角形,故选A.9.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()222tan 3a c b B ac +-=,则角B的值为( ). A .6πB .3πC .6π或56π D .3π或23π 【答案】D 【解析】解:()222tan 3ac b B ac +-=,()2223cos 22sin ac b B acB+-∴=,即3cos cos 2sin B B B =, 3sin cos 02B B ⎛⎫∴-= ⎪ ⎪⎝⎭且tan B 有意义即2B π≠, 3sin 2B ∴=, 在ABC 中,B 为3π或23π,故选:D .10.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C 2sin cos 2c B A b =,则tan A 等于( ) A .3 B .13-C .3或13-D .-3或13【答案】A 【解析】222sin cos tan 222a b c CC C ab +-==⇒=,4C π∴>,2sin sin sin a b cR A B C===, 2sin sin cos sin sin cos sin 2A B C C B A B ∴⋅⋅+⋅⋅=, 22sin()sin 22A CB ∴+=⇒=,4B π∴=, tan 1B ∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A.11.在∆ABC 中,222sin sin sin sin sin A B C B C +-≤.则的取值范围是( )A .(0,6π] B .[6π,π) C .(0,3π] D .[3π,π) 【答案】C【解析】由于222sin sin sin sin sin A B C B C +-≤,根据正弦定理可知222a b c bc +-≤,故2221cos 22b c a A bc +-=≥.又(0,)A π∈,则A 的范围为0,3π⎛⎤ ⎥⎝⎦.故本题正确答案为C.ABC 的三个内角()()31cos sin m n A A =-=,,,.若 m n ⊥,且 cos cos sin a B b A c C +=,则角A B ,的大小分别为 A .ππ63,B .2ππ36, C .ππ36,D .ππ33,【答案】C【解析】由m n ⊥可得0m n = 即3cos sin 0A A -= 所以角3A π=,因为cos cos sin a B b A c C +=二、填空题13.在△ABC 中,105A ∠=︒,45C ∠=︒,AB =BC 等于______. .记ABC 的内角则b =________. ABCS=12,cos ac B ∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】AB AC ⊥,3AB =,1AC =,由勾股定理得222BC AB AC =+=, 同理得6BD =,6BF BD ∴==,在ACE △中,1AC =,3AE AD ==,30CAE ∠=,由余弦定理得22232cos301321312CE AC AE AC AE =+-⋅=+-⨯⨯⨯=, 1CF CE ∴==,在BCF △中,2BC =,6BF =,1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯. 故答案为:14-.在ABC 中,点D ,且1BD =,则4a c +的最小值为________. 【答案】9【解析】[方法一]:【最优解】角平分线定义+三角形面积公式+基本不等式 由题意可知,ABC ABD BCD S S S =+△△△,由角平分线定义和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,即111a c +=, 因此11444(4)()5529,c a c aa c a c a c a c a c+=++=++≥+⋅=当且仅当23c a ==时取等号,则4a c +的最小值为9.故答案为:9.[方法二]: 角平分线性质+向量的数量积+基本不等式 由三角形内角平分线性质得向量式a cBD BA BC a c a c=+++. 因为1BD =,所以2222212()a c ac BA BC BA BC a c a c a c ⎛⎫⎛⎫=++⋅ ⎪ ⎪+++⎝⎭⎝⎭,化简得1ac a c =+,即ac a c =+,亦即(1)(1)1a c --=,所以44(1)(1)5524(1)(1)9a c a c a c +=-+-+≥+--=, 当且仅当4(1)1a c -=-,即3,32a c ==时取等号. [方法三]:解析法+基本不等式如图5,以B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系.设(,0)C a ,1313,,,2222D A c c ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.因为A ,D ,C 三点共线,则AD CD k k =,即333222111222c c a -=---,则有a c ac +=,所以111a c+=.下同方法一.[方法四]:角平分线定理+基本不等式 在BDC 中,22π12cos13CD a a a a =+-=+-,同理21AD c c =+-.根据内角平分线性质定理知CD BC AD AB =,即2211a a a cc c +-=+-,两边平方,并利用比例性质得2211a a c c -=-,整理得()()0a c a c ac -+-=,当a c =时,可解得2,410a c a c ==+=.当a c ac +=时,下同方法一.[方法五]:正弦定理+基本不等式 在ABD △与BCD △中,由正弦定理得11,sin 60sin sin 60sin AD CD A C==︒︒.在ABC 中,由正弦定理得sin sin sin120sin60sin60a b AD CD AD CDA B +===+︒︒︒. 所以11sin sin sin a A A C =+,由正弦定理得111a a a c==+,即ac a c =+,下同方法一. [方法六]: 相似+基本不等式如图6,作AE BC ∥,交BD 的延长线于E .易得ABE 为正三角形,则,1AE c DE c ==-.由ADE CDB ∽,得AE DEBC BD =,即11c c a -=,从而a c ac +=.下同方法一. 三、解答题17.在ABC 中,5cos 13A =-,3cos 5B =. (1)求sinC 的值.(2)设5BC =,求ABC 的面积. 【答案】(1)1665;(2)83【解析】(1)5cos 13A =-,3cos 5B =,()0,A π∈,()0,B π∈,12sin 13A ∴=,4sin 5B =,()()()sin sin sin sin cos cos sin C A B A B A B A Bπ∴=-+=+=+123541613513565=⨯-⨯=. (2)由正弦定理得:45sin 13512sin 313BC B AC A ⨯⋅===; 1113168sin 5223653ABCSAC BC C ∴=⋅=⨯⨯⨯=. 18.在ABC 中,2cos c b B =,3C =. (1)求B ∠;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长. 条件①:2c b =;条件②:ABC的周长为4+条件③:ABC)2cos c b =2332π=,23C π=,,解得6B π=;①:由正弦定理结合(矛盾,故这样的ABC 不存在;6π=,设ABC 的外接圆半径为R ,则由正弦定理可得2sin6R π=22sin 3R π=则周长a b +解得2R =,则ABC S =则由余弦定理可得2a ⎛⎫+ ⎪⎝⎭。
解三角形(总结+题+解析)
解三角形一.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.正弦定理的如下变形常在解题中用到1.(1) a=2RsinA(2) b=2RsinB(3) c=2RsinC2.(1) sinA=a/2R(2) sinB=b/2R(3) sinC=c/2R3.a :b :c=sinA :sinB:sinC适用类型(1)AAS(2)SSA二.余弦定理:1. a^2 = b^2 + c^2 - 2·b ·c ·cosA2. b^2 = a^2 + c^2 - 2·a ·c ·cosB3. c^2 = a^2 + b^2 - 2·a ·b ·cosC余弦定理的如下变形常在解题中用到1. cosC = (a^2 + b^2 - c^2) / (2·a ·b)2. cosB = (a^2 + c^2 - b^2) / (2·a ·c)3. cosA = (c^2 + b^2 - a^2) / (2·b ·c )适用类型1.SSA2.SAS3.SSS三.余弦定理和正弦定理的面积公式S △ABC =21absinC=21bcsinA=21acsinB(常用类型:已知三角形两边及其夹角)判断解的个数判断三角形的形状有两种途径:(1)将已知的条件统一化成边的关系,用代数求和法求解(2)将已知的条件统一化成角的关系,用三角函数法求解三.解三角形的实际应用测量中相关的名称术语仰角:视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角叫做仰角。
俯角:视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角叫俯角方向角:从指定方向线到目标方向的水平角测距离的应用测高的应用(一)已知两角及一边解三角形例1已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.∠B=180°-30°-45°=105°a=10sin45°/sin30°=10√2sin105°=sin(60+45)=√2/2(√3/2+1/2)=(√6+√2)/41/sin105=√6-√2b=10sin45°/sin105°=5√2(√6-√2)=10(√3-1)(二)已知两边和其中一边对角解三角形例2在△ABC中,已知角A,B,C所对的边分别为a,b,C,若a=2√3,b =√6,A=45°,求边长C由余弦定理,得b²+c²-2bccosA-a²=06+c²-2√3c-12=0c²-2√3c-6=0根据求根公式,得c=√3±3又c>0所以c=3+√3(三)已知两边及夹角,解三角形例3△ABC中,已知b=3,c=33,B=30°,求角A,角C和边a.解:由余弦定理得∴a2-9a+18=0,得a=3或6当a=3时,A=30°,∴C=120°当a=6时,由正弦定理∴A=90°∴C=60°。
2024届高考数学易错题专项(解三角形及应用)练习(附答案)
2024届高考数学易错题专项(解三角形及应用)练习易错点一:易忽视三角形解的个数(解三角形多解情况)1.在ABC 中,已知3cos A =,sin B a =,若cos C 有唯一值,则实数a 的取值范围为( )1sin sin 2,2B A c a ==易错点三:实际问题中题意不明致误(利用解三角形知识解决实际问题)1.某景区有一人工湖,湖面有,A B 两点,湖边架有直线型栈道CD ,长为50m ,如图所示.现要测是,A B 两点之间的距离,工作人员分别在,C D 两点进行测量,在C 点测得45ACD ∠=︒,30BCD ∠=︒;在D 点测得135,120ADB BDC ︒∠=︒∠=,,,A B C D(1)求,A B 两点之间的距离;(2)判断直线CD 与直线AB(1)若B ,D 选在两个村庄,两村庄之间有一直线型隧道,且离;(1)请同学们指出其中一定能唯一确定(2)若已知3AC =,6BC =,MCA ∠己在(1)中的选择,从中选出一组利用所给数据,求 5.如图,某日中午12:00午1:00乙船沿北偏东125°航行速度是多少?(精确到6.如图,某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口北偏西30︒方向且与该港口相距v艇沿直线方向以nmile/h(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到使得小艇能以最短时间与轮船相遇,并说明理由.(1)求人造卫星与卫星跟踪站在(2)如果此时跟踪站天线指向人造卫星,(1)求B 与C 之间的直线距离(2)在海面上有一点D (A10.在长江某渡口处,江水以5km/h 的速度向东流.一渡船从长江南岸的达北岸的B 码头(如图).设AN 为正北方向,已知1.2km .该渡船应按什么方向航行?速度是多少(角度精确到 11.如图,为了测量河对岸47ACD ∠=︒,72BCD ∠=1m ).参考答案1.在ABC 中,已知3cos A =,sin B a =,若cos C 有唯一值,则实数a 的取值范围为( )故选:AB由BD DC = ,可得OD OB OC -= 由2cos λ⎛+ =++ ⎝ OB AB O OC AB B P 1sin sin 2,2B A c a ==,则()易错点三:实际问题中题意不明致误(利用解三角形知识解决实际问题) 1.某景区有一人工湖,湖面有,A B 两点,湖边架有直线型栈道CD ,长为50m ,如图所示.现要测是,A B 两点之间的距离,工作人员分别在,C D 两点进行测量,在C 点测得45ACD ∠=︒,30BCD ∠=︒;在D 点测得135,120ADB BDC ︒∠=︒∠=.(,,,A B C D 在同一平面内)(1)求,A B 两点之间的距离;(2)判断直线CD 与直线AB(2)在三角形BCD中,由余弦定理得()sin105sin6045︒=︒+︒=(1)若B,D选在两个村庄,两村庄之间有一直线型隧道,且中,由余弦定理得在ACD2222AC AD CD AD CD =+-⨯(1)请同学们指出其中一定能唯一确定(2)若已知3AC =,6BC =,MCA ∠己在(1)中的选择,从中选出一组利用所给数据,求在MDN △中,MD 所以(2456MN =+所以16236MN =-【答案】16.41km【详细分析】由余弦定理得到进而求出AD,得到答案.【答案】28km/h6.如图,某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口北偏西30︒方向且与该港口相距v的航行速度匀速行驶,经过艇沿直线方向以nmile/h(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到使得小艇能以最短时间与轮船相遇,并说明理由.) 如图设小艇的速度为v ,时间为t 相遇,2222cos OC AC OA AC OA =+-⨯⨯⨯221200cos 60900600400t t t t ︒-=-+ (1)求人造卫星与卫星跟踪站在(2)如果此时跟踪站天线指向人造卫星,8.如图,某海产养殖户承包一片靠岸水域,(1)求B与C之间的直线距离(2)在海面上有一点D(A【答案】70.7m【详细分析】利用正弦定理即可求解.【答案】渡船应按北偏西【详细分析】根据题意,以∠,即可得到结果即可得到cos ABC【答案】57m【详细分析】利用正弦定理,在可.。
高考数学压轴专题最新备战高考《三角函数与解三角形》易错题汇编附答案解析
【高中数学】《三角函数与解三角形》考试知识点(1)一、选择题1.已知函数()()sin 3cos 0x f x x ωωω=->,若集合()(){}0,1x f x π∈=-含有4个元素,则实数ω的取值范围是( ) A .35,22⎡⎫⎪⎢⎣⎭B .35,22⎛⎤⎥⎝⎦C .725,26⎡⎫⎪⎢⎣⎭D .725,26⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】化简f (x )的解析式,作出f (x )的函数图象,利用三角函数的性质求出直线y=﹣1与y=f (x )在(0,+∞)上的交点坐标,则π介于第4和第5个交点横坐标之间. 【详解】 f (x )=2sin (ωx ﹣3π), 作出f (x )的函数图象如图所示:令2sin (ωx ﹣3π)=﹣1得ωx ﹣3π=﹣6π+2kπ,或ωx ﹣3π=76π+2kπ, ∴x=6πω+2k πω,或x=32πω+2k πω,k ∈Z , 设直线y=﹣1与y=f (x )在(0,+∞)上从左到右的第4个交点为A ,第5个交点为B , 则x A =322ππωω+,x B =46ππωω+, ∵方程f (x )=﹣1在(0,π)上有且只有四个实数根, ∴x A <π≤x B ,即322ππωω+<π≤46ππωω+,解得72526ω≤<. 故选B .本题考查了三角函数的恒等变换,三角函数的图象与性质,属于中档题.2.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知cos cos 2b C c B b +=,则ab=( )A .B .2CD .1【答案】B 【解析】 【分析】由正弦定理及题设可知,sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,又A B C π++=,可得sin 2sin A B =,再由正弦定理,可得解【详解】由正弦定理:2sin sin b cR B C==,又cos cos 2b C c B b += 得到sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=在ABC ∆中,A B C π++=故sin()2sin A B π-=,即sin 2sin A B =故sin 2sin a A b B == 故选:B 【点睛】本题考查了正弦定理在边角互化中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题3.在ABC ∆中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,0AB BC ⋅>u ur u u r u u ,a =b c +的取值范围是( )A .31,2⎛⎫ ⎪⎝⎭B .322⎛⎫ ⎪ ⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .31,2⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】利用余弦定理222cos 2b c a A bc+-=,可得3A π=,由|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r,可得B 为钝角,由正弦定理可得sin sin(120)30)o o b c B B B ∴+=+-=+,结合B 的范围,可得解由余弦定理有:222cos2b c aAbc+-=,又222b c a bc+-=故2221cos222b c a bcAbc bc+-===又A为三角形的内角,故3Aπ=又3a=32=sin sin sin(120)3ob c cB C B∴==-又|||cos()|0AB BC AB BC Bπ⋅=⋅->u u u uu uu u r u uru r u r故cos0B B<∴为钝角33sin sin(120)sin cos3sin(30)2o ob c B B B B B∴+=+-=+=+(90,120)o oB∈Q,可得1330(120150)sin(30)(,)2o o o oB B+∈∴+∈,333sin(30)(,)22ob c B∴+=+∈故选:B【点睛】本题考查了正弦定理、余弦定理和向量的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题4.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.444 0.450 0.455 0.461 年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年 D .早于公元前6000年【答案】D 【解析】 【分析】先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项. 【详解】解:由题意,可设冬至日光与垂直线夹角为α,春秋分日光与垂直线夹角为β, 则αβ-即为冬至日光与春秋分日光的夹角,即黄赤交角, 将图3近似画出如下平面几何图形:则16tan 1.610α==,169.4tan 0.6610β-==, tan tan 1.60.66tan()0.4571tan tan 1 1.60.66αβαβαβ---==≈++⨯g .0.4550.4570.461<<Q ,∴估计该骨笛的大致年代早于公元前6000年.故选:D . 【点睛】本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题.5.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦故选D【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.6.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 【答案】D 【解析】f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f (x )的最小值,故B 正确; ∵f (x +π)=cos ππ3x ⎛⎫++ ⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.7.定义在R 上的函数()f x 既是偶函数又是周期函数,若()f x 的最小正周期是π,且当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()sin f x x =,则5π3f ⎛⎫⎪⎝⎭的值为( )A .12-B C . D .12【答案】B 【解析】 分析:要求53f π⎛⎫⎪⎝⎭,则必须用()sin f x x =来求解,通过奇偶性和周期性,将变量转化到区间02π⎡⎤⎢⎥⎣⎦,上,再应用其解析式求解 详解:()f x Q 的最小正周期是π552333f f f ππππ⎛⎫⎛⎫⎛⎫∴=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()f x Q 是偶函数33f f ππ⎛⎫⎛⎫∴-= ⎪ ⎪⎝⎭⎝⎭,533f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭Q 当02x π⎡⎤∈⎢⎥⎣⎦,时,()sin f x x =,则5 sin 333f f πππ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭故选B点睛:本题是一道关于正弦函数的题目,掌握正弦函数的周期性是解题的关键,考查了函数的周期性和函数单调性的性质.8.已知函数()()πsin 06f x x ωω⎛⎫=-> ⎪⎝⎭,若()π02f f ⎛⎫=- ⎪⎝⎭在π0,2⎛⎫⎪⎝⎭上有且仅有三个零点,则ω= ( ) A .23B .2C .143D .263【答案】C 【解析】∵函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭,()02f fπ⎛⎫=- ⎪⎝⎭∴1sin()sin()6262πππω-=--=- ∴2266k πππωπ-=+或52,266k k Z πππωπ-=+∈ ∴243k ω=+或42,k k ω=+∈Z ∵函数()f x 在0,2π⎛⎫⎪⎝⎭上有且仅有三个零点 ∴(,)6626x ππωππω-∈-- ∴2326ωππππ<-≤∴131933ω<≤ ∴143ω=或6ω= 故选C.9.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是( ) A .①②③ B .①③④C .①④D .③④【答案】B 【解析】 【分析】 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证.【详解】 ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫= ⎪⎝⎭,即-1a =,①正确;∴()sin 2sin 3π⎛⎫=-=- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈,当0k =时,12x x +取最小值23π,所以①③④正确,②错误. 故选:B【点睛】本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.10.将函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象向右平移6π个单位长度后,所得图象关于y 轴对称,且1π2f ω⎛⎫=- ⎪⎝⎭,则当ω取最小值时,函数()f x 的解析式为( )A .()sin 26f x x π⎛⎫=+⎪⎝⎭B .()sin 2π6f x x ⎛⎫=- ⎪⎝⎭C .()sin 4π6f x x ⎛⎫=+ ⎪⎝⎭D .()sin 4π6f x x ⎛⎫=- ⎪⎝⎭【答案】C 【解析】 【分析】由题意利用函数()sin y A x ωφ=+的图象变换规律,可得所得函数的解析式,由12f πω⎛⎫=- ⎪⎝⎭,求出φ,再根据所得图象关于y 轴对称求出ω,可得()f x 的解析式.【详解】解:将函数()()sin (0,)2f x x πωφωφ=+><的图象向右平移6π个单位长度后,可得sin 6y x ωπωφ⎛⎫=-+ ⎪⎝⎭的图象;∵所得图象关于y 轴对称,∴62k ωππφπ-+=+,k Z ∈.∵()1sin sin 2f ππφφω⎛⎫=-=+=- ⎪⎝⎭,即1sin 2φ=,26ππφφ<=,. ∴63k ωπππ-=+,620k ω=-->,则当ω取最小值时,取1k =-,可得4ω=,∴函数()f x 的解析式为()sin 46f x x π⎛⎫=+ ⎪⎝⎭. 故选C . 【点睛】本题主要考查函数()sin y A x ωφ=+的图象变换规律,正弦函数的性质,属于中档题.11.在∆ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .则“sin >sin A B ”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】由正弦定理得sin sin 22a b A B a b R R>⇔>⇔> ,所以“sin sin A B >”是“a b >”的充要条件,选C.12.如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =u u u v( )A .3155AB AC +u u uv u u u vB .2155AB AC +u u uv u u u vC .481515AB AC +u u uv u u u v D .841515AB AC +u u uv u u u v 【答案】D 【解析】 【分析】设出等腰直角三角形ABC 的斜边长,由此结合余弦定理求得各边长,并求得cos DAE ∠,由此得到45AF AD =u u u r u u u r,进而利用平面向量加法和减法的线性运算,将45AF AD =u u u r u u u r 表示为以,AB AC u u u r u u u r为基底来表示的形式.【详解】设6BC =,则32,2AB AC BD DE EC =====,22π2cos4AD AE BD BA BD BA ==+-⋅⋅10=,101044cos 2105DAE +-∠==⨯, 所以45AF AF AD AE ==,所以45AF AD =u u u r u u u r . 因为()1133AD AB BC AB AC AB =+=+-u u u r u u u r u u u r u u u r u u u r u u u r 2133AB AC =+u u ur u u u r , 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r . 故选:D 【点睛】本小题主要考查余弦定理解三角形,考查利用基底表示向量,属于中档题.13.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) A.13+ B.3C.23+ D.3【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫=⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 3f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.14.函数()2sin sin cos y x x x =+的最大值为( ) A.1B1CD .2【答案】A【解析】由题意,得()22sin sin cos 2sin 2sin cos sin2cos21y x x x x x x x x =+=+=-+π2sin 21214x ⎛⎫=-+≤+ ⎪⎝⎭;故选A.15.已知函数()3cos(2)2f x x π=+,若对于任意的x ∈R ,都有12()()()f x f x f x 剟成立,则12x x -的最小值为( ) A .4 B .1C .12D .2【答案】D 【解析】 【分析】由题意得出()f x 的一个最大值为()2f x ,一个最小值为()1f x ,于此得出12x x -的最小值为函数()y f x =的半个周期,于此得出答案. 【详解】对任意的x ∈R ,()()()12f x f x f x 剟成立. 所以()()2min 3f x f x ==-,()()2max 3f x f x ==,所以12min22Tx x -==,故选D . 【点睛】本题考查正余弦型函数的周期性,根据题中条件得出函数的最值是解题的关键,另外就是灵活利用正余弦型函数的周期公式,考查分析问题的能力,属于中等题.16.若θ是第二象限角,则下列选项中能确定为正值的是( ) A .sin B .cosC .tanD .cos2θ【答案】C 【解析】 【分析】直接利用三角函数象限角的三角函数的符号判断即可. 【详解】由θ是第二象限角可得为第一或第三象限角,所以tan >0.故选C 【点睛】本题考查三角函数值的符号的判断,是基础题.17.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,若1b =,3c =,且2sin()cos 12cos sin B C C A C +=-,则ABC V 的面积是( )A .4B .12C .4或2D .14或12【答案】C 【解析】 【分析】根据已知关系求出1sin 2B =,根据余弦定理求出边a ,根据面积公式即可得解. 【详解】因为2sin()cos 12cos sin B C C A C +=-,所以2sin cos 12cos sin A C A C =-, 所以2sin cos 2cos sin 1A C A C +=,所以2sin()1A C +=, 所以2sin 1B =,即1sin 2B =,因为b c <,所以B C <,所以角B 为锐角,所以cos B ==,由余弦定理2222cos b a c ac B =+-得2132a a =+-⨯, 整理可得2320a a -+=,解得1a =或2a =.当1a =时,ABC V 的面积是111sin 1222S ac B ==⨯=当2a =时,ABC V 的面积是111sin 2222S ac B ==⨯=. 故选:C. 【点睛】此题考查根据余弦定理解三角形,关键在于熟练掌握定理公式,结合边角关系解方程,根据面积公式求解.18.已知函数()()sin x f x x R ωφ+=∈,,其中0ωπφπ>-<,≤.若函数()f x 的最小正周期为4π,且当23x π=时,()f x 取最大值,是( ) A .()f x 在区间[]2ππ--,上是减函数 B .()f x 在区间[]0π-,上是增函数 C .()f x 在区间[]0π,上是减函数 D .()f x 在区间[]02π,上是增函数 【答案】B 【解析】 【分析】先根据题目所给已知条件求得()f x 的解析式,然后求函数的单调区间,由此得出正确选项.【详解】由于函数()f x 的最小正周期为4π,故2π14π2ω==,即()1sin 2f x x φ⎛⎫=+ ⎪⎝⎭,2ππsin 1,33π6f φφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭=⎭⎝.所以()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭.由π1ππ2π2π2262k x k -≤+≤+,解得4π2π4π4π33k x k -≤≤+,故函数的递增区间是4π2π4π,4π33k k ⎡⎤-+⎢⎥⎣⎦,令0k =,则递增区间为4π2π,33⎡⎤-⎢⎥⎣⎦,故B 选项正确.所以本小题选B. 【点睛】本小题主要考查三角函数解析式的求法,考查三角函数单调区间的求法,属于基础题.19.在ABC V 中,角A 的平分线交边BC 于D ,4AB =,8AC =,2BD =,则ABD △的面积是( )A .15B .315C .1D .3【答案】A 【解析】 【分析】先根据正弦定理求得DC ,再结合余弦定理求得cos B ,进而求出ABD S V ,即可求得结论. 【详解】 如图:()sin sin sin ADC ADB ADB π∠=-∠=∠,在ABD △中,由正弦定理得sin sin BD ABBAD ADB=∠∠,同理可得sin sin CD ACCAD ADC=∠∠,因为ABC V 中,角A 的平分线交边BC 于D ,上述两个等式相除得BD ABCD AC=, 4AB =Q ,8AC =,2BD =,8244AC BD CD AB ⋅⨯∴===,6BC ∴=.2222224681cos 22464AB BC AC B AB BC +-+-∴===-⋅⨯⨯,sin 4B ==. 1sin 2ABD S AB BD B ∴=⋅⋅=V 故选:A . 【点睛】本题考查三角形面积的求法以及角平分线的性质应用,是中档题,解题时要注意余弦定理的合理运用,考查计算能力,属于中等题.20.设2α是第一象限角,且cos cos αα=-,则α是第( )象限角 A .一 B .二C .三D .四【答案】B 【解析】 【分析】计算得到720180720k k α︒<<︒+︒,k Z ∈,再根据cos 0α<得到答案. 【详解】∵2α是第一象限角,∴360903602k k α︒<<︒+︒,k Z ∈,∴720180720k k α︒<<︒+︒,k Z ∈,∴α为第一象限角或第二象限角或终边在y 轴正半轴上的轴线角,∵cos cos αα=-,∴cos 0α<,∴α是第二象限角. 故选:B . 【点睛】本题考查了角度所在象限,意在考查学生的计算能力和转化能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题1-2 解三角形重难点、易错点突破(建议用时:60分钟)三角形定“形”记根据边角关系判断三角形的形状是一类热点问题.解答此类问题,一般需先运用正弦、余弦定理转化已知的边角关系,再进一步判断三角形的形状,这种转化一般有两个通道,即化角为边或化边为角.下面例析这两个通道的应用.1.通过角之间的关系定“形”例1 在△ABC 中,已知2sin A cos B =sin C ,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形2.通过边之间的关系定“形”例2 在△ABC 中,若sin A +sin C sin B =b +ca ,则△ABC 是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形细说三角形中解的个数解三角形时,处理“已知两边及其一边的对角,求第三边和其他两角”问题需判断解的个数,这是一个比较棘手的问题.下面对这一问题进行深入探讨. 1.出现问题的根源我们作图来直观地观察一下.不妨设已知△ABC 的两边a ,b 和角A ,作图步骤如下:①先做出已知角A ,把未知边c 画为水平的,角A 的另一条边为已知边b ;②以边b 的不是A 点的另外一个端点为圆心,边a 为半径作圆C ;③观察圆C 与边c 交点的个数,便可得此三角形解的个数. 显然,当A 为锐角时,有如图所示的四种情况:当A 为钝角或直角时,有如图所示的两种情况:根据上面的分析可知,由于a,b长度关系的不同,导致了问题有不同个数的解.若A为锐角,只有当a不小于b sin A时才有解,随着a的增大得到的解的个数也是不相同的.当A为钝角时,只有当a大于b时才有解.2.解决问题的策略(1)正弦定理法已知△ABC的两边a,b和角A,求B.根据正弦定理asin A=bsin B,可得sin B=b sin Aa.若sin B>1,三角形无解;若sin B=1,三角形有且只有一解;若0<sin B<1,B有两解,再根据a,b的大小关系确定A,B的大小关系(利用大边对大角),从而确定B的两个解的取舍.(2)余弦定理法已知△ABC的两边a,b和角A,求c.利用余弦定理可得a2=b2+c2-2bc cos A,整理得c2-2bc cos A-a2+b2=0.适合问题的上述一元二次方程的解c便为此三角形的解.(3)公式法当已知△ABC的两边a,b和角A时,通过前面的分析可总结三角形解的个数的判断公式如下表:A<90°A≥90°a≥ba<ba>b a≤b a>b sin A a=b sin A a<b sin A一解二解一解无解一解无解3.实例分析例在△ABC中,已知A=45°,a=2,b=2(其中角A,B,C的对边分别为a,b,c),试判断符合上述条件的△ABC有多少个?挖掘三角形中的隐含条件解三角形是高中数学的重要内容,也是高考的一个热点.由于我们对三角公式比较熟悉,做题时比较容易入手.但是公式较多且性质灵活,解题时稍有不慎,常会出现增解、错解现象,其根本原因是对题设中的隐含条件挖掘不够.下面结合例子谈谈解三角形时,题目中隐含条件的挖掘. 隐含条件1.两边之和大于第三边例1 已知钝角三角形的三边a =k ,b =k +2,c =k +4,求k 的取值范围.隐含条件2.三角形的内角范围例2 已知△ABC 中,B =30°,AB =23,AC =2,则△ABC 的面积是________.例3 在△ABC 中,tan A tan B =a 2b 2,试判断三角形的形状.例4 在△ABC 中,B =3A ,求ba 的取值范围.正弦、余弦定理三应用有些题目,表面上看不能利用正弦、余弦定理解决,但若能构造适当的三角形,就能利用两定理,题目显得非常容易,本文剖析几例. 1.平面几何中的长度问题例1 如图,在梯形ABCD 中,CD =2,AC =19,∠BAD =60°,求梯形的高.2.求范围例2 如图,等腰△ABC 中,底边BC =1,∠ABC 的平分线BD 交AC 于点D ,求BD 的取值范围(注:0<x <1时,f (x )=x -1x为增函数).3.判断三角形的形状例3 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=k ,(k ∈R ). (1)判断△ABC 的形状; (2)若c =2,求k 的值.专题1-2 解三角形重难点、易错点突破参考答案三角形定“形”记例1 分析 通过三角形恒等变换和正弦、余弦定理,把条件式转化,直至能确定两角(边)的关系为止,即可判断三角形的形状.解析 方法一 利用正弦定理和余弦定理 2sin A cos B =sin C 可化为2a ·a 2+c 2-b 22ac =c ,即a 2+c 2-b 2=c 2,即a 2-b 2=0,即a 2=b 2,故a =b . 所以△ABC 是等腰三角形.故选B. 方法二 因为在△ABC 中,A +B +C =π, 即C =π-(A +B ),所以sin C =sin(A +B ). 由2sin A cos B =sin C ,得2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =0,即sin(A -B )=0. 又因为-π<A -B <π, 所以A -B =0,即A =B .所以△ABC 是等腰三角形,故选B. 答案 B点评 根据角的三角函数之间的关系判断三角形的形状,一般需通过三角恒等变换,求出角(边)之间的关系. 例2分析 先运用正弦定理化角为边,根据边之间的关系即可判断三角形的形状. 解析 在△ABC 中,由正弦定理,可得sin A +sin C sin B =a +c b =b +ca ,整理得a (a +c )=b (b +c ),即a 2-b 2+ac -bc =0,(a -b )(a +b +c )=0. 因为a +b +c ≠0,所以a -b =0,即a =b , 所以△ABC 是等腰三角形.故选C. 答案 C点评 本题也可化边为角,但书写复杂,式子之间的关系也不易发现.细说三角形中解的个数例 分析 此题为“已知两边和其中一边的对角”解三角形的问题,可以利用上述办法来判断△ABC 解的情况.解 方法一 由正弦定理a sin A =bsin B ,可得sin B =22sin 45°=12<1. 又因为a >b ,所以A >B ,故B =30°, 符合条件的△ABC 只有一个. 方法二 由余弦定理得22=c 2+(2)2-2×2×c cos 45°,即c 2-2c -2=0,解得c =1± 3.而1-3<0, 故仅有一解,符合条件的△ABC 只有一个.方法三 A 为锐角,a >b ,故符合条件的△ABC 只有一个.挖掘三角形中的隐含条件例1 [错解] ∵c >b >a 且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2+(k +2)2-(k +4)22k (k +2)=k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6. 又∵k 为三角形的边长, ∴k >0.综上所述,0<k <6.[点拨] 忽略了隐含条件:k ,k +2,k +4构成一个三角形,需满足k +(k +2)>k +4.即k >2而不是k >0. [正解] ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6.由两边之和大于第三边得k +(k +2)>k +4,∴k >2, 综上所述,k 的取值范围为2<k <6.温馨点评 虽然是任意两边之和大于第三边,但实际应用时通常不用都写上,只需最小两边之和大于最大边就行了.例2 [错解] 由正弦定理,得sin C =AB sin B AC =32.∴C =60°,∴A =90°.则S △ABC =12AB ·AC ·sin A =12×23×2×1=2 3.[点拨] 上述解法中在用正弦定理求C 时丢了一解.实际上由sin C =32可得C =60°或C =120°,它们都满足条件.[正解] 由正弦定理,得sin C =AB sin B AC =32.∴C =60°或C =120°. 当C =60°时,A =90°, ∴S △ABC =12AB ·AC ·sin A =2 3.当C =120°时,A =30°, ∴S △ABC =12AB ·AC ·sin A = 3.故△ABC 的面积是23或 3.温馨点评 利用正弦定理理解“已知两边及其中一边对角,求另一角”问题时,由于三角形内角的正弦值都为正的,而这个内角可能为锐角,也可能为钝角,容易把握不准确出错.例3 [错解] tan A tan B =a 2b 2⇔sin A cos B cos A sin B =sin 2A sin 2B ⇔cos B cos A =sin Asin B ⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B ,∴A =B .∴△ABC 是等腰三角形.[点拨] 上述错解忽视了满足sin 2A =sin 2B 的另一个角之间的关系:2A +2B =180°. [正解] tan A tan B =a 2b 2⇔sin A cos B cos A sin B =sin 2A sin 2B ⇔cos B cos A =sin Asin B ⇔sin A cos A =sin B cos B⇔sin 2A =sin 2B ⇔2A =2B 或2A +2B =180°. ∴A =B 或A +B =90°.∴△ABC 是等腰三角形或直角三角形.温馨点评 在△ABC 中,sin A =sin B ⇔A =B 是成立的,但sin 2A =sin 2B ⇔2A =2B 或2A +2B =180°. 例4 [错解] 由正弦定理得b a =sin B sin A =sin 3A sin A =sin (A +2A )sin A =sin A cos 2A +cos A sin 2Asin A=cos 2A +2cos 2A =4cos 2A -1. ∵0≤cos 2A ≤1, ∴-1≤4cos 2A -1≤3, ∵b a >0,∴0<ba≤3. [点拨] 忽略了三角形内角和为180°,及角A 、B 的取值范围,从而导致ba取值范围求错.[正解] 由正弦定理得b a =sin B sin A =sin 3Asin A=sin (A +2A )sin A =sin A cos 2A +cos A sin 2Asin A=cos 2A +2cos 2A =4cos 2A -1.∵A +B +C =180°,B =3A .∴A +B =4A <180°, ∴0°<A <45°.∴22<cos A <1, ∴1<4cos 2 A -1<3,∴1<ba<3.温馨点评 解三角形问题,角的取值范围至关重要.一些问题,角的取值范围隐含在题目的条件中,若不仔细审题,深入挖掘,往往疏漏而导致解题失败.正弦、余弦定理三应用例1 分析 如图,过点D 作DE ⊥AB 于点E ,则DE 为所求的高.由∠BAD =60°,知∠ADC =120°,又边CD 与AC 的长已知,故△ACD 为已知两边和其中一边的对角,可解三角形.解Rt △ADE ,需先求AD 的长,这只需在△ACD 中应用余弦定理. 解 由∠BAD =60°,得∠ADC =120°, 在△ACD 中,由余弦定理得AC 2=AD 2+CD 2-2AD ·CD ·cos ∠ADC , 即19=AD 2+4-2AD ×2×⎝⎛⎭⎫-12, 解得AD =3或AD =-5(舍去). 在△ADE 中,DE =AD ·sin 60°=332. 点评 依据余弦定理建立方程是余弦定理的一个妙用,也是函数与方程思想在解三角形中的体现. 2.求范围例2 分析 把BD 的长表示为∠ABC 的函数,转化为求函数的值域. 解 设∠ABC =α.因为∠ABC =∠C ,所以∠A =180°-2α, ∠BDC =∠A +∠ABD =180°-2α+α2=180°-3α2,因为BC =1,在△BCD 中,由正弦定理得BD =sin αsin 3α2=2sin α2cos α2sin αcos α2+cos αsin α2=2cosα24cos 2α2-1=24cos α2-1cosα2,因为0°<α2<45°,所以22<cos α2<1,而当cos α2增大时,BD 减小,且当cos α2=22时,BD =2;当cos α2=1时,BD =23,故BD 的取值范围是⎝⎛⎭⎫23,2.点评 本题考查:(1)三角知识、正弦定理以及利用函数的单调性求值域的方法;(2)数形结合、等价转化等思想.例3 解 (1)∵AB →·AC →=cb cos A ,BA →·BC →=ca cos B . 又AB →·AC →=BA →·BC →, ∴bc cos A =ac cos B , ∴b cos A =a cos B .方法一 ∴sin B cos A =sin A cos B , 即sin A cos B -cos A sin B =0, ∴sin(A -B )=0,∵-π<A -B <π,∴A =B . ∴△ABC 为等腰三角形.方法二 利用余弦定理将角化为边, ∵b cos A =a cos B ,∴b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 22ac ,∴b 2+c 2-a 2=a 2+c 2-b 2, ∴a 2=b 2,∴a =b . ∴△ABC 为等腰三角形. (2)由(1)知:a =b .∴AB →·AC →=bc cos A =bc ·b 2+c 2-a 22bc =c 22=k ,∵c =2,∴k =1.。