江苏省无锡市八年级数学下学期期中复习试题(1)(无答案)
2020-2021学年江苏省无锡市八年级(下)期中数学试卷
2020-2021学年江苏省无锡市八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中()A.B.C.D.2.(3分)下列调查中,适宜采用普查方式的是()A.调查市场上冷冻食品的质量情况B.调查乘坐飞机的旅客是否携带了危禁物品C.调查某品牌冰箱的使用寿命D.调查2021年春晚的收视率情况3.(3分)下列各式是分式的是()A.B.C.D.4.(3分)给出下列分式:、、、,其中最简分式有()A.1个B.2个C.3个D.4个5.(3分)下列等式成立的是()A.B.C.D.6.(3分)在下列命题中,正确的是()A.一组对边平行另一组对边相等的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形7.(3分)若顺次连接四边形各边中点所得的四边形是菱形,则原四边形()A.一定是矩形B.一定是菱形C.对角线一定互相垂直D.对角线一定相等8.(3分)如图,在▱ABCD中,AB=6,∠C的平分线交AD于E,交BA的延长线于F()A.2B.3C.4D.69.(3分)如图,在△ABC中,∠BAC=102°,且AB′=CB′,则∠C′的度数为()A.24°B.26°C.28°D.36°10.(3分)已知平面直角坐标系中,点A、B在动直线y=mx﹣3m+4(m为常数且)上,AB=5,以点O、A、B、C为顶点的平行四边形面积的最大值是()A.24B.25C.26D.30二、填空题(本大题共8小题,每空2分,共16分.)11.(2分)要使分式有意义,则x应满足条件.12.(2分)计算:=.13.(2分)已知平行四边形ABCD中,∠B=3∠A,则∠D=.14.(2分)一次数学测试后,某班40名学生的成绩被分为5组,第1﹣4组的频数分别为12、10、6、8.15.(2分)如图所示,点D、E分别是△ABC的边AB、AC的中点,连接BE,交DE的延长线于点F,若EF=6.16.(2分)如图,在菱形ABCD中,AB=5,过点D作DE⊥BA,交BA的延长线于点E.17.(2分)已知,则的值是.18.(2分)如图,矩形ABCD的边AB=,BC=3,且AE=1,F为AD边上的一个动点,若以EF为边向右侧作等腰直角三角形EFG,EF=EG,则CG的最小值为.三、解答题(本大题共10小题,共84分.)19.(8分)计算并化简:(1);(2).20.(6分)化简代数式,再从﹣2,2,0,1四个数中选一个恰当的数作为a的值代入求值.21.(8分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折后再沿y轴向上平移2个单位,在图中画出平移后的△A1B1C1,若△ABC内有一点P(a,b),则经过两次变换后点P的坐标变为;(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2;(3)若将△ABC绕某点逆时针旋转90°后,其对应点分别为A3(﹣1,﹣2),B3(1,﹣3),C3(0,﹣5),则旋转中心坐标为.22.(8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?23.(6分)一个不透明的口袋中放着若干个红球和黑球,这两种球除了颜色之外没有其他任何区别,袋中的球已经搅匀,经过很多次实验发现摸到红球的频率逐渐稳定在.(1)估计摸到黑球的概率是;(2)如果袋中原有红球12个,又放入n个黑球,再经过很多次实验发现摸到黑球的频率逐渐稳定在24.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.25.(8分)如图,已知△ABC,AP平分∠BAC(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹).(1)作菱形AMPN,使点M,N分别在边AB、CA上;(2)若∠C=90°,AB=8,BP=4,求(1)26.(10分)如图,矩形ABCD中,AB=8cm,动点P从点A出发,以每秒2cm的速度沿线段AB向点B运动,把∠A沿DP折叠,使点A落在点A′处.求出当△BP A′为直角三角形时27.(10分)如图,在平面直角坐标系中,一次函数,以AB为边在直线右侧作正方形ABCD,连接BD,交BD于点E,连接AE.(1)求线段AB的长;(2)求证:AD平分∠EAF;(3)求△AEF的周长.28.(12分)如图,四边形ABCD是菱形,AD=5,垂足为H,交对角线AC于M,且AH =3.动点P从点A出发,沿折线A﹣B﹣C方向以2个单位/秒的速度向终点B匀速运动,沿CB方向以1个单位/秒的速度向终点B匀速运动,设△MPQ的面积为S(1)求DM的长;(2)当点P在BC上运动时,求S与t之间的函数关系式,并求出t的取值范围;(3)当点P在AB上运动时,是否存在这样的t值,使∠MPB与∠BCD互为余角,求出t值,若不存在2020-2021学年江苏省无锡市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中()A.B.C.D.【解答】解:A、“业”可以看作轴对称图形;B、“精”不可以看作轴对称图形;C、“于”不可以看作轴对称图形;D、“勤”不可以看作轴对称图形;故选:A.2.(3分)下列调查中,适宜采用普查方式的是()A.调查市场上冷冻食品的质量情况B.调查乘坐飞机的旅客是否携带了危禁物品C.调查某品牌冰箱的使用寿命D.调查2021年春晚的收视率情况【解答】解:A、调查市场上冷冻食品的质量情况,故本选项不合题意;B、调查乘坐飞机的旅客是否携带了危禁物品,故本选项符合题意;C、调查某品牌冰箱的使用寿命,故本选项不合题意;D、调查2021年春晚的收视率情况,故本选项不合题意;故选:B.3.(3分)下列各式是分式的是()A.B.C.D.【解答】解:A、是单项式;B、是单项式;C、是单项式;D、是分式.故选:D.4.(3分)给出下列分式:、、、,其中最简分式有()A.1个B.2个C.3个D.4个【解答】解:∵=、、==2a+b、,∴最简分式是共1个.故选:A.5.(3分)下列等式成立的是()A.B.C.D.【解答】解:A、,故A不成立.B、,故B不成立.C、,故C成立.D、,故D不成立.故选:C.6.(3分)在下列命题中,正确的是()A.一组对边平行另一组对边相等的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形【解答】解:A、一组对边平行另一组对边相等的四边形可能是平行四边形,故原命题错误;B、有一个角是直角的平行四边形是矩形,不符合题意;C、有一组邻边相等的平行四边形是菱形,符合题意;D、对角线互相垂直平分且相等的四边形是正方形,不符合题意,故选:C.7.(3分)若顺次连接四边形各边中点所得的四边形是菱形,则原四边形()A.一定是矩形B.一定是菱形C.对角线一定互相垂直D.对角线一定相等【解答】解:如图,根据题意得:四边形EFGH是菱形,F,G,H分别是边AD,BC,∴EF=FG=CH=EH,BD=2EF,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选:D.8.(3分)如图,在▱ABCD中,AB=6,∠C的平分线交AD于E,交BA的延长线于F()A.2B.3C.4D.6【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,∴∠F=∠DCF,∵CF平分∠BCD,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=3,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=7;故选:C.9.(3分)如图,在△ABC中,∠BAC=102°,且AB′=CB′,则∠C′的度数为()A.24°B.26°C.28°D.36°【解答】解:∵将△ABC绕点A按逆时针方向旋转得到△AB'C'.∴AB=AB',∠C=∠C',∴∠B=∠AB'B,∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=2∠C=∠B,∵∠BAC=102°,∴∠C+∠B=78°,∴∠C=26°,∴∠C'=26°,故选:B.10.(3分)已知平面直角坐标系中,点A、B在动直线y=mx﹣3m+4(m为常数且)上,AB=5,以点O、A、B、C为顶点的平行四边形面积的最大值是()A.24B.25C.26D.30【解答】解:方法一:∵直线AB:y=mx﹣3m+4=m(x﹣3)+4,∴AB过定点M(3,4),∴OM=5,作OH⊥AB于H,∴OH≤5,∴S△ABO最大=,∴以点O、A、B、C为顶点的平行四边形面积的最大值是25,故选:B.二、填空题(本大题共8小题,每空2分,共16分.)11.(2分)要使分式有意义,则x应满足条件x≠3.【解答】解:∵分式有意义,∴x﹣3≠5,解得:x≠3.故答案为:x≠3.12.(2分)计算:=a5b5.【解答】解:原式=a6b3•=a5b5.故答案为:a4b5.13.(2分)已知平行四边形ABCD中,∠B=3∠A,则∠D=135°.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∠D=∠B,∵∠B=3∠A,∴4∠A=180°,解得:∠A=45°,∴∠D=∠B=7×45°×5=135°,故答案为:135°.14.(2分)一次数学测试后,某班40名学生的成绩被分为5组,第1﹣4组的频数分别为12、10、6、80.1.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=6,则第5组的频率为4÷40=2.1,故答案为:0.6.15.(2分)如图所示,点D、E分别是△ABC的边AB、AC的中点,连接BE,交DE的延长线于点F,若EF=63.【解答】解:∵D、E分别是△ABC的边AB,∴DE为△ABC的中位线,∴DE∥BC,DE=,∴EF∥BC,∵CF∥BE,∴四边形BCFE为平行四边形,∴BC=EF=7,∴DE=BC=8,故答案为:3.16.(2分)如图,在菱形ABCD中,AB=5,过点D作DE⊥BA,交BA的延长线于点E .【解答】解:如图,设AC与BD的交点为O,∵四边形ABCD是菱形,∴AO=OC=3,BO=DO,∴BO===4,∴BD=4,∵S菱形ABCD=AB•DE=AC•BD,∴DE==,故答案为.17.(2分)已知,则的值是﹣6.【解答】解:∵,∴﹣=,则=,故=5,∴=﹣3×.故答案为:﹣3.18.(2分)如图,矩形ABCD的边AB=,BC=3,且AE=1,F为AD边上的一个动点,若以EF为边向右侧作等腰直角三角形EFG,EF=EG,则CG的最小值为 2.5.【解答】解:如图,过点G作GH⊥AB于H,∵四边形ABCD是矩形,AB=,∴∠B=90°,CD=,∵AE=3,∴BE=,∵∠GHE=∠A=∠GEF=90°,∴∠GEH+∠EGH=90°,∠GEH+∠FEA=90°,∴∠EGH=∠FEA,又∵GE=EF,∴△GEH≌△FEA(AAS),∴GH=AE=4,∴点G在平行AB且到AB距离为1的直线MN上运动,∴当F与D重合时,CG有最小值,∴CG的最小值==2.3,故答案为:2.5.三、解答题(本大题共10小题,共84分.)19.(8分)计算并化简:(1);(2).【解答】解:(1)原式=+====2;(2)原式=﹣===.20.(6分)化简代数式,再从﹣2,2,0,1四个数中选一个恰当的数作为a的值代入求值.【解答】解:原式=•=•=,当a=0时,原式=2.21.(8分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折后再沿y轴向上平移2个单位,在图中画出平移后的△A1B1C1,若△ABC内有一点P(a,b),则经过两次变换后点P的坐标变为(a,﹣b+2);(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2;(3)若将△ABC绕某点逆时针旋转90°后,其对应点分别为A3(﹣1,﹣2),B3(1,﹣3),C3(0,﹣5),则旋转中心坐标为(0,﹣1).【解答】解:(1)如图,△A1B1C8,经过两次变换后点P的坐标变为(a,﹣b+2).故答案为:(a,﹣b+2).(2)如图,△A6B2C2即为所求作.(3)如图,旋转中心的Q的坐标为(4.故答案为:(0,﹣1).22.(8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是100.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?【解答】解:(1)∵10÷10%=100(户),∴样本容量是100;(2)用水15~20吨的户数:100﹣10﹣38﹣24﹣8=20(户),∴补充图如下:“15吨~20吨”部分的圆心角的度数=360°×=72°,答:扇形图中“15吨~20吨”部分的圆心角的度数为72°.(3)6×=6.08(万户),答:该地区6万用户中约有4.08万户的用水全部享受基本价格.23.(6分)一个不透明的口袋中放着若干个红球和黑球,这两种球除了颜色之外没有其他任何区别,袋中的球已经搅匀,经过很多次实验发现摸到红球的频率逐渐稳定在.(1)估计摸到黑球的概率是;(2)如果袋中原有红球12个,又放入n个黑球,再经过很多次实验发现摸到黑球的频率逐渐稳定在【解答】解:(1)P(取出黑球)=1﹣P(取出红球)=1﹣=;故答案为:;(2)设袋子中原有黑球x个,根据题意得:=,解得:x=18,经检验x=18是原方程的根,所以黑球有18个,∵又放入了n个黑球,根据题意得:=,解得:n=6.24.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【解答】证明:(1)∵DF∥BE,∴∠DFE=∠BEF.在△ADF和△CBE中,,∴△AFD≌△CEB(SAS);(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形.25.(8分)如图,已知△ABC,AP平分∠BAC(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹).(1)作菱形AMPN,使点M,N分别在边AB、CA上;(2)若∠C=90°,AB=8,BP=4,求(1)【解答】解:(1)作线段AP的垂直平分线交AB于点M,交AC于点N、PN得四边形AMPN即为所求菱形,证明:∵MN是AP的垂直平分线,∴AN=PN,AM=PM,∵AP平分∠BAC,∴∠NAO=∠MAO,∵AO=AO∴△AON≌△AOM(ASA),∴AN=AM,∴AN=PN=PM=AM,∴四边形AMPN是菱形; (2)∵四边形AMPN是菱形,∴AN=PN=PM=AM,PM∥AC,∵∠C=90°,AB=8,∴∠BPM=∠C=90°,设AN=PN=PM=AM=x,则BM=8﹣x,由勾股定理得:BM4=PM2+BP2,∴(7﹣x)2=x2+32,解得:x=3,∴BM=8﹣3=5,∵PM∥AC,∴,即,解得:BC=,∴PC=BC﹣BP=﹣4=,∴菱形AMPN的面积=AN•PC=3×=.26.(10分)如图,矩形ABCD中,AB=8cm,动点P从点A出发,以每秒2cm的速度沿线段AB向点B运动,把∠A沿DP折叠,使点A落在点A′处.求出当△BP A′为直角三角形时【解答】解:分三种情况讨论:(1)如图,当∠BA′P=90°时,由折叠得,∠P A′D=∠A=90°,∴∠BA′D=∠BA′P+∠P A′D=180°,∴点B、A′,设AP=x cm,BP=(8﹣x)cm,由题可得,BD=,A'D=AD=6,∴A′B=10﹣6=4,在Rt△A′PB中,有x5+42=(7﹣x)2,解得:x=3,∴点P的运动时间为3÷2=(s);(2)如图,当∠A′P ,∠A′P ,又∵∠DA′P=∠A=90°,∴四边形AP A′D是矩形,由折叠可得A′P=AP,∴四边形AP A′D是正方形,∴AP=AD=6,∴点P的运动时间为6÷4=3(s);(3)当∠A′B P=90°时.综上所述,符合要求的点P的运动时间为s .27.(10分)如图,在平面直角坐标系中,一次函数,以AB为边在直线右侧作正方形ABCD,连接BD,交BD于点E,连接AE.(1)求线段AB的长;(2)求证:AD平分∠EAF;(3)求△AEF的周长.【解答】解:(1)∵A、B两点在y=﹣,设A(x,0),y)代入y=﹣,得x=5,y=12,∴A(5,8),12),即OA=5,OB=12,∴AB===13,故AB=13;(2)∵四边形ABCD是正方形,∴CD=AD,∵BD是正方形的对角线,∴∠CDE=∠ADE,在△CDE和△ADE中,,∴△CDE≌△ADE(SAS),∴∠DCE=∠DAE,设FC与AD交点为M,∵∠EMD=∠AMF(对顶角相等),∠DCM+∠EMD=∠MAF+∠AMF,∴∠DCM=∠MAF=∠EAM,∴AD平分∠EAF; (3)如右图,过点B作BN平行于OF,∵BN∥OF,∠BOF=∠CFO=90°,∴四边形OBNF为正方形,∴BN=BO, 又∵BC=BA,∠CBN=∠OBA,∴BN=12,CN=5,∴C(12,17),又∵BA=AD=13,∴BD=13, 由(2)中△CDE≌△ADE,得AE=CE,又∵OF=BN=12,DA=2,∴AF=12﹣5=7,CF=CN+NF=4+12=17,△AEF周长=AE+EF+AF=CF+AF=17+7=24.28.(12分)如图,四边形ABCD是菱形,AD=5,垂足为H,交对角线AC于M,且AH =3.动点P从点A出发,沿折线A﹣B﹣C方向以2个单位/秒的速度向终点B匀速运动,沿CB方向以1个单位/秒的速度向终点B匀速运动,设△MPQ的面积为S(1)求DM的长;(2)当点P在BC上运动时,求S与t之间的函数关系式,并求出t的取值范围;(3)当点P在AB上运动时,是否存在这样的t值,使∠MPB与∠BCD互为余角,求出t值,若不存在【解答】解:(1)在Rt△ADH中,AD=5,∴DH=4,∵AC是菱形ABCD的对角线,∴∠ACD=∠ACB,CD=CB,在△DCM和△BCM中,,∴△DCM≌△BCM(SAS),∴DM=BM,在Rt△BHM中,BM=DM,BH=AB﹣AH=3,根据勾股定理得,DM2﹣MH2=BH3,即:DM2﹣(4﹣DM)7=4,∴DM=;(2)点P在AB上运动的时间为t=,此时点Q运动的距离为,设点P、Q在CB上相遇的时间为x,解得x=,总时间为t=+=,故点P在BC上运动时t=,当PQ相遇时,①当≤t<时,过点M作MG⊥CB交CB的延长线于点G,∵菱形对角线平分对角,故MH=DM=,此时PB=2t﹣5,CQ=t,则S=×PQ×MG==﹣+;②当t=时,S=0;③当<t≤5时,同理可得:S=﹣,故S=;(3)存在,理由:∵∠ADM+∠BAD=90°,∠BCD=∠BAD,∴∠ADM+∠BCD=90°,∵∠MPB+∠BCD=90°,∴∠MPB=∠ADM,∵四边形ABCD是菱形,∴∠DAM=∠BAM,∵AM=AM,∴△ADM≌△ABM(SAS),∴∠ADM=∠ABM,∴∠MPB=∠ABM,∵MH⊥AB,∴PH=BH=5,∴BP=2BH=4,∵AB=7,∴AP=1,∴t=AP=.。
江苏省无锡市惠山区2022-2023学年八年级下学期期中数学试卷
A.2
B. 6
C. 2 2
D.3
8.在学校组织的登山活动中,某班分成甲,乙两个小组同时开始攀登一座 480 米高的
山,乙组的攀登速度是甲组的 1.2 倍,乙组达到顶峰所用的时间比甲组少 5 分钟.如果
设甲组的攀登速度为 x 米/分钟,那么下面所列方程正确的是( )
A. 480 480 1.2 x x5
价比 A 型笔记本的单价多1.5 元,且用 1200 元购买 A 型笔记本与用 1500 买 B 型笔记本
本数相同.
(1)求 A、B 两种型号笔记本的单价各是多少元?
(2)为了奖励更多的学生,增强学生的学习积极性.学校还需要增加购买一些笔记本,增
加购买 A 型笔记本和 B 型笔记本共 200 本,且购买的 A 型笔记本数量不能多于 B 型笔
试卷第 4 页,共 7 页
22.如图,平面直角坐标系内,小正方形网格的边长为 1 个单位长度, VABC 的顶点均 在格点上.
(1)画出将 VABC 关于原点 O 的中心对称图形△ A1B1C1 . (2)将 VDEF 绕点 E 顺时针旋转 90 得到△D1EF1 ,画出△D1EF1 . (3)若 VDEF 由 VABC 绕着某点旋转得到的,则这点的坐标为___________. 23.如图,在平行四边形 ABCD 中, AF ∥CE .
B.1
) C. 1
D. 1
5.为了了解我市八年级学生每天用于学习的时间,对其中 500 名学生进行了随机调查,
则下列说法错误的是( )
A.总体是我市八年级学生每天用于学习的时间的全体
B.其中 500 名学生是总体的一个样本
C.样本容量是 500
D.个体是我市八年级学生中每名学生每天用于学习的时间
江苏省无锡市八年级下学期数学期中考试试卷
江苏省无锡市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019八下·庐阳期末) 下列根式是最简二次根式的是()A .B .C .D .2. (2分)下列二次根式中能与合并的二次根式是().A .B .C .D .3. (2分) (2019八下·灞桥期末) 用两个完全相同的直角三角形拼下列图形:(1)平行四边形,(2)矩形,(3)菱形,(4)正方形,(5)等腰三角形,(6)等边三角形,一定可以拼成的图形是()A . (1)(4)(5);B . (2)(5)(6);C . (1)(2)(3);D . (1)(2)(5).4. (2分) (2019八上·兰州期末) 已知以下三个数, 不能组成直角三角形的是()A . 9、12、15B . 、3、2C . 0.3、0.4、0.5;D .5. (2分)下列根式中属最简二次根式的是()A .B .C .D .6. (2分) (2018七下·浦东期中) 所有和数轴上的点组成一一对应的数组成()A . 整数B . 有理数C . 无理数D . 实数7. (2分)如图,在数学课上,老师用5个完全相同的小正方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为、宽为,下列是四位同学对该大长方形的判断,其中不正确的是()A . 大长方形的长为6B . 大长方形的宽为5C . 大长方形的周长为11D . 大长方形的面积为908. (2分) (2020八下·哈尔滨期中) 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为()A . 18B . 20C . 22D . 24二、填空题 (共8题;共9分)9. (2分) (2019七下·南京月考) 命题“直角三角形的两个锐角互余”的逆命题是________.10. (1分)(2020·路桥模拟) 二次根式中,a的取值范围是________.11. (1分) (2020八下·鼎城期中) 给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形、菱形),其中可用两块能完全重合的含有30°角的三角板拼成的所有图形是________.12. (1分) (2019八下·新余期末) ab<0,则化简结果是________.13. (1分)(2017·三台模拟) 已知x= ,y= ,则x2+y2﹣xy的值是________.14. (1分)(2020·九江模拟) 活动楼梯如图所示,∠B=90°,斜坡AC的坡度为1:1,斜坡AC的坡面长度为8m,则走这个活动楼梯从A点到C点上升的高度BC为________.15. (1分) (2017九上·信阳开学考) 在平行四边形ABCD中,已知对角线AC和BD相交于点O,△ABO的周长为17,AB=6,那么对角线AC+BD=________.16. (1分) (2020八下·九江期末) 如图,在中,,对角线交于点,点从点出发,沿着边运动到点停止,在点运动过程中,若是直角三角形,则的长是________.三、解答题 (共8题;共59分)17. (10分) (2019八下·松滋期末) 已知,求的值.18. (2分)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.19. (6分) (2019八上·莲湖期中) 阅读材料:像( + )()=3,• =a(a≥0),( +1)(﹣1)=b﹣1(b≥0),……,这种两个含二次根式的代数式相乘,积不含二次根式,我们称这两个代数式互为有理化因式例如:与, +1与﹣1,2 +3 与2 ﹣3 等都是互为有理化因式,在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;;解答下列问题:(1) 3﹣与________互为有理化因式,将分母有理化得________.(2)计算:2﹣;(3)观察下面的变形规律并解决问题.① =﹣1,=,=,…,若n为正整数,请你猜想:=________.②计算:( + + +…+ )×( +1).________20. (5分) (2018九上·黔西期中) 如图,在平行四边形ABCD中,点P是对角线AC上的一点,PE⊥AB,PF⊥AD,垂足分别为E、F,且PE=PF,平行四边形ABCD是菱形吗?为什么?21. (6分) (2019八下·乐清月考) 如图,在5x5的正方形网格中,每个小正方形的边长为1,请在所给网格中按下列要求画出图形,(1)①己知点A在格点(即小正方形的顶点)上,画一条线段AB,长度为,且点B在格点上。
无锡市八年级下学期数学期中考试试卷
无锡市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016九上·海南期中) 要使式子在实数范围内有意义,则x的取值范围是()A . x≥1B . x<1C . x≤1D . x≠12. (2分)下列根式中属最简二次根式的是()A . 2B .C .D .3. (2分) (2019八下·乐陵期末) 如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A . ,,B . ,,C . ,,D . ,,4. (2分)(2020·宜昌) 对于无理数,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是().A .B .C .D .5. (2分)(2018·潮南模拟) 下列命题中的真命题是()①相等的角是对顶角②矩形的对角线互相平分且相等③垂直于半径的直线是圆的切线④顺次连接四边形各边中点所得四边形是平行四边形.A . ①②B . ②③C . ③④D . ②④6. (2分) (2017八下·桂林期中) 如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=6,则菱形ABCD 的周长是()A . 24B . 30C . 36D . 487. (2分) (2016七下·大冶期末) 已知M(1,﹣2),N(﹣3,﹣2),则直线MN与x轴,y轴的位置关系分别为()A . 相交,相交B . 平行,平行C . 垂直相交,平行D . 平行,垂直相交8. (2分) (2017八下·宣城期末) 如图,平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE//BD,EF⊥BC,AB=1,则EF的长是()A . 1.5B .C .D . 29. (2分)如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是A .B .C .D .10. (2分) (2016八下·市北期中) 菱形、矩形、正方形都具有的性质是()A . 对角线相等B . 对角线互相垂直C . 对角线互相平分D . 对角线平分一组对角二、填空题 (共5题;共7分)11. (1分)若a:b:c=1:2:3,则 ________12. (2分) (2019八下·东台月考) 如图,曲线C2是双曲线C1:y= (x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于________。
2022-2023学年江苏省无锡市锡山区锡北片八年级(下)期中数学试卷(含解析)
2022-2023学年江苏省无锡市锡山区锡北片八年级(下)期中数学试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2. 下列事件中,是随机事件的为( )A. 一个三角形的内角和是180°B. 负数大于正数C. 掷一枚骰子朝上一面的点数为5D. 明天太阳从西方升起3. 下列各式中,属于分式的是( )A. 3π+3 B. x−32C. −y2+5 D. 8a+2b4. 若分式2x−1在实数范围内有意义,则x的取值范围是( )A. x≠1B. x≠0C. x≠−1D. x>15. 分式13x2y2,14xy2的最简公分母是( )A. 12x2y2B. 12x3y4C. xyD. xy26. 在一个不透明的口袋中有红球、白球共60个,它们除颜色外,其余完全相同.通过大量的摸球试验后,发现摸到红球的频率稳定在20%附近,估算口袋中红球的个数是( )A. 12B. 20C. 30D. 487. 如果把分式x x−y中的x和y都扩大3倍,那么分式的值( )A. 扩大3倍B. 不变C. 缩小3倍D. 缩小6倍8. 关于矩形的性质,下面说法错误的是( )A. 矩形的四个角都是直角B. 矩形的两条对角线相等C. 矩形的两条对角线互相垂直平分D. 矩形的两组对边分别平行9.如图,在△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AC=12,MN=2,则AB的长为( )A. 4B. 6C. 7D. 810.如图,在正方形ABCD 中,AB =6,E 为对角线AC 上与A ,C不重合的一个动点,过点E 作EF ⊥AB 于点F ,EG ⊥BC 于点G ,连接DE ,FG ,下列结论:①DE =FG ;②DE ⊥FG ;③∠BFG =∠ADE ;④FG 的最小值为4.其中正确结论的个数有( )A. 1个B. 2个C. 3个D. 4个第II 卷(非选择题)二、填空题(本大题共8小题,共24.0分)11. 为调查神舟十四号飞船各设备的运行情况,应采用______ 的方式(填“普查”或“抽样调查”).12. 若代数式x−2x +1的值为0,则实数x 的值为 .13. 计算:3a a +2−aa +2= ______ .14.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =7,BD =4,则菱形ABCD 的面积为______ .15. 若xy =2,x−y =1,则1y −1x = ______ .16.如图,在△ABC 中,∠A =56°,将△ABC 绕点B 旋转得到△A′BC′,且点A′落在AC 边上,则∠CA′C′= ______ °.17. 在矩形ABCD 中,AB =6,BC =8,E 、F 是对角线AC 上的两个动点,分别从A 、C 同时出发相向而行,速度均为每秒1个单位长度,运动时间为t 秒,其中0≤t ≤10,G ,H 分别是AD ,BC 的中点,当四边形EGFH 为矩形时,t 的值为______ .18. 如图,已知正方形ABCD 的边长为4,点E 是AB 边上一动点,连接ED ,将ED 绕点E 顺时针旋转90°到EF ,连接DF ,CF ,则DF +CF 的最小值是______.三、解答题(本大题共9小题,共66.0分。
江苏省无锡市八年级下学期数学期中考试试卷
江苏省无锡市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2015高三上·盘山期末) 代数式在实数范围内有意义,则a的取值范围是()A . a≥3B . a<3C . a>3D . a≤32. (2分)若最简二次根式,与是同类二次根式,则a的值为()A . a=B . a=C . a=1D . a=-13. (2分) (2019八下·洛龙期中) 由线段组成的三角形不是直角三角形的是()A .B .C .D .4. (2分)(2019·益阳) 下列运算正确的是()A . =﹣2B . (2 )2=6C .D .5. (2分) (2019九上·郑州期中) 下列说法正确的是()A . 矩形的对角线相互垂直B . 菱形的对角线相等C . 平行四边形是轴对称图形D . 等腰梯形的对角线相等6. (2分)如图,点D,E,F分别为△ABC各边的中点,下列说法正确的是()A . DE=DFB . EF= ABC . S△ABD=S△ACDD . AD平分∠BAC7. (2分)(2020·温州模拟) 如图,E是菱形ABCD边BC上的中点,∠ABC=60°, P是对角线BD上一点,PC+PE=3 ,则菱形ABCD面积的最大值为()A . 3B . 6C . 9D . 188. (2分)如图,在矩形ABCD中,E , F分别是AD , BC中点,连接AF , BE , CE , DF分别交于点M ,N ,四边形EMFN是().A . 正方形B . 菱形C . 矩形D . 无法确定9. (2分)(2020·开远模拟) 如图,点B、C分别在直线y=2x和y=kx上,点A,D是x轴上的两点,已知四边形ABCD是正方形,则k的值为()A .B .C . 1D .10. (2分) (2017九下·江阴期中) 如图,已知菱形OABC的顶点O(0,0),B(﹣2,﹣2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A . (1,﹣1)B . (﹣1,﹣1)C . (1,1)D . (﹣1,1)二、填空题 (共5题;共7分)11. (1分) (2016七上·瑞安期中) 已知,则的值是________.12. (2分)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2 ,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3 ,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是________13. (2分) (2020八下·北京月考) 如图,折叠矩形ABCD一边AD,点D落在BC边的点F处,若AB=8,BC=10,则EC的长________.14. (1分)(2019·江汉) 如图,在平面直角坐标系中,四边形OA1B1C1 , A1 A2B2C2 , A2A3B3C3 ,…都是菱形,点A1 , A2 , A3 ,…都在x轴上,点C1 , C2 , C3 ,…都在直线上,且∠C1OA1 =∠C2A1 A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是________.15. (1分) (2019七下·平舆期末) 已知轴,点的坐标为,并且,则点B的坐标为________.三、解答题 (共8题;共83分)16. (10分) (2020八下·丽水期中) 计算:(1)(2)(3)17. (6分) (2020八下·云县月考) 阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简: (一)(二)(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(四)(1)直接写出化简结果① =________,② =________.(2)请选择适当的方法化简 .(3)化简: .18. (5分)八年级二班小明和小亮同血学习了“勾股定理”之后,为了测得得如图风筝的高度CE,他们进行了如下操作:(1)测得BD的长度为15米.(注:BD⊥CE)(2)根据手中剩余线的长度计算出风筝线BC的长为25米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.19. (15分)如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形(2)判断直线EG是否经过一个定点,并说明理由(3)求四边形EFGH面积的最小值.20. (7分) (2018八下·广东期中) 先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:=|1+ |=1+解决问题:(1)模仿上例的过程填空:=____________=___________=____________ (2);(3) .21. (10分) (2019八下·温州期中) 如图,在R△ABC中,∠ACB=90°,点F是CB的中点,过点F作FE∥AC 交AB于点E点D是CA延长线上的一点,且AD= AC,连接DE、AF(1)求证:四边形ADEF是平行四边形;(2)若四边ADEF的周长是24cm,BC的长为6cm,求四边形ADEF的面积.22. (15分)(2017·陕西模拟) 如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)23. (15分)(2017·越秀模拟) 如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD之间的位置关系为________,数量关系为________.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,为什么?________(2)如图4,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.且AC=4 ,BC=3,∠BCA=45°,正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共7分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共83分)16-1、16-2、16-3、17-1、17-2、17-3、18-1、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、。
江苏省无锡市2022~2023学年八年级下学期期中考试数学试题【含答案】
江苏省无锡市2022~2023学年八年级下学期期中数学试题一、选择题(本大题共10小题,每小题3分,共30分,)1. 下列图形中,是中心对称图形的是()A.B.C.D.2. 在代数式,,,,中,分式有的个数为( )21x x +5a 23aπ27ab 23ba +A. 1B. 2C. 3D. 43. 是同类二次根式的是()4. 以下调查中适合作抽样调查的有().① 了解全班同学期末的数学成绩情况; ② 了解夏季冷饮市场上冰淇淋的质量情况;③ 学校为抗击“非典”,需了解全校师生的体温;④ 了解《课课练》在全省七年级学生中受欢迎的程序.A .1个B. 2个C. 3个D. 45. 如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向黄域的概率是 ()A. B. 1613C. D. 12236. 如图,在▱ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A. 1cmB. 2cmC. 3cmD. 4cm7. 下列命题中,是真命题的是( )A. 两条对角线互相平分的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直的四边形是菱形D. 两条对角线互相垂直且相等的四边形是正方形8. 如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当AB =2,∠B =60°时,AC 等于()B.D. 29. 关于x 的方程的解是正数,则a 的取值范围是( )211x ax +=-A. a >-1B. a >-1且a ≠0C. a <-1D. a <-1且a ≠-210. 如图,已知直线l //AB ,l 与AB 之间的距离为2.C 、D 是直线l 上两个动点(点C 在D 点的左侧),且AB =CD =5.连接AC 、BC 、BD ,将△ABC 沿BC 折叠得到△A ′BC .下列说法:①四边形ABDC 的面积始终为10;②当A ′与D 重合时,四边形ABDC 是菱形;③当A ′与D 不重合时,连接A ′、D ,则∠CA ′D +∠BC A′=180°;④若以A ′、C 、B 、D为顶点的四边形为矩形,则此矩形相邻两边之和为7.其中正确的是()A. ①②③④B. ①③④C. ①②④D. ①②③二、填空题(本大题共8小题,每小题2分,共16分,)11.x 的取值范围是_____.12. 当x =______时,分式的值为0.23x x +-13. 袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性___(选填“大于”“小于”或“等于”)是白球的可能性.14. 菱形ABCD 中,对角线AC =5,BD =6,则菱形ABCD 的面积为_____________.15. ,则=_________.=+16. 如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.17. 如图,延长正方形的边到,使,则________度.ABCD AB E BE AC =E ∠=18. 在平面直角坐标系中,已知A 、B 、C 、D 四点的坐标依次为(0,0)、(6,2)、(8,8)、(2,6),若一次函数y =mx -6m +2(m≠0)的图像将四边形ABCD 的面积分成1:3两部分,则m 的值为___________.三、解答题(本大题共7小题,共54分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19. 计算: (2)2-+20. 解分式方程:2124111x x x +=+--21. 先化简,再求值:,其中.24142a a ---1a =22. 某市大力发展绿色交通,构建公共绿色交通体系,“共享单车”的投入使用给人们的出行带来便利.小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是;(2)补全条形统计图;(3)在扇形统计图中,求表示A组(t≤10分)的扇形圆心角的度数;(4)如果骑共享单车的平均速度为12km/h,请估算,在租用共享单车的市民中,骑车路程不超过6km的人数所占的百分比.23. 已知△ABC的三个顶点的坐标分别为A(-5,0)、B(-2,3)、C(-1,0).(1)画出△ABC关于坐标原点O成中心对称的△A′B′C′;(2)将△ABC绕坐标原点O顺时针旋转90°,画出对应的△A′′B′′C′′;(3)若以A′、B′、C′、D′为顶点的四边形为平行四边形,则在第四象限中的点D′坐标为 .24. 如图,已知四边形ABCD的对角线AC、BD相交于点O,OB=OD,BF=DE,AE∥CF.(1)求证:△OAE≌△OCF;(2)若OA=OD ,猜想:四边形ABCD 的形状,请证明你的结论.25. (2016广西南宁市)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.13(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是1a 乙队的m 倍(1≤m ≤2),若两队合作40天完成剩余的工程,请写出a 关于m 的函数关系式,并求出乙队的最大工作效率是原来的几倍?江苏省无锡市2022~2023学年八年级下学期期中数学试题一、选择题(本大题共10小题,每小题3分,共30分,)1. 下列图形中,是中心对称图形的是()A.B.C.D.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A 、不是中心对称图形,故此选项错误;B 、不是中心对称图形,故此选项错误;C 、不是中心对称图形,故此选项错误;D 、是中心对称图形,故此选项正确;故选D .本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2. 在代数式,,,,中,分式有的个数为( )21x x +5a 23a π27ab 23ba +A. 1B. 2C. 3D. 4B【详解】分析:根据分式的定义进行判断即可.详解:根据分式的定义可知,上述各式中属于分式的有:共2个,251x x a +,故选B.点睛:熟记分式的定义:“形如,且A 、B 都是整式,B 中含有字母的式子叫做分式”AB 是正确解答本题的关键.3.是同类二次根式的是 ()B【详解】选项, 选项,选项, 选项故选B.4. 以下调查中适合作抽样调查的有( ).① 了解全班同学期末的数学成绩情况; ②了解夏季冷饮市场上冰淇淋的质量情况;③ 学校为抗击“非典”,需了解全校师生的体温; ④ 了解《课课练》在全省七年级学生中受欢迎的程序.A. 1个 B. 2个C. 3个D. 4B【详解】①了解全班同学期末的数学成绩情况,应进行全面调查;②解夏季冷饮市场上冰淇淋的质量情况,可进行抽样调查;③学校为抗击“非典”,需了解全校师生的体温,应进行全面调查;④了解《课课练》在全省七年级学生中受欢迎的程序,可进行抽样调查,故选B.5. 如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向黄域的概率是 ()A. B. 1613C. D. 1223A【详解】解:∵转盘被等分成6个扇形区域,而黄域占其中的一个,∴指针指向黄域的概率=.16故选A .6. 如图,在▱ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )A. 1cmB. 2cmC. 3cmD. 4cmB【详解】解:如图,∵AE 平分∠BAD 交BC 边于点E ,∴∠BAE =∠EAD ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =5cm ,∴∠DAE =∠AEB ,∴∠BAE =∠AEB ,∴AB =BE =3cm ,∴EC =BC -BE =5-3=2cm .故选B .7. 下列命题中,是真命题的是( )A. 两条对角线互相平分的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直的四边形是菱形D. 两条对角线互相垂直且相等的四边形是正方形A【分析】根据特殊四边形的判定方法进行判断.【详解】解:对角线互相平分的四边形是平行四边形,故选项A 符合题意;对角线相等的平行四边形是矩形,故选项B 不符合题意;对角线互相垂直的平行四边形是菱形,故选项C 不符合题意;对角线互相垂直且相等的平行四边形是正方形,故选项D 不符合题意.故选:A .8. 如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当AB =2,∠B =60°时,AC 等于()B.D. 2B【分析】首先连接AC ,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,AB =2,∠B =60°,易得△ABC 是等边三角形,即可得到答案.【详解】连接AC ,∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∴AB =BC ,∵∠B =60°,∴△ABC 是等边三角形,∴AC =AB =2.故选:B ..本题考点:菱形的性质.9. 关于x 的方程的解是正数,则a 的取值范围是( )211x ax +=-A. a >-1 B. a >-1且a ≠0C. a <-1D. a <-1且a ≠-2D【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案.【详解】方程左右两端同乘以最小公分母x-1,得2x+a=x-1.解得:x=-a-1且x为正数.所以-a-1>0,解得a<-1,且a≠-2.(因为当a=-2时,方程无意义).故D本题难度中等,易错点:容易漏掉了a≠-2这个信息.10. 如图,已知直线l//AB,l与AB之间的距离为2.C、D是直线l上两个动点(点C在D点的左侧),且AB=CD=5.连接AC、BC、BD,将△ABC沿BC折叠得到△A′BC.下列说法:①四边形ABDC的面积始终为10;②当A′与D重合时,四边形ABDC是菱形;③当A′与D不重合时,连接A′、D,则∠CA′D+∠BC A′=180°;④若以A′、C、B、D为顶点的四边形为矩形,则此矩形相邻两边之和为或7.其中正确的是( )A. ①②③④B. ①③④C. ①②④D. ①②③A【分析】①根据平行四边形的判定方法可得到四边形ABCD为平行四边形,然后根据平行四边形的面积公式计算;②根据折叠的性质得到AC=CD,然后根据菱形的判定方法可判断四边形ABDC是菱形;③连结A′D,根据折叠性质和平行四边形的性质得到CA′=CA=BD,AB=CD=A′B,∠1=∠CBA=∠2,可证明△A′CD≌△A′BD,则∠3=∠4,然后利用三角形内角和定理得到得到∠1=∠4,则根据平行线的判定得到A′D∥BC;④讨论:当∠CBD=90°,则∠BCA=90°,由于S△A1CB=S△ABC=5,则S矩形A′CBD=10,根据勾股定理和完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=2,而CD=5,于是得到结论.【详解】①∵AB=CD=5,AB∥CD,∴四边形ABCD为平行四边形,∴四边形ABDC的面积=2×5=10;故①正确;②∵四边形ABDC是平行四边形,∵A′与D重合时,∴AC=CD ,∵四边形ABDC 是平行四边形,∴四边形ABDC 是菱形;故②正确;③连结A′D,如图,∵△ABC 沿BC 折叠得到△A′BC ,∴CA′=CA=BD ,AB=CD=A′B ,在△A′CD 和△A′BD 中,CA BD CD BA A D A D ==='⎧⎪'⎨⎪''⎩∴△A′CD ≌△A′BD (SSS ),∴∠3=∠4,又∵∠1=∠CBA=∠2,∴∠1+∠2=∠3+∠4,∴∠1=∠4,∴A′D ∥BC ,∴∠CA′D+∠BCA′=180°;故③正确;④设矩形的边长分别为a ,b ,当∠CBD=90°,∵四边形ABDC 是平行四边形,∴∠BCA=90°,∴S △A′CB =S △ABC =×2×5=5,12∴S 矩形A′CBD =10,即ab=10,而BA′=BA=5,∴a 2+b 2=25,∴(a+b )2=a 2+b 2+2ab=45,∴当∠BCD=90°时,∵四边形ABDC 是平行四边形,∴∠CBA=90°,∴BC=3,而CD=5,∴(a+b )2=(2+5)2=49,∴a+b=7,∴此矩形相邻两边之和为或7.故④正确.故选A .本题考查了四边形综合题:熟练掌握平四边形的判定与性质以及特殊平行四边形的判定与性质;会运用折叠的性质确定相等的线段和角.二、填空题(本大题共8小题,每小题2分,共16分,)11.x 的取值范围是_____.x ≥1【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x 的取值范围.【详解】解:根据二次根式有意义的条件,x ﹣1≥0,∴x ≥1,故x ≥1.本题考查了二次根式有意义的条件,解题的关键是掌握被开方数大于等于0.12. 当x =______时,分式的值为0.23x x +--2【详解】分析:当分式的分子为零,分母不为零时,则分式的值为零.详解:根据题意得:x+2=0,解得:x=-2.点睛:本题主要考查的就是分式的值,属于基础题型.当分式的分子为零,分母不为零时,分式的值为零;当分式的分母为零时,则分式无意义.13. 袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性___(选填“大于”“小于”或“等于”)是白球的可能性.大于【详解】解:摸出1个球是红球的概率是 ,摸到白球的概率是,5838故摸到红球的概率大于摸到白球的概率.故大于.本题考查的是事件的可能性的大小.14. 菱形ABCD 中,对角线AC =5,BD =6,则菱形ABCD 的面积为_____________.15.【分析】由菱形ABCD 的对角线AC=5,BD=6,根据菱形的面积等于其对角线积的一半,即可求得菱形ABCD 的面积.【详解】∵菱形ABCD 的对角线AC=5,BD=6,∴菱形ABCD 的面积为:AC•BD=×5×6=15.1212故答案为15.15.,则= _________.=+【分析】首先根据非负数的性质得出a 和b 的值,然后代入所求的代数式得出答案.【详解】, ∴a -2=0,, 3-b=0, 解得:a=2,b=3,=∴.=+==本题主要考查的就是非负数的性质以及二次根式计算,属于基础题型.几个非负数的和为零,则说明每一个非负数都为零.在初中阶段我们所学的运算结果为非负数的有:平方、算术平方根和绝对值.16. 如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.AC ⊥BD【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形,然后根据矩形的性质得出AC ⊥BD .【详解】解:∵G 、H 、E 分别是BC 、CD 、AD 的中点, ∴HG ∥BD ,EH ∥AC ,∴∠EHG=∠1,∠1=∠2, ∴∠2=∠EHG ,∵四边形EFGH 是矩形, ∴∠EHG=90°, ∴∠2=90°, ∴AC ⊥BD .故还要添加AC ⊥BD ,才能保证四边形EFGH是矩形.本题主要综合考查了三角形中位线定理及矩形的判定定理,属于中等难度题型.解答这个问题的关键就是要明确矩形的性质以及中位线的性质.17. 如图,延长正方形的边到,使,则________度.ABCD AB E BE AC =E ∠=22.5【分析】连接BD ,根据等边对等角及正方形的性质即可求得∠E 的度数.【详解】连接BD ,如图所示:则BD =AC∵BE =AC∴BE =BD∴∠E =(180°-90°-45)°=22.5°.12故答案为.22.5考查到正方形对角线相等的性质.18. 在平面直角坐标系中,已知A 、B 、C 、D 四点的坐标依次为(0,0)、(6,2)、(8,8)、(2,6),若一次函数y =mx -6m +2(m≠0)的图像将四边形ABCD 的面积分成1:3两部分,则m 的值为___________.-5或15-【分析】由题意直线y =mx -6m +2经过定点B (6,2),又直线L 把菱形ABCD 的面积分成1:3的两部分.即可推出l 经过AD 的中点M (1,3)或经过CD 的中点N (5,7),利用待定系数法即可解决问题.【详解】解:∵A 、B 、C 、D 四点的坐标依次为(0,0)、(6,2)、(8,8)、(2,6),∴AB =BC =CD =AD∴四边形ABCD 是菱形,∵直线y =mx -6m +2经过定点B (6,2),又∵直线l把菱形ABCD 的面积分成1:3的两部分.如图,∴L 经过AD 的中点M (1,3)或经过CD 的中点N (5,7),∴m -6m +2=3或5m -6m +2=7,∴m =或-5,15-故答案为-5或.15-本题主要考查一次函数的应用,待定系数法等知识,解题的关键是发现直线l 经过定点B (6,2).三、解答题(本大题共7小题,共54分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19. 计算:(2)02-+(1;(2)7-【详解】分析:(1)、根据二次根式的乘法计算法则、零次幂的计算法则得出各式的值,然后进行求和;(2)、根据二次根式的化简法则将各式进行化简,然后进行合并同类项得出答案.详解:(1)原式1-16--7-(2)原式==4++-点睛:本题主要考查的就是二次根式的化简法则以及乘法计算法则,属于基础题型.解决这个问题的关键就是要明确二次根式化简的方法,从而得出答案.20. 解分式方程:2124111x x x +=+--无解【分析】根据解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数化1、验根,解分式方程即可.【详解】解:2124111x x x +=+--去分母,得()1214x x -++=去括号,得1224x x -++=移项、合并同类项,得33x =系数化1,得1x =经检验,是原方程的增根,此方程无解.1x =此题考查的是解分式方程,掌握解分式方程的一般步骤是解决此题的关键,需要特别注意的是分式方程要验根.21. 先化简,再求值:,其中.24142a a ---1a =;12a -+13-【分析】观察可得最简公分母是,通分后约分化简,最后代求值.()()22a a +-1a =【详解】解:24142a a ---()()()()422222a a a a a +=-+-+-()()222a a a -=-+-,12a =-+当时,原式=.1a =11123=-=-+本题考查分式的化简求值,掌握运算法则正确计算是解题关键.22. 某市大力发展绿色交通,构建公共绿色交通体系,“共享单车”的投入使用给人们的出行带来便利.小明随机调查了若干市民租用共享单车的骑车时间t (单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是 ;(2)补全条形统计图;(3)在扇形统计图中,求表示A 组(t ≤10分)的扇形圆心角的度数;(4)如果骑共享单车的平均速度为12km/h ,请估算,在租用共享单车的市民中,骑车路程不超过6km 的人数所占的百分比.(1)50;(2)见详解;(3)108°;(4)92%【详解】解:(1)这次被调查的总人数是19÷38﹪=50(人);(2)C 组人数为:50-(15+19+4)=12(人);补全条形统计图;(3)求表示A 组(t≤10分)的扇形圆心角的度数为;15360=10850︒⨯︒(4)路程是6km 时所用的时间是:6÷12=0.5(小时)=30(分钟),则骑车路程不超过6km 的人数所占的百分比是:.504100%92%50-⨯=23. 已知△ABC 的三个顶点的坐标分别为A (-5,0)、B (-2,3)、C (-1,0).(1)画出△ABC 关于坐标原点O 成中心对称的△A ′B ′C ′;(2)将△ABC 绕坐标原点O 顺时针旋转90°,画出对应的△A ′′B ′′C ′′;(3)若以A ′、B ′、C ′、D ′为顶点的四边形为平行四边形,则在第四象限中的点D ′坐标为 .(1)见解析(2)见解析(3)(6,-2)【分析】(1)根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;(2)根据网格结构找出点A 、B 、C 绕坐标原点O 顺时针旋转90°的点A ″、B ″、C ″的坐标,然后顺次连接即可;(3)根据平行四边形的对边平行且相等解答.【小问1详解】如图所示,△A ′B ′C ′就是求作的图形;【小问2详解】如图所示,△A ′′B ′′C ′′就是求作的三角形;【小问3详解】如图所示,点D′坐标为(6,-2);本题考查了利用旋转变换作图,平行四边形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.24. 如图,已知四边形ABCD的对角线AC、BD相交于点O,OB=OD,BF=DE,AE∥CF.(1)求证:△OAE≌△OCF;(2)若OA=OD,猜想:四边形ABCD的形状,请证明你的结论.(1)证明见解析;(2)矩形;证明见解析【分析】(1)由AE∥CF,得到两对内错角相等,再由OB=OD,BF=DE,得到OE=OF,利用AAS即可得证;(2)若OA=OD,则四边形ABCD为矩形,理由为:由OA=OD,得到OB=OC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.【详解】解:(1)∵AE∥CF,∴∠AEO=∠CFO ,∠EAO=∠FCO ,∵OB=OD ,BF=DE ,∴OB ﹣BF=OD ﹣DE ,即OE=OF ,在△OAE 和△OCF 中,AEO CFO EAO FCO OE OF ìÐ=ÐïïÐ=Ðíï=ïî∴△OAE ≌△OCF (AAS );(2)若OA=OD ,则四边形ABCD 是矩形,理由为:∵△OAE ≌△OCF ,∴OA=OC ,∵OD=OA ,∴OA=OB=OC=OD ,且BD=AC ,∴四边形ABCD 为矩形.此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.25. (2016广西南宁市)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.13(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲1a 队的工作效率是乙队的m 倍(1≤m ≤2),若两队合作40天完成剩余的工程,请写出a 关于m 的函数关系式,并求出乙队的最大工作效率是原来的几倍?(1)450;(2)3.75.【分析】(1)设乙队单独完成这项工程需要x 天,根据题意得方程即可得到结论;(2)根据题意得(+)×40=,即可得到a=60m+60,根据一次函数的性质得到=,即可得到结论.【详解】(1)设乙队单独完成这项工程需要x 天, 根据题意得×(30+15)+×15=,解得:x=450, 经检验x=450是方程的根,答:乙队单独完成这项工程需要450天;(2)根据题意得(+)×40=,∴a=60m+60,∵60>0,∴a随m的增大增大,∴当m=1时,最大,∴=,∴÷=3.75倍,11201120答:乙队的最大工作效率是原来的3.75倍考点:(1)一次函数的应用;(2)分式方程的应用。
无锡市梁溪区2021年八年级下学期《数学》期中试题与参考答案
无锡市梁溪区2021年八年级下学期《数学》期中试题与参考答案一.选择题本大题共10小题,每小题3分,共30分。
1.下列垃圾分类标识图案,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、不是中心对称图形,是轴对称图形,故此选项不合题意;C、既是中心对称图形,也是轴对称图形,故此选项符合题意;D、不是中心对称图形,不是轴对称图形,故此选项不合题意;故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.下列各式中是分式的是( )A.B.C.D.【分析】根据分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.对选项进行判断即可.【解答】解:根据分式的定义可知:A选项分母上没有字母,故A选项不正确;B选项分母上不含字母,故B选项不正确;C选项正确;D选项是方程,所以D选项不正确.故选:C.【点评】本题考查了分式的定义,注意分式分母上有字母并且是整式是解决本题的关键.3.下列调查适合做普查的是( )A.了解全国九年级学生身高的现状B.了解一批灯泡的平均使用寿命C.了解全球人类男女比例情况D.检测长征运载火箭零部件的质量情况【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全国九年级学生身高的现状,适合抽样调查,故本选项不合题意;B、解一批灯泡的平均使用寿命,适合抽样调查,故本选项不合题意;C、了解全球人类男女比例情况,适合抽样调查,故本选项不合题意;D、检测长征运载火箭零部件的质量情况,适合普查,故本选项符合题意;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是( )A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是2000【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A.这4万名考生的数学成绩是总体,此选项错误;B.每个考生的数学成绩是个体,此选项错误;C.2000名考生的数学成绩是总体的一个样本,此选项错误;D.样本容量是2000,此选项正确;故选:D.【点评】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5.如果把分式中的x,y同时变为原来的4倍,那么该分式的值( )A.不变B.变为原来的4倍C.变为原来的D.变为原来的【分析】根据题意可得==•,即可求解.【解答】解:x,y同时变为原来的4倍,则有==•,所以该分式的值是原分式值的,故选:D.【点评】本题考查分式的基本性质;熟练掌握分式的基本性质,准确计算是解题的关键.6.矩形具有而一般的平行四边形不一定具有的特征( )A.对角相等B.对角线互相平分C.对角线相等D.对边相等【分析】举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.【解答】解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;所以矩形具有而平行四边形不一定具有的性质是对角线相等,故选:C.7.已知▱ABCD的三个顶点坐标分别为A(0,0),B(3,﹣2),C(6,0),则点D的坐标为( )A.(2,3)B.(3,3)C.(2,5)D.(3,2)【分析】根据平行四边形的性质可得AB可通过平移与DC重合,通过点的坐标找到平移方式即可求出D.【解答】解:在▱ABCD中,AB∥CD且AB=CD,所以AB可通过平移与DC重合,因为B(3,﹣2),C(6,0),所以B点向右平移3个单位,向上平移2个单位与点C重合,所以点A向右平移3个单位,向上平移2个单位得到(3,2),所以D(3,2),故选:D.8.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【解答】解:因为÷=•=•=•==,所以出现错误是在乙和丁,故选:D.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式乘除运算法则.9.已知四边形ABCD的对角线AC、BD互相垂直,且AC=10,BD=8,那么顺次连接四边形ABCD各边中点所得到的四边形面积为( )A.40B.20C.16D.8【分析】根据四边形ABCD的对角线AC、BD互相垂直,K、L、M、N分别为四边形各边的中点,求证四边形KLMN为矩形和KN.KL的长,然后即可求出四边形KLMN的面积.【解答】解:如图,因为四边形ABCD的对角线AC、BD互相垂直,K、L、M、N分别为四边形各边的中点,所以四边形KLMN为矩形,所以KN∥AC,且KN=AC,因为AC=10,所以KN=×10=5,同理KL=4,则四边形KLMN的面积为4×5=20.故选:B.【点评】此题主要考查中点四边形和三角形的面积,注意三角形中位线定理这一知识点的灵活运用,此题难易程度适中,是一道典型的题目.10.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将ABCD 沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=.其中正确的结论是( )A.①②③④B.①④C.①②④D.①③④【分析】先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;由菱形的性质可得∠ECH=∠FCH,由点C 落在AD上的一点H处,∠ECD不一定等于30°,可判断②;当点H与点A重合时,BF有最小值,由勾股定理可求BF的最小值,若CD与AD重合时,BF有最大值,由正方形的性质可求BF的最大值,可判断③;如图,过点H作HM⊥BC于M,由勾股定理可求EF的长,可判断④;即可求解.【解答】解:因为HE∥CF,所以∠HEF=∠EFC,因为∠EFC=∠HFE,所以∠HEF=∠HFE,所以HE=HF,因为FC=FH,所以HE=CF,因为EH∥CF,所以四边形CFHE是平行四边形,因为CF=FH,所以四边形CFHE是菱形,故①正确;因为四边形CFHE是菱形,所以∠ECH=∠FCH,若EC平分∠DCH,所以∠ECD=∠ECH,所以∠ECD=∠ECH=∠FCH=30°,因为点C落在AD上的一点H处,所以∠ECD不一定等于30°所以EC不一定平分∠DCH,故②错误;当点H与点A重合时,BF有最小值,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,所以BF=3,若CD与AD重合时,BF有最大值,所以四边形CDHF是正方形,所以CF=4,所以BF最大值为4,所以3≤BF≤4,故③正确;如图,过点F作FM⊥BC于M,所以四边形HMFB是矩形,所以AB=MF=4,AM=BF=3,因为四边形AFCE是菱形,所以AE=AF=5,所以ME=2,所以EF===2,故④正确,故选:D.【点评】本题考查了翻折变换的性质,菱形的判定与性质,矩形的性质,勾股定理的应用,难点在于灵活运用菱形的判定与性质与勾股定理等其它知识有机结合.二.填空题本大题共8小题,每小题3分,共24分。
江苏省无锡市八年级下学期数学期中考试试卷
江苏省无锡市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各式中,是分式的是()A .B .C .D .2. (2分) (2017七下·湖州月考) 下列等式中,从左到右的变形为因式分解的是()A . x(a-b)=ax-bxB . x2-y2+1=(x+y)(x-y)+1C . ax2-9a=a(x+3)(x-3)D . -6a2b=-2a2·3b3. (2分) (2019八上·潮南期末) 如果分式有意义,那么x的取值范围是()A . x=0B . x<0C . x>0D . x≠04. (2分) (2015七下·邳州期中) 有一个多边形,它的内角和等于它的外角和的2倍,则它是()A . 三边形B . 四边形C . 五边形D . 六边形5. (2分)下列命题正确的是()A . 平行四边形的对角线一定相等B . 三角形任意一条边上的高线、中线和角平分线三线合一C . 三角形的中位线平行于第三边并且等于它的一半D . 三角形的两边之和小于第三边6. (2分)在□ABCD中,E是AB延长线上的一点,若∠1=60°,则∠A的度数为().A . 120°B . 60°C . 45°D . 30°7. (2分) (2019八下·端州月考) 把分式中的分子分母的x、y都同时扩大为原来的2倍,那么分式的值将是原分式值的. ()A . 2倍B . 4倍C . 一半D . 不变8. (2分) (2016八上·端州期末) 甲队修路120米与乙队修路100米所用天数相同,已知甲队比乙队每天多修10米,设甲队每天修路x米,依题意得,下列所列方程正确的是()A .B .C .D .9. (2分)观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,三条直线相交,四条直线相交,最多有一个交点,最多有三个交点;最多有6个交点,像这样,10条直线相交,最多交点的个数是()A . 40个B . 45个C . 50个D . 55个10. (2分) (2017八下·重庆期中) 若等腰三角形中相等的两边长为10cm,第三边长为12cm,那么第三边上的高为()A . 12 cmB . 10 cmC . 8 cmD . 6 cm二、填空题 (共9题;共9分)11. (1分) (2018八上·南召期末) 已知a+b=3,ab=1,则a2﹣ab+b2=________.12. (1分)(2020·广元) 关于x的分式方程的解为正数,则m的取值范围是________.13. (1分) (2017七上·长寿期中) 若a2+a﹣1=0,则代数式a4+3a的值为________.14. (1分)(2011·遵义) 如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.15. (1分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为________.16. (1分) (2017八下·东台期中) 如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD 于点E,则DE=________.17. (1分) (2019八下·邛崃期中) 若分式方程式无解,则m的值为________.18. (1分)(2016·开江模拟) 若m﹣n=2,则2m2﹣4mn+2n2﹣1=________.19. (1分)(2011·深圳) 如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是________.三、解答题 (共9题;共78分)20. (20分)分解因式:(1) 2a(y﹣z)﹣3b(z﹣y)(2)﹣a4+16(3) a2b﹣2ab+b(4) 3(x﹣2y)2﹣3x+6y.21. (5分)(2018·梧州) 如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.22. (5分)化简求值:,其中x= .23. (10分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?24. (1分)如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为________.25. (1分)(2019·南京模拟) 如图,在⊙O中,AB是直径,C是弧AB的中点,CD是弦,若∠C=60°,AB =2 ,则弦CD的长为________.26. (10分)(2020·上海模拟) 已知:如图,在平行四边形中,对角线与相交于点,过点作的垂线交边于点,与的延长线交于点,且.求证:(1)四边形是矩形;(2).27. (11分)先阅读下列解题过程,再回答问题:计算:+ .解:原式=-①=-②=4-(x+2) ③=2-x ④(1)以上解答有错误,错误步骤的序号是________,错误做法是________;(2)请你给出正确的解答过程.28. (15分)(2020·长春模拟) 如图,在△ABC中,∠C=90°,AB=5,AC=4,点P从点C出发,沿C→A→C 以每秒1个单位的速度运动.点Q从点A出发,沿A→B→C以每秒1个单位的速度运动,点Q到达点C时,P、Q两点同时停止运动,点P不与点A、C重合时,以AP、AQ为邻边作 APRQ。
江苏省无锡市八年级(下)期中数学试卷
江苏省无锡市八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)下列中国能源企业的Logo图案是中心对称图形的是()A.B.C.D.2.(3分)要了解一批灯泡的使用寿命,从中任意抽取100只灯泡进行实验,在这个问题中100是()A.个体B.总体C.样本容量D.总体的一个样本3.(3分)下列各式中,属于分式的是()A.x B.C.D.4.(3分)下列说法正确的是()A.“清明时节雨纷纷”是必然事件B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.为了解我国中学生课外阅读情况,应采取普查的方式D.为了解一批医用口罩的过滤性能,适合采用抽样调查的方式进行5.(3分)如图,若a=2b,则表示的值的点落在()A.第①段B.第②段C.第③段D.第④段6.(3分)在同一平面直角坐标系中,函数y=﹣kx+k与y=(k≠0)的图象大致是()A.B.C.D.7.(3分)如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE 的度数为()A.35°B.30°C.25°D.20°8.(3分)如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行.反比例函数y=的图象,与大正方形的一边交于点A(,4),且经过小正方形的顶点B,则图中阴影部分的面积为()A.10B.30C.40D.9.(3分)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()A.1B.2C.3D.410.(3分)如图,在边长为4的菱形ABCD中,∠ABC=120°,将△ADC沿射线AC的方向平移得到△A'D'C',分别连接A'B,D'B,则A'B+D'B的最小值为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分.)11.(3分)若分式无意义,则x的值为.12.(3分)在一次数学测试中,将某班50名学生的成绩分为5组,第一组到第四组的频率之和为0.8,则第5组的频数是.13.(3分)与的最简公分母为.14.(3分)如图,在△ABC中,∠A=56°,将△ABC绕点B旋转得到△A′BC′,且点A′落在AC边上,则∠CA'C'=°.15.(3分)对于函数y=,当y<1时,x的取值范围是.16.(3分)已知关于x的分式方程=的解是非负数,则m的取值范围是.17.(3分)如图,△AOB和△ACD均为正三角形,顶点B、D在双曲线y=(x>0)上,线段BC、AD交于点P,则S△OBP=.18.(3分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,点M是AC边的中点,点N是BC边上的任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为.三、解答题(本大题共9小题,共76分.)19.(8分)计算:(1);(2).20.(8分)解方程:(1);(2).21.(8分)随着信息技术的不断发展,人们获取信息的途径越来越多,随之而来的是报纸订阅量的不断下降.因此,某报社的记者为了了解市民“获取新闻最主要的途径”,开展了一次随机抽样调查,要求被调查的市民必选且只能选择其中一项.他根据调查结果绘制了一幅不完整的扇形统计图,根据统计图可知,“手机上网”和“电脑上网”作为“获取新闻最主要的途径”的市民分别有240人和224人,在扇形统计图中a,b满足a﹣b =3.请根据所给信息,解答下列问题:(1)请计算扇形统计图中“电脑上网”所在扇形的圆心角的度数;(2)求扇形统计图中a,b的值;(3)若该市约有20万人,求通过电脑上网和手机上网两种方式作为“获取新闻最主要的途径”约有多少人?22.(6分)图①、图②、图③均是10×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、P均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作图,保留作图痕迹.(1)在图①中,作以点P为对称中心的平行四边形ABEF.(2)在图②中,作四边形ABCD的边BC上的高AM.(3)在图③中,在四边形ABCD的边CD上找一点N,连结AN,使∠DAN=45°.23.(6分)1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,其图象如图所示.请根据图象中的信息解决下列问题:(1)求y与x之间的函数表达式;(2)当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为米;(3)若某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是多少厘米?24.(8分)如图,在▱ABCD中,AE⊥BC于点E,延长BC至点F,使CF=BE,连接DF,AF与DE交于点O.(1)求证:四边形AEFD为矩形;(2)若AB=3,OE=2,BF=5,求DF的长.25.(10分)某汽车网站对两款价格相同,续航里程相同的汽车做了一次评测,一款为燃油车,另一款为纯电新能源车.得到相关数据如下:燃油车纯电新能源车油箱容积:48升电池容量:90千瓦时油价:8元/升电价:0.6元/千瓦时(1)设两款车的续航里程均为a千米,请用含a的代数式表示燃油车和纯电新能源车的每千米行驶费用;(2)若燃油车每千米行驶费用比纯电新能源车多0.55元.①请分别求出这两款车的每千米行驶费用;②若燃油车和纯电新能源车每年的其它费用分别为4800元和8100元.问:每年行驶里程超过多少千米时,新能源车的年费用更低?(年费用=年行驶费用+年其它费用)26.(12分)如图1,已知反比例函数y=的图象与一次函数y=x﹣1的图象相交于A(2,a),B(b,﹣2)两点.(1)求反比例函数的表达式及A,B两点的坐标;(2)M是x轴上一点,N是y轴上一点,若以A,B,M,N为顶点的四边形是以AB为边的平行四边形,求点M的坐标;(3)如图2,反比例函数y=的图象上有P,Q两点,点P的横坐标为m(m>2),点Q的横坐标与点P的横坐标互为相反数,连接AP,AQ,BP,BQ.是否存在这样的m使得△ABQ的面积与△ABP的面积相等,若存在,求出m的值;若不存在,请说明理由.27.(10分)将正方形ABCD放置在平面直角坐标系中,B与原点重合,点A的坐标为(0,a),点E的坐标为(b,0),并且实数a,b使式子|a﹣6|+(b﹣3)2=0成立.(1)直接写出点D、E的坐标:D,E;(2)∠AEF=90°,且EF交正方形外角的平分线CF于点F.①如图①,求证:AE=EF;②如图②,连接AF交DC于点G,作GM∥AD交AE于点M,作EN∥AB交AF于点N,连接MN,求四边形MNGE的面积.。
江苏省无锡市八年级下学期数学期中考试试卷
江苏省无锡市八年级下学期数学期中考试试卷姓名:________班级:________成绩:________一、 单选题 (共 8 题;共 16 分)1. (2 分) 下列各组数中互为相反数是( )A. 与 B. 与C. 与D. 与 2. (2 分) (2019 八下·宜兴期中) 关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是 () A . 对角线互相平分 B . 对角线互相垂直 C . 对角线相等 D . 对角线平分一组对角3. (2 分) (2020·福州模拟) 若,其中 a 为整数,则 a 的值是( )A.1B.2C.3D.44. (2 分) (2018 八上·沈河期末) 由下列条件不能判定为直角三角形的是( )A.B.C.D.5. (2 分) (2017 八下·丹阳期中) 平行四边形中, , 是两条对角线,如果添加一个条件,即可推出平行四边形是矩形,那么这个条件是( )A.B.C.D.第 1 页 共 11 页6. (2 分) 如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与 八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A . 700m B . 500m C . 400m D . 300m 7. (2 分) (2016 九上·海珠期末) 如图,某个反比例函数的图象经过点 P,则它的解析式为( )A . y= (x>0)B . y=(x>0)C . y= (x<0)D . y=(x<0)8. (2 分) (2018 八上·沙洋期中) 已知 AD 是△ABC 的一条高,∠BAD=70°,∠CAD=20°,则∠BAC 的度数为( )A . 50°B . 60°C . 90°D . 50°或 90°二、 填空题 (共 8 题;共 13 分)9. (1 分) 化简:=________ .第 2 页 共 11 页10. (1 分) 将 x根号外的 x 移入根号内是________.11. (2 分) 请写出“等腰三角形的两底角相等”的逆命题: ________12. (2 分) (2019·长春模拟) 如图,在 Rt△ABC 中,∠C=90°,∠B=30°,以点 A 为圆心,小于 AC 长为半径作圆弧,分别交 AB,AC 于 M,N 两点;再分别以点 M,N 为圆心,大于 MN 长为半径作圆弧,两条圆弧交于 点 P,作射线 AP 交边 BC 于点 D.若△ABC 的面积为 10,则△ACD 的面积为________.13. (2 分) 如图,在▱ABCD 中,∠C=40°,过点 D 作 CB 的垂线,交 AB 于点 E,交 CB 的延长线于点 F,则 ∠BEF 的度数为________.14. (1 分) 在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度 也会随之改变,密度 ρ(kg/m3)是体积 V(m3)的反比例函数,它的图象如图所示.当 V=5m3 时,气体的密度是 ________kg/m3 .15. (2 分) 如图,平行四边形 ABCD 绕点 A 逆时针旋转 30°,得到平行四边形 AB′C′D′(点 B′与点 B 是对应点,点 C′与点 C 是对应点,点 D′与点 D 是对应点),点 B′恰好落在 BC 边上,则∠C=________16. (2 分) (2019 八下·哈尔滨期中) 如图,正方形 ABCD 中,E 在 BC 上,BE=2,CE=1.点 P 在 BD 上,则 PE 与 PC 的和的最小值为__.第 3 页 共 11 页三、 解答题 (共 9 题;共 39 分)17. (5 分) (2019 八上·大连期末) 化简: 18. (5 分) (2018 八下·昆明期末) 计算:________.(1) 2﹣6+2(2) ( + ) ﹣3÷19. (5 分) (2017·南岸模拟) 计算: (1) (a+b)(a﹣2b)﹣(a﹣b)2;(2)().20. (5 分) (2020 八上·长春月考) 化简(1)(2) 21. (5 分) (2016 八上·海门期末) 如图,在▱ABCD 中,点 E、F 分别在 AD、BC 上,且 AE=CF. 求证:四边形 BFDE 是平行四边形.22. (5 分) (2018 八上·天台月考) 先化简,再求值(10 分). ,其中 a=2.23. (5 分) 如图所示:在△ABC 中,AB=AC=5,BC=8,D,E 分别为 BC.AB 边上一点,∠ADE=∠C,(1) 求证:AD2=AE•AB; (2) ∠ADC 与∠BED 是否相等?请说明理由;第 4 页 共 11 页(3) 若 CD=2,求 AD 的长. 24. (2 分) (2019 九上·海淀月考) 如图,已知直线 l 与⊙O 无公共点,OA⊥l 于点 A , 交⊙O 于点 P , 点 B 是⊙O 上一点,连接 BP 并延长交直线 l 于点 C , 使得 AB=AC .(1) 求证:AB 是⊙O 的切线;(2) 若 BP=2 ,sin∠ACB,求 AB 的长.25. (2 分) (2020 九下·和平月考) 如图,直线 AD 经过⊙O 上的点 A,△ABC 为⊙O 的内接三角形,并且∠CAD=∠B.(1) 判断直线 AD 与⊙O 的位置关系,并说明理由; (2) 若∠CAD=30°,⊙O 的半径为 1,求图中阴影部分的面积.(结果保留 π)第 5 页 共 11 页一、 单选题 (共 8 题;共 16 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、二、 填空题 (共 8 题;共 13 分)9-1、 10-1、 11-1、 12-1、 13-1、 14-1、 15-1、 16-1、三、 解答题 (共 9 题;共 39 分)17-1、参考答案18-1、第 6 页 共 11 页18-2、 19-1、 19-2、 20-1、 20-2、21-1、22-1、 23-1、第 7 页 共 11 页23-2、 23-3、24-1、第 8 页 共 11 页24-2、第 9 页 共 11 页25-1、第 10 页 共 11 页25-2、第11 页共11 页。
无锡市新吴区八年级下册期中数学试卷及答案【精校】.doc
二、填空题(本大题共 10 小题,每空 2 分,共 24 分) 9.(2 分)调查乘坐飞机的旅客是否携带危禁物品, 适宜采用的调查方式是 “普查”或“抽样调查”) 【解答】解:调查乘坐飞机的旅客是否携带危禁物品,适宜采用普查方式, 故答案为:普查.
A.线段 EF的长逐渐增大,最大值是 13
B.线段 EF的长逐渐减小,最小值是 6.5
C.线段 EF的长始终是 6.5
D.线段 EF的长先增大再减小,且 6.5 ≤ EF≤13
8.(3 分)如图,在 ?ABCD中, AD=2AB, F 是 AD的中点,作 CE⊥AB,垂足 E 在线段 AB
上,连接 EF、 CF,则下列结论中一定成立的是(
江苏省无锡市新吴区八年级(下)期中数学试 卷
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)
1.(3 分)在下列图形中,既是轴对称图形又是中心对称图形的是(
)
A.
B.
C.
D.
2.(3 分)要反映无锡市一周内每天的最高气温的变化情况,宜采用(
)
A.折线统计图 B .扇形统计图
C.条形统计图 D.频数分布直方图
.(填
10.( 4 分)当 x=
时,分式 无意义;当 x=
时,分式
的值为 0.
11.( 2 分)新吴区举行迎五一歌咏比赛,组委会规定:任何一名参赛选手的成绩
x需
满足 60≤ x< 100,赛后整理所有参赛选手的成绩如下表.根据表中提供的信息得到
无锡市2020版八年级下学期数学期中考试试卷(I)卷
无锡市2020版八年级下学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、精心选一选,慧眼识金 (共14题;共40分)1. (3分)下面是交警在一个路口统计的某个时段来往车辆的速度(单位:千米/时)情况,则这些车辆的车速的中位数(单位:千米/时)是()A . 51.5B . 52C . 52.5D . 532. (3分)为了了解参加某运动会的2 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下面说法正确的是()A . 2 000名运动员是总体B . 每个运动员是个体C . 100名运动员是抽取的一个样本D . 100名运动员的年龄是抽取的一个样本3. (3分)(2017·广西模拟) 以下调查中,不适宜全面调查的是()A . 调查某班学生的身高情况B . 调查某批次灯泡的使用寿命C . 调查某舞蹈队成员的鞋码大小D . 调查班级某学习小组成员周末写作业的时间4. (3分)在平面直角坐标系中,点坐标为(﹣3,4),则P点所在象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (3分)已知点A与点B关于x轴对称,点A的坐标为(﹣1,2),则点B的坐标是()A . (﹣1,2)B . (﹣1.﹣2)C . (1,2)D . (﹣2,1)6. (3分)一段导线,在0℃时的电阻为2欧,温度每增加1℃,电阻增加0.008欧,那么电阻R(欧)表示为温度t(℃)的函数关系式为()A . R=0.008tB . R=0.008t+2C . R=2.008tD . R=2t+0.008 27. (2分)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A . y=-x+12B . y=﹣2x+24C . y=2x﹣24D . y=x﹣128. (3分) (2020七下·吉林期中) 如图,若在象棋盘上建立直角坐标系xOy,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点()A . (-2,3)B . (-2,1)C . (-3,1)D . (-3,3)9. (3分)某班有位学生,每人抛次硬币,统计正面向上次数依次为,,,…,的人数,得到直方图(如图),记正面向上次数为,,的人数和占班级人数的比例为,则的值()A . 小于B . 在与之间C . 在与之间D . 大于10. (3分)为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a的值分别是()A . 全面调查;26B . 全面调查;24C . 抽样调查;26D . 抽样调查;2411. (3分) (2016八上·萧山月考) 已知点A(﹣3,2)与点B(x,y)在同一条平行y轴的直线上,且B 点到x轴的矩离等于3,则B点的坐标是()A . (﹣3,3)B . (3,﹣3)C . (﹣3,3)或(﹣3,﹣3)D . (﹣3,3)或(3,﹣3)12. (3分) (2018九上·海淀期末) 两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()A . 小红的运动路程比小兰的长B . 两人分别在1.09秒和7.49秒的时刻相遇C . 当小红运动到点D的时候,小兰已经经过了点DD . 在4.84秒时,两人的距离正好等于⊙O的半径13. (2分) (2015九上·重庆期末) 在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()A .B .C .D .14. (3分) (2017七下·海安期中) 如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A . (1,0)B . (-1,0)C . (-1,1)D . (1,-1)二、填空题 (共6题;共17分)15. (3分) (2020八下·龙湖期末) 在式子中,的取值范围是________.16. (3分)点(a,a+2)在第二象限,则a的取值范围是________.17. (3分) (2020九上·萧山开学考) 如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=80°,则∠ECF的度数是________.18. (3分)点在轴的下方,轴的右侧,距离轴3个单位长度,距离轴5个单位长度,则点的坐标为________.19. (3分)若一组数据x1 , x2 ,…,xn的平均数是a,方差是b,则4x1﹣3,4x2﹣3,…,4xn﹣3的平均数是________,方差是________.20. (2分)(2019·沈丘模拟) 如图1,点,,分别是等边三角形三边,,的动点,且始终保持,设的面积为,的长为,关于的函数图象大致为图2所示,则等边三角形的边长为________.三、解答题 (共6题;共60分)21. (10.0分)(2017·合肥模拟) 某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了________名学生,其中最喜爱戏曲的有________人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是________.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.22. (10.0分)(2019·驻马店模拟) “凑够一拨人就走,管它红灯绿灯。
无锡市2021年八年级下学期数学期中考试试卷(I)卷
无锡市2021年八年级下学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·河南) 如下摆放的几何体中,主视图与左视图有可能不同的是()A .B .C .D .2. (2分) (2019八下·高新期中) 下列不等式变形正确是()A . 由a>b,得a+1<b+1B . 由,得C . 由a>b,得D . 由,得3. (2分) (2019八下·高新期中) 下列各式,从左到右的变形是因式分解的是()A .B .C .D .4. (2分) (2019八下·高新期中) 下列命题正确是()A . 在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B . 两个全等的图形之间必有平移关系.C . 三角形经过旋转,对应线段平行且相等.D . 将一个封闭图形旋转,旋转中心只能在图形内部.5. (2分) (2019八下·高新期中) 若分式有意义,则实数x的取值范围是()A . 一切实数B .C .D . 且6. (2分) (2019八下·高新期中) 用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中()A . 有两个角是直角B . 有另个角是钝角C . 有两个角是锐角D . 三个角都是直角7. (2分) (2019八下·高新期中) 如图,一次函数的图象经过点A( ,0),B( ,1),当因变量y>0时,自变量x的取值范围是()A .B .C .D .8. (2分) (2019八下·高新期中) 下列分式从左到右的变形正确是()A .B .C .D .9. (2分) (2019八下·高新期中) 如图,在△ABC中,AB边垂直平分线MD交BC于点D,AC边垂直平分线EN交BC于点E,连接AD,AE,若∠BAC=110°,则∠DAE的度数为()A . 70°B . 55°C . 45°D . 40°10. (2分) (2019八下·高新期中) 已知关于x的不等式组有解,则m的取值范围为()A .B .C .D .二、填空题 (共9题;共10分)11. (1分) (2017七下·东城期末) 如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样做的数学道理是________.12. (1分) (2019八下·高新期中) 若关于x的不等式组的解集为,则m+n=________.13. (1分) (2018八上·腾冲期末) 若是一个完全平方式,则 =________.14. (1分) (2019八下·高新期中) 如图,在△ABC中,∠B=90°,BC =5cm,AB=12cm,则图中4个小直角三角形周长的和为________cm.15. (1分) (2019八下·高新期中) 若多项式的一个因式是,则k的值为________.16. (1分) (2019八下·高新期中) 已知关于x的不等式组只有三个整数解,则实数a的取值范围是________.17. (2分) (2019八上·嘉荫期末) 如图,△ABC的周长为12,OB、OC分别平分∠ABC和∠ACB,过点O作OD⊥BC于点D,OD=3,则△ABC的面积为________.18. (1分) (2019八下·高新期中) 阅读材料:分离整数法就是将分式拆分成一个整式与一个分式(分子为整数)的和的形式.如:① ;② = = + =x+3+ .解答问题.已知x为整数,且分式为整数,则x的值为________.19. (1分) (2019八下·高新期中) 如图,Rt△ABC中,AB=AC=8,BO= AB,点M为BC边上一动点,将线段OM绕点O按逆时针方向旋转90°至ON,连接AN、CN,则△CAN周长的最小值为________.三、解答题 (共8题;共100分)20. (15分) (2018七下·山西期中) 计算下列各题:(1)(﹣1)2018+3﹣2﹣(π﹣3.14)0(2)(x+3)2﹣x2(3)(x+2)(3x﹣y)﹣3x(x+y)(4)(2x+y+1)(2x+y﹣1)21. (15分) (2019八下·高新期中) 如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,△ABC的顶点均在格点上,三个顶点的坐标分别是A(-3,4),B(-2,1),C(-4,2).(1)将△ABC先向右平移7个单位长度,再向上平移2个单位长度,画出第二次平移后的△ ;(2)以点O(0,0)为对称中心,画出与△ABC成中心对称的△ ;(3)将点B绕坐标原点逆时针方向旋转90°至点,求点的坐标22. (5分) (2019八下·高新期中) 先化简,再求值:,其中x为不等式组的整数解.23. (10分) (2019八下·高新期中) 如图,在△ABC中,∠BAC的平分线与BC的中垂线DE交于点E,过点E作AC边的垂线,垂足为N,过点E作AB延长线的垂线,垂足为M.(1)求证:BM=CN;(2)若,AB=2,AC=8,求BM的长.24. (10分) (2019八下·高新期中) 某学校计划购买若干台电脑,现从甲、乙两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.各商场的优惠条件如下表所示:商场优惠条件甲商场第一台按原价收费,其余每台优惠25%乙商场每台优惠20%(1)分别写出甲、乙两商场的收费y(元)与所买电脑台数x之间的关系式;(2)什么情况下到甲、乙两商场购买更优惠?什么情况下两家商场的收费相同?25. (15分) (2019八下·高新期中) 如图,在△ABC中,AB=AC=4,∠BAC=120°,AD为BC边上的高,点P从点B以每秒个单位长度的速度向终点C运动,同时点Q从点C以每秒1个单位长度的速度向终点A运动,其中一个点到达终点时,两点同时停止.(1)求BC的长;(2)设△PDQ的面积为S,点P的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围;(3)在动点P、Q的运动过程中,是否存在PD=PQ,若存在,求出△PDQ的周长,若不存在,请说明理由.26. (15分) (2019八下·高新期中) 为了全面推进素质教育,增强学生体质,丰富校园文化生活,高新区某校将举行春季特色运动会,需购买A,B两种奖品.经市场调查,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品1件和B种奖品3件,共需55元.(1)求A、B两种奖品的单价各是多少元;(2)运动会组委会计划购买A、B两种奖品共100件,购买费用不超过1160元,且A种奖品的数量不大于B 种奖品数量的3倍,运动会组委会共有几种购买方案?(3)在第(2)问的条件下,设计出购买奖品总费用最少的方案,并求出最小总费用.27. (15分) (2019八下·高新期中) 在△OAB中,OA=OB,∠AOB=30°,将△OAB绕点O顺时针旋°()转至△OCD,点A、B的对应点分别为C、D,连接BD、AC,线段BD与线段AC交于点M,连接OM.(1)如图,求证AC=BD;(2)如图,求证OM平分∠AMD;(3)如图,若 =90,AO= ,求CM的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共8题;共100分)20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、。
江苏省无锡市2020版八年级下学期数学期中考试试卷(I)卷
江苏省无锡市 2020 版八年级下学期数学期中考试试卷(I)卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) (2018·广州) 如图所示的五角星是轴对称图形,它的对称轴共有( )A . 1条 B . 3条 C . 5条 D . 无数条 2. (2 分) (2019 八上·金平期末) 下列各式中,从左到右的变形是因式分解的是( )A.B.C.D.3. (2 分) (2017 七下·滦南期末) 已知 a>b,下列不等式中错误的是( )A.>B.>C.<D. <4. (2 分) 下列各式是最简分式的( )A. B.C.D. 5. (2 分) 下列命题的逆命题为真命题的是( ) A . 如果 a=b,那么 B . 平行四边形是中心对称图形第 1 页 共 12 页C . 两组对角分别相等的四边形是平行四边形 D . 内错角相等 6. (2 分) (2018 八上·抚顺期末) 如图,在△ABC 中,AB=AC,∠A=120 ,BC=6cm,AB 的垂直平分线交 BC 于点 M,交 AB 于点 E,AC 的垂直平分线交 BC 于点 N,交 AC 于点 F,则 MN 的长为( )A . 1.5cmB . 2cmC . 2.5cmD . 3cm7. (2 分) 下列计算正确的是( )A . (2x﹣3)2=4x2+12x﹣9B . (4x+1)2=16x2+8x+1C . (a+b)(a﹣b)=a2+b2D . (2m+3)(2m﹣3)=4m2﹣38. (2 分) (2017 八上·西安期末) 如图,在中,,,的垂直平分线, 交 于点 ,连接 ,则 的长为( ).,是A. B. C. D. 9. (2 分) (2017 七下·德州期末) 已知不等式 2x-a≤0 的正整数解恰好是 1,2,3,4,5,那么 a 的取值范围是 () A . a>10 B . 10≤a≤12 C . 10<a≤12第 2 页 共 12 页D . 10≤a<12 10. (2 分) (2010·希望杯竞赛) 如图所示,A 是斜边长为 m 的等腰直角三角形,B,C,D 都是正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省无锡市江南中学八年级数学下学期期中复习试题(1)(无答案)
班级 姓名 学号
一、选择题:
1.已知4x -5y=0,则(x+y)∶(x -y)的值为( )
A 、1∶9
B 、-9
C 、9
D 、-1∶9
2.下列各组线段中,成比例的是( )
A 、3,6,7,9
B 、2,5,6,8
C 、 3,6,9,18
D 、1,2,3,4
3.地图上的比例尺为1:200000,小明家到单位的图距为20cm ,小明骑自行车从单位到家用了4
小时,他骑自行车的平均速度为每小时( )
A 、40000米
B 、4000米
C 、10000米
D 、 5000米
4.下列说法:①有一个角为50°的两个等腰三角形相似;②有一个角为100°的两个等腰三角形
相似;③有一个锐角相等的两个直角三角形相似;④两个等边三角形相似.其中正确的有
( )
A 、1个
B 、2个
C 、3个
D 、4个 5.如图,由下列条件不能确定△ABC 与△AD
E 相似的是( ) A 、AE AC AD AB = B 、∠B =∠ADE C 、AE DE AC BC = D 、∠C =∠AED 6.如图△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,
那么图中与△ABC 相似的三角形有( )
A 、1个
B 、2个
C 、 3个
D 、4个 7.下列四个三角形,与右图中的三角形相似的是( )
8.在△ABC 与△A ′B ′C ′中,有下列条件:①C B BC B A AB ''=''② C A AC C B BC ''=''③∠A =∠A ′④∠C =∠C ′,如果从中任取两个条件组成一组,那么能判断△ABC ∽△A ′B ′C ′的共有( )组.
A 、1
B 、2
C 、3
D 、4
二、填空题:
9.⑴若2:3:6x =,则x =__________, 若52x y =,则x y y
-=____________. ⑵若a =2cm,b =8cm, 则a 、b 的比例中项c =____________cm.
10.在比例尺为1:200000的地图上量得A 、B 两地的图上距离是5cm ,则A 、B 两地的实际距离为_________km.
11.据有关实验室测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适,这
个气温约为____________℃.(精确到1℃) 12.如图,在△ABC 中 ,DE ∥BC ,
32AD DB =, DE =3. 则AE AC
=_______, BC = . 13.如图,□ABCD 中,AE :EB =1:2,则AF :FC =_____________. 第7题 A . B . C . D . A B C
D
E A B C D E
第5题
第6题 C B E D A 第12题 A B C D E F 第13题 A B C D 第14题 第15题
14.如图,∠ACB =90°,CD ⊥AB 于D .则△ABC ∽△__________,若BD =5,AD =20,则CD =____,BC =____.
15.如图,把矩形ABCD 对折,折痕为MN ,矩形DMNC 与矩形ABCD 相似,已知AB =4.则AD 的长是
________,矩形DMNC 与矩形ABCD 的相似比是_________.
三、解答题:
19.如图,已知△ABC 中,D 是BC 上一点, BD =10,DC =8,∠DAC =∠B ,E 为AB 上
一点, DE ∥AC ,求AC 和DE 的长.
19 20 21
20.如图,∠1=∠2=∠3,求证:AD ·AE =AD ·AC .
21.已知:ΔACB 为等腰直角三角形,∠ACB =900 延长BA 至E ,延长AB 至F ,∠ECF =1350.
求证:ΔEAC ∽ΔCBF
22
23 24 26
22.如图:AD 为ΔABC 的中线,E 为AD 的中点,若∠DAC =∠B ,CD =CE .
试说明ΔACE ∽ΔBAD .
23.已知:如图,ΔABC 中,CE ⊥AB ,BF ⊥AC .求证:ΔAEF ∽ΔACB .
24.如图,△ABC 是等边三角形,点D ,E 分别在BC 、AC 上,且BD =CE ,AD 与BE 相交于点F ,
(1)试说明△ABD ∽△BCE ;(2) △AEF 与△ABE 相似吗?说说你的理由;
(3)BD 2=AD ·DF 吗?请说明理由.
25.一个钢筋三脚架三边长分别为20 cm. 50 cm .60 cm ,现在要做一个与其相似的钢筋三脚架,
而只有长为30 cm 和50 cm 的两根钢筋,要求以其中一根为一边,从另一根上截下两段(准许有余料)作为两边,则有多少种不同的截法?并分别求出?
26.如图,由边长为1的25个小正方形组成的正方形网格中有一个△ABC ,请在网格中画一个
顶点在小正方形的格点上,且与△AB C 相似的面积最大的△A ′B ′C ′,并求出它的面积S .
27.如图,已知DE BC AE AC AD AB ==,试说明:AB ·CE =AC ·BD .
27 28 29 30 28.已知:如图,在ABC △中,D 为AB 边上一点,36A ∠= ,AC BC =,AC 2=AB ·AD .
试说明:ADC △和BDC △都是等腰三角形.
29.如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F . (1)ΔABE 与ΔADF 相似吗?请说明理由. (2)
若AB =6,AD =12,BE =8,求DF 的长.
30.如图:在△ABC 中,AB =10 cm ,BC =20cm ,点P 从点A 开始沿边AB 向点B 以2 cm/s 的速度
移动,点Q 从B 点开始沿边BC 以2 cm/s 的速度移动。
如果点P 、Q 分别从点A 、B 同时出发,经过几秒钟后,以点P 、B 、Q 三点为顶点的三角形与△ABC 相似?
1 2 3 A
B C E F D D D B C A E C
A D B _ _ P _
C _ B _ A C B A C
D B E。