电磁波的频带划分图
人教版高中物理选修3-4第十四章 14.5 电磁波谱:29张PPT
红外线
2、主要应用:
1)红外探测器:夜视仪、红外摄影
红外线
2、主要应用:
2)取暖:电暖器,烤火炉等。
红外线
2、主要应用:
3)红外线遥控:家用电器配套的遥控器。
红外线
2、主要应用:
4)红外线遥感:勘测地热、寻找水源、监视森林火情、 预报风暴和寒潮等。
可见光
1、主要特点:
1)波长在760nm到400nm之间,人眼可见。 2)包含不同颜色的光,即红橙黄绿青蓝紫。
2. 为五月最后统考拼搏,稳做王者看谁与争锋? 10. 树立远大的目标,现在看起来似乎是遥不可及,但是不要怀疑,每天持续地努力,累积下来,一定可以达到。 15. 宽阔的河平静,博学的人谦虚。秀才不怕衣衫破,就怕肚子没有货。 5. 注意力是智慧的门户。要得惊人艺,须下苦功夫。 6 、没试着拼尽全力去做怎么知道结果就一定是输,哪怕拼尽全力输了也是一次成长。 24. 嘲讽是一种力量,消极的力量。赞扬也是一种力量,但却是积极的力量。 10. 脚踏实地,心无旁骛,珍惜分分秒秒。紧跟老师,夯实基础。 10 、每天只看目标,别老想障碍。 3. 月考分数高低何足挂齿,平时名次浮动纯属正常。 8. 超越自己,向自己挑战,向弱项挑战,向懒惰挑战,向陋习挑战。 10. 体悟好往届高考题,触类旁通。 1 、伟大的力量存在于我们的内心。 8 、所有的成功都来自于行动,只有付诸行动,才能一步步走向成功。 1. 生命对某些人来说是美丽的,这些人的一生都为某个目标而奋斗。
可见光
紫外线
X射线
γ射线
特点
应用
无线电波
1、主要特点:
波长大于1mm(频率小于300GHz) 分为长波、中波、短波、微波
2、主要应用:
1)通信、广播 2)航海 3)数据传输 4)导航 5)天文学家用射电望远镜接收天体辐射的 电磁波,进行天体物理研究
无线 WIFI 的13个信道频率范围
无线WIFI 的13个信道频率范围发表于2012-12-01作者Haoxian Zeng更新于2014-04-09浏览11,154 次9目前主流的无线WIFI网络设备不管是802.11b/g还是802.11b/g/n 一般都支持13个信道。
它们的中心频率虽然不同,但是因为都占据一定的频率范围,所以会有一些相互重叠的情况。
下面是13个信道的频率范围列表。
了解这13个信道所处的频段,有助于我们理解人们经常说的三个不互相重叠的信道含义。
信道也称作通道(Channel)、频段,是以无线信号(电磁波)作为传输载体的数据信号传送通道。
无线网络(路由器、AP热点、电脑无线网卡)可在多个信道上运行。
在无线信号覆盖范围内的各种无线网络设备应该尽量使用不同的信道,以避免信号之间的干扰。
下表是常用的2.4GHz(=2400MHz)频带的信道划分。
实际一共有14个信道(下面的图中画出了第14信道),但第14信道一般不用。
表中只列出信道的中心频率。
每个信道的有效宽度是20MHz,另外还有2MHz的强制隔离频带(类似于公路上的隔离带)。
即,对于中心频率为2412 MHz 的1信道,其频率范围为2401~2423MHz(见文后评论)。
信道中心频率信道中心频率1 2412MHz 8 2447MHz2 2417MHz 9 2452MHz3 2422MHz 10 2457MHz信道中心频率信道中心频率4 2427MHz 11 2462MHz5 2432MHz 12 2467MHz6 2437MHz 13 2472MHz7 2442MHz当然,实际的电磁波谱使用规定因国家不同而有所差异,以上只是举个例子。
而且,20MHz的信道宽度也只是“有效带宽”,因为实际上一个信道在其中心频率两侧有很宽的延展,但是超过10MHz以外的部分强度很弱,基本无用。
这个就属于比较专业的通信原理问题了。
如需了解更多,可以参考IEEE 802.11-2007 标准(PDF)。
2.4GHZ的13个信道
无线WIFI 的13个信道频率范围超过10MHz以外的部分强度很弱,基本无用。
这个就属于比较专业的通信原理问题了。
如需了解更多,可以参考IEEE 802.11-2007 标准(PDF)。
从下图很容易看到其中1、6、11 这三个信道(红色标记)之间是完全没有交叠的,也就是人们常说的三个不互相重叠的信道。
每个信道 20MHz 带宽。
图中也很容易看清楚其他各信道之间频谱重叠的情况。
IEEE 802.11b DSSS 信道划分(图来自CISCO)另外,如果设备支持,除1、6、11 三个一组互不干扰的信道外,还有2、7、12;3、8、13;4、9、14 三组互不干扰的信道。
我曾经遇到过一台戴尔的笔记本电脑,居然不支持第13信道。
当时为了与邻居们错开信道,给无线路由器选了个13,弄得那台笔记本怎么都连不上网络。
刚开始没注意,捣鼓了很久才发现是信道的问题。
现在大家的无线设备都多了起来,楼上楼下邻里之间,一不小心就搜出来十几个无线路由器。
要完全错开使用信道还真是不容易。
最拥挤的时候,我从笔记本ping 无线路由器会经常遇到上千毫秒的延迟。
不过1通道貌似是用得最多的。
现在新式的无线路由器都可以自动跳转信道了,但是巧妇难为无米之炊,设备多了,还是会遭遇干扰。
所以很多设备开始使用5GHz 附近(5.15~5.85GHz)的频带。
该频段在划分时,每个信道与相邻信道都不发生重叠,因而干扰较小。
但是也有缺点:5GHz 频率较高,在空间传输时衰减较为严重,因而如果距离稍远,性能会严重降低。
信道范围:中国:(1)2.4G的信道范围:2.412-2.472,13个信道(2)5.0G的信道范围:5.725-5.825,4个信道5G的信道表依次为:最近新开通在室内:2.4G 穿透性好传输距离近;5G,室内抗衰减能力差,穿透性差传输距离远;5G较近的传播和较高的传播速度。
2.4G波长为0.125米,5.8G的0.052米,属于无线电波,微波只要不是处于绝对零度下,任何物理都会往外发射电磁波。
电磁波的波长分布.
电磁波的波长分布微波基本知识:什么是微波频率约在300-3×105MHz的电磁波称为微波,对应的波长范围为1米至一毫米。
图1和图2是电磁波谱、微波波段的划分说明,表1是无线电波谱的划分。
图1 电磁波谱图2 微波段划分及传播方式表1 无线电波谱划分(已被国际电信联盟ITU采纳)表微波波段还可以细分为“分米波”(波长为1米至10厘米),“厘米波”(波长10厘米至1厘米)和“毫米波”(波长为1厘米至1毫米)。
波长在1毫米一下至红外线之间的电磁波称为“亚毫米波”或超微波,这是一个正在开发的波段。
微波有一下几个主要特点:1、微波波长很短,它和几何光学中光的特点很接近,具有直线传播的性质。
利用这个特点,就能在微波波段制成方向性极高的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱回波,从而确定物体的方向和距离,这一特点使得微波技术在雷达中得到广泛的应用。
2、微波的电磁振荡周期(10-9-10-12秒)很短,已经和电子管中电子在电极间飞越所经历的时间(约10-9)可以比拟,甚至还要小。
因此,普通电子管已经不能用做微波振荡器、放大器和检波器,而必须采用原理上完全不同的微波电子管来代替。
3、微波传输线,微波元件和微波测量设备的线长度与波长具有相近似的数量级。
因此,一般无线电元件由于辐射效应和趋肤效应都不能用了,必须采用原理上完全不同的微波元件来代替。
4、在低频电路中,电路的尺寸比波上小的多,处理问题时只需采用电路的概念和方法;在微波波段,电路尺寸已能与波长相比拟,甚至还要小,所以处理问题时必须采用电磁场的概念和方法。
5、许多原子和分子发射和吸收的电磁波的波长正好处在微波波段内。
人们利用这一特点来研究分子和原子的核结构。
6、微波可以畅通无阻地穿过地球上空的电离层。
因此,微波波段是无线电波谱中的“宇宙窗口”,为宇航通讯、导航、定位以及射电天文学的研究和发展提供了广阔的前景。
无线电无线电是指在自由空间(包括空气和真空)传播的电磁波,是其中的一个有限频带,上限频率在300GHz(吉赫兹),下限频率较不统一, 在各种射频规范书, 常见的有三3KHz~300GHz(ITU-国际电信联盟规定), 9KHz~300GHz, 10KHz~300GHz。
电磁波的波长分布.
电磁波的波长分布微波基本知识:什么是微波频率约在300-3×105MHz的电磁波称为微波,对应的波长范围为1米至一毫米。
图1和图2是电磁波谱、微波波段的划分说明,表1是无线电波谱的划分。
图1 电磁波谱图2 微波段划分及传播方式表1 无线电波谱划分(已被国际电信联盟ITU采纳)表微波波段还可以细分为“分米波”(波长为1米至10厘米),“厘米波”(波长10厘米至1厘米)和“毫米波”(波长为1厘米至1毫米)。
波长在1毫米一下至红外线之间的电磁波称为“亚毫米波”或超微波,这是一个正在开发的波段。
微波有一下几个主要特点:1、微波波长很短,它和几何光学中光的特点很接近,具有直线传播的性质。
利用这个特点,就能在微波波段制成方向性极高的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱回波,从而确定物体的方向和距离,这一特点使得微波技术在雷达中得到广泛的应用。
2、微波的电磁振荡周期(10-9-10-12秒)很短,已经和电子管中电子在电极间飞越所经历的时间(约10-9)可以比拟,甚至还要小。
因此,普通电子管已经不能用做微波振荡器、放大器和检波器,而必须采用原理上完全不同的微波电子管来代替。
3、微波传输线,微波元件和微波测量设备的线长度与波长具有相近似的数量级。
因此,一般无线电元件由于辐射效应和趋肤效应都不能用了,必须采用原理上完全不同的微波元件来代替。
4、在低频电路中,电路的尺寸比波上小的多,处理问题时只需采用电路的概念和方法;在微波波段,电路尺寸已能与波长相比拟,甚至还要小,所以处理问题时必须采用电磁场的概念和方法。
5、许多原子和分子发射和吸收的电磁波的波长正好处在微波波段内。
人们利用这一特点来研究分子和原子的核结构。
6、微波可以畅通无阻地穿过地球上空的电离层。
因此,微波波段是无线电波谱中的“宇宙窗口”,为宇航通讯、导航、定位以及射电天文学的研究和发展提供了广阔的前景。
无线电无线电是指在自由空间(包括空气和真空)传播的电磁波,是其中的一个有限频带,上限频率在300GHz(吉赫兹),下限频率较不统一, 在各种射频规范书, 常见的有三3KHz~300GHz(ITU-国际电信联盟规定), 9KHz~300GHz, 10KHz~300GHz。
高中物理第十四章电磁波5电磁波谱无线电频谱和波段划分素材选修3_4
5 电磁波谱无线电频谱和波段划分极低频短波通信频率功能的划分极低频短波通信实际使用的频率范围:1.6 MHz~30 MHz1600 kHz~1800 kHz:主要是些灯塔和导航信号,用来给鱼船和海上油井勘探的定位信号1800 kHz~2000 kHz:160米的业余无线电波段,在秋冬季节的夜晚有最好的接收效果。
2000 kHz~2300 kHz:此波段用于海事通信,其中2182 kHz保留为紧急救难频率。
2300 kHz~2498 kHz:120米的广播波段。
2498 kHz~2850 kHz:此波段有很多海事电台。
2850 kHz~3150 kHz:主要是航空电台使用。
3150 kHz~3200 kHz:分配给固定台。
3200 kHz~3400 kHz:90米的广播波段,主要是一些热带地区的电台使用。
3400 kHz~3500 kHz:用于航空通信。
3500 kHz~4000 kHz:80米的业余无线电波段。
4000 kHz~4063 kHz:固定电台波段。
4063 kHz~4438 kHz:用于海事通信。
4438 kHz~4650 kHz:用于固定台和移动台的通信4750 kHz~4995 kHz:60米的广播波段,主要由热带地区的一些电台使用。
最好的接收时间是秋冬季节的傍晚和夜晚。
4995 kHz~5005 kHz:有国际性的标准时间频率发播台。
可在5000 kHz听到。
5005 kHz~5450 kHz:此频段非常混乱,低端有些广播电台,还有固定台和移动台。
5450 kHz~5730 kHz:航空波段。
5730 kHz~5950 kHz:此波段被某些固定台占用,这里也可以找到几个广播电台。
5950 kHz~6200 kHz:49米的广播波段。
6200 kHz~6525 kHz:非常拥挤的海事通信波段。
6525 kHz~6765 kHz:航空通信波段。
6765 kHz~7000 kHz:由固定台使用。
原来是这样的,无线wifi为什么用这几个信道
原来是这样的,无线wifi为什么用这几个信道目前主流的无线WIFI网络设备不管是802.11b/g还是802.11b/g/n 一般都支持13个信道。
它们的中心频率虽然不同,但是因为都占据一定的频率范围,所以会有一些相互重叠的情况。
下面是13个信道的频率范围列表。
了解这13个信道所处的频段,有助于我们理解人们经常说的三个不互相重叠的信道含义。
信道也称作通道(Channel)、频段,是以无线信号(电磁波)作为传输载体的数据信号传送通道。
无线网络(路由器、AP热点、电脑无线网卡)可在多个信道上运行。
在无线信号覆盖范围内的各种无线网络设备应该尽量使用不同的信道,以避免信号之间的干扰。
下表是常用的2.4GHz(=2400MHz)频带的信道划分。
实际一共有14个信道(下面的图中画出了第14信道),但第14信道一般不用。
表中只列出信道的中心频率。
每个信道的有效宽度是20MHz,另外还有2MHz的强制隔离频带(类似于公路上的隔离带)。
即,对于中心频率为2412 MHz 的1信道,其频率范围为2401~2423MH。
评论当然,实际的电磁波谱使用规定因国家不同而有所差异,以上只是举个例子。
而且,20MHz的信道宽度也只是“有效带宽”,因为实际上一个信道在其中心频率两侧有很宽的延展,但是超过10MHz以外的部分强度很弱,基本无用。
这个就属于比较专业的通信原理问题了。
如需了解更多,可以参考IEEE 802.11-2007 标准(PDF)。
从下图很容易看到其中1、6、11 这三个信道(红色标记)之间是完全没有交叠的,也就是人们常说的三个不互相重叠的信道。
每个信道20MHz 带宽。
图中也很容易看清楚其他各信道之间频谱重叠的情况。
评论IEEE 802.11b DSSS 信道划分另外,如果设备支持,除1、6、11 三个一组互不干扰的信道外,还有2、7、12;3、8、13;4、9、14 三组互不干扰的信道。
我曾经遇到过一台戴尔的笔记本电脑,居然不支持第13信道。
无线WIFI的13个信道频率范围
⽆线WIFI的13个信道频率范围⽬前主流的⽆线WIFI⽹络设备不管是b/g还是802.11b/g/n ⼀般都⽀持13个信道。
它们的中⼼频率虽然不同,但是因为都占据⼀定的频率范围,所以会有⼀些相互重叠的情况。
下⾯是13个信道的频率范围列表。
了解这13个信道所处的频段,有助于我们理解⼈们经常说的三个不互相重叠的信道含义。
信道也称作通道(Channel)、频段,是以⽆线信号(电磁波)作为传输载体的数据信号传送通道。
⽆线⽹络(路由器、AP热点、电脑⽆线⽹卡)可在多个信道上运⾏。
在⽆线信号覆盖范围内的各种⽆线⽹络设备应该尽量使⽤不同的信道,以避免信号之间的⼲扰。
下表是常⽤的 2.4GHz(=2400MHz)频带的信道划分。
实际⼀共有(下⾯的图中画出了第14信道),但第14信道⼀般不⽤。
表中只列出信道的中⼼频率。
每个信道的有效宽度是 20MHz,另外还有2MHz的强制隔离频带(类似于公路上的隔离带)。
即,对于中⼼频率为 2412 MHz 的1信道,其频率范围为 2401~2423MHz(见)。
信道中⼼频率信道中⼼频率12412MHz82447MHz22417MHz92452MHz32422MHz102457MHz42427MHz112462MHz52432MHz122467MHz62437MHz132472MHz72442MHz当然,实际的电磁波谱使⽤规定因国家不同⽽有所差异,以上只是举个例⼦。
⽽且,20MHz的信道宽度也只是“有效带宽”,因为实际上⼀个信道在其中⼼频率两侧有很宽的延展,但是超过10MHz以外的部分强度很弱,基本⽆⽤。
这个就属于⽐较专业的通信原理问题了。
如需了解更多,可以参考(PDF)。
从下图很容易看到其中 1、6、11 这三个信道(红⾊标记)之间是完全没有交叠的,也就是⼈们常说的三个不互相重叠的信道。
每个信道 20MHz 带宽。
图中也很容易看清楚其他各信道之间频谱重叠的情况。
IEEE 802.11b DSSS 信道划分(图来⾃ CISCO)另外,如果设备⽀持,除 1、6、11 三个⼀组互不⼲扰的信道外,还有 2、7、12;3、8、13;4、9、14 三组互不⼲扰的信道。
第4章 4 《电磁波谱》课件ppt
规律方法 电磁波的特点和应用 我们不仅要牢记电磁波谱中不同的电磁波(如红外线、紫外线、X射线、γ 射线)的特点和应用,还要记住电磁波谱中波长、频率的变化规律,如频率 越高,波长越短,穿透性越强,波动性越弱;频率越低,波长越长,衍射现象越明 显,波动性越强,穿透性越弱。
变式训练 下面列出一些医疗器械的名称和这些器械运用的物理现象。请
B.伦琴射线的频率最大,红外线的频率最小
C.可见光的频率最大,红外线的频率最小
D.伦琴射线的频率最大,可见光的频率最小
【答案】B
【解析】在电磁波谱中,红外线、可见光和伦琴射线(X射线)按照频
率从大到小的排列顺序是:伦琴射线(X射线)、可见光、红外线.
5.(多选)关于红外线的作用与来源,下列说法正确的是 ( ) A.一切物体都在不停地辐射红外线 B.红外线具有很强的热作用和荧光作用 C.红外线的显著作用是化学作用 D.红外线容易穿透云雾 【答案】AD 【解析】荧光作用和化学作用都是紫外线的重要用途,红外线波长 较可见光长,绕过障碍物的能力强,易穿透云雾.
将相应的字母填写在运用这种现象的医疗器械后面的空格上。
(1)X光机:
。
(2)紫外线灯:
。
(3)理疗医用“神灯”照射伤口,可使伤口愈合得较好。这里的“神灯”是利
用
。
A.光的全反射
B.紫外线具有很强的荧光作用
C.紫外线具有杀菌消毒作用
D.X射线具有很强的贯穿力
E.红外线具有显著的热效应
F.红外线波长较长,易发生衍射
(3)举例说明在工农业生产和日常生活中,有哪些利用红外线的地方。 答案 红外线烤箱、红外线照相机、红外线遥控器(如电视机的遥控器)等。 (4)太阳光中含有紫外线,日常生活中太阳光的紫外线对人的作用有哪些? 答案 紫外线能够促使人体合成维生素D,维生素D能促进钙的吸收,所以经 常晒太阳可以在一定程度上预防佝偻病,但过强的紫外线对人体有害(如夏 季的阳光),所以要进行防护。
电磁波的频谱(二)——各频段的频率分配 下面将按波段划分来讨论各 ...
电磁波的频谱(二)——各频段的频率分配下面将按波段划分来讨论各波段的特点及其频率分配。
一、10~200千赫频段该频段属于甚长波和长波的波段,因其传播特性相近,故并在一起讨论。
该波段可以用天波和地波传播,而主要以地波传播方式为主。
因地波传播频率愈高,大地的吸收愈大,故在无线电的早期是向低频率的方向发展。
天波是靠电磁波在地面和电离层之间来回反射而传播的。
该波段的特点是:(1)传播距离长,在海水上应用数千瓦的功率可以实现3000公里的通信。
所以目前还有很多海岸电台使用长波通信(30~200千赫)。
用10~30千赫可以实现特远距离的通信。
(2)电离层扰动的影响小。
长波传播稳定,基本没有衰落现象。
(3)波长愈长,大地或海水的吸收愈小,因此适宜于水下和地下通信。
但是它的缺点也是明显的:(1)容量小。
长波整个频带宽度只有200千赫,因此容量有限,不能容纳多个电台在同一地区工作。
(2)大气噪声干扰大。
因为频率愈低大气噪声干扰愈大(大气干扰也和地理位置有关,愈近赤道、干扰愈大)。
(3)需要大的天线。
该波段频率的分配情况。
根据国际规定,10~200千赫主要用于无线电导航(航空和航海)、定点通信、海上移动通信和广播。
被指定的导航用频率为10~14千赫以及70~130千赫。
这是作为远距离导航用的,主要是因为长波传播远,且无盲区。
在导航系统中,盲区是不允许的。
在70~130千赫工作的有劳兰—C系统和台卡(Decca)系统。
海上移动通信主要用于岸-船通信。
由于长波的可靠性高,因此,当容量不是主要的,而要求高可靠性的远距离通信时,就要用这个频段,并且特别适宜在极区的岸-船通信。
船- 岸通信通常不用此频段,因船上位置有限,不能得到高的天线效率。
几乎整个波段部分都分配作定点通信用,这在目前是作为短波通信的备份使用的,以便在电离层受到干扰时使用。
目前看来这种需要性已逐渐减小,除了少数地区外,大多数地区已不用,最后这种用途将被放弃。
电磁波频率划分
13 特性
除了极低频和超低频 美国的Saguine 外,通常无线电波不容 系统使用76Hz, 易在海中传送。ELF每 俄罗斯的ZEVS系 分钟可以传送的讯号相 统使用82Hz 对地较小,只是给美军 用作指示潜水艇进入/ 离开海底。有效传送极 低频信号需要大型的天 线,使用不太普遍。
多数用作潜艇通 低频发射天线的 多数作AM电台。 HF多数是用作民 VHF主要是作较短途的 用于短途通信,可以
视台广播、航空和航 (小灵通):1915-
海的沟通频道
1900 MHz;家用微波
炉:2450 MHz
12 应用范围 2
一些无线电频率 识别(RFID技术) 标签使用低频。
电视:50-92、168- 电视:471-566、607223MHz二个频段。VHF 958MHz两个频段。UHF 包含1-12电视频道 包含13-68电视频道
电磁波频率
序号
项目
1 中文名称
极低频
超低频
特低频
甚低频
低频
电磁频率划分
中频
高频
甚高频
特高频
2 英文名称
Extremely Low Frequency
Super Low Frequency
Ultra Low Frequency
Very Low Frequency
Low Frequency
Medium Frequency
3×105 103 102
3×106 102 101
3×107 101 100
3×108 100 10-1
多数给美军及俄罗斯军 方用作和潜艇沟通。
工频: (50Hz/60Hz), 高压电力设备
公里波
多用作卫星导航
电磁波频谱 和 波段划分以及名称由来
电磁波频谱和波段划分以及名称由来---------------------------------------------------------常见电磁波波长无线电波0.1mm~100Km (3kHz~3000GHz)频段名称段号(含上限不含下限)频段范围波段名称波长范围(含上限不含下限)1 甚低频(VLF)3~30千赫(KHz)甚长波100~10km2 低频(LF)30~300千赫(KHz)长波10~1km3 中频(MF)300~3000千赫(KHz)中波1000~100m4 高频(HF)3~30兆赫(MHz)短波100~10m5 甚高频(VHF)30~300兆赫(MHz)米波10~1m6 特高频(UHF)300~3000兆赫(MHz)分米波微波100~10cm7 超高频(SHF)3~30吉赫(GHz)厘米波微波10~1cm8 极高频(EHF)30~300吉赫(GHz)毫米波微波10~1mm9 至高频300~3000吉赫(GHz)丝米波1~0.1mm红外线770纳米~14微米可见光400纳米~700纳米紫外线200纳米~400纳米X射线(伦琴射线)波长0.1纳米~10纳米频率:30pHz~3eHzγ射线(伽马射线)小于0.1埃米(核弹最大的破坏性来自于该射线)波长和频率换算关系:令波长为λ,频率为f,速度为V,得:λ=V/f波长的单位是米(m),速度的单位是米/秒(m/sec),频率的单位为赫兹(Hertz,Hz)。
光速= 299 792 458 m / s长度单位10埃米(埃格斯特朗)=1纳米原子的平均直徑(由經驗上的半徑計算得)在0.5埃(氫)和3.8埃(鈾,最重的天然元素)之間。
1000纳米=1微米1000微米=1毫米1000毫米=1米频率单位1 千赫kHz 10^3 Hz 1 000 Hz1 兆赫MHz 10^6 Hz 1 000 000 Hz1 秭赫GHz 10^9 Hz 1 000 000 000 Hz1 澗赫THz 10^12 Hz 1 000 000 000 000 Hz1 拍赫PHz 10^15 Hz 1 000 000 000 000 000 Hz1 艾赫EHz 10^18 Hz 1 000 000 000 000 000 000 Hz---------------------------------------------------------雷达波段的由来皇家海军威尔士亲王号战列舰,其上雷达布置清晰可见迄今为止对雷达波段的定义有两种截然不同的方式。
电磁波频谱的划分
电磁波频谱的划分全文共四篇示例,供读者参考第一篇示例:电磁波频谱是指电磁波在不同频率下的分布情况,是由频率和波长构成的。
电磁波频谱的划分是通过对电磁波在频率范围内的特性进行分类,以便对不同频段的电磁波进行研究和应用。
电磁波频谱的划分是基于波长或频率等特征进行的,按频率从低到高可分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线七个部分。
下面将详细介绍电磁波频谱的划分。
无线电波是电磁波频谱中的最低频段,频率范围在数千赫兹至数百千赫兹之间。
无线电波在通信、广播、雷达等领域中有着广泛的应用。
微波是电磁波频谱中的次低频段,频率范围在几百兆赫兹至数十千赫兹之间,微波在通信、雷达、热成像等领域中有广泛应用。
紫外线是电磁波频谱中的最高频段之一,频率范围在几百兆赫兹至数千兆赫兹之间,紫外线在消毒、光固化等领域中有重要应用。
可见光是电磁波频谱中的一个特殊频段,波长范围在380纳米至780纳米之间,可见光是人类能够看到的光线,对于日常生活和科学研究有着重要作用。
电磁波频谱的划分不仅有助于对不同频段的电磁波进行研究和应用,还有助于理解电磁波的性质和特点。
不同频段的电磁波在传播、吸收和散射等过程中表现出不同的特性,这些特性对于电磁波在不同领域的应用起着重要作用。
通过对电磁波频谱的划分,可以更好地理解和利用电磁波在科学、技术和医学等领域中的应用。
第二篇示例:电磁波(Electromagnetic waves)是一种波动,在自由空间中传播的能量形式,其特点是既有电场又有磁场,因此得名。
电磁波是由电场和磁场交替变化而传播的波动。
电磁波的频谱是指不同频率范围内电磁波的划分,不同频率的电磁波对人类和自然界具有不同的影响。
根据电磁波的频率范围,可以将电磁波频谱划分为七类:无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
这七类电磁波的频率依次递增,而波长则依次减小。
1. 无线电波无线电波是频率较低的电磁波,其频率范围为3 kHz至300 GHz,波长在几十米到几毫米之间。
电磁波频谱 和 波段划分以及名称由来
电磁波频谱和波段划分以及名称由来频率较低,信号a 环©3aDGHt3GHj二1Ocm10mlOQm300kHz 1kmfl 30kHzwwwJmef;UHFHFLFr\(VHF£住聲30MHz>=Cf VLF\1DOkmFIGkrri八指向性强,应用厂頻率C H£诙长(Q 液的名称W-10s- 10*- w地“墟1田屯10地[QI 10——H 1|皿GHi:併一104-—1—ltr2」ltr*—LG^_10-1-1QFJ工(T1J tQF—llAHlliim长波中波徼波如卜巍丁射線a_噩液-F(由E 黑產生亚學線作用引起】白翕卜練近戦井按3C=可匡记帯[衣覘所見童襪述範團〕F#近紅外岸 中紅处縊虹幷呈X 戈 迪K Z 7接近黑性蛮(W 也髀為熱浊》有大龜能 遠紅外維至菽極超矩液•IR r*VIS*■*—uv —rDUV][|][ [ ] nm1050nm950nmSSOnm750I 1nm6S0nm550nm450nm350rim250 nm150nm1150 Frequency Hz10ee«'iph 『tf 1i (rtt ・神神11**詔时it 1io"ID "w'r 种"■1KMiMHt1GH11TM1;Wavtilength常见电磁波波长无线电波0.1mm~100Km(3kHz~3000GHz)红外线770纳米~14微米 可见光400纳米~700纳米 紫外线200纳米~400纳米X 射线(伦琴射线)波长0.1纳米~10纳米频率:30pHz~3eHz Y 射线(伽马射线)小于0.1埃米(核弹最大的破坏性来自于该射线)波长和频率换算关系:令波长为入,频率为f ,速度为V ,得:A=V/f波长的单位是米(m ),速度的单位是米/秒(m/sec ),频率的单位为赫兹(Hertz ,Hz )。
光速=299792458m/s1甚低频(VLF ) 3〜30千赫(KHz ) 甚长波 100〜10km 2低频(LF ) 30〜300千赫(KHz ) 长波 10〜1km 3中频(MF ) 300〜3000千赫(KHz ) 中波 1000〜100m 4高频(HF ) 3〜30兆赫(MHz )短波 100〜10m 5甚高频(VHF ) 30〜300兆赫(MHz )米波 10〜1m 6特高频(UHF ) 300〜3000兆赫(MHz ) 分米波 微波100〜10cm 7超高频(SHF ) 3〜30吉赫(GHz ) 厘米波 微波10〜1cm 8极高频(EHF ) 30〜300吉赫(GHz )毫米波微波10〜1mm 9至咼频300〜3000吉赫(GHz ) 丝米波1〜0.1mm波段名称 波长范围(含上限不含下限) 频段名称段号(含上限不含下限)频段范围长度单位10埃米(埃格斯特朗)=1纳米原子的平均直徑(由經驗上的半徑計算得)在0.5埃(氫)和3.8埃(鈾,最重的天然元素)之間。
电磁波频谱和波段划分以及名称由来
电磁波频谱和波段划分以及名称由来---------------------------------------------------------常见电磁波波长无线电波0.1mm~100Km (3kHz~3000GHz)频段名称段号(含上限不含下限)频段范围波段名称波长范围(含上限不含下限)1 甚低频(VLF)3~30千赫(KHz)甚长波100~10km2 低频(LF)30~300千赫(KHz)长波10~1km3 中频(MF)300~3000千赫(KHz)中波1000~100m4 高频(HF)3~30兆赫(MHz)短波100~10m5 甚高频(VHF)30~300兆赫(MHz)米波10~1m6 特高频(UHF)300~3000兆赫(MHz)分米波微波100~10cm7 超高频(SHF)3~30吉赫(GHz)厘米波微波10~1cm8 极高频(EHF)30~300吉赫(GHz)毫米波微波10~1mm9 至高频300~3000吉赫(GHz)丝米波1~0.1mm红外线770纳米~14微米可见光400纳米~700纳米紫外线200纳米~400纳米X射线(伦琴射线)波长0.1纳米~10纳米频率:30pHz~3eHzγ射线(伽马射线)小于0.1埃米(核弹最大的破坏性来自于该射线)波长和频率换算关系:令波长为λ,频率为f,速度为V,得:λ=V/f波长的单位是米(m),速度的单位是米/秒(m/sec),频率的单位为赫兹(Hertz,Hz)。
光速= 299 792 458 m / s长度单位10埃米(埃格斯特朗)=1纳米原子的平均直徑(由經驗上的半徑計算得)在0.5埃(氫)和3.8埃(鈾,最重的天然元素)之間。
1000纳米=1微米1000微米=1毫米1000毫米=1米频率单位1 千赫kHz 10^3 Hz 1 000 Hz1 兆赫MHz 10^6 Hz 1 000 000 Hz1 秭赫GHz 10^9 Hz 1 000 000 000 Hz1 澗赫THz 10^12 Hz 1 000 000 000 000 Hz1 拍赫PHz 10^15 Hz 1 000 000 000 000 000 Hz1 艾赫EHz 10^18 Hz 1 000 000 000 000 000 000 Hz---------------------------------------------------------雷达波段的由来皇家海军威尔士亲王号战列舰,其上雷达布置清晰可见迄今为止对雷达波段的定义有两种截然不同的方式。
电磁波的频谱范围如何划分?
电磁波的频谱范围如何划分?电磁波,这个看似神秘却又无处不在的存在,充斥在我们生活的每一个角落。
从日常使用的手机通信,到广播电视信号的传输,再到医疗领域的 X 射线和紫外线治疗,电磁波都发挥着至关重要的作用。
那么,电磁波的频谱范围究竟是如何划分的呢?要理解电磁波频谱范围的划分,首先得明白电磁波是什么。
简单来说,电磁波是由同相且互相垂直的电场与磁场在空间中衍生发射的振荡粒子波,是以波动的形式传播的电磁场。
电磁波的频率和波长是其两个重要的特性,而频谱范围的划分正是基于这两个特性来进行的。
电磁波的频谱范围极其广泛,通常被划分为多个不同的频段。
从低频到高频,依次包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。
无线电波是频谱中频率较低的部分,其波长较长,通常用于广播、电视、移动通信和导航等领域。
根据频率的不同,无线电波又可以进一步细分为长波、中波、短波和超短波等。
长波的频率在 300kHz 以下,波长可达数千米,常用于远距离的导航和通信;中波的频率在 300kHz至 3MHz 之间,主要用于广播;短波的频率在 3MHz 至 30MHz 之间,能够实现远距离的国际通信;超短波的频率在 30MHz 至 300MHz 之间,常用于调频广播和移动通信。
微波的频率在 300MHz 至 300GHz 之间,具有较高的定向性和穿透性。
在通信领域,微波常用于卫星通信和雷达系统;在日常生活中,微波炉就是利用微波来加热食物的。
红外线的频率比微波略高,波长在 760nm 至 1mm 之间。
红外线具有热效应,被广泛应用于红外遥感、红外加热和红外夜视等方面。
比如,在一些遥控器中,就是通过发射红外线来控制电器的开关和操作。
可见光则是我们能够用肉眼直接看到的电磁波部分,其波长范围大约在 380nm 至 760nm 之间。
不同波长的可见光呈现出不同的颜色,从波长较长的红色到波长较短的紫色依次排列。
紫外线的波长比可见光短,在 10nm 至 380nm 之间。
电磁波各个频段(波段)的特点
电磁波各个频段(波段)的特点《聊聊电磁波各个频段的那些事儿》嘿,大家好呀!今天咱来唠唠电磁波各个频段(波段)那些神奇又有趣的特点。
先来说说无线电波吧,这可是咱日常生活中接触最多的。
从咱听的广播,到手机通讯,都是靠着无线电波呢。
它就像一个慢悠悠但特别靠谱的使者,虽然走得慢,但能把信息准确无误地送到咱们手里。
你想想看,你在收音机旁听着喜欢的节目,或者跟朋友煲着电话粥,这可都多亏了无线电波这个“老伙计”呀!然后呢,就是微波啦。
微波就像是个急性子,速度超级快。
微波炉不就是个典型嘛!它能在短时间内让食物热起来,这效率,杠杠的!还有那些信号传输,也是微波的拿手好戏,眨眼间就能把信息传得老远老远。
接着是红外线啦。
红外线就像个贴心的小暖炉。
哎呀呀,冬天的时候,那个红外线取暖器一打开,立马就暖洋洋的,舒服得很呢。
而且一些遥控器也是用红外线来工作的哦,咱们只要轻轻一按,电视就乖乖听话换台啦。
紫外线呢,可就有点让人又爱又恨啦。
夏天的时候,它可让咱头疼,生怕被晒黑晒伤。
但它也不是一无是处哟,它能杀菌消毒呢!有些消毒柜里就有它的功劳。
再说说X 射线,这家伙可厉害了,就像个“看透一切”的大师。
在医院里,它能帮医生看清我们身体里的情况,找出那些隐藏的小毛病。
最后是伽马射线,那可是能量超强的“大力士”呀!不过一般情况下咱可不容易接触到它,要是遇到了那可得小心点儿。
总之呢,电磁波各个频段都有自己独特的性格和本事。
它们就像一个大家庭,各自扮演着重要的角色,为我们的生活带来便利和乐趣。
从通讯到加热,从医疗到日常,到处都有它们的身影。
下次当你使用手机、打开微波炉或者享受阳光的时候,可别忘了感谢一下这些神奇的电磁波频段哦,它们可真是咱生活中的好帮手呀!哈哈!。