广西柳州市2020年九年级上学期数学期末考试试卷B卷
广西壮族自治区2020版九年级上学期期末数学试题(B卷)(II)卷
广西壮族自治区2020版九年级上学期期末数学试题(B卷)(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则DF:FB等于()A.1∶1B.1∶2C.1∶3D.2∶32 . 甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红的概率为()A.B.C.D.3 . 如图,AB是的直径,点D在AB的延长线上,DC切于C,若,则等于()A.20°B.30°C.50°D.40°4 . 下列关于x的方程是一元二次方程的是()B.x+2xy+3y=0A.x+﹣3=0C.ax+bx+c=0D.x=25 . 已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( ▲ )A.a>0B.b>0C.c<0D.3不是方程ax2+bx+c=0的一个根6 . 如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2016的直角坐标顶点的坐标为()A.(8052,0)B.(8064,0)C.(8059.2,2.4)D.(8071.2,2.4)二、填空题7 . 如图是二次函数y=ax2﹣bx+c的图象,由图象可知,不等式ax2﹣bx+c<0的解集是_______.8 . 二次函数y=+2的顶点坐标为.9 . 如图,一段抛物线:(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,第6段抛物线C6的顶点坐标为_____.10 . 如图,线段,点是线段上一个动点(不包括、)在同侧作,,,,、分别是、的中点,连接,设,,则关于的函数图像为()A.B.C.D.11 . 一组数据8,7,8,6,6,8的众数是________.12 . 如图,已知正方形ABCD的边长为6,E是BC中点,将正方形边CD沿DE折叠到DF,将AD折叠,使AD 与DF重合,折痕交AB于G,连接BF,CF,现在有如下4个结论:①G、F、E三点共线;②BG=4;③△BEF∽△CDF;④S△BFG=,在以上4个结论中,正确的有__________(填序号).13 . 若方程+kx+9=0有两个相等的实数根,则k=____________.14 . 用一个圆心角为150°,半径为2cm的扇形作一个圆锥的侧面,则这个圆锥的底面圆的半径为__________cm.15 . 抛物线y=2x2向右平移3个单位,再向下平移4个单位,得到图象的解析式是_______,顶点坐标是_______,对称轴是_______.16 . 当x≠﹣时,无论x为何值,的值恒为2,则﹣=_____.17 . 是方程的两个根,则代数式= _______ .18 . 如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为_______.三、解答题19 . 已知:如图,在Rt△ABO中,∠B=90°,∠OAB=30°,OA=3.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(1)运动过程中当点A在⊙P内时,t的取值范围是;(2)当⊙P和△ABO的边相切时,求点P的坐标;(3)当弧MN与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.20 . 已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0,求证:方程有两个不相等的实数根.21 . 抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).(1)求抛物线的解析式;(2)求点B的坐标及直线BC的解析式;(3)如图,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,求△BDC的面积的最大值.22 . 如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度的速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF为边向上作等边三角形EFG,设点E的运动时间为t秒,△EFG和△AHC的重合部分面积为S.(1)CE= (含t的代数式表示).(2)求点G落在线段AC上时t的值.(3)当S>0时,求S与t之间的函数关系式.(4)点P在点E出发的同时从点A出发沿A-H-A以每秒2个单位长度的速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t的取值范围.23 . 某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:(1)扇形统计图中,______________;(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;②问卷得分的众数是____________分;③问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.24 . 在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y.(1)计算由x、y确定的点(x,y)在函数y=﹣x+6图象上的概率;(2)小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平.25 . 如图,过的顶点作射线,使.()用直尺和圆规作出的外接圆(保留作图痕迹,不写作法).()判断直线与⊙的位置关系,并说明理由.26 . (1)计算:(2)解方程: (2 x -1)( x + 3) = 427 . 如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,连接BA.(1)求该抛物线的解析式,并写出它的对称轴;(2)点D为抛物线对称轴上一点,连接CD、BD,若∠DCB=∠CBD,求点D的坐标;(3)已知F(1,1),若E(x,y)是抛物线上一个动点(其中1<x<2),连接CE、CF、EF,求△CEF面积的最大值及此时点E的坐标.(4)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.28 . 如图,⊙O的半径为l,等腰直角三角形ABC的顶点B的坐标为(,0),∠CAB=90°,AC=AB,顶点A在⊙O上运动.(1)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;(2)当直线AB与⊙O相切时,求AB所在直线对应的函数关系式.。
2020-2021学年广西柳州市九年级(上)期末数学试卷(附答案详解)
2020-2021学年广西柳州市九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列银行标志是中心对称图形的是()A. B. C. D.2.一元二次方程2x2+3x−4=0的一次项系数是()A. −4B. −3C. 2D. 33.“任意掷一枚质地均匀的骰子,掷出的点数是偶数”这个事件是()A. 必然事件B. 不可能事件C. 随机事件D. 确定事件4.圆心角为60°,半径为1的弧长为()A. π2B. π C. π6D. π35.下列对抛物线y=−2(x−1)2+3性质的描写中,正确的是()A. 开口向上B. 对称轴是直线x=1C. 顶点坐标是(−1,3)D. 函数y有最小值6.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则摸到红球的可能性是()A. 14B. 1 C. 12D. 137.在平面直角坐标系xOy中,点A的坐标是(−2,1),连接OA,将线段OA绕原点O旋转180°,得到对应线段OB,则点B的坐标是()A. (2,−1)B. (2,1)C. (1,−2)D. (−2,−1)8.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4),(5,4),(1,0),则以A、B、C为顶点的三角形外接圆的圆心坐标是()A. (3,2)B. (2,3)C. (1,3)D. (3,1)9.如图,点A是反比例函数y=k的图象上的一点,过点Ax作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A. 4B. −4C. 8D. −810.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①abc<0;②b2−4ac>0;③a+b+c<0;④2a+b=0;其中结论正确的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.若2是方程x2−c=0的一个根,则c的值为______.12.如图,△ABC内接于圆O,∠A=50°,则∠D等于______.13.抛物线y=ax2+bx+c与x轴的公共点是(−1,0),(5,0),则这条抛物线的对称轴是直线x=______.14.反比例函数y=m−2,当x>0时,y随x的增大而减小,写出一个m的可能值______.x15.扬州某毛绒玩具厂对一批毛绒玩具进行抽检的结果如下:抽取的毛绒玩具数n2050100200500100015002000优等品的频数m194791184462921137918460.9500.9400.9100.9200.9240.9210.9190.923优等品的频率mn从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是______.(精确到0.01)16.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为______.三、解答题(本大题共7小题,共52.0分)17.解方程:2x2−8=0.18.随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗,李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗,请用列表法或画树状图法,求李老师和王老师被分配到一个监督岗的概率.19.如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.20.为帮助人民应对疫情,某药厂下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,已知每次下降的百分率相同.(1)求这种药品每次降价的百分率是多少?(2)已知这种药品的成本为105元,若按此降价幅度再一次降价,药厂是否亏本?21.如图,直线l:y=23x−1与反比例函数y=kx相交于点A、B两点,过点A作AC⊥x轴,垂足为点C,且AC=1.(1)求反比例函数y=kx的解析式;(2)观察图象,直接写出不等式23x−kx>1的解集.22.已知AB是⊙O的直径,C是圆外一点,直线CA交⊙O于点D,B、D不重合,AE平分∠CAB交⊙O于点E,过E作EF⊥CA,垂足为F.(1)判断EF与⊙O的位置关系,并说明理由;(2)若EF=2AF,⊙O的直径为10,求AD.23.二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E.(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标.答案和解析1.【答案】A【解析】解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不符合题意;C、不是中心对称图形,故此选项不符合题意;D、不是中心对称图形,故此选项不符合题意;故选:A.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.2.【答案】D【解析】解:一元二次方程2x2+3x−4=0一次项系数是:3.故选:D.根据一元二次方程的一次项系数的定义即可求解.此题考查一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.【答案】C【解析】解:“任意掷一枚质地均匀的骰子,掷出的点数可能是偶数,有可能是奇数”,∴“任意掷一枚质地均匀的骰子,掷出的点数是偶数”是随机事件;故选:C.根据事件发生的可能性大小判断即可.本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【答案】D【解析】解:圆心角为60°,半径为1的弧长=60⋅π⋅1180=π3.故选:D.直接利用弧长公式计算.本题考查了弧长的计算:弧长公式:l=n⋅π⋅R180(弧长为l,圆心角度数为n,圆的半径为R).5.【答案】B【解析】解:∵抛物线y=−2(x−1)2+3中a=−2<0,∴抛物线开口向下,y有最大值,故A、D错误;∵抛物线的解析式为:y=−2(x−1)2+3,∴抛物线的对称轴是x=1,顶点坐标为(1,3),故B正确,C错误.故选:B.根据二次函数的性质进行解答即可.本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.6.【答案】C【解析】解:∵不透明的盒子中装有2个红球,1个白球和1个黄球,共有4个球,∴摸到红球的可能性是24=12;故选:C.用红球的个数除以总球的个数即可得出答案.此题考查了可能性的大小,用到的知识点为:可能性等于所求情况数与总情况数之比.7.【答案】A【解析】解:如图,观察图象可知,B(2,−1).故选:A.根据中心旋转的性质画出图形解决问题即可.本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.8.【答案】A【解析】解:根据垂径定理的推论,如图,作弦AB、AC的垂直平分线,交点O′即为三角形外接圆的圆心,且O′坐标是(3,2).故选:A.根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.本题考查的是三角形的外接圆与外心,熟知垂径定理是解答此题的关键.9.【答案】D【解析】【分析】本题考查了反比例函数的比例系数k的几何意义,属于基础题.连接OA,得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到1|k|=4,然后去绝对值即可得到满足条件的k的值.2【解答】解:连接OA,如图,∵AB⊥x轴,∴OC//AB,∴S△OAB=S△ABC=4,而S△OAB=12|k|,∴12|k|=4,∵k<0,∴k=−8.故选:D.10.【答案】B【解析】解:①由抛物线图象得:开口向下,即a<0;抛物线与y轴交于正半轴,则c>0;对称轴是直线x=−b2a=−1<0,即b=2a<0,∴abc>0,故选项①不符合题意;②∵抛物线图象与x轴有两个交点,∴△=b2−4ac>0,故选项②符合题意;③∵当x=1时,y=a+b+c<0,故选项③符合题意;④∵b=2a,∴2a+b≠0,故选项④不符合题意;故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题考查二次函数图象与系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.11.【答案】4【解析】解:根据题意,将x=2代入方程x2−c=0,得:4−c=0,解得c=4,故答案为:4.根据方程的解的概念将x=2代入方程x2−c=0,据此可得关于c的方程,解之可得答案.本题主要考查一元二次方程的解,解题的关键是掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.【答案】50°【解析】解:∵∠A与∠D所对的弧都是BC⏜,∴∠A=∠D=50°,故答案为:50°.由圆周角的定理可求解.本题考查了三角形的外接圆和外心,圆周角定理,掌握同弧所对的圆周角相等是本题的关键.13.【答案】2【解析】解:∵抛物线y=ax2+bx+c与x轴的公共点的坐标是(−1,0),(5,0),(5−1)=2,∴这条抛物线的对称轴是直线x=12故答案为2.根据抛物线的对称性即可求解.本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.14.【答案】4【解析】解:∵当x>0时,y随x的增大而减小,∴m−2>0,解得:m>2,∴m可以是4,故答案为:4.利用反比例函数的性质可得m−2>0,再解即可.此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质(1)反比例函数y= k(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每x一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.15.【答案】0.92【解析】解:从这批毛绒玩具中,任意抽取一个毛绒玩具是优等品的概率的估计值是0.92,故答案为0.92.由表中数据可判断频率在0.92左右摆动,利用频率估计概率可判断任意抽取一个毛绒玩具是优等品的概率为0.92.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随着实验次数的增多,值越来越精确.16.【答案】√29【解析】解:∵把△ADE顺时针旋转△ABF的位置,∴△ADE的面积=△ABF的面积,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE=√AD2+DE2=√25+4=√29,故答案为:√29.由旋转的性质可得△ADE的面积=△ABF的面积,可得四边形AECF的面积等于正方形ABCD的面积等于25,可得AD=5,由勾股定理可求解.本题考查了旋转的性质,正方形的性质,勾股定理,掌握旋转的性质是本题的关键.17.【答案】解:x2=4,所以x1=2,x2=−2.【解析】先变形得到x2=4,然后利用直接开平方法求解.本题考查了解一元二次方程−直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.18.【答案】解:所有可能出现的结果如下:共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,所以李老师和王老师被分配到同一个监督岗的概率=416=14.【解析】列表得出所有等可能结果,从中找到李老师和王老师被分配到一个监督岗的结果,再利用概率公式求解即可.本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.【答案】证明:连接OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.【解析】连接OC,由切线的性质得出OC⊥AB,由等腰三角形的性质可得出结论.本题考查了切线的性质和等腰三角形性质,熟练掌握切线的性质是解题的关键.20.【答案】解:(1)设这种药品每次降价的百分率是x,依题意,得:200(1−x)2=128,解得:x1=0.2=20%,x2=1.8(不合题意,舍去).答:这种药品每次降价的百分率是20%.(2)128×(1−20%)=102.4(元),∵102.4<105,∴按此降价幅度再一次降价,药厂会亏本.【解析】(1)设这种药品每次降价的百分率是x,根据该药品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据经过连续三次降价后的价格=经过连续两次降价后的价格×(1−20%),即可求出再次降价后的价格,将其与105元进行比较后即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.【答案】解:(1)∵AC=1,故点A的纵坐标为1,则23x−1=1,解得x=3,故点A(3,1),将点A的坐标代入y=kx 得,1=k3,解得k=3,故反比例函数表达式为y=3x;(2)观察函数图象知,不等式23x−kx>1的解集为−32<x<0或x>3.【解析】(1)用待定系数法即可求解;(2)观察函数图象即可求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.22.【答案】解:(1)EF与⊙O相切,理由如下:连接OE,∵OA=OE,∴∠OAE=∠OEA,∵AE平分∠CAB,∴∠CAE=∠OAE,∴∠CAE=∠OEA,∴OE//CD,∵EF⊥CA,∴OE⊥EF,∴EF与⊙O相切;(2)过O作OH⊥AD于H,∵EF⊥CA,OE⊥EF,∴四边形OEFH是矩形,设AF=x,则EF=OH=2x,AH=5−x,在Rt△OAH中,AH2+OH2=OA2,∴(5−x)2+(2x)2=52,解得x 1=2,x 2=0(舍去), ∴AH =5−2=3, ∴AD =2AH =6.【解析】(1)连接OE ,证OE ⊥EF ,即可证得EF 与⊙O 相切;(2)过O 作OH ⊥AD 于H ,易证得四边形OEFH 是矩形,设AF =x ,则EF =OH =2x ,AH =5−x ,在Rt △OAH 中,理由勾股定理得到(5−x)2+(2x)2=52,求得x 的值,即可求得AD .本题考查了切线的判定、等腰三角形的性质、平行线的判定与性质、矩形的判定和性质,勾股定理的应用等;在判定切线时,往往是连接圆心和切点,利用经过半径的外端且垂直于半径的直线是圆的切线来判定切线.23.【答案】解:(1)将A(2,0),B(6,0)代入y =ax 2+bx +3,得{4a +2b +3=036a +6b +3=0,解得{a =14b =−2, ∴二次函数的解析式为y =14x 2−2x +3,∵函数的对称轴为x =4,当x =4时,y =14x 2−2x +3=−1, 故点E 的坐标为(4,−1);(2)如图1,图2,当x =0时,y =3,则C(0,3),连接CB ,CD ,由点C 在线段BD 的垂直平分线CN 上,得CB =CD .设D(4,m), ∵C(0,3),由勾股定理可得:42+(m −3)2=62+32. 解得m =3±√29.∴满足条件的点D的坐标为(4,3+√29)或(4,3−√29).【解析】(1)由于二次函数的图象与x轴交于A(2,0)、B(6,0)两点,把A,B两点坐标代入y=ax2+bx+3,进而求解;(2)由线段垂直平分线的性质可得出CB=CD,设D(4,m),由勾股定理可得42+(m−3)2=62+32.解方程可得出答案.本题考查的是抛物线和x轴的交点,涉及到待定系数法求函数表达式、垂直平分线的性质、勾股定理等,熟练掌握二次函数的性质及方程思想是解题的关键.。
广西柳州市九年级上学期数学期末考试试卷
广西柳州市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共36分) (共12题;共36分)1. (3分)(2020·包河模拟) 一元二次方程x2 +2x=0的解是()A . x=0B . x=-2C . x1=2 x2=0D . x1=-2 x2=02. (3分)已知点在双曲线上,则下列各点一定在该双曲线上的是()A . (3,-2)B . (-2,-3)C . (2,3)D . (3,2)3. (3分) (2020九下·江夏期中) 如图,一个由6个相同小正方体组成的几何体,则该几何体的主视图是()A .B .C .D .4. (3分) (2020八下·哈尔滨月考) 正方形具有而菱形不一定具有的性质是()A . 对角相等B . 对角线相等C . 对角线互相平分D . 对角线互相垂直5. (3分)(2019·昌图模拟) 如图,二次函数y=ax2+bx+c的对称轴是直线x=1,且经过点(﹣1,0),则下列结论:①abc<0;②2a﹣b=0;③a<﹣;④若方程ax2+bx+c﹣2=0的两个根为x1和x2 ,则(x1+1)(x2﹣3)<0,正确的有()个.A . 1B . 2C . 3D . 46. (3分) (2020九上·宁德期末) 如图,在四边形中,对角线,相交于点,且, .若要使四边形为菱形,则可以添加的条件是()A .B .C .D .7. (3分)(2019·铁岭模拟) 共享单车为市民出行带来了方便,某单车公司第一个月投放 1000 辆单车,计划第三个月投放单车数量比第一个月多440辆,该公司第二,三两个月投放单车数量的月平均增常率为x,则所列方程正确的为()A .B .C .D .8. (3分)(2020·山西) 泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。
每日一学:广西壮族自治区柳州市2020届九年级上学期数学期末考试试卷_压轴题解答
答案:
解析:
~~ 第3题 ~~
答案:D
解析:
), 为抛物线上一动点,过 作 轴的垂线,垂足为
,并与直线 交于点 .
(1) 求 、 两点的坐标. (2) 当点 在线段 上方时,过 作 标. 考点: 二次函数的实际应用-几何问题;
轴的平行线与直线
相交于点 ,求
周长的最大值及此时 点的坐 答案
~~ 第2题 ~~
(2020柳州.九上期末) 如图,在菱形
每日一学:广西壮族自治区柳州市2020届九年级上学期数学期末考试试卷_压
轴题解答
广 西 壮 族 自 治 区 柳 州 市 2020届 九 年 级 上 学 期 数 学 期 末 考 试 试 卷 _压 轴 题
~~ 第1题 ~~
(2020柳州.九上期末) 如图,抛物线
交 轴于 、 两点, 为抛物线上一点,且横纵坐标相等(原点除外
中,
,
小值为________.
,点 是平面内一点,且
,则 的最
~~ 第3题 ~~ (2020柳州.九上期末) 如图,点C在反比例函数y= (x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且A B=BC,△AOB的面积为1,则k的值为( )
A.1B.2C.3D.4
广 西 壮 族 自 治 区 柳 州 市 2020届 九 年 级 上 学 期 数 学 期 末 考 试 试 卷 _压 轴 题 解 答
九年级上册柳州数学期末试卷测试卷(含答案解析)
九年级上册柳州数学期末试卷测试卷(含答案解析)一、选择题1.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm2.在平面直角坐标系中,如图是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③方程ax 2+bx +c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个 3.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠0 4.对于二次函数2610y x x =-+,下列说法不正确的是( )A .其图象的对称轴为过(3,1)且平行于y 轴的直线.B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.5.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC =B .AD AE AB AC = C .△ADE ∽△ABCD .:1:2ADE ABC S S =6.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,07.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.48.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 729.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°10.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( )A .6B .7C .8D .9 11.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .-2B .2C .-3D .3 12.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ 的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④二、填空题13.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.14.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.15.如图,AB 、CD 、EF 所在的圆的半径分别为r 1、r 2、r 3,则r 1、r 2、r 3的大小关系是____.(用“<”连接)16.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.17.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.18.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AE AC,AE =2,EC =6,AB =12,则AD 的长为_____.19.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.20.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____.21.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.22.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.23.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.24.如图,Rt△ABC中,∠ACB=90°,BC=3,tan A=34,将Rt△ABC绕点C顺时针旋转90°得到△DEC,点F是DE上一动点,以点F为圆心,FD为半径作⊙F,当FD=_____时,⊙F与Rt△ABC的边相切.三、解答题25.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题:(1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?26.如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.27.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD 边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB=6,BC=33(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.28.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.29.已知二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),若这个二次函数与x轴交于A.B 两点,与y轴交于点C,求出△ABC的面积.30.如图,在正方形ABCD中,AB=4,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作⊙O交AC于点F,连接DF、PF.(1)求证:△DPF为等腰直角三角形;(2)若点P的运动时间t秒.①当t为何值时,点E恰好为AC的一个三等分点;②将△EFP沿PF翻折,得到△QFP,当点Q恰好落在BC上时,求t的值.31.如图,BD、CE是ABC的高.(1)求证:ACE ABD∽;(2)若BD=8,AD=6,DE=5,求BC的长.32.某小型工厂9月份生产的A、B两种产品数量分别为200件和100件,A、B两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单价的增长率的2倍,设B产品生产数量的增长率为x(0x ),若10月份该工厂的总收入增加了4.4x,求x的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.2.C解析:C【解析】【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点,把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确;对称轴为直线x =﹣1,即:﹣2b a=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确;故选C .【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.3.D解析:D【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,∴△=b 2﹣4ac=4+4k >0,且k≠0.解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.4.D解析:D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.5.D解析:D【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AE AB AC =, ∴21()4ADE ABC S DE S BC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误.故选D.6.C解析:C【解析】外心在BC 的垂直平分线上,则外心纵坐标为-1.故选C.7.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c ∴AB DE BC EF= 即1.5 1.82EF = 解得:EF=2.4 故答案为D .【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFC ABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.9.C解析:C【解析】【分析】连接OD ,根据∠AOD =2∠ACD ,求出∠AOD ,利用等腰三角形的性质即可解决问题.【详解】连接OD .∵∠ACD =20°,∴∠AOD =2∠ACD =40°.∵OA =OD ,∴∠BAD =∠ADO =12(180°﹣40°)=70°. 故选C .【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.10.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.11.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m ,则1•m=2,解得m=2.故选B .【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a.要求熟练运用此公式解题.12.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确.④正确.连接BD .90AFP ADB ∠=∠=︒,PAF BAD ∠=∠,APF ABD ∴∆∆∽,∴AP AF AB AD=, AP AD AF AB ∴⋅=⋅,CAF BAC ∠=∠,90AFC ACB ∠=∠=︒,ACF ABC ∴∆∆∽,可得2AC AF AB =,ACQ ACB ∠=∠,CAQ ABC ∠=∠,CAQ CBA ∴∆∆∽,可得2AC CQ CB =⋅,AP AD CQ CB ∴⋅=⋅.故④正确,故选:B .【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.二、填空题13.【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,的值即为等腰△CDE 底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】255【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,sin DEC∠的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=15 2AB= ,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=15 2MN,∵DM⊥BC,DC=DB,∴CM=BM=13 2BC=,∴EM=CE-CM=5-3=2,∵DM=14 2AC,∴由勾股定理得,DE=25,∵CD=CE=5,CN⊥DE,∴DN=EN=5 ,∴由勾股定理得,CN=25,∴sin∠DEC=25 CNCE.25.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.14.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.15.r3 <r2 <r1【解析】【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出、、所在的圆心及半径∴r3 <r2 <r1故答案为:r解析:r 3 <r 2 <r 1【解析】【分析】利用尺规作图分别做出AB 、CD 、EF 所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出AB 、CD 、EF 所在的圆心及半径∴r 3 <r 2 <r 1故答案为:r 3 <r 2 <r 1【点睛】本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.16.【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵,∴∠BOC=90°,∵的长是,∴,解得:解析:52【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵BC 的长是54π,∴905 1804OBππ⋅=,解得:52 OB=.故答案为:5 2 .【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键. 17.【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.18.3【解析】【分析】把AE=2,EC=6,AB=12代入已知比例式,即可求出答案.【详解】解:∵=,AE=2,EC=6,AB=12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226+, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.19.【解析】【分析】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围. ,,方程有两个不相等的实数解析:3k <【解析】【分析】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.1a ,b =-,c k =方程有两个不相等的实数根,241240b ac k ∴∆=-=->,3k ∴<.故答案为:3k <.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB=2268=10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.21.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC的边长可应用勾股定理求解,其中,且A C+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB 长度的范围. 22.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 23.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC 可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P 或∠C=∠Q 或.【详解】解:这个条件解析:∠P =∠B (答案不唯一)【解析】【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB =∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或AP AQ AB AC =. 【详解】解:这个条件为:∠B=∠P∵∠PAB =∠QAC ,∴∠PAQ=∠BAC∵∠B=∠P ,∴△APQ ∽△ABC ,故答案为:∠B=∠P 或∠C=∠Q 或AP AQ AB AC=. 【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键. 24.或【解析】【分析】如图1,当⊙F 与Rt△ABC 的边AC 相切时,切点为H ,连接FH ,则HF⊥AC,解直角三角形得到AC =4,AB =5,根据旋转的性质得到∠DCE=∠ACB=90°,DE =AB =5解析:209或145【解析】【分析】 如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H ,连接FH ,则HF ⊥AC ,解直角三角形得到AC =4,AB =5,根据旋转的性质得到∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,根据相似三角形的性质得到DF =209;如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,推出点H 为切点,DH 为⊙F 的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H , 连接FH ,则HF ⊥AC ,∴DF =HF , ∵Rt △ABC 中,∠ACB =90°,BC =3,tan A =BC AC =34, ∴AC =4,AB =5,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,∴∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,∵FH ⊥AC ,CD ⊥AC ,∴FH ∥CD ,∴△EFH ∽△EDC ,∴FH CD =EF DE , ∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A=∠D,∠AEH=∠DEC∴∠AHE=90°,∴点H为切点,DH为⊙F的直径,∴△DEC∽△DBH,∴DEBD=CDDH,∴57=4DH,∴DH=285,∴DF=145,综上所述,当FD=209或145时,⊙F与Rt△ABC的边相切,故答案为:209或145.【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.三、解答题25.(1)50;(2)8.26,8;(3)400【解析】【分析】(1)根据总数等于各组数量之和列式计算;(2)根据样本平均数和中位数的定义列式计算;(3)利用样本估计总体的思想解决问题.【详解】解:(1)本次调查一共抽取了4+10+15+11+10=50名;(2)调查获取的样本数据的平均数为6471081591110108.2650分;4+10+15=29<26,所以中位数为8+8=82分;(3)根据题意得2000名居民中得分为10分的约有102000=40050名,∴社区工作人员需准备400份一等奖奖品.【点睛】本题考查条形统计图,读懂图形,从图形中得到必要的信息是解答此题的关键,条形统计图的特点是能清楚的反映出各个项目的数据.26.(1)PD是⊙O的切线.证明见解析.(2)8.【解析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD 和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=8.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.27.(1)见解析;(2)见解析;(33【解析】【分析】(1)易求DF长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF,EF=2CE即可得;(3)先证明△OFG为等边三角形,△OPG为等边三角形,即可确定扇形圆心角∠POG和∠GOF的大小均为60°,所以两扇形面积相等,通过割补法得出最后阴影面积只与矩形OPDH和△OGF有关,根据面积公式求出两图形面积即可.【详解】(1)∵AF=AB=6,AD=BC=33,∴DF=3,∴CF=DF=3,∴F是CD的中点(2)∵AF=6, DF=3,∴∠DAF=30°,∴∠EAF=30◦ ,∴AE=2EF;∴∠EFC=30◦ ,EF=2CE,∴AE=4CE(3)如图,连接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边三角形,同理△OPG为等边三角形,∴∠POG=∠FOG=60°,OH=33 2OG ,∴S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-32S△OFG=313 2323222,即图中阴影部分的面积3 2.【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.28.(1)(﹣7,﹣2),(﹣1,﹣2),(3,﹣2),(﹣7,1),(﹣1,1),(3,1),(﹣7,6),(﹣1,6),(3,6);(2)2 9 .【解析】【分析】列表法或树状图法,平面直角坐标系中各象限点的特征,概率.(1)直接利用表格或树状图列举即可解答.(2)利用(1)中的表格,根据第三象限点(-,-)的特征求出点A落在第三象限共有两种情况,再除以点A的所有情况即可.【详解】解:(1)列表如下:(2)∵点A落在第三象限共有(﹣7,﹣2),(﹣1,﹣2)两种情况,∴点A落在第三象限的概率是29.29.【解析】【分析】如图,把(0,6)代入y=2x2+bx﹣6可得b值,根据二次函数解析式可得点C坐标,令y=0,解方程可求出x的值,即可得点A、B的坐标,利用△ABC的面积=12×AB×OC,即可得答案.【详解】如图,∵二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),∴﹣6=2×4+2b﹣6,解得:b=﹣4,∴抛物线的表达式为:y=2x2﹣4x﹣6;∴点C(0,﹣6);令y=0,则2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3,∴点A、B的坐标分别为:(﹣1,0)、(3,0),∴AB=4,OC=6,∴△ABC的面积=12×AB×OC=12×4×6=12.【点睛】本题考查二次函数图象上的点的坐标特征及图象与坐标轴的交点问题,分别令x=0,y=0,即可得出抛物线与坐标轴的交点坐标;也考查了三角形的面积.30.(1)详见解析;(2)①1;51.【解析】【分析】(1)要证明三角形△DPF为等腰直角三角形,只要证明∠DFP=90°,∠DPF=∠PDF=45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP=90°,∠DPF=∠PDF=45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t的值即可,注意点P从A出发到B停止,t≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t的值.【详解】证明:(1)∵四边形ABCD是正方形,AC是对角线,∴∠DAC=45°,∵在⊙O中,DF所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴DC CE=,PA AE∴42=,21t解得,t =1;当AE :EC =2:1时,∵AB ∥CD ,∴∠DCE =∠PAE ,∠CDE =∠APE ,∴△DCE ∽△PAE , ∴DC CE PA AE =, ∴4122t =, 解得,t =4,∵点P 从点A 到B ,t 的最大值是4÷2=2,∴当t =4时不合题意,舍去;由上可得,当t 为1时,点E 恰好为AC 的一个三等分点;②如右图所示,∵∠DPF =90°,∠DPF =∠OPF ,∴∠OPF =90°,∴∠DPA +∠QPB =90°,∵∠DPA +∠PDA =90°,∴∠PDA =∠QPB ,∵点Q 落在BC 上,∴∠DAP =∠B =90°,∴△DAP ∽△PBQ , ∴DA DP PB PQ=, ∵DA =AB =4,AP =2t ,∠DAP =90°,∴DP=PB =4﹣2t ,设PQ =a ,则PE =a ,DE =DP ﹣a =a ,∵△AEP ∽△CED , ∴AP PE CD DE=, 即24t =解得,a ,∴PQ ,∴224244224tt t t+=-+,解得,t 1=﹣5﹣1(舍去),t2=5﹣1,即t的值是5﹣1.【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、圆周角定理、相似三角形的判定与性质.31.(1)见解析;(2)BC=253.【解析】【分析】(1)BD、CE是ABC的高,可得90ADB AEC∠=∠=︒,进而可以证明ACE ABD∽;(2)在Rt ABD中,8BD=,6AD=,根据勾股定理可得10AB=,结合(1)ACE ABD∽,对应边成比例,进而证明AED ACB∽,对应边成比例即可求出BC的长.【详解】解:(1)证明:BD、CE是ABC∆的高,90ADB AEC∴∠=∠=︒,A A∠=∠,ACE ABD∴∽;(2)在Rt ABD中,8BD=,6AD=,根据勾股定理,得2210AB AD BD=+=,ACE ABD∽,∴AC AEAB AD=,A A∠=∠,AED ACB∴∽,∴DE ADBC AB=,5DE=,5102563BC ⨯∴==. 【点睛】本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质. 32.5%【解析】【分析】根据题意,列出方程即可求出x 的值.【详解】根据题意,得2(12)200(12)(14)100(1)(22001100)(1 4.4)x x x x x +⨯+++⨯+=⨯+⨯+整理,得2200x x -=解这个方程,得15%x =,20x =(不合题意,舍去)所以x 的值是5%.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.。
广西壮族自治区2019-2020学年九年级上学期数学期末考试试卷B卷
广西壮族自治区2019-2020学年九年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)抛物线y=2(x+3)2+4的对称轴的方程是()A . x=3B . x=-3C . x=D . x=-22. (2分)(2018·濮阳模拟) 某校组织九年级学生参加中考体育测试,共租3辆客车,分别标号1,2,3,李军和赵娟两人可以任选一辆车坐,则两人同坐2号车的概率为()A .B .C .D .3. (2分)如图,AC是电线杆AB的一根拉线,测得BC的长为6米,∠ACB=50°,则拉线AC的长为()A . 米B . 米C . 6cos50°米D . 米4. (2分)(2017·昆都仑模拟) 如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF= 米,则这段弯路的长度为()A . 200π米B . 100π米C . 400π米D . 300π米5. (2分)(2017·安顺) 二次函数y=ax2+bx+c(≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c <0;③4a+c<2b;④m(am+b)+b<a(m≠1),其中结论正确的个数是()A . 1B . 2C . 3D . 46. (2分)如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为A .B .C .D .7. (2分) (2020九上·平度期末) 如图,点C在反比例函数y= (x>0)的图象上,过点C的直线与x 轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为2,则k的值为()A . 1B . 2C . 4D . 88. (2分)如图,已知AB∥CD∥EF ,那么下列结论正确的是().A .B .C .D .9. (2分)正三角形的内切圆与外接圆的面积的比为()A . 1:3B . 1:4C . 1:2D . 3:410. (2分)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到新的线段,则点A的对应点坐标为()A . (2,1)B . (2,0)C . (3,3)D . (3,1)二、填空题 (共6题;共6分)11. (1分) (2019九上·句容期末) 已知 = ,则 =________.12. (1分) (2019九上·瑞安期末) 一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m 个红球通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在左右,则m的值约为________.13. (1分) (2018九上·黄冈月考) 若抛物线是抛物线向上平移个单位,再向右平移个单位得到,则的函数关系式为________.14. (1分)已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是________15. (1分)(2019·崇川模拟) 如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:①CD=CP=CQ;②∠PCQ的大小不变;③△PCQ面积的最小值为;④当点D在AB的中点时,△PDQ是等边三角形,其中所有正确结论的序号是________.16. (1分)(2019·瑶海模拟) 在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,点P为边AC上一点,且AP=5cm.点Q为边AB上的任意一点(不与点A,B重合),若点A关于直线PQ的对称点A'恰好落在△ABC的边上,则AQ的长为________cm.三、解答题 (共8题;共80分)17. (5分) (2019九上·长春月考) 计算:18. (10分)(2017·邵阳模拟) 为了进一步普及足球知识,传播足球文化,某市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:获奖等次频数频率一等奖100.05二等奖200.10三等奖30b优胜奖a0.30鼓励奖800.40请根据所给信息,解答下列问题:(1) a=________,b=________;(2)补全频数分布直方图;(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表该市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.19. (5分) (2019七上·顺德期末) 某校开设篮球、足球、乒乓球、排球四个项目的选修课,为了解同学们的报名情况,随机抽取了部分学生进行调査,将获得的数据进行整理,绘制了如下两幅不完整的统计图,请你根据统计图提供的信息,完成下列问题:(1)把条形统计图1补充完整,写出图2中C所在扇形的圆心角是________°;(2)若该校有3000名学生,请你估计全校大约有多少名学生会选修足球课.20. (10分)如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED。
广西壮族自治区柳州市2020届九年级上学期数学期末考试试卷及参考答案
广西壮族自治区柳州市2020届九年级上学期数学期末考试试卷一、单选题1. 下列汽车标识中,是中心对称图形的是()A .B .C .D .2. 下列事件中,是必然事件的是( )A . 购买一张彩票,中奖B . 射击运动员射击一次,命中靶心C . 经过有交通信号灯的路口,遇到红灯D . 任意画一个三角形,其内角和是180°3. 下列方程属于一元二次方程的是( )A .B .C .D .4. 抛物线的顶点坐标是()A . (﹣1,2)B . (﹣1,﹣2)C . (1,﹣2)D . (1,2)5. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是( )A . 110°B . 90°C . 70°D . 50°6. 点在反比例函数的图象上,下列各点也在此函数图象上的是( )A .B .C .D .7. 若关于的一元二次方程的一个根是,则的值是()A .B .C .D .8. 修建一个面积为平方米的矩形花园,它的长比宽多米,设宽为米,可列方程为( )A .B .C .D .9. 如图,从圆外一点引圆的两条切线,,切点分别为, .如果,,那么圆的半径是( )A .B .C .D .10. 如图,点C在反比例函数y= (x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A . 1B . 2C . 3D . 4二、填空题11. 点A(﹣2,3)关于原点对称的点的坐标是________.12. 一元二次方程x(x﹣3)=0的解是________.13. 在“山清水秀地干净”这句话中任选一个汉字,这个字是“清”的概率为________.14. 已知圆锥的底面半径为,母线长为,则圆锥的侧面积是________ (结果用含的式子表示).15. 已知二次函数,当时,随的增大而减小,则的取值范围是________.16. 如图,在菱形中,,,点是平面内一点,且,则的最小值为________.三、解答题17. 解方程: .18. 如图,在平面直角坐标系中,已知的三个顶点的坐标分别为、、 .①将先向右平移个单位长度、再向上平移个单位长度,得到,画出 .②与关于原点成中心对称,画出 .19. 为了传承优秀传统文化,我校开展“经典诵读”比赛互动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母,,依次表示这三个诵读材料),将,,这三个字母分别写在张完全相同的不透明卡片的正面上,把这张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.求:()小明诵读《论语》的概率.20. 如图,直线y= x+2与双曲线y= 相交于点A(m,3),与x轴交于点C.(1)求双曲线的解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.21. 某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?22. 如图,已知为的直径,为上一点,平分且交于点,过点作交的延长线于点,延长、交于点,连接、 .(1)求证:是的切线.(2)求证: .23. 如图,抛物线交轴于、两点,为抛物线上一点,且横纵坐标相等(原点除外),为抛物线上一动点,过作轴的垂线,垂足为,并与直线交于点 .(1)求、两点的坐标.(2)当点在线段上方时,过作轴的平行线与直线相交于点,求周长的最大值及此时点的坐标.参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.。
2020-2021学年广西柳州市九年级(上)期末数学试卷(附答案详解)
2020-2021学年广西柳州市九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列银行标志是中心对称图形的是()A. B. C. D.2.一元二次方程2x2+3x−4=0的一次项系数是()A. −4B. −3C. 2D. 33.“任意掷一枚质地均匀的骰子,掷出的点数是偶数”这个事件是()A. 必然事件B. 不可能事件C. 随机事件D. 确定事件4.圆心角为60°,半径为1的弧长为()A. π2B. π C. π6D. π35.下列对抛物线y=−2(x−1)2+3性质的描写中,正确的是()A. 开口向上B. 对称轴是直线x=1C. 顶点坐标是(−1,3)D. 函数y有最小值6.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则摸到红球的可能性是()A. 14B. 1 C. 12D. 137.在平面直角坐标系xOy中,点A的坐标是(−2,1),连接OA,将线段OA绕原点O旋转180°,得到对应线段OB,则点B的坐标是()A. (2,−1)B. (2,1)C. (1,−2)D. (−2,−1)8.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4),(5,4),(1,0),则以A、B、C为顶点的三角形外接圆的圆心坐标是()A. (3,2)B. (2,3)C. (1,3)D. (3,1)9.如图,点A是反比例函数y=k的图象上的一点,过点Ax作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A. 4B. −4C. 8D. −810.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①abc<0;②b2−4ac>0;③a+b+c<0;④2a+b=0;其中结论正确的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.若2是方程x2−c=0的一个根,则c的值为______.12.如图,△ABC内接于圆O,∠A=50°,则∠D等于______.13.抛物线y=ax2+bx+c与x轴的公共点是(−1,0),(5,0),则这条抛物线的对称轴是直线x=______.14.反比例函数y=m−2,当x>0时,y随x的增大而减小,写出一个m的可能值______.x15.扬州某毛绒玩具厂对一批毛绒玩具进行抽检的结果如下:抽取的毛绒玩具数n2050100200500100015002000优等品的频数m194791184462921137918460.9500.9400.9100.9200.9240.9210.9190.923优等品的频率mn从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是______.(精确到0.01)16.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为______.三、解答题(本大题共7小题,共52.0分)17.解方程:2x2−8=0.18.随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗,李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗,请用列表法或画树状图法,求李老师和王老师被分配到一个监督岗的概率.19.如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.20.为帮助人民应对疫情,某药厂下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,已知每次下降的百分率相同.(1)求这种药品每次降价的百分率是多少?(2)已知这种药品的成本为105元,若按此降价幅度再一次降价,药厂是否亏本?21.如图,直线l:y=23x−1与反比例函数y=kx相交于点A、B两点,过点A作AC⊥x轴,垂足为点C,且AC=1.(1)求反比例函数y=kx的解析式;(2)观察图象,直接写出不等式23x−kx>1的解集.22.已知AB是⊙O的直径,C是圆外一点,直线CA交⊙O于点D,B、D不重合,AE平分∠CAB交⊙O于点E,过E作EF⊥CA,垂足为F.(1)判断EF与⊙O的位置关系,并说明理由;(2)若EF=2AF,⊙O的直径为10,求AD.23.二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E.(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标.答案和解析1.【答案】A【解析】解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不符合题意;C、不是中心对称图形,故此选项不符合题意;D、不是中心对称图形,故此选项不符合题意;故选:A.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.2.【答案】D【解析】解:一元二次方程2x2+3x−4=0一次项系数是:3.故选:D.根据一元二次方程的一次项系数的定义即可求解.此题考查一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.【答案】C【解析】解:“任意掷一枚质地均匀的骰子,掷出的点数可能是偶数,有可能是奇数”,∴“任意掷一枚质地均匀的骰子,掷出的点数是偶数”是随机事件;故选:C.根据事件发生的可能性大小判断即可.本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【答案】D【解析】解:圆心角为60°,半径为1的弧长=60⋅π⋅1180=π3.故选:D.直接利用弧长公式计算.本题考查了弧长的计算:弧长公式:l=n⋅π⋅R180(弧长为l,圆心角度数为n,圆的半径为R).5.【答案】B【解析】解:∵抛物线y=−2(x−1)2+3中a=−2<0,∴抛物线开口向下,y有最大值,故A、D错误;∵抛物线的解析式为:y=−2(x−1)2+3,∴抛物线的对称轴是x=1,顶点坐标为(1,3),故B正确,C错误.故选:B.根据二次函数的性质进行解答即可.本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.6.【答案】C【解析】解:∵不透明的盒子中装有2个红球,1个白球和1个黄球,共有4个球,∴摸到红球的可能性是24=12;故选:C.用红球的个数除以总球的个数即可得出答案.此题考查了可能性的大小,用到的知识点为:可能性等于所求情况数与总情况数之比.7.【答案】A【解析】解:如图,观察图象可知,B(2,−1).故选:A.根据中心旋转的性质画出图形解决问题即可.本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.8.【答案】A【解析】解:根据垂径定理的推论,如图,作弦AB、AC的垂直平分线,交点O′即为三角形外接圆的圆心,且O′坐标是(3,2).故选:A.根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.本题考查的是三角形的外接圆与外心,熟知垂径定理是解答此题的关键.9.【答案】D【解析】【分析】本题考查了反比例函数的比例系数k的几何意义,属于基础题.连接OA,得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到1|k|=4,然后去绝对值即可得到满足条件的k的值.2【解答】解:连接OA,如图,∵AB⊥x轴,∴OC//AB,∴S△OAB=S△ABC=4,而S△OAB=12|k|,∴12|k|=4,∵k<0,∴k=−8.故选:D.10.【答案】B【解析】解:①由抛物线图象得:开口向下,即a<0;抛物线与y轴交于正半轴,则c>0;对称轴是直线x=−b2a=−1<0,即b=2a<0,∴abc>0,故选项①不符合题意;②∵抛物线图象与x轴有两个交点,∴△=b2−4ac>0,故选项②符合题意;③∵当x=1时,y=a+b+c<0,故选项③符合题意;④∵b=2a,∴2a+b≠0,故选项④不符合题意;故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题考查二次函数图象与系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.11.【答案】4【解析】解:根据题意,将x=2代入方程x2−c=0,得:4−c=0,解得c=4,故答案为:4.根据方程的解的概念将x=2代入方程x2−c=0,据此可得关于c的方程,解之可得答案.本题主要考查一元二次方程的解,解题的关键是掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.【答案】50°【解析】解:∵∠A与∠D所对的弧都是BC⏜,∴∠A=∠D=50°,故答案为:50°.由圆周角的定理可求解.本题考查了三角形的外接圆和外心,圆周角定理,掌握同弧所对的圆周角相等是本题的关键.13.【答案】2【解析】解:∵抛物线y=ax2+bx+c与x轴的公共点的坐标是(−1,0),(5,0),(5−1)=2,∴这条抛物线的对称轴是直线x=12故答案为2.根据抛物线的对称性即可求解.本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.14.【答案】4【解析】解:∵当x>0时,y随x的增大而减小,∴m−2>0,解得:m>2,∴m可以是4,故答案为:4.利用反比例函数的性质可得m−2>0,再解即可.此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质(1)反比例函数y= k(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每x一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.15.【答案】0.92【解析】解:从这批毛绒玩具中,任意抽取一个毛绒玩具是优等品的概率的估计值是0.92,故答案为0.92.由表中数据可判断频率在0.92左右摆动,利用频率估计概率可判断任意抽取一个毛绒玩具是优等品的概率为0.92.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随着实验次数的增多,值越来越精确.16.【答案】√29【解析】解:∵把△ADE顺时针旋转△ABF的位置,∴△ADE的面积=△ABF的面积,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE=√AD2+DE2=√25+4=√29,故答案为:√29.由旋转的性质可得△ADE的面积=△ABF的面积,可得四边形AECF的面积等于正方形ABCD的面积等于25,可得AD=5,由勾股定理可求解.本题考查了旋转的性质,正方形的性质,勾股定理,掌握旋转的性质是本题的关键.17.【答案】解:x2=4,所以x1=2,x2=−2.【解析】先变形得到x2=4,然后利用直接开平方法求解.本题考查了解一元二次方程−直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.18.【答案】解:所有可能出现的结果如下:共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,所以李老师和王老师被分配到同一个监督岗的概率=416=14.【解析】列表得出所有等可能结果,从中找到李老师和王老师被分配到一个监督岗的结果,再利用概率公式求解即可.本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.【答案】证明:连接OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.【解析】连接OC,由切线的性质得出OC⊥AB,由等腰三角形的性质可得出结论.本题考查了切线的性质和等腰三角形性质,熟练掌握切线的性质是解题的关键.20.【答案】解:(1)设这种药品每次降价的百分率是x,依题意,得:200(1−x)2=128,解得:x1=0.2=20%,x2=1.8(不合题意,舍去).答:这种药品每次降价的百分率是20%.(2)128×(1−20%)=102.4(元),∵102.4<105,∴按此降价幅度再一次降价,药厂会亏本.【解析】(1)设这种药品每次降价的百分率是x,根据该药品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据经过连续三次降价后的价格=经过连续两次降价后的价格×(1−20%),即可求出再次降价后的价格,将其与105元进行比较后即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.【答案】解:(1)∵AC=1,故点A的纵坐标为1,则23x−1=1,解得x=3,故点A(3,1),将点A的坐标代入y=kx 得,1=k3,解得k=3,故反比例函数表达式为y=3x;(2)观察函数图象知,不等式23x−kx>1的解集为−32<x<0或x>3.【解析】(1)用待定系数法即可求解;(2)观察函数图象即可求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.22.【答案】解:(1)EF与⊙O相切,理由如下:连接OE,∵OA=OE,∴∠OAE=∠OEA,∵AE平分∠CAB,∴∠CAE=∠OAE,∴∠CAE=∠OEA,∴OE//CD,∵EF⊥CA,∴OE⊥EF,∴EF与⊙O相切;(2)过O作OH⊥AD于H,∵EF⊥CA,OE⊥EF,∴四边形OEFH是矩形,设AF=x,则EF=OH=2x,AH=5−x,在Rt△OAH中,AH2+OH2=OA2,∴(5−x)2+(2x)2=52,解得x 1=2,x 2=0(舍去), ∴AH =5−2=3, ∴AD =2AH =6.【解析】(1)连接OE ,证OE ⊥EF ,即可证得EF 与⊙O 相切;(2)过O 作OH ⊥AD 于H ,易证得四边形OEFH 是矩形,设AF =x ,则EF =OH =2x ,AH =5−x ,在Rt △OAH 中,理由勾股定理得到(5−x)2+(2x)2=52,求得x 的值,即可求得AD .本题考查了切线的判定、等腰三角形的性质、平行线的判定与性质、矩形的判定和性质,勾股定理的应用等;在判定切线时,往往是连接圆心和切点,利用经过半径的外端且垂直于半径的直线是圆的切线来判定切线.23.【答案】解:(1)将A(2,0),B(6,0)代入y =ax 2+bx +3,得{4a +2b +3=036a +6b +3=0,解得{a =14b =−2, ∴二次函数的解析式为y =14x 2−2x +3,∵函数的对称轴为x =4,当x =4时,y =14x 2−2x +3=−1, 故点E 的坐标为(4,−1);(2)如图1,图2,当x =0时,y =3,则C(0,3),连接CB ,CD ,由点C 在线段BD 的垂直平分线CN 上,得CB =CD .设D(4,m), ∵C(0,3),由勾股定理可得:42+(m −3)2=62+32. 解得m =3±√29.∴满足条件的点D的坐标为(4,3+√29)或(4,3−√29).【解析】(1)由于二次函数的图象与x轴交于A(2,0)、B(6,0)两点,把A,B两点坐标代入y=ax2+bx+3,进而求解;(2)由线段垂直平分线的性质可得出CB=CD,设D(4,m),由勾股定理可得42+(m−3)2=62+32.解方程可得出答案.本题考查的是抛物线和x轴的交点,涉及到待定系数法求函数表达式、垂直平分线的性质、勾股定理等,熟练掌握二次函数的性质及方程思想是解题的关键.。
2019-2020学年广西柳州市九年级(上)期末数学试卷含解析
2019-2020学年广西柳州市九年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分,请把选择题的答案填入下面的表格中)1.(3分)在下列这些汽车标识中,是中心对称图形的是()A.B.C.D.2.(3分)下列事件中,是必然事件的是()A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°3.(3分)下列方程属于一元二次方程的是()A.3x﹣1=0B.x3﹣4x=3C.x2+2x﹣1=0D.﹣x+1=04.(3分)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)5.(3分)如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°6.(3分)点(2,4)在反比例函数y=(k≠0)的图象上,下列各点也在此函数图象上的是()A.(4,﹣2)B.(﹣1,8)C.(﹣2,4)D.(4,2)7.(3分)若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1B.0C.﹣1D.28.(3分)修建一个面积为100平方米的矩形花园,它的长比宽多10米,设宽为x米,可列方程为()A.x(x﹣10)=100B.2x+2(x﹣10)=100C.2x+2(x+10)=100D.x(x+10)=1009.(3分)如图,从圆O外一点P引圆O的两条切线P A,PB,切点分别为A,B.如果∠APB=60°,P A=8,那么圆O的半径是()A.4B.C.D.10.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1B.2C.3D.4二、填空题(本题共6小题,每小题3分,满分18分)11.(3分)点A(﹣2,3)关于原点对称的点的坐标是.12.(3分)一元二次方程x(x﹣3)=0的解是.13.(3分)在“山清水秀地干净”这句话中任选一个汉字,这个字是“清”的概率为.14.(3分)已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为cm2.(结果保留π)15.(3分)已知二次函数y=(x﹣h)2+3,当x<2时,y随x的增大而减小,则h的取值范围是.16.(3分)如图,在菱形ABCD中,AB=2,∠C=120°,点P是平面内一点,且∠APB=90°,则DP的最小值为.三、解答题(本题共7小题,满分52分.解答应写必要的文字说明、演算步骤或推理过程)17.(6分)解方程:x2﹣2x﹣3=0.18.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C (﹣1,3).请按下列要求画图:(1)将△ABC绕点O逆时针旋转90°得到△A1B1C1,画出△A1B1C1;(2)△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.19.(6分)为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.20.(8分)如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.21.(8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?22.(8分)如图,已知AB为⊙O的直径,F为⊙O上一点,AC平分∠BAF且交⊙O于点C,过点C作CD ⊥AF交AF的延长线于点D,延长AB、DC交于点E,连接BC、CF.(1)求证:CD是⊙O的切线;(2)求证:AF+2DF=AB.23.(10分)如图,抛物线y=﹣x2+4x交x轴于O、B两点,A为抛物线上一点,且横纵坐标相等(原点除外),P为抛物线上一动点,过P作x轴的垂线,垂足为D(a,0)(a>0),并与直线OA交于点C.(1)求A、B两点的坐标;(2)当点P在线段OA上方时,过P作x轴的平行线与直线OA相交于点E,求△PCE周长的最大值及此时P点的坐标.2019-2020学年广西柳州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分,请把选择题的答案填入下面的表格中)1.【解答】解:根据中心对称图形的定义可知,选项B是中心对称图形,故选:B.2.【解答】解:A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选:D.3.【解答】解:A、3x﹣1=0不是一元二次方程,故此选项不合题意;B、x3﹣4x=3不是一元二次方程,故此选项不合题意;C、x2+2x﹣1=0是一元二次方程,故此选项符合题意;D、﹣x+1=0不是一元二次方程,故此选项不合题意;故选:C.4.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴抛物线y=(x﹣1)2+2的顶点坐标是(1,2).故选:D.5.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠B=180°,∴∠D=180°﹣70°=110°,故选:A.6.【解答】解:∵点(2,4)在反比例函数y=(k≠0)的图象上,∴k=2×4=8,四个选项中只有D符合.故选:D.7.【解答】解:把x=1代入x2﹣x﹣m=0得1﹣1﹣m=0,解得m=0.故选:B.8.【解答】解:设宽为x米,则长为(x+10)米,根据题意得:x(x+10)=100,故选:D.9.【解答】解:连接OA,OP,∵P A、PB都是⊙O的切线,∴OA⊥P A,∠APO=∠BPO,又∵∠APB=60°,∴APO=30°,∵P A=8,∴=.故选:C.10.【解答】解:设点A的坐标为(a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(﹣a,),∴点B的坐标为(0,),∴=1,解得,k=4,故选:D.二、填空题(本题共6小题,每小题3分,满分18分)11.【解答】解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).12.【解答】解:x=0或x﹣3=0,所以x1=0,x2=3.故答案为x1=0,x2=3.13.【解答】解:∵“山清水秀地干净”这句话一共有7个字,而“清”字只有1个,∴从这句话中任选一个汉字,这个字是“清”的概率为,故答案为:.14.【解答】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.15.【解答】解:二次函数y=(x﹣h)2+3的图象的对称轴为直线x=h,∵a=1,抛物线的开口向上,∴当x<h时,y随x的增大而减小,而当x<2时,y随x的增大而减小,∴h≥2.故答案为h≥2.16.【解答】解:∵∠APB=90°,∴点P在以AB为直径的圆上,如图,设圆心为O,连接OP,OD,过点O作OH⊥AD,交DA延长线于点H,在△OPD中,PD>OD﹣OP,∴当点P在OD上时,DP有最小值,∵在菱形ABCD中,AB=2,∠C=120°,∴AO=1,∠BAH=60°,∴AH=AO=,OH=AH=,∴DH=,∴OD===∴DP的最小值=OD﹣OP=﹣1,故答案为:﹣1.三、解答题(本题共7小题,满分52分.解答应写必要的文字说明、演算步骤或推理过程)17.【解答】解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.18.【解答】解:(1)如图,将△A1B1C1为所作;(2)如图,△A2B2C2为所作.19.【解答】解:(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴小明诵读《论语》的概率=,故答案为:;(2)列表得:A B小明小亮CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种.所以小明和小亮诵读两个不同材料的概率=.20.【解答】解:(1)把A(m,3)代入直线解析式得:3=m+2,即m=2,∴A(2,3),把A坐标代入y =,得k=6,则双曲线解析式为y=;(2)对于直线y=x+2,令y=0,得到x=﹣4,即C(﹣4,0),设P(x,0),可得PC=|x+4|,∵△ACP面积为3,∴|x+4|•3=3,即|x+4|=2,解得:x=﹣2或x=﹣6,则P坐标为(﹣2,0)或(﹣6,0).21.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知,,解得.故y与x的函数关系式为y=﹣x+180;(2)∵y=﹣x+180,∴W=(x﹣100)y=(x﹣100)(﹣x+180)=﹣x2+280x﹣18000=﹣(x﹣140)2+1600,∵a=﹣1<0,∴当x=140时,W最大=1600,∴售价定为140元/件时,每天最大利润W=1600元.22.【解答】证明:(1)如图,连接OC,∵AC平分∠BAD,∴∠OAC=∠CAD,又∠OAC=∠OCA,∴∠OCA=∠CAD,∴CO∥AD.又CD⊥AD,∴CD⊥OC,又∵OC是⊙O的半径,∴CD是⊙O的切线;(2)过点C作CG⊥AB于点G,如图,∵∠OAC=∠CAD,AD⊥CD,∴CG=CD,在Rt△AGC和Rt△ADC中,∴Rt△AGC≌Rt△ADC(HL),∴AG=AD.又∵∠BAC=∠CAD,∴=∴BC=CF,在Rt△CGB和Rt△CDF中,∴Rt△CGB≌Rt△CDF(HL),∴GB=DF.∵AG+GB=AB,∴AD+DF=AB,即AF+2DF=AB.23.【解答】解:(1)当y=0,﹣x2+4x=0,解得x1=0,x2=4,则点B坐标为(4,0),设点A坐标为(m,m),把A(m,m)代入y=﹣x2+4x得,m=﹣m2+4m,解得m1=3,m2=0(舍去),则点A的坐标为(3,3);(2)如图,设点P的坐标为(a,﹣a2+4a)(0<a<3),∵点A坐标为(3,3),∴直线OA的解析式为y=x,∴C(a,a),∴OD=CD=a,∵PE∥x轴,∴△PCE是等腰直角三角形,∴PC=PE =CE,∴△PCE的周长=PC+PE=2PC +PC=(2+)PC,∴当PC取最大值时,△PCE周长最大.∵PC=PD﹣CD=﹣a2+4a﹣a=﹣a2+3a=﹣(a ﹣)2+,∴a =时,PC 有最大值,∴△PCE周长的最大值为(2+)×=,此时P 点坐标为(,).第11页(共11页)。
柳州市初三数学九年级上册期末试题及答案
柳州市初三数学九年级上册期末试题及答案一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.43.抛物线223y x x =++与y 轴的交点为( ) A .(0,2)B .(2,0)C .(0,3)D .(3,0)4.如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( )A .100°B .72°C .64°D .36°5.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .126.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A .3B .31+C .31-D .237.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .33C .6D .98.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x9.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50° 10.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( ) A .5π B .10π C .20π D .40π 11.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( ) A .1B .2C .3D .412.一元二次方程x 2﹣3x =0的两个根是( )A .x 1=0,x 2=﹣3B .x 1=0,x 2=3C .x 1=1,x 2=3D .x 1=1,x 2=﹣3 13.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6 B .7 C .8 D .9 14.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .10015.如图,在正方形 ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论: ①∠BAE =30°;②射线FE 是∠AFC 的角平分线; ③CF =13CD ;④AF =AB +CF .其中正确结论的个数为( )A .1 个B .2 个C .3 个D .4 个二、填空题16.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.17.若53x y x +=,则yx=______. 18.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 19.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.20.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__. 21.抛物线2(-1)3y x =+的顶点坐标是______.22.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.23.一元二次方程x 2﹣4=0的解是._________24.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.25.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____.26.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.27.如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A ⇒B ⇒A 方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为_____s 时,△BEF 是直角三角形.28.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____. 29.已知234x y z x z y+===,则_______ 30.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题31.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.32.如图,平行四边形ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE ∆沿直线AE 翻折至AFE ∆的位置,AF 与CD 交于点G .(1)求证:CG BF CD CF ⋅=⋅; (2)若43AB =,8AD =,求DG 的长.33.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE 是⊙O 的切线; (2)若BD =3,AD =4,则DE = .34.在平面直角坐标系中,二次函数 y =ax 2+bx +2 的图象与 x 轴交于 A (﹣3,0),B (1,0)两点,与 y 轴交于点C .(1)求这个二次函数的关系解析式 ,x 满足什么值时 y ﹤0 ?(2)点p 是直线AC 上方的抛物线上一动点,是否存在点P,使△ACP 面积最大?若存在,求出点P的坐标;若不存在,说明理由(3)点M 为抛物线上一动点,在x 轴上是否存在点Q,使以A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.35.如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A''B''C',请直接画出旋转后的△A''B''C';(3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π).四、压轴题36.如图,⊙O的直径AB=26,P是AB上(不与点A,B重合)的任一点,点C,D为⊙O上的两点.若∠APD=∠BPC,则称∠DPC为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠DPC是直径AB的“回旋角”吗?并说明理由;(2)猜想回旋角”∠DPC的度数与弧CD的度数的关系,给出证明(提示:延长CP交⊙O 于点E);(3)若直径AB的“回旋角”为120°,且△PCD的周长为3AP的长.37.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 . 问题探究:(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值; 问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.38.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.39.如图,在Rt △AOB 中,∠AOB =90°,tan B =34,OB =8. (1)求OA 、AB 的长;(2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC .①当t 为何值时,点Q 与点D 重合?②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据折叠得出∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,求出∠DFB =∠FEC ,证△DBF ∽△FCE ,进而利用相似三角形的性质解答即可. 【详解】解:∵△ABC 是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.D解析:D【解析】【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,∴AB DE BC EF=,∵AB=1.5,BC=2,DE=1.8,∴1.5 1.82EF= , ∴EF=2.4故选:D.【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.3.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y轴的交点为(0,3),故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.4.C解析:C【解析】【分析】【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.5.B解析:B【解析】试题解析:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生的结果有1种,则所求概率1.4P =故选B. 点睛:求概率可以用列表法或者画树状图的方法.6.B解析:B【解析】【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得2EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案.【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,∴△CEF ∽△AEB ,设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD ,∴CF=DF=BF =12BD =,∴2EF CF BE AB ==,设EF ,则2BE x =,∴(2BF CF DF x ===+,∴(2CD x x ===,((22DE DF EF x x =+=+=+,∴(222EG DG DE x x ===+=,∴(CG CD DG x x =-=-=,∴tan 1x EG ACD CG∠==.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.7.A解析:A【解析】【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6-3=3.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.8.D解析:D【解析】【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】 本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.9.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC =80°, ∴102ABCAOC 4. 故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 10.B解析:B【解析】 【分析】利用圆锥面积=Rr 计算.【详解】 Rr =2510,故选:B.【点睛】 此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.11.B解析:B【解析】【分析】将x=2代入方程即可求得k 的值,从而得到正确选项.解:∵一元二次方程x 2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B .【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.12.B解析:B【解析】【分析】利用因式分解法解一元二次方程即可.【详解】x 2﹣3x =0,x (x ﹣3)=0,x =0或x ﹣3=0,x 1=0,x 2=3.故选:B .【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).13.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.14.C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.15.B解析:B【解析】【分析】根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④.【详解】解:∵E 是BC 的中点,∴tan ∠BAE=1=2BE AB , ∴∠BAE ≠30°,故①错误;∵四边形ABCD 是正方形,∴∠B=∠C=90°,AB=BC=CD ,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF ∠∠⎧⎨∠∠⎩, ∴△BAE ∽△CEF , ∴==2AB BE EC CF,∴BE=CE=2CF ,∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴AE AFBE EF , ∴=AE BE AF EF, 又∵∠B=∠AEF ,∴△ABE ∽△AEF ,∴∠AEB=∠AFE ,∠BAE=∠EAG ,又∵∠AEB=∠EFC ,∴∠AFE=∠EFC ,∴射线FE 是∠AFC 的角平分线,故②正确;过点E 作AF 的垂线于点G ,在△ABE 和△AGE 中,===BAE GAE B AGE AE AE ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE ≌△AGE (AAS ),∴AG=AB ,GE=BE=CE ,在Rt △EFG 和Rt △EFC 中,==GE CE EF EF ⎧⎨⎩, Rt △EFG ≌Rt △EFC (HL ),∴GF=CF ,∴AB+CF=AG+GF=AF ,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.二、填空题16.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB2222513433 OB OA⎛⎫=+=+=⎪⎝⎭,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.17.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换. 18.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠解析:2m ≠【解析】【分析】根据一元二次方程的定义ax 2+bx+c=0(a ≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x 2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m ≠2.故答案为:m ≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.19.6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭,∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.20.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 21.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.22.40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°23.x=±2【解析】移项得x2=4,∴x=±2.故答案是:x=±2.解析:x=±2【解析】移项得x 2=4,∴x=±2.故答案是:x=±2.24.【解析】【分析】圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再解析:4223-【解析】【分析】圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .【详解】解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D∵2OP =,6OQ =,∴PQ=OQ -OP=4根据垂径定理,PN=122PQ = ∴ON=PN +OP=4在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,242ON =设圆C 的半径为r ,即CM=CP=r∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,22CM r =∴NC=ND -CD=42r根据勾股定理可得:NC 2+PN 2=CP 2即()222422r r -+=解得:124223,4223r r +==DM >OD ,点M 不在射线OB 上,故舍去)故答案为:.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.25.y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5解析:y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5.故答案是:y=x2−5.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.26.2+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥O2解析:【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=4×32=3km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=32(km),故答案为:32.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.27.1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到解析:1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E走过的路程是214或274,则运动时间是74s或94s.故答案是t=1或74或94.考点:圆周角定理.28.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.29.2【解析】【分析】设,分别用k表示x、y、z,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的 解析:2 【解析】 【分析】设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =,∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.30.【解析】【分析】取DE 的中点F ,连接AF ,根据直角三角形斜边中点的性质得出AF =EF ,然后证得△BAF ≌△DAE ,得出AE =AF ,从而证得△AEF 是等边三角形,进一步证得∠ABC =60°,即可解析:3 【解析】【分析】取DE 的中点F ,连接AF ,根据直角三角形斜边中点的性质得出AF =EF ,然后证得△BAF ≌△DAE ,得出AE =AF ,从而证得△AEF 是等边三角形,进一步证得∠ABC =60°,即可求得结论.【详解】取DE 的中点F ,连接AF ,∴EF =DF ,∵BE :ED =1:2,∴BE =EF =DF ,∴BF =DE ,∵AB =AD ,∴∠ABD =∠D ,∵AD ⊥AE ,EF =DF ,∴AF =EF ,在△BAF 和△DAE 中AB AD ABF D BF DE =⎧⎪∠=∠⎨⎪=⎩∴△BAF ≌△DAE (SAS ),∴AE =AF ,∴△AEF 是等边三角形,∴∠AED =60°,∴∠D =30°,∵∠ABC =2∠ABD ,∠ABD =∠D ,∴∠ABC =60°,∴cos ∠ABC =cos60°=2,【点睛】 本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题31.(1)6;(2)1m =.【解析】【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可.(2)根据一元二次方程根的判别式与根个数的关系,可得出b 2-4ac=0,列方程求解.【详解】解:(1)()2012cos6020202π-⎛⎫++- ⎪⎝⎭︒ 12412=⨯++ 6=;(2)∵22210x x m ++-=有两个相等的实数根,∴b 2-4ac=22-4(2m-1)=0,∴m=1.【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键.32.(1)见解析;(2【解析】【分析】(1)根据平行四边形的性质得AB∥CD,AB=CD,通过两角对应相等证明△FCG∽△FBA,利用对应边成比例列比例式,进行等量代换后化等积式即可;(2)根据直角三角形30°角所对的直角边等于斜边的一半及勾股定理,求出BE的长,再由折叠性质求出BF长,结合(1)的结论代入数据求解.【详解】解(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC∴∠GCF=∠B, ∠CGF=∠BAF,∴△FCG∽△FBA,∴CG CF AB BF= ,∴CG CF CD BF∴CG BF CD CF⋅=⋅.(2)∵AE BC⊥,∴∠AEB=90°,∵∠B=30°, AB=∴AE=123 2AB ,由勾股定理得,BE=6,由折叠可得,BF=2BE=12,∵AD=BC=8,∴CF=4∵CG BF CD CF⋅=⋅,∴124CG=,∴ ,∴.【点睛】本题考查平行四边形的性质和相似三角形的判定与性质,平行四边形的性质即为相似三角形判定的条件,利用相似三角形的对应边成比例是解答问题的关键.33.(1)见解析;(2)125【解析】【分析】(1)连接OD ,如图,先证明OD ∥AE ,再利用DE ⊥AE 得到OD ⊥DE ,然后根据切线的判定定理得到结论;(2)证明△ABD ∽△ADE ,通过线段比例关系求出DE 的长.【详解】(1)证明:连接OD ∵AD 平分∠BAC∴∠BAD =∠DAC∵OA =OD∴∠BAD =∠ODA∴∠ODA =∠DAC∴OD ∥AE∴∠ODE +∠E =180°∵DE ⊥AE∴∠E =90°∴∠ODE =180°-∠E =180°-90°=90°,即OD ⊥DE∵点D 在⊙O 上∴DE 是⊙O 的切线.(2)∵AB 是⊙O 的直径,∴∠ADB=90°,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,在△ABD 和△ADE 中,==BDA DEA BAD DAE ∠∠⎧⎨∠∠⎩, ∴△ABD ∽△ADE ,∴AB BD AD DE=,∵BD =3,AD =4,∴DE=345⨯=125. 【点睛】 本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.34.(1)24233y x x =--+,13x <- 或21>x ;(2)P 35,22⎛⎫- ⎪⎝⎭;(3)1234(5,0),(1,0),(2(2--Q Q Q Q【解析】【分析】(1)将点A (﹣3,0),B (1,0)带入y =ax 2+bx +2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x 满足什么值时 y ﹤0;(2)设出P 点坐标224233m m m ⎛⎫--+ ⎪⎝⎭,,利用割补法将△ACP 面积转化为PAC PAO PCO ACO S S S S =+-,带入各个三角形面积算法可得出PAC S 与m 之间的函数关系,分析即可得出面积的最大值;(3)分两种情况讨论,一种是CM 平行于x 轴,另一种是CM 不平行于x 轴,画出点Q 大概位置,利用平行四边形性质即可得出关于点Q 坐标的方程,解出即可得到Q 点坐标.【详解】解:(1)将A (﹣3,0),B (1,0)两点带入y =ax 2+bx +2可得:093202a b a b =-+⎧⎨=++⎩解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴二次函数解析式为24233y x x =--+. 由图像可知,当x 3<-或x 1>时y ﹤0; 综上:二次函数解析式为24233y x x =--+,当x 3<-或x 1>时y ﹤0; (2)设点P 坐标为224233m m m ⎛⎫--+ ⎪⎝⎭,,如图连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N.PM=224233m m --+,PN=m -,AO=3. 当x 0=时,24y 002233=-⨯-⨯+=,所以OC=2 111222PAC PAO PCO ACO SS S S AO PM CO PN AO CO =+-=+- ()221241132232323322m m m m m ⎛⎫=⨯--++⨯--⨯⨯=-- ⎪⎝⎭, ∵a 10=-<∴函数23PAC Sm m =--有最大值, 当()33m 212-=-=-⨯-时,PAC S 有最大值,此时35P ,22⎛⎫- ⎪⎝⎭; 所以存在点35P ,22⎛⎫- ⎪⎝⎭,使△ACP 面积最大. (3)存在,1234(5,0),(1,0),(27,0),(27,0)--+-Q Q Q Q假设存在点Q 使以 A 、C 、M 、Q 为顶点的四边形是平行四边形①若CM 平行于x 轴,如下图,有符合要求的两个点12Q Q 、,此时1Q A =2.Q A CM =∵CM ∥x 轴,∴点M 、点C (0,2)关于对称轴x 1=-对称,∴M (﹣2,2),∴CM=2.由1Q A =22Q A CM ==,得到12(5,0),(1,0)--Q Q ; ②若CM 不平行于x 轴,如下图,过点M 作MG ⊥x 轴于点G ,易证△MGQ ≌△COA ,得QG=OA=3,MG=OC=2,即2M y =-.设M (x ,﹣2),则有242=233--+-x x ,解得:x 17=- 又QG=3,∴327Q G x x =+= ∴34(27,0),(27,0)Q Q综上所述,存在点P 使以 A 、C 、M 、Q 为顶点的四边形是平行四边形,Q 点坐标为:1234(5,0),(1,0),(27,0),(27,0)--Q Q Q Q .【点睛】本题考查二次函数与几何综合题目,涉及到用待定系数法求二次函数解析式,通过函数图像得出关于二次函数不等式的解集,平面直角坐标系中三角形面积的计算通常利用割补法,并且将所要求得点的坐标设出来,得出相关方程;在解答(3)的时候注意先画出大概图像再利用平行四边形性质进行计算和分析.35.(1)见解析,(2)见解析,(3)132π 【解析】【分析】(1)将三个顶点分别向右平移5个单位,再向上平移2个单位得到对应点,再首尾顺次连接即可得;(2)作出点A ′,B ′绕点C 顺时针旋转90°得到的对应点,再首尾顺次连接可得; (3)根据弧长公式计算可得.【详解】解:(1)如图所示,△A ′B ′C ′即为所求.。
广西柳州市2020版九年级上学期数学期末考试试卷B卷
广西柳州市2020版九年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019七下·即墨期末) 下列四个图案中,轴对称图形的个数是()个A . 1B . 2C . 3D . 42. (2分) (2019九上·舟山期中) 从图中的四张图案中任取一张,取出图案是中心对称图形的概率是()A .B .C .D . 13. (2分)如图,已知抛物线:与x轴分别交于O、A两点,它的对称轴为直线x=a,将抛物线向上平移4个单位长度得到抛物线,则图中两条抛物线、对称轴与y轴所围成的图形(图中阴影部分)的面积为A . 4B . 6C . 8D . 164. (2分) (2018九上·浙江期中) 如图,点A是圆O上一点,BC是圆O的弦,若∠A=50°,则∠OBC的度数()A . 40°B . 50°C . 25°D . 100°5. (2分)将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A . 10cmB . 20cmC . 30cmD . 60cm6. (2分)若反比例函数y=(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A . (6,-8)B . (-6,8)C . (-3,4)D . (-3,-4)7. (2分)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC 的边长为()A . 9B . 12C . 15D . 188. (2分) (2019九上·柯桥月考) 若二次函数的图象的对称轴在y轴的右侧,则实数m 的取值范围是A .B .C .D .二、填空题 (共9题;共15分)9. (1分)等腰三角形ABC中,BC=8,AB、AC的长是关于x的方程x2﹣10x+m=0的两根,则m的值为________.10. (1分)(2020·陕西模拟) 边长为2的正六边形的边心距为________。
2020-2021学年广西柳州市九年级(上)期末数学试卷
2020-2021学年广西柳州市九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列银行标志是中心对称图形的是()A. B. C. D.2.一元二次方程2x2+3x−4=0的一次项系数是()A. −4B. −3C. 2D. 33.“任意掷一枚质地均匀的骰子,掷出的点数是偶数”这个事件是()A. 必然事件B. 不可能事件C. 随机事件D. 确定事件4.圆心角为60°,半径为1的弧长为()A. π2B. π C. π6D. π35.下列对抛物线y=−2(x−1)2+3性质的描写中,正确的是()A. 开口向上B. 对称轴是直线x=1C. 顶点坐标是(−1,3)D. 函数y有最小值6.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则摸到红球的可能性是()A. 14B. 1 C. 12D. 137.在平面直角坐标系xOy中,点A的坐标是(−2,1),连接OA,将线段OA绕原点O旋转180°,得到对应线段OB,则点B的坐标是()A. (2,−1)B. (2,1)C. (1,−2)D. (−2,−1)8.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4),(5,4),(1,0),则以A、B、C为顶点的三角形外接圆的圆心坐标是()A. (3,2)B. (2,3)C. (1,3)D. (3,1)9.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A. 4B. −4C. 8D. −810.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①abc<0;②b2−4ac>0;③a+b+c<0;④2a+b=0;其中结A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.若2是方程x2−c=0的一个根,则c的值为______.12.如图,△ABC内接于圆O,∠A=50°,则∠D等于______.13.抛物线y=ax2+bx+c与x轴的公共点是(−1,0),(5,0),则这条抛物线的对称轴是直线x=______.14.反比例函数y=m−2,当x>0时,y随x的增大而减小,写出一个m的可能值______.x15.扬州某毛绒玩具厂对一批毛绒玩具进行抽检的结果如下:抽取的毛绒玩具数n2050100200500100015002000优等品的频数m194791184462921137918460.9500.9400.9100.9200.9240.9210.9190.923优等品的频率mn从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是______.(精确到0.01)16.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为______.三、解答题(本大题共7小题,共52.0分)17.解方程:2x2−8=0.18.随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗,李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗,请用列表法或画树状图法,求李老师和王老师被分配到一个监督岗的概率.19.如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.20.为帮助人民应对疫情,某药厂下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,已知每次下降的百分率相同.(1)求这种药品每次降价的百分率是多少?(2)已知这种药品的成本为105元,若按此降价幅度再一次降价,药厂是否亏本?21.如图,直线l:y=23x−1与反比例函数y=kx相交于点A、B两点,过点A作AC⊥x轴,垂足为点C,且AC=1.(1)求反比例函数y=kx的解析式;(2)观察图象,直接写出不等式23x−kx>1的解集.22.已知AB是⊙O的直径,C是圆外一点,直线CA交⊙O于点D,B、D不重合,AE平分∠CAB交⊙O于点E,过E作EF⊥CA,垂足为F.(1)判断EF与⊙O的位置关系,并说明理由;(2)若EF=2AF,⊙O的直径为10,求AD.23.二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E.(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标.答案和解析1.【答案】A【解析】解:A、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不符合题意;D、不是中心对称图形,故此选项不符合题意;故选:A.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.2.【答案】D【解析】解:一元二次方程2x2+3x−4=0一次项系数是:3.故选:D.根据一元二次方程的一次项系数的定义即可求解.此题考查一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.【答案】C【解析】解:“任意掷一枚质地均匀的骰子,掷出的点数可能是偶数,有可能是奇数”,∴“任意掷一枚质地均匀的骰子,掷出的点数是偶数”是随机事件;故选:C.根据事件发生的可能性大小判断即可.本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【答案】D【解析】解:圆心角为60°,半径为1的弧长=60⋅π⋅1180=π3.故选:D.直接利用弧长公式计算.本题考查了弧长的计算:弧长公式:l=n⋅π⋅R180(弧长为l,圆心角度数为n,圆的半径为R).5.【答案】B【解析】解:∵抛物线y=−2(x−1)2+3中a=−2<0,∴抛物线开口向下,y有最大值,故A、D错误;∵抛物线的解析式为:y=−2(x−1)2+3,∴抛物线的对称轴是x=1,顶点坐标为(1,3),故B正确,C错误.故选:B.根据二次函数的性质进行解答即可.本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.6.【答案】C【解析】解:∵不透明的盒子中装有2个红球,1个白球和1个黄球,共有4个球,∴摸到红球的可能性是24=12;用红球的个数除以总球的个数即可得出答案.此题考查了可能性的大小,用到的知识点为:可能性等于所求情况数与总情况数之比.7.【答案】A【解析】解:如图,观察图象可知,B(2,−1).故选:A.根据中心旋转的性质画出图形解决问题即可.本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.8.【答案】A【解析】解:根据垂径定理的推论,如图,作弦AB、AC的垂直平分线,交点O′即为三角形外接圆的圆心,且O′坐标是(3,2).故选:A.根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.本题考查的是三角形的外接圆与外心,熟知垂径定理是解答此题的关键.9.【答案】D【解析】【分析】本题考查了反比例函数的比例系数k的几何意义,属于基础题.|k|=4,然后去绝对连接OA,得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到12值即可得到满足条件的k的值.解:连接OA,如图,∵AB⊥x轴,∴OC//AB,∴S△OAB=S△ABC=4,而S△OAB=12|k|,∴12|k|=4,∵k<0,∴k=−8.故选:D.10.【答案】B【解析】解:①由抛物线图象得:开口向下,即a<0;抛物线与y轴交于正半轴,则c>0;对称轴是直线x=−b2a=−1<0,即b=2a<0,∴abc>0,故选项①不符合题意;②∵抛物线图象与x轴有两个交点,∴△=b2−4ac>0,故选项②符合题意;③∵当x=1时,y=a+b+c<0,故选项③符合题意;④∵b=2a,∴2a+b≠0,故选项④不符合题意;故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题考查二次函数图象与系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.11.【答案】4【解析】解:根据题意,将x=2代入方程x2−c=0,得:4−c=0,解得c=4,故答案为:4.根据方程的解的概念将x=2代入方程x2−c=0,据此可得关于c的方程,解之可得答案.本题主要考查一元二次方程的解,解题的关键是掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.【答案】50°【解析】解:∵∠A与∠D所对的弧都是BC⏜,∴∠A=∠D=50°,故答案为:50°.由圆周角的定理可求解.本题考查了三角形的外接圆和外心,圆周角定理,掌握同弧所对的圆周角相等是本题的关键.13.【答案】2【解析】解:∵抛物线y=ax2+bx+c与x轴的公共点的坐标是(−1,0),(5,0),(5−1)=2,∴这条抛物线的对称轴是直线x=12故答案为2.根据抛物线的对称性即可求解.本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.14.【答案】4【解析】解:∵当x>0时,y随x的增大而减小,∴m−2>0,解得:m>2,∴m可以是4,故答案为:4.利用反比例函数的性质可得m−2>0,再解即可.(k≠0)的图象是双此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质(1)反比例函数y= kx曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.15.【答案】0.92【解析】解:从这批毛绒玩具中,任意抽取一个毛绒玩具是优等品的概率的估计值是0.92,故答案为0.92.由表中数据可判断频率在0.92左右摆动,利用频率估计概率可判断任意抽取一个毛绒玩具是优等品的概率为0.92.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随着实验次数的增多,值越来越精确.16.【答案】√29【解析】解:∵把△ADE顺时针旋转△ABF的位置,∴△ADE的面积=△ABF的面积,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE=√AD2+DE2=√25+4=√29,故答案为:√29.由旋转的性质可得△ADE的面积=△ABF的面积,可得四边形AECF的面积等于正方形ABCD的面积等于25,可得AD=5,由勾股定理可求解.本题考查了旋转的性质,正方形的性质,勾股定理,掌握旋转的性质是本题的关键.17.【答案】解:x2=4,所以x1=2,x2=−2.【解析】先变形得到x2=4,然后利用直接开平方法求解.本题考查了解一元二次方程−直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.18.【答案】解:所有可能出现的结果如下:①②③④①(①,①)(②,①)(③,①)(④,①)②(①,②)(②,②)(③,②)(④,②)③(①,③)(②,③)(③,③)(④,③)④(①,④)(②,④)(③,④)(④,④)共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,所以李老师和王老师被分配到同一个监督岗的概率=416=14.【解析】列表得出所有等可能结果,从中找到李老师和王老师被分配到一个监督岗的结果,再利用概率公式求解即可.本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.【答案】证明:连接OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.【解析】连接OC,由切线的性质得出OC⊥AB,由等腰三角形的性质可得出结论.本题考查了切线的性质和等腰三角形性质,熟练掌握切线的性质是解题的关键.20.【答案】解:(1)设这种药品每次降价的百分率是x,依题意,得:200(1−x)2=128,解得:x1=0.2=20%,x2=1.8(不合题意,舍去).答:这种药品每次降价的百分率是20%.(2)128×(1−20%)=102.4(元),∵102.4<105,∴按此降价幅度再一次降价,药厂会亏本.【解析】(1)设这种药品每次降价的百分率是x,根据该药品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据经过连续三次降价后的价格=经过连续两次降价后的价格×(1−20%),即可求出再次降价后的价本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.【答案】解:(1)∵AC=1,故点A的纵坐标为1,则23x−1=1,解得x=3,故点A(3,1),将点A的坐标代入y=kx 得,1=k3,解得k=3,故反比例函数表达式为y=3x;(2)观察函数图象知,不等式23x−kx>1的解集为−32<x<0或x>3.【解析】(1)用待定系数法即可求解;(2)观察函数图象即可求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.22.【答案】解:(1)EF与⊙O相切,理由如下:连接OE,∵OA=OE,∴∠OAE=∠OEA,∵AE平分∠CAB,∴∠CAE=∠OAE,∴∠CAE=∠OEA,∴OE//CD,∵EF⊥CA,∴OE⊥EF,∴EF与⊙O相切;(2)过O作OH⊥AD于H,∵EF⊥CA,OE⊥EF,∴四边形OEFH是矩形,设AF=x,则EF=OH=2x,AH=5−x,在Rt△OAH中,AH2+OH2=OA2,∴(5−x)2+(2x)2=52,解得x1=2,x2=0(舍去),∴AH=5−2=3,∴AD=2AH=6.【解析】(1)连接OE,证OE⊥EF,即可证得EF与⊙O相切;(2)过O作OH⊥AD于H,易证得四边形OEFH是矩形,设AF=x,则EF=OH=2x,AH=5−x,在Rt△OAH中,理由勾股定理得到(5−x)2+(2x)2=52,求得x的值,即可求得AD.本题考查了切线的判定、等腰三角形的性质、平行线的判定与性质、矩形的判定和性质,勾股定理的应用等;在判定切线时,往往是连接圆心和切点,利用经过半径的外端且垂直于半径的直线是圆的切线来判定切线.23.【答案】解:(1)将A(2,0),B(6,0)代入y=ax2+bx+3,得{4a+2b+3=0,解得{a=14,x2−2x+3,∴二次函数的解析式为y=14x2−2x+3=−1,∵函数的对称轴为x=4,当x=4时,y=14故点E的坐标为(4,−1);(2)如图1,图2,当x=0时,y=3,则C(0,3),连接CB,CD,由点C在线段BD的垂直平分线CN上,得CB=CD.设D(4,m),∵C(0,3),由勾股定理可得:42+(m−3)2=62+32.解得m=3±√29.∴满足条件的点D的坐标为(4,3+√29)或(4,3−√29).【解析】(1)由于二次函数的图象与x轴交于A(2,0)、B(6,0)两点,把A,B两点坐标代入y=ax2+bx+3,进而求解;(2)由线段垂直平分线的性质可得出CB=CD,设D(4,m),由勾股定理可得42+(m−3)2=62+32.解方程可得出答案.本题考查的是抛物线和x轴的交点,涉及到待定系数法求函数表达式、垂直平分线的性质、勾股定理等,熟练掌握二次函数的性质及方程思想是解题的关键.第11页,共11页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西柳州市2020年九年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·辽源期末) 下列图案均是名车的标志,在这些图案中,是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2020九上·合山月考) 若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y= 的图象上,则y1 , y2 , y3的大小关系是()A . y1<y2<y3B . y2<y3<y1C . y3<y2<y1D . y2<y1<y33. (2分)如图,A、B、C三点在⊙O上,∠AOB=80º ,则∠ACB的大小()A . 40ºB . 60ºC . 80ºD . 100º4. (2分) (2018九上·定兴期中) 判断一元二次方程x2-2x+1=0的根的情况是()A . 只有一个实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 没有实数根5. (2分)(2011·台州) 若两个相似三角形的面积之比为1:4,则它们的周长之比为()A . 1:2B . 1:4C . 1:5D . 1:166. (2分)(2014·桂林) 一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A . 摸出的四个球中至少有一个球是白球B . 摸出的四个球中至少有一个球是黑球C . 摸出的四个球中至少有两个球是黑球D . 摸出的四个球中至少有两个球是白球7. (2分)用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于A . 3B .C . 2D .8. (2分) (2019九上·交城期中) 如图,在等边三角形ABC 中,D是边AC上一点,连接BD,将ΔBCD绕点B逆时针旋转60°,得到ΔBAE,连接ED.若BC=5,BD=4.5,则下列结论错误的是()A . AE∥BCB . ∠ADE=∠BDCC . ΔBDE是等边三角形D . ΔADE的周长是9.59. (2分)(2017·崇左) 已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1.其中正确的项是()A . ①⑤B . ①②⑤C . ②⑤D . ①③④10. (2分) (2019九下·大丰期中) 如图1,在Rt△ABC中,∠ACB=900 ,点P以每秒1cm的速度从点A出发,沿折线AC-CB运动,到点B停止。
过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示。
当点P运动5秒时,PD的长是()A . 1.5cmB . 1.2cmC . 1.8cmD . 2cm二、填空题 (共5题;共9分)11. (1分)(2018·金乡模拟) 如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.12. (1分)如图,以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,若OA=4,OA′=8,则四边形ABCD和四边形A′B′C′D′的周长的比为________.13. (1分)如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为________ .14. (1分)(2020·下城模拟) 一枚质地均匀的骰子,每个面分别标有1,1,2,3,4,4,投掷后,朝上一面的数字是4的概率为________.15. (5分)如图,反比例函数y=图象上有一点P,PA⊥x轴于点A,点B在y轴的负半轴上,若△PAB的面积为4,则k=________三、解答题 (共8题;共70分)16. (5分) (2020九上·乾安期中) 已知关于x的一元二次方程x2+2kx+k2﹣k=0(k>0).问x=0可能是方程一个根吗?若是,求出k值及方程的另一个根;若不是,请说明理由.17. (2分)(2017·灌南模拟) 某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数,现提供统计图的部分信息如图.请解答下列问题:(1)根据统计图,写出这50名工人加工出的合格品数的中位数.(2)写出这50名工人加工出合格品数的众数的可能取值.(3)厂方认定,工人在单位时间内加工出的合格品数不低于2件为技能合格,否则,将接受技能再培训,已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.18. (15分) (2017九上·柳江期中) 如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC.①作出△A BC以O为旋转中心,顺时针旋转90°的△A1B1C1 ,(只画出图形).②作出△ABC关于原点O成中心对称的△A2B2C2 ,(只画出图形),写出B2和C2的坐标.19. (6分)(2020·乌鲁木齐模拟) 如图,在中,,以为直径的交于,点在线段上,且 .(1)求证:是的切线.(2)若,求的半径.20. (10分) (2018九上·郴州月考) 心理学研究发现,一般情况下,在一节分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数随时间(分钟)的变化规律如下图所示(其中、分别为线段,为双曲线的一部分).(1)求注意力指标数与时间(分钟)之间的函数关系式;(2)开始学习后第分钟时与第分钟时相比较,何时学生的注意力更集中?(3)某些数学内容的课堂学习大致可分为三个环节:即“教师引导,回顾旧知;自主探索,合作交流;总结归纳,巩固提高”.其中“教师引导,回顾旧知”环节分钟;重点环节“自主探索,合作交流”这一过程一般需要分钟才能完成,为了确保效果,要求学习时的注意力指标数不低于.请问这样的课堂学习安排是否合理?并说明理由.21. (10分) (2020九上·杭州月考) 设a,b是任意两个实数,用min{a,b}表示a,b两数中较小者,例如:min{﹣1,﹣1}=﹣1,min{1,2}=1,min{4,﹣3}=﹣3,参照上面的材料,解答下列问题:(1) min{﹣3,2}=________,min{﹣1,﹣2}=________;(2)若min{3x+1,﹣x+2}=﹣x+2,求x的取值范围;(3)求函数y=﹣x2﹣2x+4与y=﹣x﹣2的图象的交点坐标,函数y=﹣x2﹣2x+4的图象如图所示,请你在图中作出直线y=﹣x﹣2,并根据图象直接写出min{﹣x2﹣2x+4,﹣x﹣2}的最大值.22. (7分)(2020·滨湖模拟) 如图,已知AB为半圆O的直径,P为半圆上的一个动点(不含端点),以OP、OB为一组邻边作▱POBQ,连接OQ、AP,设OQ、AP的中点分别为M、N,连接PM、ON.(1)试判断四边形OMPN的形状,并说明理由.(2)若点P从点B出发,以每秒15°的速度,绕点O在半圆上逆时针方向运动,设运动时间为ts.①试求:当t为何值时,四边形OMPN的面积取得最大值?并判断此时直线PQ与半圆O的位置关系(需说明理由);②是否存在这样的t,使得点Q落在半圆O内?若存在,请直接写出t的取值范围;若不存在,请说明理由.23. (15分) (2016九上·海盐期中) 已知如图,矩形OABC的长OA= ,宽OC=1,将△AOC沿AC翻折得△APC.(1)求∠PCB的度数;(2)若P,A两点在抛物线y=﹣ x2+bx+c上,求b,c的值,并说明点C在此抛物线上;(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共9分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共70分)答案:16-1、考点:解析:答案:17-1、答案:17-2、答案:17-3、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:第21 页共21 页。