初中数学一次函数教案[1]
初中一次函数教学设计范文(通用10篇)
初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。
2、直线y = — 2X — 2 不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。
4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。
5、过点(0,2)且与直线y=3x平行的直线是:。
6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。
7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
一次函数教案优秀3篇
一次函数教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!一次函数教案优秀3篇作为一位杰出的老师,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。
一次函数的教案
一次函数的教案这是一个关于一次函数的教案,主要针对七年级学生。
以下是教案的内容:教学目标:通过本节课的学习,学生应该能够掌握以下知识和技能:1. 了解一次函数的定义和特征;2. 能够通过给定的函数图像或表格确定该函数的线性规律;3. 能够根据给定的函数图像或表格绘制出函数的图像或表格。
教学内容:1. 一次函数的定义和特征;2. 如何根据函数图像或表格确定函数的线性规律;3. 如何根据函数的线性规律绘制出函数的图像或表格。
教学过程:步骤一:导入新知识1. 引导学生回顾前几节课学习的内容,包括函数的基本概念和函数图像的绘制方法。
2. 提出问题:你们知道什么是一次函数吗?它有什么特征?步骤二:讲解一次函数的定义和特征1. 通过示意图或实际例子向学生解释一次函数的定义:y = kx + b,其中k和b是常数。
2. 解释一次函数的特征:函数图像是一条直线,直线的斜率k 表示函数的变化速率,b表示函数图像与y轴的截距。
步骤三:例题讲解1. 给学生出示一张函数图像或数据表格,让他们根据图像或表格确定函数的线性规律。
2. 引导学生思考如何确定斜率和截距,帮助他们理解线性规律的含义。
3. 批改学生的答案,并与学生讨论解题思路和方法。
步骤四:练习1. 让学生自己绘制一些函数的图像或数据表格,然后交给同学来确定函数的线性规律。
2. 学生可以在小组中合作完成练习,互相检查和纠正答案。
步骤五:归纳总结1. 让学生总结一次函数的定义和特征,并记录在笔记本上。
2. 发放作业,让学生练习和巩固所学的知识。
步骤六:板书设计板书内容:一次函数的定义:y = kx + b一次函数的特征:图像是一条直线,斜率k表示变化速率,截距b表示与y轴的交点。
步骤七:课堂小结1. 再次强调一次函数的定义和特征。
2. 鼓励学生在平时的生活中发现函数的应用,例如速度和时间的关系等。
步骤八:作业布置1. 布置完成课堂练习题。
2. 鼓励学生做一些与一次函数相关的实际问题。
一次函数教案设计
一次函数教案设计一次函数教案设计(通用6篇)一次函数教案设计篇1教学目标:1.经历一般规律的探索过程、发展学生的抽象概括思维能力2.理解一次函数和正比例函数的概念,以及它们之间的关系,《一次函数》教案。
能根据所给条件写出简单的一次函数表达式。
3.通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。
教学重点:1.一次函数、正比例函数的概念及关系。
2.会根据已知信息写出一次函数的表达式。
教学难点:会根据已知信息写出一次函数的表达式。
教学方法:引导学生自学法、互动学习法、启发讨论式。
教具准备:多媒体课件(补充练习6.2A)教学过程:一、导入新课上节课我们已学习过函数的概念,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
在现实生活中有许多问题都可以归结为函数问题。
大家能不能举一些列子呢?二、推进新课复习函数的概念及方程,接下来我们要从最简单而重要的一种函数讲起,到底是什么样的函数请看P182引例和做一做1、P182引例:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。
(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:x/千克012345y/厘米33.544.555.5(2)你能写出x与y之间的关系式吗?分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。
2、P182做一做某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。
(1)完成下表:汽车行驶路程x/千米050100150200300油箱剩余油量y/升你能写出x与y之间的关系吗?(y=100-0.18x或y=100-x)3、一次函数,正比例函数的概念上面的两个函数关系式为y=0.5x+3,y=100-0.18x,都是左边是因变量y,右边是含自变量x的代数式。
八年级《一次函数》教学设计(5篇)
八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。
你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。
初二数学教案《一次函数》(优秀10篇)
初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。
一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。
2024-2025学年北师版中学数学八年级上册第四章一次函数4.4一次函数的应用(第1课时)教案
第四章一次函数4一次函数的应用第1课时确定一次函数表达式教学目标教学反思1.了解确定一次函数的条件,能用待定系数法求出一些简单的一次函数的表达式;2.能通过函数图象获取信息,解决简单的实际问题;3.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系.教学重难点重点:1.了解确定一次函数的条件;2.能用待定系数法求出一些简单的一次函数的表达式.难点:能利用一次函数解决简单的实际问题.教学过程导入新课知识回顾1.什么是一次函数?什么是正比例函数?2.一次函数的图象是什么?正比例函数的图象呢?3.表示函数的方法有哪些?4.画出y=-2x-4的图象,根据图象回答下列问题:(1)y的值随x值的增大而__________;(2)图象与x轴的交点坐标是________,与y轴的交点坐标是_________;(3)判断下列各点是否在函数y=-2x-4的图象上.A(1,-6);B(-3,1)学生思考,给出答案.1.若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.当b=0时,即y=kx,称y是x的正比例函数.2.一次函数的图象是一条直线;正比例函数的图象是过原点的一条直线.3.列表法、图象法和关系式法.4.(1)减小;(2)(-2,0),(0,-4);(3)A.探究新知假定甲、乙二人在一项赛跑中路程与时间的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人y与x的函数关系式.想一想:1.确定正比例函数的表达式需要几个条件?(1个)2.确定一次函数的表达式呢?(2个)例1某物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间t(s)的关系如图所示.(1)写出v与t之间的关系式.(2)下滑3秒时物体的速度是多少?【解】(1)设函数表达式为v=kt (k为常数且k≠0).∵(2,5)在图象上,把点(2,5)的坐标代入,得5=2k,∴ k=2.5,∴v=2.5 t.(2)当t=3s时,v=2.5×3=7.5(m/s).所以下滑3s时物体的速度是7.5 m/s.例2在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数,一根弹簧不挂物体时长14.5 cm;当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b(k≠0),由题意,得14.5=b, 16=3k+b,解得b=14.5 ,k=0.5.所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即当所挂物体的质量为4 kg时,弹簧长度为16.5 cm.教师总结:教学反思求一次函数表达式的步骤 :1.设——设一次函数表达式为y =kx +b (k ≠0);2.代——将点的坐标代入y =kx +b 中,列出关于k ,b 的方程组;3.解——解方程组求出k ,b 值;4.定——把求出的k ,b 值代回到表达式中即可.像这种求函数表达式的方法叫做待定系数法.课堂练习 1.若一次函数y =2x +b 的图象经过A (-1,1),则=b ,该函数图象经过点B (1, )和点C ( ,0).2.如图,直线l 是一次函数y =kx +b 的图象,填空:(1)=b ,=k ,所以函数关系式为___________;(2)当x =30时,=y ;(3)当y =30时,=x .3.如图,直线l 是一次函数y =kx +b 的图象,求它的表达式.4.已知一次函数的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的表达式.5.某市出租车计费方法如图所示,x (km )表示行驶里程,y (元)表示车费,请根据图象回答下列问题:(1)求出租车的起步价是多少元,并求当x >3时,y 关于x 的函数表达式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.参考答案1.3,5,-1.5教学反思2.(1)2,23-,y =23x -+2 (2)-18 (3)-423.解:y =-3x4.解:设一次函数的表达式为y =kx +b (k ≠0), ∵一次函数y =kx +b 的图象过点(0,2),∴ b =2.∵一次函数的图象与x 轴的交点是2,0k ⎛⎫- ⎪⎝⎭,∴ 12222k⨯-⨯=,解得k =1或-1.∴ 一次函数的表达式为y =x +2或y =-x +2. 5.解:(1)8,y =2x +2;(2)令y =32,则2x +2=32,x =15,∴ 这位乘客乘车的里程为15 km.课堂小结(学生总结,老师点评)用待定系数法确定一次函数表达式的步骤布置作业习题4.5 必做题:第2题 选做题:3,4题任选一题板书设计第四章 一次函数4 一次函数的应用第1课时 确定一次函数表达式用待定系数法确定一次函数表达式的步骤: 1.设—— 设一次函数表达式为y =kx +b (k ≠0);2.代—— 将点的坐标代入y =kx +b 中,列出关于k ,b 的方程组;3.解—— 解方程组求出k ,b 值;4.定—— 把求出的k ,b 值代回到表达式中即可.。
《一次函数》教学教案
《一次函数》教学教案《一次函数》教学教案(通用11篇)14.1.1变量与函数【学习目标】1、通过探索具体问题中的数量关系和变化规律了解常量、变量的意义;2、学会用含一个变量的代数式表示另一个变量;3、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;4、会根据函数解析式和实际意义确定自变量的取值范围。
【学习重点】了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。
【学习难点】函数概念的理解;函数关系式的确定学习过程:【前置自学】问题一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:t/时12345ts/千米2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t的式子表示s.__s=_________________t的取值范围是这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y ?1.请同学们根据题意填写下表:售出票数(张)早场150午场206晚场310x收入y (元)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示y.__y=_________________x的取值范围是这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm,怎样用含m的式子表示L?1.请同学们根据题意填写下表:所挂重物(kg)12345m受力后的弹簧长度L(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含m的式子表示L.__L=_________________m的取值范围是这个问题反映了_________随_________的变化过程.问题四:圆的面积和它的半径之间的关系是什么?要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积S的式子表示圆半径r?关系式:________ 1.请同学们根据题意填写下表:面积s(cm2)102030s半径r(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含s的式子表示r.__r=_________________s的取值范围是这个问题反映了___ _ 随_ __的变化过程.问题五:用10m长的绳子围成矩形,试改变矩形的长度,观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。
初中数学一次函数教案【3篇】_1
初中数学一次函数教案【3篇】学校数学一次函数教案(精选篇1)一、一次函数1、问题导入:问题1:小明暑假第一次去北京、汽车驶上A地的高速大路后,小明观看里程碑,发觉汽车的平均速度是95千米/时、己知A地直达北京的高速大路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速大路上行驶的时间有什么关系,以便依据时间估量自己和北京的距离、问题2:小张预备将平常的零用钱节省一些储存起来、他己存有50元,从现在起每个月节存12元、试写出小张的存款与从现在开头的月份数之间的函数关系式、请同学们思索后回答:(1)找出问题中的变量并用字母表示,列出函数关系式、(2)这两个函数关系式有什么共同点?自变量的取值范围各有什么限制?以上这些问题,请各小组争论一下,派代表回答、引出课题(板书课题)老师最终总结一次函数的概念、(板书)2、引导同学观看这两个函数关系式的结构特征,引出一次函数的一般形式(同学回答,且相互补充)老师最终归纳:一次函数通常可以表示为的形式,其中为常数,特殊地,当时,一次函数 (常数 )也叫做正比例函数、二、一次函数的图象是什么外形呢?1、做一做:我们已经学习了用描点法画函数的图象,请同学运用描点法画出下列函数的图象(老师用多媒体打出题目)。
依据同学的动手实践、观看与争论,得出结论:一次函数的图象是一条直线、特殊地,正比例函数的图象是经过原点的一条直线。
2、接下来老师提问:(1)观看所画出的四个一次函数的图象,比较各对一次函数的图象有什么共同点,有什么不同点。
(2)能否从中了现一些规律?对于直线 (是常数),常数的取值对于直线的位置各有什么影响?3、组织同学分小组争论,相互沟通、相互补充,最终总结出规律:当一样,不一样时,直线方向相同(平行),但没有相同点;当不一样,一样时,都经过(0,)点(相交),但直线方向不同、4、巩固训练:(1)在同一平面直角坐标系中画出下列函数的图象老师提出问题:①画出图象,看看是否与上面的争论结果一样;②你取的是哪几个点?和同学比较一下,怎样取比较简便?(2)将直线向下平移2个单位,得到直线_______________________、将直线向上平移5个单位,得到直线_______________________、(由同学到前板演)、5、对于教材中第42页例2处理,老师先用多媒体打出,并提出问题:平面直角坐标系中坐标轴上点的坐标有什么特征?在坐标轴上取点有什么好处?组织同学结合问题去分析,动手尝试,小组争论沟通,最终达成共识、对于教材第43页例3处理,老师可以提出以下几个问题争论同学们争论:①这里取的数悬殊较大怎么办?②这个函数是不是一次函数?③这个函数中自变量的取值范围是什么?函数的图象是什么?④在实际问题中,一次函数的图象除了直线和本题的图形外,还有没有其他情形?你能不能找出几个例子加以说明?三、一次函数的性质函数反映了客观世界中量的变化规律,那么一次函数又有什么性质呢?1、请同学们来一起观看大屏幕上函数图象(老师用多媒体演示函数的图象),并回答:当一个点在直线上从左右移动时,它的位置如何变化?你能从中得到函数值的变化与自变量的变化规律吗?(老师运用现代化的教学手段来演示点的移动状况,进一步促进了同学对一次函数的变化规律理解)由同学争论出结果:也就是说,函数值随自变量的增大而增大、(老师板书)2、请同学们画出函数的图象,然后老师可以提出问题:观看它们是否也有相应的性质,有什么不同你能否发觉什么规律?让同学带着老师提出的问题进行分组争论,相互沟通,最终归纳出一次函数如下性质:(1)当时,随的增大而增大,这时函数的图象从左到右上升;(2)当时,随的增大而减小,这时函数的图象从左到右下降;3、补充性质:(3) 时,一次函数的图象经过一、二、三象限;(4) 时,一次函数的图象经过一、三、四象限;(5)时,一次函数的图象经过一、二、四象限;(6) 时,一次函数的图象经过二、三、四象限、4、对于教材中第45页做一做处理,可以作为例题,引导同学动手操作,分组争论,由同学自己得出结论,老师起着指导作用;对于教材中第45页例4的处理,老师可以先组织同学审题分析找出题中的己知量,并提示同学:要想求一次函数的关系式,关键是要确定和的值,那么,结合题中所给的己知条件,又怎样来确定和的值呢?组织同学争论,结合同学得出的结论,老师再给出待定系数法的概念,这样同学立刻就会理解,从而难点得以突破、在这里老师要提示同学,留意实际问题有关函数的自变量的范围限制、学校数学一次函数教案(精选篇2)一、教学目标:1、知道一次函数与正比例函数的定义、2、理解把握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区分与联系、4、把握直线的平移法则简洁应用、5、能应用本章的基础学问娴熟地解决数学问题。
初中一次函数教案优秀5篇
初中一次函数教案优秀5篇篇一:一次函数的优秀教学设计篇一课题:14.2.2 一次函数课时:57教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.毛2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.教学过程ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x (x≥0)当然,这个函数也可表示为:y=-6x+15 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c•的值约是t的7倍与35的差.2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.c=7t-35.2.g=h-105.3.y=0.01x+22.4.y=-5x+50.篇二:一次函数教案篇二教材分析《一次函数》是人教版的义务教育课程标准实验教科书数学八年级上册第十九章的内容。
《一次函数》教案(共5则)
《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。
2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。
教学重点、难点重点:理解一次函数和正比例函数的概念。
难点:能根据所给的条件写出简单的一次函数表达式。
二。
教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。
2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。
5厘米。
(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。
(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。
问:观察上述关系式的特点,总结规律。
(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。
特别地,当b=0时,称y是x的正比例函数。
(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。
(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。
(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。
分析:本题较为简单,由学生完成。
例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。
初中数学教案模板一次函数
教学目标:1. 知识与技能:使学生掌握一次函数的概念、图像和性质,并能运用一次函数解决实际问题。
2. 过程与方法:通过观察、实验、分析等活动,培养学生的观察能力、实验能力和分析能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生严谨求实的科学态度。
教学重点:1. 一次函数的概念和图像2. 一次函数的性质3. 利用一次函数解决实际问题教学难点:1. 一次函数图像的绘制2. 一次函数性质的运用教学过程:一、导入新课1. 复习旧知:回顾正比例函数和反比例函数的概念、图像和性质。
2. 引入新知:提出一次函数的概念,引导学生思考一次函数的特点。
二、讲授新课1. 一次函数的概念(1)教师讲解一次函数的定义,引导学生理解一次函数的表示方法。
(2)举例说明一次函数的应用,如气温与时间的关系、速度与时间的关系等。
2. 一次函数的图像(1)教师展示一次函数图像的绘制方法,引导学生观察图像特点。
(2)让学生尝试绘制一次函数图像,并总结图像的规律。
3. 一次函数的性质(1)教师讲解一次函数的增减性质,引导学生理解一次函数图像的斜率。
(2)举例说明一次函数的增减性质在实际问题中的应用。
三、巩固练习1. 练习一:绘制一次函数图像,并找出函数的增减性质。
2. 练习二:根据实际问题,建立一次函数模型,并求解问题。
四、课堂小结1. 教师总结本节课所学内容,强调一次函数的概念、图像和性质。
2. 学生回顾本节课所学知识,提出疑问。
五、布置作业1. 完成课后练习题,巩固所学知识。
2. 预习下一节课内容,为后续学习做好准备。
教学反思:1. 教师在讲解一次函数的概念和图像时,要注意引导学生观察和思考,培养学生的观察能力。
2. 在讲解一次函数的性质时,要结合实际例子,让学生更好地理解一次函数的应用。
3. 通过练习题的设置,帮助学生巩固所学知识,提高解决问题的能力。
中学数学八年级《一次函数》教案设计
中学数学八年级《一次函数》教案设计一、教学目标1.知识目标:o学生能够理解一次函数的基本概念,掌握一次函数的标准形式 (y = kx + b)。
o学生能够识别一次函数的图像(直线),并理解斜率 (k) 和截距 (b) 对图像的影响。
o学生能够解决与一次函数相关的实际问题,如利用一次函数模型进行预测和解释现象。
2.能力目标:o培养学生通过观察、分析、归纳等方法,提高逻辑推理能力和数学抽象思维能力。
o提高学生的运算能力,能够准确地进行一次函数的计算和应用。
o培养学生的问题解决能力,能够独立完成与一次函数相关的数学题目。
3.情感态度价值观目标:o激发学生对数学的兴趣,培养学生积极的学习态度和良好的学习习惯。
o培养学生的合作精神和团队意识,通过小组讨论和合作学习,共同解决数学问题。
o培养学生的创新意识和实践能力,鼓励学生将数学知识应用于实际生活中。
二、教学内容-重点:一次函数的基本概念、标准形式、图像特征以及斜率 (k) 和截距 (b) 的意义。
-难点:理解斜率 (k) 对直线倾斜程度的影响,以及如何通过实际问题建立一次函数模型。
三、教学方法-讲授法:通过教师讲解,介绍一次函数的基本概念和标准形式。
-讨论法:组织学生进行小组讨论,探讨斜率 (k) 和截距 (b) 对图像的影响。
-案例分析法:通过分析实际问题,引导学生建立一次函数模型,并进行求解。
-多媒体教学:利用、动画等多媒体资源,直观展示一次函数的图像和变化过程。
四、教学资源-教材:八年级数学上册(人教版)。
-教具:直尺、三角板、计算器。
-多媒体资源:课件、一次函数图像动画、在线数学工具(如GeoGebra)。
-实验器材:无需特定实验器材,但可准备纸质坐标纸供学生绘图。
五、教学过程六、课堂管理-小组讨论:将学生分成小组,每组4-5人,指定小组长负责组织和协调讨论。
教师提供讨论题目和要求,巡视指导,确保每个小组都能积极参与讨论。
-课堂纪律:制定课堂纪律规则,如举手发言、尊重他人意见等,确保课堂秩序良好。
初二一次函数教案
初二一次函数教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初二一次函数教案教案名称:初二一次函数教案教案目标:1.了解一次函数的定义和特点;2.掌握一次函数的图像和性质;3.学会使用一次函数解决实际问题。
数学《一次函数》教案
数学《一次函数》教案一、教学目标:1. 了解一次函数的定义和性质。
2. 学会用经过一点的斜率式和两点式表示一次函数。
3. 能够在实际问题中运用一次函数进行解题。
二、教学内容:1. 一次函数的定义和性质。
2. 经过一点的斜率式和两点式。
3. 一次函数的图像。
4. 实际问题中的一次函数运用。
三、教学步骤:1. 一次函数的定义和性质。
1)让学生回顾函数的概念,引入一次函数的概念。
2)介绍一次函数的定义和性质。
例如: f(x) = kx + b,其中 k 和 b 是常数, k 称为斜率, b 称为截距。
一次函数的图像为一条直线。
3)引导学生体会斜率和截距对一次函数图像的影响。
2. 经过一点的斜率式和两点式。
1)让学生了解经过一点的斜率式和两点式的概念。
2)通过例题,让学生掌握经过一点的斜率式和两点式的应用方法。
3. 一次函数的图像。
1)让学生画出一次函数的图像,并对图像上斜率和截距的意义进行解释。
2)通过几组例题,让学生进一步理解图像上斜率和截距的意义。
4. 实际问题中的一次函数运用。
1)通过实例展示一次函数在实际问题中的应用。
2)让学生在小组内合作解决一些实际问题中的一次函数问题,并进行讨论、分享。
在分享环节中,让学生讲解自己的解题思路和方法。
四、教学方法:1. 课堂讲解和演示相结合。
2. 引导学生自主探究和合作学习。
3. 在解题思考中培养学生的逻辑思维和动手能力。
五、教学重点难点:1. 加深学生对一次函数的理解。
2. 培养学生解决实际问题的能力。
六、教学后记:一次函数是初中数学中的重要内容,本次教学中,我引导学生从定义、性质、公式等方面来全面认识一次函数,通过例题和实例分析,让学生了解并掌握了经过一点的斜率式和两点式的应用方法,并在实际问题中进行了运用和探究。
在小组合作学习和分享环节中,学生表现积极,有效提高了学生的学习效果。
初二数学一次函数教案
初二数学一次函数教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初二数学一次函数教案教案标题:初二数学一次函数教学设计教学目标:1.理解一次函数的概念和特点;2.能够识别一次函数的图像并熟练绘制;3.掌握一次函数方程的求解方法;4.能够应用一次函数解决实际问题。
一次函数全章教案新人教版[1]1
第十九章一次函数教案19.1.1变量教具;课件, 直尺, 三角板教学目标知识与技能: 理解变量与函数的概念以与相互之间的关系。
增强对变量的理解过程与方法: 师生互动, 讲练结合情感态度世界观:渗透事物是运动的, 运动是有规律的辨证思想重点: 变量与常量难点: 对变量的判断教学媒体: 多媒体电脑, 绳圈,教学说明:本节渗透找变量之间的简单关系, 试列简单关系式教学设计:引入:新课:问题: (1)每张电影票的售价为10元, 如果早场售出票150张, 日场售出票205张, 晚场售出票310张, 三场电影的票房收入各多少元?设一场电影受出票x张, 票房收入为y元, 怎样用含x的式子表示y?(2)在一根弹簧的下端悬挂中重物, 改变并记录重物的质量, 观察并记录弹簧长度的变化规律, 如果弹簧原长10cm, 每1kg重物使弹簧伸长0.5cm, 怎样用含重物质量 m(单位: kg)的式子表示受力后弹簧长度l(单位: cm)?(3)要画一个面积为10cm2的圆, 圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积S的式子表示圆的半径r?(4)用10m长的绳子围成长方形, 试改变长方形的长度, 观察长方形的面积怎样变化。
记积的值, 探索它们的变化规律, 设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?在一个变化过程中, 我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
指出上述问题中的变量和常量。
(1)范例: 写出下列各问题中所满足的关系式, 并指出各个关系式中, 哪些量是变量, 哪些量是常量?(2)用总长为60m的篱笆围成矩形场地, 求矩形的面积S (m2)与一边长x(m)之间的关系式;(3)购买单价是0.4元的铅笔, 总金额y(元)与购买的铅笔的数量n(支)的关系;运动员在4000m一圈的跑道上训练, 他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;银行规定: 五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
人教版初中数学八年级下册19.2.2《一次函数的概念》教案
1.教学重点
-一次函数的定义:y=kx+b(k≠0,k、b是常数),这是本节课的核心内容,教师需通过讲解和示例,使学生深刻理解一次函数的基本形式。
-一次函数图像的特点:一次函数的图像是一条直线,教学中应通过绘制图像和观察,让学生掌握这一特点。
-一次函数的增减性:根据k的值判断函数图像的增减趋势,教师需引导学生通过实例分析,掌握增减性的判断方法。
五、教学反思
在今天的教学中,我尝试通过生活实例导入一次函数的概念,希望以此激发学生的兴趣。从课堂反应来看,大部分同学能够积极参与,但我也注意到有些学生在理解一次函数的定义上还存在困难。这让我意识到,对于基础概念的教学,需要更加细致和耐心。
在理论介绍环节,我尽力用简洁明了的语言解释一次函数的定义和图像特点,同时配合图示,希望让学生能够直观地理解。然而,从学生的提问和作业来看,对于k、b取值范围的理解仍然是他们的一个难点。未来,我考虑引入更多的实际例子,让学生在具体情境中感受这些参数的变化,以便更好地理解。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的定义和图像特点这两个重点。对于难点部分,如k、b的取值范围和一次函数图像的绘制,我会通过举例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一次函数图像的绘制方法。
人教版初中数学八年级下册19.2.2《一次函数的概念》教案
一、教学内容
人教版初中数学八年级下册19.2.2《一次函数的概念》教案:
1.理解一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,称为一次函数。
一次函数教案12篇
一次函数教案12篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如演讲稿、工作总结、工作计划、心得体会、教学总结、事迹材料、优秀作文、教学设计、合同范文、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as speeches, work summaries, work plans, experiences, teaching summaries, deeds materials, excellent essays, teaching designs, contract samples, and other materials. If you want to learn about different data formats and writing methods, please pay attention!一次函数教案12篇一次函数教案1一、课程标准要求:①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学一次函数教案
一、教学目标:
1、知道一次函数与正比例函数的定义.
2、理解掌握一次函数的图象的特征和相关的性质;体会数形结合思想。
3、弄清一次函数与正比例函数的区别与联系.
二、教学重、难点:
重点:初步构建比较系统的函数知识体系,能应用本章的基础知识熟练地解决数学问题。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:
1、一次函数与正比例函数的定义:
一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数
正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2. 一次函数与正比例函数的区别与联系:
(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k ≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练一:
(1)、指出下列函数中的正比例函数和一次函数:①y = x +1;②y = - x/5;
③y = 3/x ;④y = 4x ;⑤y =x(3x+1)-3x ;⑥y=3(x-2);⑦y=x/5-1/2。
(2)、下列给出的两个变量中,成正比例函数关系的是:
A、少年儿童的身高和年龄;
B、长方形的面积一定,它的长与宽;
C、圆的面积和它的半径;
D、匀速运动中速度固定时,路程与时间的关系。
(3)、对于函数y =(m+1)x + 2- n,当m、n满足什么条件时为正比例函数?当m、n满足什么条件时为一次函数?
3、正比例函数、一次函数的图象和性质:
k,b的符号与直线y=kx+b(k≠0) 的位置关系:
k的符号决定了直线y=kx+b(k≠0);b的符号决定了直线y=kx+b与y轴的交
点。
当k>0时,直线;当k<0时,直线。
当b>0时,直线交于y轴的;当b<0时,直线交于y轴的。
为此直线y=kx+b(k≠0) 的位置有4种情况,分别是:
当k>0, b>0时,直线经过;当k>0, b<0时,直线经
过;
当k<0,b>0时,直线经过;当k<0,b<0时,直线经过。
基础训练二:
1. 写出一个图象经过点(1,- 3)的函数解析式为。
2.直线y = - 2X - 2 不经过第象限,y随x的增大而。
3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是。
4.已知正比例函数 y =(3k-1)x,,若y随x的增大而增大,则k
是。
5、过点(0,2)且与直线y=3x平行的直线是。
6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是。
7、若函数y = ax+b的图像过一、二、三象限,则ab 。
0
8、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。
9、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为。
10、将直线y = -2x-2向上平移2个单位得到直线;
将它向左平移2个单位得到直线。
综合训练:已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
(1)求线段AB的长。
(2)求直线AC的解析式。
四、教学反思:
从本节课的设计上看,我自认为知识全面,讲解透彻,条理清晰,系统性强,讲练结合,训练到位,一节课下来后学生在基础知识方面不会有什么漏洞。
因为复习课的课堂容量比较大,需要展示给学生的知识点比较多,训练题也比较多,课前的工作全由教师完成,教师认真备课,我也感觉到这节课确实有一大部分学生注意力涣散,没有全身心地投入到学习中去。
以致于面对简单的问题都卡,思维不连续。
纠其原因,是我没有把学生学习的积极性充分调动起来,学生没有发挥出学习的主动性。
课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状。