(完整)初中数学一次函数教案
最新[初一数学]一次函数教案+例题+习题+答案优秀名师资料
![最新[初一数学]一次函数教案+例题+习题+答案优秀名师资料](https://img.taocdn.com/s3/m/845e533c964bcf84b9d57b3d.png)
[初一数学]一次函数教案+例题+习题+答案一次函数一、知识回顾1.函数的定义:一般地,在一个变化过程中. 如果有两个变量 x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说 x是自变量,y是x的函数,如果当x=a时y=b,那么b叫做当自变量为a时的函数值。
(练一练1:函数的判断)可简单记忆为:“当其中一个变量x随便取定一个值时,另一个变量y都有唯一确定的值与之相对应”。
表示方法:(1)解析式法:用来表示函数关系的等式叫做函数关系式,也称函数的解析式。
(2)列表法:函数关系用一个表格表达出来的方法。
(3)图像法:用图象表达两个变量之间的关系。
2.对于函数的意义,应从以下几个方面去理解:(1)函数不是数,而是两个变量之间一种对应的关系;(2)对于变量x允许取的每一个值,集合在一起组成了x的取值范围。
(3)判断两个变量之间是否有函数关系不仅要看它们之间是否有关系式,还要看对于x允许取的每一个值,y是否都有唯一确定的值与它相对应。
(4)两个函数是同一函数至少具备两个条件:?函数关系式相同(或变形后相同);?自变量x的取值范围相同。
否则,就不是相同的函数。
而其中函数关系式相同与否比较容易注意到,自变量x的取值范围有时容易忽视,这点应注意。
(练一练2:求自变量x的取值范围)3.区分函数与函数值:一个函数可能有许多不同的函数值,例如当时,函数的函数值等于;当时,函数的函数值等于。
4.函数的图像:如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
注:函数的解析式是一个二元方程,这个方程的解分别是这个函数图象上点的横坐标、纵坐标;函数图象的画法:列表、描点、连线。
练一练1.判断下列关系式和图象中,其中y是否是x的函数?(1)(2)(3)(4) (5)(1), y是x的函数,因为根据函数定义,对每一个x的可取值解:都存在唯一确定的y值与之相对应。
八年级《一次函数》教学设计

课堂总结,发展潜能篇一1.y=k某+b(k,b是常数,k≠0)是一次函数.2.一次函数包含了正比例函数,即正比例函数是一次函数在b=0时的特例一次函数的概念优秀教学设计篇二教学目标1、了解正比例函数y=k某的图象的特点。
2、会作正比例函数的图象。
3、理解一次函数及其图象的有关性质。
4、能熟练地作出一次函数的图象教学重点正比例函数的图象的特点。
教学难点一次函数的图象的性质。
教学过程:1、新课导入上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。
经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
2、讲授新课(1)首先我们来研究一次函数的特例,正比例函数有关性质。
请大家在同一坐标系内作出正比例函数y=某,y=某,y=3某,y=-2某的图象。
如图:3、议一议(1)正比例函数y=k某的图象有什么特点?(都经过原点)(2)你作正比例函数y=k某的图象时描了几个点?(至少两点)(3)直线y=某,y=某,y=3某中,哪一个与某轴正方向所成的锐角最大?哪一与某轴正方向所成的锐角最小?4、小结:正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=k某的图象时,除原点外,还需找一点,一般找(1,k)点。
(3)在正比例函数y=k某图象中,当k>0时,k的值越大,函数图象与某轴正方向所成的锐角越大。
(4)在正比例函数y=k某的图象中,当k>0时,y的值随某值的增大而增大;当k<0时,y的值随某值的增大而减小。
5、做一做在同一直角坐标系内作出一次函数y=2某+6,y=-某,y=-某+6,y=5某的图象。
一次函数y=k某+b的图象的特点:分析:在函数y=2某+6中,k>0,y的值随某值的增大而增大;在函数y=-某+6中,y的值随某值的增大而减小。
初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。
2、直线y = — 2X — 2 不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。
4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。
5、过点(0,2)且与直线y=3x平行的直线是:。
6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。
7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
初中数学一次函数教案

初中数学一次函数教案教学目标:1. 理解一次函数的定义和性质;2. 学会一次函数的图像绘制和解析;3. 能够运用一次函数解决实际问题。
教学重点:1. 一次函数的定义和性质;2. 一次函数的图像绘制和解析。
教学难点:1. 一次函数的性质的理解和应用;2. 一次函数的图像的绘制和解析。
教学准备:1. 教师准备PPT或者黑板,用于展示一次函数的图像和解析;2. 学生准备笔记本,用于记录一次函数的定义和性质。
教学过程:一、导入(5分钟)1. 引导学生回顾已学的一次方程的知识,提出问题:一次方程的解有什么特点?2. 学生回答:一次方程的解是两个数的有序实数对。
3. 教师总结:一次方程的解是两个数的有序实数对,那么一次函数的解又是什么呢?二、新课(20分钟)1. 引导学生学习一次函数的定义:一次函数是形如y=kx+b(k、b是常数,k≠0)的函数。
2. 解释一次函数的各个部分的含义:y是函数的值,x是自变量,k是斜率,b是截距。
3. 引导学生学习一次函数的性质:一次函数的图像是一条直线,斜率k决定了直线的倾斜程度,截距b决定了直线与y轴的交点。
4. 学生通过PPT或者黑板,绘制一次函数的图像,并观察图像的性质。
5. 教师通过例题,解释一次函数的解析方法:通过斜率和截距,可以确定一次函数的图像,从而解决实际问题。
三、练习(15分钟)1. 学生独立完成练习题,巩固一次函数的定义和性质。
2. 学生通过PPT或者黑板,绘制练习题中的一次函数的图像,并解析题目。
3. 教师选取部分学生的作业,进行讲解和评价。
四、应用(10分钟)1. 教师提出实际问题,引导学生运用一次函数进行解决。
2. 学生通过PPT或者黑板,绘制实际问题中的一次函数的图像,并解析题目。
3. 教师选取部分学生的作业,进行讲解和评价。
五、总结(5分钟)1. 教师引导学生总结一次函数的定义和性质。
2. 学生分享自己在练习和应用中遇到的困难和解决方法。
3. 教师对学生的回答进行点评和总结。
一次函数的图像和性质教案3篇

一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。
二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。
三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。
教学重点:一次函数图象的性质。
教学难点:通过图形探求性质以及分析图形的位置特征。
课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。
教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。
【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。
同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。
因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。
过(1,-)、(0,-3)两点画直线y=-x-3。
师:很好。
还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。
师:大家说说看,哪一种取法更好呢?众:乙的方法好。
师:对。
我们可以针对函数中不同的k和b的值,灵活取值。
教师要求学生画出这两函数的图象。
【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。
(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。
图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。
初二数学一元一次函数教案3篇一元一次函数的教案

初二数学一元一次函数教案3篇一元一次函数的教案教学目标:学问与技能1.把握直角三角形的判别条件,并能进展简洁应用;2.进一步进展数感,增加对勾股数的直观体验,培育从实际问题抽象出数学问题的力量,建立数学模型.3.会通过边长推断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.情感态度与价值观敢于面对数学学习中的困难,并有独立克制困难和运用学问解决问题的胜利阅历,进一步体会数学的应用价值,进展运用数学的信念和力量,初步形成积极参加数学活动的意识.教学重点运用身边熟识的事物,从多种角度进展数感,会通过边长推断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.教学难点会辨析哪些问题应用哪个结论.课前预备标有单位长度的细绳、三角板、量角器、题篇教学过程:复习引入:请学生复述勾股定理;使用勾股定理的前提条件是什么?已知△ABC的两边AB=5,AC=12,则BC=13对吗?创设问题情景:由课前预备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.这样做得到的是一个直角三角形吗?提出课题:能得到直角三角形吗讲授新课:⒈如何来推断?(用直角三角板检验)这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?就是说,假如三角形的三边为,,,请猜测在什么条件下,以这三边组成的三角形是直角三角形?(当满意较小两边的平方和等于较大边的平方时)⒉连续尝试:下面的三组数分别是一个三角形的三边长a,b,c: 5,12,13;6,8,10;8,15,17.(1)这三组数都满意a2+b2=c2吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?⒊直角三角形判定定理:假如三角形的三边长a,b,c满意a2+b2=c2,那么这个三角形是直角三角形.满意a2+b2=c2的三个正整数,称为勾股数.⒋例1一个零件的外形如左图所示,按规定这个零件中∠A和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?随堂练习:⒈以下几组数能否作为直角三角形的三边长?说说你的理由.⑴9,12,15;⑵15,36,39;⑶12,35,36;⑷12,18,22.⒉已知?ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角.⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.⒋习题1.3课堂小结:⒈直角三角形判定定理:假如三角形的三边长a,b,c满意a2+b2=c2,那么这个三角形是直角三角形.⒉满意a2+b2=c2的三个正整数,称为勾股数.勾股数扩大一样倍数后,仍为勾股数.初二数学一元一次函数教案2教学目标:1.经受运用拼图的方法说明勾股定理是正确的过程,在数学活动中进展学生的探究意识和合作沟通的习惯。
一次函数教案优秀3篇

一次函数教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!一次函数教案优秀3篇作为一位杰出的老师,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。
八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。
你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数知识总结
教学目标知识点:1、函数和一次函数的定义
2、一次函数的图像与性质
3、确定一次函数的表达式
4、一次函数图像的应用
重点难点重点:画一次函数的图像,并掌握其性质
难点:1、根据已知条件,利用待定系数法确定一次函数的解析式。
2、能用一次函数解决实际问题。
3、一次函数与二元一次方程组,一元一次不等式的关系。
一、函数及其相关概念
1.常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量.
2.函数:在某一变化过程中的两个变量x和y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值和它对应,那么y就叫做x的函数,其中x做自变量,y是因变量.
(1)自变量取值范围的确定
①整式函数自变量的取值范围是全体实数.
②分式函数自变量的取值范围是使分母不为0的实数.
③二次根式函数自变量的取值范嗣是使被开方数是非负数的实数,若涉及实际问题的函数,除满足上述要求外还要使实际问题有意义.
(2)函数值:对于自变量在取值范围内的一个值所求得的函数的对应值.
3.函数常用的表示方法:(1)图象法:形象、直观;(2)列表法:具体、准确;(3)解析法:抽象、全面。
由函数的解析式作函数的图象,一般步骤是:列表、描点、连线.
范例讲解
例1、一汽车油箱中有油30升,若每小时耗油10升。
(1)写出油箱中剩油量Q(升)与时间t(小时)之间的函数关系式;
(2)指出其常数、自变量、因变量;
(3)Q是t的函数吗?为什么?
巩固练习
1、设路程为s,时间为t,速度为v,当v=60时,
路程和时间的关系式为,这个关系式
中,是常量,是变量,是的函数。
2、下列各表达式不是表示y 是x 的函数的是( )
3、如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,该穿过的时间为t ,正方形除去圆部分的面积为S (阴影部分),则S 与t 的大致图象为( )
4、如果每盒圆珠笔12支,售价18元,那么,圆珠笔的总售价y (元)与圆珠笔的支数x (支)之间的函数关系式是( )
二、一次函数
1、正比例函数和一次函数的概念
一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。
这时,y 叫做x 的正比例函数。
范例讲解
例2、写出下列各题中y 与x 之间的关系式,并判断:y 是否为x 的一次函数?是否为正比例函数? (1)汽车以60千米/时的速度匀速行驶,行驶路程为y(千米)与行驶时间x(时)之间的关系; (2)圆的面积y (c m2)与它的半径x ( cm)之间的关系;
(3)一棵树现在高5 0 厘米,每个月长高2 厘米,x 月后这棵树的高度为y 厘米。
解:(1) y=60x , y 是x 的 一次函数,也是x 的正比例函数。
(2) y= πx2, y 不是x 的正比例函数,也不是x 的一次函数。
(3) y=2x + 50, y 是x 的一次函数,但不是x 的正比例函数。
巩固练习
5、一次函数y=-2x+4,当函数值为正时,x的取值范围是______
6、甲、乙两人进行百米赛跑,甲比乙跑得快.如果两人同时起跑,甲肯定赢.现在甲让乙先跑若干米.图中l1,l2分别表示两人的路程s(米)与时间t(秒)的关系.
(1)哪条线表示甲的路程与时间的关系;
(2)甲让乙先跑了多少米?
(3)谁先到达终点?
2、一次函数的图像和性质
范例解析:
(1)有下列函数:①y=6x-5 , ②y=5x, , ③y=x+4, ④y=-4x+3
其中过原点的直线是_____;函数y随x的增大而增大的是___________;函数y随x的增大而减小的是______;图象过第一、二、三象限的是_____。
(2)、如果一次函数y=kx-3k+6的图象经过原点,那么k的值为________。
(3)、已知y-1与x成正比例,且x=-2时,y=4,那么y与
x之间的函数关系式为_________________。
方法:待定系数法:①设;②代;③解;④还原
2、某植物栽t天后的高度为ycm,图中反映了y与t之间的关系,根据图象回答下列问题:(1)植物刚栽的时候多高?
(2)3天后该植物高度为多少?
(3)几天后该植物高度可达21cm?
(4)先写出y与t的关系式,再计算长到100cm需几天?。