求变力做功的六种方法

合集下载

求解变力做功的六种常见方法剖析

求解变力做功的六种常见方法剖析

ʏ李鹏飞公式W =F l c o s α只适用于恒力做功的计算,若遇到的是变力做功问题该怎样计算呢?下面我们就结合例题来剖析求解变力做功的六种常见方法,供同学们参考㊂方法一:等效替代法若通过转换研究对象能找到一个与待求变力做的功相同的恒力,则可以利用公式W =F l c o s α计算出该恒力做的功,间接求得变力做的功㊂这种将变力做功转换成恒力做功的求解方法叫等效替代法㊂例1 如图1所示,某人用跨过定滑轮的细绳以恒力F 拉着放在水平面上的滑块,使其沿着水平面由A 点前进距离l 后到达B 点㊂已知滑块在A ㊁B 两点时,细绳与水平方向间的夹角分别为α和β,滑轮到滑块的高度为h ,不计细绳与滑轮之间的摩擦和细绳的重力㊂求在这一过程中细绳的拉力对滑块所做的功㊂图1细绳对滑块的拉力大小始终等于F ,但方向在时刻改变,属于变力做功问题,不能直接利用W =F l c o s α进行计算㊂实际上,恒力F 对细绳末端所做的功等效于细绳的拉力对滑块所做的功㊂在细绳与水平面间的夹角由α变到β的过程中,恒力F 作用的细绳末端移动的位移Δl =h s i n α-h s i n β=h 1s i n α-1s i n β(),因此恒力F 对细绳末端所做的功W F =F ㊃Δl =F h 1s i n α-1s i n β(),即细绳的拉力对滑块所做的功W =W F =F h1s i n α-1s i n β()㊂方法二:平均力法若物体受到的力方向不变,而大小随着位移呈线性变化,则可以先求出力的平均值F =F 1+F 22(F 1和F 2分别为物体在研究过程初㊁末状态下所受的力),认为物体受到的是一个大小为 F 的恒力作用,再利用公式W = F l c o s α求解变力做的功㊂例2 如图2所示,轻弹簧的一端与竖直墙壁连接,另一端与一质量为m 的物块相连,物块位于光滑水平面上,已知弹簧的劲度系数为k ,开始时弹簧处于自然状态㊂用水平向右的拉力F 缓慢拉物块,使物块在弹性限度范围内前进距离x 0,求在这一过程中拉力F 对物块所做的功㊂图2在物块缓慢运动的过程中,拉力F 的方向不变,大小始终与弹簧的弹力等大反向,与位移x 满足关系式F =k x ,即从零开始随位移均匀增大,因此在物块前进距离x 0的过程中,拉力F 的平均值 F =0+k x 02=12k x 0,拉力F 对物块所做的功W = F x 0=12k x 20㊂方法三:F -x 图像法当力F 与位移x 同向时,计算功的公式可表示为W =F x ,因此在F -x 图像中,图像与x 轴所围成的 面积 就表示力F 在位移x 上所做的功㊂ 面积 位于x 轴上方,说明力F 做正功; 面积 位于x 轴下方,说明力F 做负功㊂53物理部分㊃经典题突破方法高一使用 2022年4月Copyright ©博看网. All Rights Reserved.例3 如图3所示,一个正方形木块漂浮在一个面积很大的水池中,水深为H ,木块边长为a ,质量为m ,密度为水的一半㊂开始时木块静止,有一半没入水中㊂现用力F 将木块压到池底,不计摩擦㊂求力F 在将木块从初始状态刚好压到池底的过程中,力F 对木块所做的功㊂图3将木块从初始状态缓慢地压到刚好完全没入水中的过程中,力F 与木块下降的位移x 成正比,木块下降位移x =a2时,力F 最大,且F m a x =m g ,之后力F 始终等于F m a x ㊂作出F -x 图像如图4所示,则图中阴影部分的面积在数值上等于力F 对木块所做的功,即W =m g (H -a )+H -a2()2=m gH -3m g a4㊂图4方法四:微元法若物体在运动过程中所受的变力始终与速度方向在同一条直线上或成某一固定角度,则可以将运动过程分成无数个小段,在每一个小段上都可以认为物体受到的力是恒力,物体在整个运动过程中的位移等于运动轨迹的长度,则力在各个小段上所做功的代数和即为变力在整个运动过程中所做的功㊂图5例4 以前的人们经常采用如图5所示的 驴拉磨 方式把粮食加工成粗面来食用㊂假设某次采用 驴拉磨 方式进行粮食加工的过程中,驴对磨的拉力大小始终为500N ,驴做圆周运动的半径为1.5m ,则在驴拉磨转动一周的过程中,拉力所做的功为( )㊂A .0 B .500JC .750JD .1500πJ在驴拉磨转动一周的过程中,拉力F 的大小不变,方向时刻改变,但总与速度的方向相同㊂将转动的一周分割成无数个小段,则每一个小段对应的位移Δs 1㊁Δs 2㊁Δs 3㊁ ㊁Δs n 都可认为与拉力F 同向,因此在驴拉磨转动一周的过程中,力F 所做的功等于恒力F 在各个小段上所做功的代数和,即W F =F ㊃Δs 1+F ㊃Δs 2+F ㊃Δs 3+ +F ㊃Δs n =F (Δs 1+Δs 2+Δs 3+ +Δs n )=F ㊃2πR =1500πJ ㊂答案:D方法五:动能定理法若物体的运动情况较为复杂,但是物体在初㊁末状态下的动能,以及除待求变力所做的功外其他力所做的功都可以比较容易地求出,则可以利用动能定理来求解这个变力所做的功㊂图6例5 如图6所示,一个半径为R 的半圆形轨道固定在竖直平面内,轨道两端等高;质量为m 的质点自轨道左端P 点由静止开始下滑,滑到最低点Q 时,对轨道的压力大小为2m g ,重力加速度为g ㊂在质点自P 点滑到Q 点的过程中,克服摩擦力所做的功为( )㊂A .14m g R B .13m g R C .12m g R D .π4m gR 在质点自P 点滑到Q 点的过程中,质点受到的滑动摩擦力的大小和方向都在变化,属于变力做功问题㊂设此过程中质点克服摩擦力所做的功为W f ,根据动能定理得m gR -W f =12m v 2Q -0;根据牛顿第三定律可知,质点在Q 点受到轨道63 物理部分㊃经典题突破方法 高一使用 2022年4月Copyright ©博看网. All Rights Reserved.的支持力大小N =2m g ;质点运动到Q 点时,根据牛顿第二定律得N -m g =m v 2QR㊂联立以上三式解得W f =12m g R ㊂答案:C方法六:机械能守恒定律法若物体只受重力和弹力作用或只有重力和弹力做功,且重力和弹力中有一个力是变力,则可以利用机械能守恒定律来求解这个变力所做的功㊂图7例6 如图7所示,一根金属链条的总长为l ,置于足够高的光滑水平桌面上,链条下垂部分的长度为a ㊂某时刻链条受到微小扰动由静止开始下滑,在链条由静止开始下滑到整根链条刚好离开桌面的过程中,重力所做的功为多少?链条在下滑的过程中,下垂部分不断增长,质量不断增大,即这部分链条的重力是变力,整根链条的运动是在该变力作用下的运动,属于变力做功问题㊂取桌面为零重力势能参考平面,设整根链条的质量为m ,初始状态下链条下垂部分的质量为m 0,则m 0=al m ㊂初始状态下,整根链条的机械能E 1=0-m 0g ㊃a 2=-m g a22l;整根链条刚好离开桌面时,整根链条的机械能E 2=W 重-m g ㊃l2㊂根据机械能守恒定律得E 1=E 2,解得W 重=m g (l 2-a 2)2l㊂ 图81.如图8所示,摆球质量为m ,悬绳的长度为L ,把悬绳拉到与悬点O 处于同一水平线上的A 点后放手㊂在摆球从A 点运动到最低点B 的过程中,设空气阻力F 阻的大小保持不变,则下列说法中正确的是( )㊂A .重力做功为m g L B .悬绳的拉力做功为12m g πL C .空气阻力F 阻做功为-m g L D .空气阻力F 阻做功为-12πF 阻L 2.用大锤将一木桩打入泥土里,木桩长为L ,大锤第一次击桩时使木桩从地面钻入泥土的深度为L5,如果木桩受到泥土的阻力远大于木桩的重力,且与木桩钻入泥土的深度成正比,那么大锤打击木桩多少次后木桩全部钻入泥土中图93.如图9所示,质量为m 的小球用长度为L 的轻质细线悬于O 点,与O 点处于同一水平线上的P 点处有一个光滑的细钉,已知O ㊁P 两点间的水平距离为L2㊂在A 点给小球一个水平向左的初速度v 0,发现小球恰能到达与P 点在同一竖直线上的最高点B ㊂(1)小球到达B 点时的速率为多大(2)若初速度v 0=3g L ,则在小球从A 点运动到B 点的过程中克服空气阻力做了多少功图104.如图10所示,质量m =2k g 的物体,从光滑斜面的顶端A 点以初速度v 0=5m /s 滑下,在D 点与弹簧接触并将弹簧压缩到B点时的速度为零㊂已知A ㊁B 两点间的竖直高度h =5m ,取重力加速度g =10m /s2,在物体从A 点运动到B 点的过程中,弹簧的弹力对物体所做的功为多少参考答案:1.A D 2.25次㊂3.(1)v B =g L 2;(2)W 克=114m g L ㊂4.W 弹=-125J㊂作者单位:山东省惠民县第一中学(责任编辑 张 巧)73物理部分㊃经典题突破方法高一使用 2022年4月Copyright ©博看网. All Rights Reserved.。

求解变力做功的六种方法

求解变力做功的六种方法
例5、质量为5t的汽车以恒定的输出功率75KW在一条平直的公路上由静止开始 行驶,在10s内速度达到10m/s,求摩擦阻力在这段时间内所做的功。
13:02
栏目 导引
动能定理法
第七章 机械能守恒定律13:02
如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为 恒力,且这些恒力所做的功和物体动能的变化量容易计算时,利用动能定理可以求变 力做功是行之有效的。
动到B端(圆弧AB在竖直平面内).拉力F大小不变始
终为15 N,方向始终与物体所在位置的切线成37°
角.圆弧所对应的圆心角为60°,
• BO边为竖直方向,g取10 m/s2.求这一过程中:
• (1)拉力F做的功;
• (2)重力mg做的功;

13:02
(3)圆弧面对物体的支持力FN做的功.
栏目 导引
第七章 机械能守恒定律13:02
钉进 d,如果铁锤第二次敲钉子时对钉子做的功与第
一次相同,那么,第二次钉子进入木板的深度是(
)
A.( 3-1)d
B.( 2-1)d
5-1d
C.
2
2 D. 2 d
13:02
栏目 导引
第七章 机械能守恒定律13:02
[解析] 在将钉子钉入木板的过程中,随着深度的增加,阻力
成正比地增 加,这属于变力做功问 题,由于力与深度成正 比,
[解析] (1)将圆弧 AB 分成很多小段 l1、l2、…、ln,拉力在每 小段上做的功为 W1、W2、…、Wn,因拉力 F 大小不变,方向 始终与物体所在位置的切线方向成 37°角,所以: W1=Fl1cos 37°,W2=Fl2cos 37°,…,Wn=Flncos 37°, 所以 WF= W1+ W2+…+Wn =Fcos 37°(l1+l2+…+ln) =Fcos 37°·π3R=20π J=62.8 J. (2)重力 mg 做的功 WG=-m gR(1-cos 60°)=-50 J. (3)物体受的支持力 FN 始终与物体的运动方向垂直,所以 WFN = 0.

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法s,但是学生在应用在高中阶段,力做功的计算公式是W=FScoα时,只会计算恒力的功,对于变力的功,高中学生是不会用的。

下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。

方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。

例题1:如图所示。

质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。

解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/2R。

此题中,当半径由R2/R;当拉力为0.25F时,0.25F=mv2变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定2=0.25RF。

理,求2—0.5mv2得外力对物体所做的功的大小W=0.5mv1方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。

例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。

假设机车受到的阻力为恒力。

求机车在运动中受到的阻力大小。

解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。

所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。

在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。

由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。

方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。

例题3:如图所示。

轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。

科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况

科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况

F 做的功.“面积”有正负,在x 轴上方的“面积”为正,在x 轴下方的“面积”为负.如图甲、乙所示,这与运动学中由v - t 图象求位移的原理相同.【典例2】 用质量为5 kg 的均匀铁索,从10 m 深的井中吊起一质量为20 kg 的物体,此过程中人的拉力随物体上升的高度变化如图所示,在这个过程中人至少要做多少功?(g 取10 m/s 2)【解析】 方法一 提升物体过程中拉力对位移的平均值:F -=250+2002N =225 N 故该过程中拉力做功:W =F -h =2 250 J.方法二 由F - h 图线与位移轴所围面积的物理意义,得拉力做功:W =250+2002×10 J =2 250 J. 【答案】 2 250 J法3.用微元法求变力做功圆周运动中,若质点所受力F 的方向始终与速度的方向相同,要求F 做的功,可将圆周分成许多极短的小圆弧,每段小圆弧都可以看成一段极短的直线,力F 对质点做的功等于它在每一小段上做功的代数和,这样变力(方向时刻变化)做功的问题就转化为多段上的恒力做功的问题了.【典例3】如图所示,质量为m的质点在力F的作用下,沿水平面上半径为R的光滑圆槽运动一周.若F的大小不变,方向始终与圆槽相切(与速度的方向相同),求力F对质点做的功.【解析】质点在运动的过程中,F的方向始终与速度的方向相同,若将圆周分成许多极短的小圆弧Δl1、Δl2、Δl3、…、Δln,则每段小圆弧都可以看成一段极短的直线,所以质点运动一周,力F对质点做的功等于它在每一小段上做功的代数和,即W =W1+W2+…+W n=F(Δl1+Δl2+…+Δl n)=2πRF.【答案】2πRF.变式训练1如图所示,放在水平地面上的木块与一劲度系数k=200 N/m的轻质弹簧相连,现用手水平拉弹簧,拉力的作用点移动x1=0.2 m,木块开始运动,继续拉弹簧,木块缓慢移动了x2=0.4 m,求上述过程中拉力所做的功.解析:木块刚要滑动时,拉力的大小F=kx1=200×0.2 N=40 N,从开始到木块刚要滑动的过程,拉力做的功W1=0+F 2x1=402×0.2 J=4 J;木块缓慢移动的过程,拉力做的功W2=Fx2=40×0.4 J=16 J.故拉力所做的总功W=W1+W2=20 J.答案:20 J变式训练2如图所示,一质量为m=2.0 kg的物体从半径为R=5.0 m 的圆弧的A端,在拉力作用下沿圆弧缓慢运动到B端(圆弧AB如图所示,水平传送带正以v =2 m/s 的速度运行,两端水平距离l =8 m ,把一质量m =2 kg 的物块轻轻放到传送带的A 端,物块在传送带的带动下向右运动.若物块与传送带间的动摩擦因数μ=0.1,不计物块的大小,g 取10 m/s 2,则把这个物块从A 端传送到B 端的过程中.求:(1)摩擦力对物块做的功.(2)摩擦力对传送带做的功.【解析】 (1)物块刚放到传送带上时,由于与传送带有相对运动,物块受向右的滑动摩擦力,物块做加速运动,摩擦力对物块做功.物块受向右的摩擦力为F f =μmg =0.1×2×10 N =2 N加速度为a =F f m =μg =0.1×10 m/s 2=1 m/s 2当物块与传送带相对静止时的位移为x =v 22a =222×1m =2 m 摩擦力对物块做功为W =F f x =2×2 J =4 J.(2)把这个物块从A 端传送到B 端的过程中,摩擦力对传送带做功为:W ′=-μmgx ′=-μmg ·v ·v a =-8 J.【答案】 (1)4 J (2)-8 J变式训练3 以初速度v 0竖直向上抛出质量为m 的小球,上升的最大高度是h ,如果空气阻力f 的大小恒定,从抛出到落回出发点的整个过程中,空气阻力对小球做的功为( )A .0B .-fhC .-2mghD .-2fh解析:阻力做功跟物体的运动轨迹有关,所以阻力做功为W f =-2fh .答案:D。

求变力做功的六种方法

求变力做功的六种方法

求变力做功的六种方法都匀市民族中学:王方喜在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。

本文举例说明了在高中阶段求变力做功的常用方法,比如微元累积(求和)法、平均力等效法、功率的表达式PtW=、F-x图像、用动能定理、等效代换法等来求变力做功。

一、运用微元积累(求和)法求变力做功求変力做功还可以用微元累积法,把整个过程分成极短的很多段,在极短的每一段里,力可以看成是恒力,则可用功的公式求每一段元功,再求每一小段上做的元功的代数和。

由此可知,求摩擦力和阻力做功,我们可以用力乘以路程来计算。

用微元累积法的关键是如何选择恰当的微元,如何对微元作恰当的物理和数学处理,微元累积法对数学知识的要求比较高。

例1如图1-1所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功.图1-1【分析与解答】在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小位移Δs同向.这样,无数瞬时的极小位移Δs1,Δs2,Δs3…Δsn都与当时的F方向同向.因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和.即W=FΔs1+FΔs2+…FΔsn=F(Δs1+Δs2+Δs3+…Δsn)=F2πR【总结】变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FLcosθ计算功,而且变力所做功应等于变力在各小段所做功之和。

【检测题1-1】如图1-2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨,设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功?图1-2【检测题1-2】小明将篮球以10 m/s的初速度,与水平方向成30°角斜向上抛出,被篮球场内对面的小虎接到,小明的抛球点和小虎的接球点离地面的高度都为1.8 m.由于空气阻力的存在,篮球被小虎接到时的速度是6 m/s.已知篮球的质量m=0.6 kg,g取10 m/s2.求:(1)全过程中篮球克服空气阻力做的功;(2)如果空气阻力恒为5 N,篮球在空中飞行的路程.二、运用平均力等效法求变力做功当力的方向不变,而大小随位移线性..变化时(即F=kx+b),可先求出力的算术平均值221FFF+=,再把平均值当成恒力,用功的计算式求解。

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法变力做功是指当力的大小和方向随着对象运动的位置而变化时,力对物体所做的功。

下面将介绍六种常见的计算变力做功的方法。

1.通过力的曲线面积计算功:当力的大小和方向随着位置的变化而变化时,可以通过绘制力与位置的曲线图,然后计算曲线下的面积来求得所做的功。

2.利用求和法计算功:将运动过程划分成若干个小的位移段,对每个位移段内力的大小和方向保持不变,然后通过求和法计算每个位移段上力所做的功,最后将所有位移段上力所做的功相加得到总功。

3.应用积分法计算功:对力和位移变化连续的问题,可以利用微积分中的积分法来计算变力做功。

通过计算力在位移方向上的积分,即对力关于位移的函数进行积分,来得到变力做功的结果。

4.利用功率和时间计算功:如果已知物体在一段时间内所受到的平均力和物体的平均速度,可以利用功率和时间的关系来计算功。

功率定义为单位时间内做功的大小,根据功率公式P=W/t,其中W是做功的大小,t是时间,可以通过已知的其它量来计算功。

5.利用速度和质量计算功:在一些特定的情况下,可以利用物体的速度和质量来计算变力做功。

根据力学中的动能定理,物体的动能变化等于外力所做的功,其中动能定义为 K=1/2 mv^2,其中 m 是质量, v 是速度。

6.利用万有引力计算功:当物体受到的力是万有引力时,可以利用万有引力公式来计算变力做功。

万有引力公式为F=GmM/r^2,其中F是力,m和M是物体的质量,G 是万有引力常数,r是两物体之间的距离。

通过将力乘以物体的位移并将结果进行积分,可以得到变力做功的计算结果。

这些是常见的计算变力做功的方法,根据具体问题的条件和要求,选择适合的方法来计算变力做功。

高考物理:变力做功的求解方法!

高考物理:变力做功的求解方法!

高考物理:变力做功的求解方法!一、变力做功的计算方法1、用动能定理动能定理表达式为,其中是所有外力做功的代数和,△E k是物体动能的增量。

如果物体受到的除某个变力以外的其他力所做的功均能求出,那么用动能定理表达式就可以求出这个变力所做的功。

2、用功能原理系统内除重力和弹力以外的其他力对系统所做功的代数和等于该系统机械能的增量。

若在只有重力和弹力做功的系统内,则机械能守恒(即为机械能守恒定律)。

3、利用W=Pt求变力做功这是一种等效代换的思想,用W=Pt计算功时,必须满足变力的功率是一定的。

4、转化为恒力做功在某些情况下,通过等效变换可将变力做功转换成恒力做功,继而可以用求解。

5、用平均值当力的方向不变,而大小随位移做线性变化时,可先求出力的算术平均值,再把平均值当成恒力,用功的计算式求解。

6、微元法对于变力做功,我们不能直接用公式进行计算,但是可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。

这种处理问题的方法称为微元法,其具有普遍的适用性。

在高中阶段主要用这种方法来解决大小不变、方向总与运动方向相同或相反的变力做功的问题。

二、摩擦力做功的特点1、静摩擦力做功的特点:A、静摩擦力可以做正功,也可以做负功,还可以不做功。

B、在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能。

C、相互摩擦的系统内,一对静摩擦力所做功的代数和总是等于零。

2、滑动摩擦力做功的特点:如图所示,顶端粗糙的小车,放在光滑的水平地面上,具有一定速度的小木块由小车左端滑上小车,当木块与小车相对静止时木块相对小车的位移为d,小车相对地面的位移为s,则滑动摩擦力F对木块做的功为W木=-F(d+s)①由动能定理得木块的动能增量为ΔE k木=-F(d+s)②滑动摩擦力对小车做的功为W车=Fs ③同理,小车动能增量为ΔE k车=Fs ④②④两式相加得ΔE k木+ΔE k车=-Fd ⑤⑤式表明木块和小车所组成系统的机械能的减少量等于滑动摩擦力与木块相对于小车位移的乘积,这部分能量转化为内能。

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法第一种方法是曲线切线式。

在物体沿曲线运动的情况下,可以通过计算力的切线分量与物体速度的乘积来确定变力做功的大小。

具体计算方法是,首先需要确定物体在其中一时刻的速度,然后取该时刻的力的切线分量(即与物体速度方向相同的力的分量),最后将该切线分量与物体速度的乘积相乘,即可得到变力做功的大小。

第二种方法是常力法。

在物体受到一定的恒定力作用下,可以通过计算力与物体位移方向的夹角的余弦值再乘上力的大小来确定变力做功的大小。

具体计算方法是,首先需要确定力的大小,然后确定物体的位移方向与力的方向之间的夹角,最后将位移方向与力的方向之间夹角的余弦值乘以力的大小,即可得到变力做功的大小。

第三种方法是分力法。

当物体受到多个力的作用时,可以通过计算各个力的分力与物体位移方向之间的夹角的余弦值再分别乘上各个分力的大小来确定变力做功的大小,然后将各个分力的做功求和即可得到变力做功的总大小。

第四种方法是连续变力法。

在物体受到连续变化的力作用下,可以通过将力的大小关于物体位移的函数表示出来,然后对该函数进行积分来确定变力做功的大小。

具体计算方法是,首先需要确定力对物体位移的函数关系式,然后对该函数进行积分,最后得到的积分值即为变力做功的大小。

第五种方法是有功做功法。

在物体受到非保守力作用下,可以通过计算力的非保守分量与物体位移的乘积再加上势能变化的大小来确定变力做功的大小。

具体计算方法是,首先需要确定力的保守分量与非保守分量,然后将非保守分量与位移的乘积相加,再加上势能变化的大小,即可得到变力做功的大小。

第六种方法是负功做功法。

在物体受到反向力作用下,可以通过计算该反向力的绝对值与物体位移的乘积再乘上负一来确定变力做功的大小。

具体计算方法是,首先需要确定反向力的大小,然后将反向力的绝对值与位移的乘积相乘,并将结果乘以负一,即可得到变力做功的大小。

综上所述,变力做功的六种常见计算方法分别是曲线切线式、常力法、分力法、连续变力法、有功做功法和负功做功法。

高中物理求变力做功几种常见的方法

高中物理求变力做功几种常见的方法

教学信息新教师教学功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa 只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,下面对变力做功问题进行归纳总结如下:1.等效法等效法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。

而恒力做功又可以用W=FScosa 计算,从而使问题变得简单。

例:如图,定滑轮至滑块的高度为h ,已知细绳的拉力为F (恒定),滑块沿水平面由A 点前进S 至B 点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。

求滑块由A点运动到B 点过程中,绳的拉力对滑块所做的功。

分析与解:设绳对物体的拉力为T ,显然人对绳的拉力F 等于T 。

T 在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。

但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。

而拉力F 的大小和方向都不变,所以F 做的功可以用公式W=FScosa 直接计算。

由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F 的作用点的位移大小为:2.微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。

例:如图所示,某力F=10N 作用于半径R=1m 的转盘的边缘上,力F 的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F 做的总功应为:A 、0JB 、20πJC 、10JD 、20J 分析与解:把圆周分成无限个小元段,每个小元段可认为与力在同一直线上,故ΔW=F ΔS ,则转一周中各个小元段做功的代数和为W=F ×2πR=10×2πJ=20πJ ,故B 正确。

3.平均力法若参与做功的变力,其仅力的大小改变,而方向不变,且大小随位移线性变化,则可通过求出变力的平均值等效代入公式W 求解。

求变力做功的六种方法

求变力做功的六种方法

求变力做功的六种方法方法一 动能定理法动能定理是求变力做功的首选思路,基本方法是:由动能的变化求合力功,再求某个力的功.例1 (2015·海南)如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高.质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g ,质点自P 滑到Q 的过程中,克服摩擦力所做的功为( C ) A.14mgR B.13mgR C.12mgR D.π4mgR方法二 图像法在F -x 图像中,图线和x 轴所围的面积表示F 做的功.在x 轴上方的“面积”表示正功,x 轴下方的“面积”表示负功.例2 一质量为2 kg 的物体,在水平恒定拉力的作用下以一定的初速度在粗糙的水平面上做匀速运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图中给出了拉力随位移变化的关系图像.已知重力加速度g =10 m/s 2,由此可知(ABC )A .物体与水平面间的动摩擦因数约为0.35B .减速过程中拉力对物体所做的功约为13 JC .匀速运动时的速度约为6 m/sD .减速运动的时间约为1.7 s方法三 平均力法若F -x 按线性规律变化,当F 由F 1变化到F 2的过程中,力的平均值为F =F 1+F 22,再利用功的定义式W =Flcos α来求功.例3 如图所示,长为L ,质量为m 的矩形板,以速度v 沿光滑水平面运动,滑上长度为l 的粗糙水平面(l <L),在板的前端刚到达粗糙水平面的末端时,这一过程中克服摩擦力做的功为多大?已知动摩擦因数为μ.【答案】 μmgl 22L【解析】 矩形板滑上粗糙水平面过程中,所受摩擦力与位移成正比,摩擦力的平均值为f -=μmgl 2L, 克服摩擦力做功为W =f -·l =μmgl 22L. 方法四 等效转换法若所求变力的功和某一恒力的功效果相同,可将变力做功转化为恒力做功,在“滑轮拉物体”的问题中,注意应用这种方法.例4 人在A 点拉着绳通过一定滑轮吊起质量m =50 kg 的物体,如图所示,开始时绳与水平方向的夹角为60°.当人匀速提起重物由A 点沿水平方向运动l =2 m 而到达B 点时,绳与水平方向成30°角.则人对绳的拉力做了多少功?【解析】 人对绳的拉力的功与绳对物体的拉力的功是相同的,而由于匀速提升物体,故物体处于平衡状态,可知绳上拉力F =mg.而重物上升的高度h 等于右侧绳子的伸长量Δl ,由几何关系,得h(cot30°-cot60°)=lΔl =h sin30°-h sin60°,解得Δl =1.46 m 人对绳的拉力做的功W =mg Δl =500×1.46 J =730 J方法五 微元法在曲线运动或往返运动中,摩擦力(空气阻力)的方向沿运动切线改变,可将曲线分成无限小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和.通过微元法可知:摩擦力(空气阻力)做的功,其大小等于力和路程的乘积.例5 (多选)如图所示,摆球质量为m ,悬线长为L ,把悬线拉到水平位置后放手.小球从A 摆到O 点正下方的B 点,设在摆球运动过程中空气阻力F 阻的大小不变,则下列说法正确的是( ABD )A .重力做功为mgLB .绳的拉力做功为0C .空气阻力F 阻做功为-mgLD .空气阻力F 阻做功为-12F 阻πL方法六 功率计算法机车以恒定功率运动时,牵引力变化,此时牵引力所做的功不能用W =Fx来计算,但因功率恒定,可以用W =Pt 计算.例6 汽车的质量为m ,输出功率恒为P ,沿平直公路前进距离s 的过程中,其速度由v 1增至最大速度v 2.假定汽车在运动过程中所受阻力恒定,求汽车通过距离s 所用的时间.【答案】 m (v 22-v 12)2P +s v 2【解析】 当F =F f 时,汽车的速度达到最大速度v 2,由P =Fv 可得F f =P v 2对汽车,根据动能定理,有Pt -F f s =12mv 22-12mv 12 联立以上两式解得t =m (v 22-v 12)2P +s v 2. 强化训练1.如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置.现用水平拉力F 将小球缓慢拉到细线与竖直方向成θ角的位置.在此过程中,拉力F 做的功为( D )A .FLcos θB .FLsin θC .FL(1-cos θ)D .mgL(1-cos θ)2.如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F 拉绳,使滑块从A 点起由静止开始上升.若从A 点上升至B 点和从B 点上升至C 点的过程中拉力F 做的功分别为W 1和W 2,图中AB =BC ,则( A )A .W 1>W 2B .W 1<W 2C .W 1=W 2D .无法确定W 1和W 2的大小关系3.如图所示,一个粗糙的水平转台以角速度ω匀速转动,转台上有一个质量为m的物体,物体与转台间用长L 的绳连接着,此时物体与转台处于相对静止,设物体与转台间的动摩擦因数为μ,现突然制动转台,则(ABD )A .由于惯性和摩擦力,物体将以O 为圆心、L 为半径做变速圆周运动,直到停止B .若物体在转台上运动一周,物体克服摩擦力做的功为μmg2πLC .若物体在转台上运动一周,摩擦力对物体不做功D .物体在转台上运动Lω24μg π圈后,停止运动4.地面上物体在变力F 作用下由静止开始竖直向上运动,力F 随高度x 的变化关系如图所示,物体能上升的最大高度为h ,h<H.当物体加速度最大时其高度为多少?加速度的最大值为多少?答案 0或h gh 2H -h解析 根据题意,从图可以看出力F 是均匀减小的,可以得出力F 随高度x 的变化关系:F =F 0-kx ,而k =F 0H, 可以计算出物体到达h 处时力F =F 0-F 0Hh ; 物体从地面到h 处的过程中,力F 做正功,重力G 做负功,由动能定理可得:Fh =mgh ,而F =F 0+F 2=F 0-F 02Hh , 可以计算出:F 0=2mgH 2H -h, 则物体在初位置加速度为:F 0-mg =ma ,计算得:a =gh 2H -h; 当物体运动到h 处时,加速度为:mg -F =ma ,而F =2mgH 2H -h -2mgh 2H -h, 计算处理得:a =gh 2H -h, 即加速度最大的位置是0或h 处.。

变力做功的计算

变力做功的计算

一、微元法对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。

这种处理问题的方法称为微元法,这种方法具有普遍的适用性。

但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。

例1、用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。

求此过程中摩擦力所做的功。

分析:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。

解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功。

对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。

必须注意本题中的F是变力。

对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。

如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。

二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。

如果作用在物体上的力是恒力,则其F-s图象如图所示。

经过一段时间物体发生的位移为s0,则图线与坐标轴所围成的面积(阴影面积)在数值上等于力对物体做的功W=Fs,s轴上方的面积表示力对物体做正功(如图(a)所示),s轴下方的面积表示力对物体做负功(如图(b)所示)。

如果F-s图象是一条曲线(如图所示),表示力的大小随位移不断变化,在曲线下方作阶梯形折线,则折线下方每个小矩形面积分别表示相应恒力做的功。

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法在高中阶段,力做功的计算公式是W=FScosα,但是学生在应用时,只会计算恒力的功,对于变力的功,高中学生是不会用的。

下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。

方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。

例题1:如图所示。

质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。

解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/R;当拉力为0.25F时,0.25F=mv22/2R。

此题中,当半径由R 变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定理,求得外力对物体所做的功的大小W=0.5mv12—0.5mv22=0.25RF。

方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。

例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。

假设机车受到的阻力为恒力。

求机车在运动中受到的阻力大小。

解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。

所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。

在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。

由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。

方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。

例题3:如图所示。

轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。

求变力做功的十种方法

求变力做功的十种方法

变力做功的十种方法河南省信阳高级中学 陈庆威功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式θcos FS W =直接求解,但变力做功就不能直接用公式了,这里总结了一些求变力做功的方法,希望能对读者有帮助。

一. 动能定理法例1. 如图所示,质量为m 的物体从A 点沿半径为R 的粗糙半球内表面以的速度开始下滑,到达B 点时的速度变为,求物体从A 运动到B 的过程中,摩擦力所做的功是多少?【解析】物体由A 滑到B 的过程中,受重力G 、弹力和摩擦力三个力的作用,因而有,即,式中为动摩擦因数,v 为物体在某点的速度,为物块与球心的连线与竖直方向的夹角。

分析上式可知,物体由A 运动到B 的过程中,摩擦力是变力,是变力做功问题,根据动能定理有,在物体由A 运动到B 的过程中,弹力不做功;重力在物体由A 运动到C 的过程中对物体所做的正功与物体从C 运动到B 的过程中对物体所做的负功相等,其代数和为零。

因此,物体所受的三个力中摩擦力在物体由A 运动到B 的过程中对物体所做的功,就等于物体动能的变化量,则有:即 可见,如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,此类方法解决问题是行之有效的。

【点评】利用动能定理可以求变力做功,但不能用功的定义式直接求变力功,并且用动能定理只要求始末状态,不要求中间过程。

这也是动能定理比牛顿运动定律优越的一个方面。

二. 微元法对于变力做功,不能直接用θcos FS W =进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F 是恒力,用θcos FS W =求出每一小段内力F 所做的功,然后累加起来就得到整个过程中变力所做的功。

这种处理问题的方法称为微元法,具有普遍的适用性。

例2. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。

变力做功(微元法、平均力法、图像法)

变力做功(微元法、平均力法、图像法)

2.平均力法:
若变力大小随位移是线性变化,且方向不变时,可 将变力的平均值求出后用公式
W Fl cos F1 F2 l cos
2
计算。如弹簧的弹力做功就可以用此法计算。
例3. 用铁锤将一铁钉击入木块,设木块对铁钉的阻
力与铁钉进入木块内的深度成正比.在铁锤击第一
次时,能把铁钉击入木块内1cm,问击第二次时,
0
解后有:x2= 2 x2=1.41cm.
x
x1 x2
(b)
∴ △x=x2-x1=0.41cm.
• 基 的本过应程用中:,当 弹弹 力簧 做的 的长 功度 为由 多原 大长?x伸长到x1
• 弹力F与伸长量的关系正好是线性关系:
• F=Kx
• 因此易得:W=-1/2K(x1-x)2 • 若弹簧是由原长到压缩到x1 • 弹力做功为:W=-1/2K(x1-x)2 • 为什么都是负功?
二.变力做功
对于变力做功不能依定义式
W Flcos
直接求解,但可依物理规律通过技巧的转化间接求解。
基本原则——过程分割与代数累积
1.可用(微元法)无限分小法来求, 过程无限分小后, 可认为每小段是恒力做功。
例一 一辆马车在恒定大小摩擦力力f=100N的作用下 绕半径为50m的圆形轨道做匀速圆周运动,当车运 动一周回到原位置时,摩擦力所做的功为多少?
能击入多少深度 ? (设铁锤每次做功相等)
解一: 用平均力法.铁锤每次做功都用来克服铁钉阻
力做的功,但摩擦阻力不是恒力,其大小与深度成正
比,F=-f=kx,可用平均阻力来代替. 如图(a)
第一次击入深度为x1,平均阻力F1= 1/2× kx1,
做功为W1= F1 x1=1/2×kx21.

第29讲 变力做功的6种计算方法(解析版)

第29讲 变力做功的6种计算方法(解析版)

第29讲变力做功的6种计算方法一.知识回顾方法举例说法1.应用动能定理用力F把小球从A处缓慢拉到B处,F做功为W F,则有:W F-mgL(1-cosθ)=0,得W F=mgL(1-cosθ)2.微元法质量为m的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f=F f·Δx1+F f·Δx2+F f·Δx3+…=F f(Δx1+Δx2+Δx3+…)=F f·2πR3.等效转换法恒力F把物块从A拉到B,绳子对物块做功W=F·⎝⎛⎭⎪⎫hsinα-hsinβ4.平均力法弹簧由伸长x1被继续拉至伸长x2的过程中,克服弹力做功W=kx1+kx22·(x2-x1)6.图像法在F­x图像中,图线与x轴所围“面积”的代数和就表示力F在这段位移上所做的功7.功率法汽车恒定功率为P,在时间内牵引力做的功W=Pt二.例题精析例1.如图所示,质量均为m的木块A和B,用一个劲度系数为k的竖直轻质弹簧连接,最初系统静止,重力加速度为g,现在用力F向上缓慢拉A直到B刚好要离开地面,则这一过程中弹性势能的变化量△E p和力F做的功W分别为()A .m 2g 2k,m 2g 2kB .m 2g 2k,2m 2g 2kC .0,m 2g 2kD .0,2m 2g 2k【解答】解:开始时,A 、B 都处于静止状态,弹簧的压缩量设为x 1,由胡克定律有 kx 1=mg ,解得:x 1=mgk物体A 恰好离开地面时,弹簧对B 的拉力为mg ,设此时弹簧的伸长量为x 2,由胡克定律有 kx 2=mg ,解得:x 2=mg k由于弹簧的压缩量和伸长量相等,则弹簧的弹性势能变化为零; 这一过程中,物体A 上移的距离为:d =x 1+x 2=2mgk ,根据功能关系可得拉力做的功等于A 的重力势能的增加量,则有:W =mgd =2m 2g 2k ,故D 正确,ABC 错误。

求变力做功的方法总结

求变力做功的方法总结

考点、求变力做功的几种方法1、将变力转化为恒力做功在某些情况下,通过等效变换可以将变力做功转换成恒力做功,于是可以用求解。

例1、如图1所示,某人用大小不变的力F拉着放在光滑水平面上的物体。

开始时与物体相连的轻绳和水平面间的夹角为α,当拉力F作用一段时间后,绳与水平面间的夹角为β。

已知图中的高度是h,绳与滑轮间的摩擦不计,求绳的拉力F T对物体所做的功。

分析:拉力F T在对物体做功的过程中大小不变,但方向时刻改变,所以这是个变力做功问题。

由题意可知,人对绳做的功等于拉力F T对物体做的功,且人对绳的拉力F是恒力,于是问题转化为求恒力做功。

由可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移为:所以绳对物体做功:[变式训练]1、如图7所示,质量为m的滑块可以在光滑水平面上滑动,滑块与一不可伸长的轻绳相连,绳跨过一光滑的定滑轮(滑轮大小不计),另一端被人拉着,人的拉力大小、方向均不变,大小为,已知滑轮到水平面的高度为,AB的长度,求滑块从A被拉到B的过程中,外力对它所做的功。

分析与解:在本题中,只有绳子拉力对滑块做功,该拉力大小虽然不变,但方向时刻改变(与水平方向的夹角逐渐增大),故属于变力做功,不能直接求解。

但如果将研究对象由滑块转变为绳的另一端,因为人的拉力为恒力,所以是恒力做功,显然这个恒力做功与绳子对滑块拉力做功是相等的,故可以用人对绳子做的功代换绳子拉力对滑块的功。

则有。

由几何关系可求得s,联立即得。

小结:把变力做功巧妙转化为恒力做功也是一种很有效的求解方法。

2、微元求和法例2、如图所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功。

分析与解:在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小位移……都与当时的F方向同向,因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和,即:小结:变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用计算功,而且变力所做功应等于变力在各小段所做功之和,化曲为直的思想在物理学研究中有很重要的应用,研究平抛运动和单摆的运动时,都用到了这种思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求变力做功的六种方法都匀市民族中学:王方喜在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。

本文举例说明了在高中阶段求变力做功的常用方法,比如微元累积(求和)法、平均力等效法、功率的表达式PtW 、F-x图像、用动能定理、等效代换法等来求变力做功。

一、运用微元积累(求和)法求变力做功求変力做功还可以用微元累积法,把整个过程分成极短的很多段,在极短的每一段里,力可以看成是恒力,则可用功的公式求每一段元功,再求每一小段上做的元功的代数和。

由此可知,求摩擦力和阻力做功,我们可以用力乘以路程来计算。

用微元累积法的关键是如何选择恰当的微元,如何对微元作恰当的物理和数学处理,微元累积法对数学知识的要求比较高。

例1如图1-1所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功.图1-1【分析与解答】在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小位移Δs同向.这样,无数瞬时的极小位移Δs1,Δs2,Δs3…Δsn都与当时的F方向同向.因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和.即W=FΔs1+FΔs2+…FΔsn=F(Δs1+Δs2+Δs3+…Δsn)=F2πR【总结】变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FLcosθ计算功,而且变力所做功应等于变力在各小段所做功之和。

【检测题1-1】如图1-2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨,设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功图1-2【检测题1-2】小明将篮球以10 m/s的初速度,与水平方向成30°角斜向上抛出,被篮球场内对面的小虎接到,小明的抛球点和小虎的接球点离地面的高度都为1.8 m.由于空气阻力的存在,篮球被小虎接到时的速度是6 m/s.已知篮球的质量m=0.6 kg,g取10 m/s2.求:(1)全过程中篮球克服空气阻力做的功;(2)如果空气阻力恒为5 N,篮球在空中飞行的路程.二、运用平均力等效法求变力做功当力的方向不变,而大小随位移线性..变化时(即F=kx +b),可先求出力的算术平均值221F F F +=,再把平均值当成恒力,用功的计算式求解。

用平均值求变力做功的关键是先判断変力F 与位移x 是否成线性关系。

例2.要把长为l 的铁钉钉入木板中,每打击一次给予的能量为E 0,已知钉子在木板中遇到的阻力与钉子进入木板的深度成正比,比例系数为k 。

问此钉子全部进入木板需要打击几次 【分析和解答】在把钉子打入木板的过程中,钉子把得到的能量用来克服阻力做功,而阻力与钉子进入木板的深度成正比,先求出阻力的平均值,便可求得阻力做的功。

钉子在整个过程中受到的平均阻力为:F kl kl=+=022钉子克服阻力做的功为:W Fl kl F ==122设全过程共打击n 次,则给予钉子的总能量:E nE kl 总==0212所以n kl E =22【检测题2】某人用竖直向上的力匀速提起长为L、质量为m的置于地面上的铁链,求将铁链从提起到刚提离地面时,提力所做的功.如图2所示.图2【分析与解答】铁链被提升过程中所需提力方向不变,大小随离地高度均匀地从0增大到mg.平均提力=0+mg/2=(1/2)mg,提力通过的位移为L,因此,提力所做的功为W=·L =mgL/2.【说明】此题也可将铁链质量集中于其重心,从提起到刚离开地面,铁链重心上升L/2,运用功能原理求解. 特点:变力与位移成线性关系时,才可用平均力等效变力用公式W=FLcos θ计算功.三、运用Pt W =求变力做功涉及到机车的启动、吊车吊物体等问题,如果在某个过程中保持功率P 恒定,随着机车或物体速度的改变,牵引力也改变,要求该过程中牵引力的功,可以通过Pt W =求変力做功。

例3质量为5000kg 的汽车,在平直公路上以60kW 的恒定功率从静止开始启动,速度达到24m/s 的最大速度后,立即关闭发动机,汽车从启动到最后停下通过的总位移为1200m.运动过程中汽车所受的阻力不变.求汽车加速运动的时间.【分析和解答】牵引力是変力,该过程中保持功率P 恒定,牵引力的功可以通过Pt W =来求。

汽车加速运动的时间为t ,由动能定理得: P t +(– F f · s ) = 0 汽车达到最大速度时,牵引力和阻力大小相等,则m f mv F Fv P ⋅== 即mf v PF =可求得汽车加速运动的时间为s s v s Ps F t m f 502412001===⋅=【检测题3】【题目】质量为4000kg 的汽车,由静止开始以恒定的功率前进,它经100/3 s 的时间前进425m ,这时候它达到最大速度15m/s 。

假设汽车在前进中所受阻力不变,求阻力为多大。

【分析和解答】汽车在运动过程中功率恒定,速度增加,所以牵引力不断减小,当减小到与阻力相等时速度达到最大值。

汽车所受的阻力不变,牵引力是变力,牵引力所做的功不能用功的公式直接计算。

由于汽车的功率恒定,汽车功率可用P=F v 求,速度最大时牵引力和阻力相等,故P=F v m =f v m ,所以汽车的牵引力做的功为W 汽车=Pt=f v m t 根据动能定理有:W 汽车 + (-fs) = m v m 2/2,即fv m t - fs = m v m 2/2 代入数值解得: f=6000N 。

【总结】变力做功的问题是一教学难点,在上述实例中,从不同的角度、用不同的方法阐述了求解变力做功的问题.在教学中,通过对变力做功问题的归类讨论,有利于提高学生灵活运用所学知识解决实际问题的能力,有利于培养学生的创造性思维,开阔学生解题的思路.四、运用F -x 图像中的面积求变力做功某些求変力做功的问题,如果能够画出変力F 与位移x 的图像,则F-x 图像中与x 轴所围的面积表示该过程中変力F 做的功。

运用F-x 图像中的面积求变力做功的关键是先表示出変力F 与位移x 的函数关系,再在画出F-x 图像。

例4:用铁锤将一铁钉击入木块,设阻力与钉子进入木板的深度成正比, 每次击钉时锤子对钉子做的功相同,已知第一次击后钉子进入木板1cm ,则第二次击钉子进入木板的深度为多少【分析和解答】铁锤每次做功都是用来克服铁钉阻力做的功,但摩擦阻力不是恒力,其大小与深度成正比,F=kx ,以F 为纵坐标,F 方向上的位移x 为横坐标,作出F -x 图象,如图4-1,函数线与x 轴所夹阴影部分面积的值等于F 对铁钉做的功.由于两次做功相等,故有:S 1=S 2(面积) 即:21kx 12=21k(x 2+x 1)(x 2-x 1) 得 cm x 22=所以第二次击钉子进入木板的深度为:cm x x x )12(12-=-=∆【检测题4】放在地面上的木块与一劲度系数k N m =200/的轻弹簧相连。

现用手水平拉弹簧,拉力的作用点移动x m 102=.时,木块开始运动,继续拉弹簧,木块缓慢移动了x m 204=.的位移,求上述过程中拉力所做的功。

【分析和解答】由题意作出F x -图象如图4-2所示,在木块运动之前,弹簧弹力随弹簧伸长量的变化是线性关系,木块缓慢移动时弹簧弹力不变,图线与横轴所围梯形面积即为拉力所做的功。

即图4-112kx kxJ J W 2040)4.06.0(21=⨯+⨯=图4-2五、运用动能定理求变力做功动能定理的表述:合外力对物体做功等于物体的动能的改变,或外力对物体做功的代数和等于物体动能的改变。

对于一个物体在某个过程中的初动能和末动能可求,该过程其它力做功可求,那么该过程中変力做功可求。

运用动能定理求变力做功关键是了解哪些外力做功以及确定物体运动的初动能和末动能。

例5如图5-1所示,原来质量为m 的小球用长L 的细线悬挂而静止在竖直位置.用水平拉力F 将小球缓慢地拉到细线与竖直方向成θ角的位置的过程中,拉力F 做功为( )A. θcos FLB. θsin FLC. ()θcos 1-FLD. ()θcos 1-mgL 【解析】很多同学会错选B ,原因是没有分析运动过程,对W=FLcosθ来求功的适用范围搞错,恒力做功可以直接用这种方法求,但变力做功不能直接用此法正确的分析,小球的运动过程是缓慢的,因而任一时刻都可看作是平衡状态,因此F 的大小不断变大,F 做的功是变力功,小球上升过程中只有重力和拉力做功,而整个过程的动能改变为零,可用动能定理求解:0=-'=+K KG F E E W W 所以 ()θcos 1-=-=mgL W W G F ,故D 正确。

【检测题5】如图5-2所示,质量m kg =1的物体从轨道上的A 点由静止下滑,轨道AB 是弯曲的,且A 点高出B 点h =。

物体到达B 点时的速度为2m /s ,求物体在该过程中克服摩擦力所做的功。

图5-2 【分析和解答】物体由A 运动到B 的过程中共受到三个力作用:重力G 、支持力F N 和摩擦力F f 。

由于轨道是弯曲的,支持力和摩擦力均为变力。

但支持力时刻垂直于速度方向,故支持力不做功,因而该过程中只有重力和摩擦力做功。

由动能定理W E k 外=∆,其中W W W E mv mv G fk B A外=+=-∆121222所以mgh W mv f B +=122代入数据解得W J f =-584. 所以,物体在该过程中克服摩擦力所做的功为。

六、用等效代换法求变力做功图5-1求某个过程中的変力做功,可以通过等效法把求该変力做功,转换成求与该変力做功相同的恒力的功,此时可用功定义式W=FLcosа求恒力的功,从而可知该変力的功。

等效转换的关键是分析清楚该変力做功到底与哪个恒力的功是相同的。

例6如图6-1所示,一个可以看做质点的物体静止于水平地面上的A点,用质量不计的细绳系住物体,绳子的另一端通过距地面高为h=3m的无摩擦定滑轮,用F=4N的恒定拉力拉绳子,使物体向右运动。

已知β=370,γ=530,求物体从A点运动到B点过程中,绳子的拉力对物体所做的功。

(sin370=,sin530=图6-1【分析与解答】如图6-2,物体从A运动到B的过程中,绳上拉力的方向时刻变化,因而在物体位移方向上的分力大小是变化的.从图1可以看出,此变力使物体在水平方向上移动时所做的W,等效于恒力F对绳做功.力F的作用点由a移动到b时,设力F对绳所做的功为WF.即图6-2绳的拉力对物体所做的功W=WF=FL ab=FL Ac=Fh[(1/sinβ)-(1/sinγ)]把数据带入,解出W=5J【总结】变力对物体做功,若通过关联点(作用点)等效于某一恒力做功时,可用公式W=FLcosа直接求解.【检测题6】如图6-3所示,人在A点拉着绳通过一定滑轮吊起质量m=50Kg的物体,开始绳与水平方向夹角为60,当人匀速提起重物由A点沿水平方向运动ms2而到达B点,此时绳与水平方向成 30角,绳子的质量不计,绳子与滑轮的摩擦不计,求人对绳的拉力做了多少功(g=10m/s2)G6030图6-3。

相关文档
最新文档