人教版七年级数学上册《相反数》有理数

合集下载

人教版(2024数学七年级上册1.2.3 相反数

人教版(2024数学七年级上册1.2.3 相反数
–8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8
请求出剩下两个 数的相反数吧.
请用自己的语言总结多重符号化简规律: -(-(+8) ) = 8
-(-(-3.3)) = -3.3
多重符号化简规律: 负号是_偶___数个,结果为正数; 负号是_奇___数个,结果为负数.
的距离一样,均为 300 m,所以以青少年宫为原点,示
意图如下: 商场 医院 青少年宫
学校
-600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600
4.一只蚂蚁从数轴的原点出发,它先向右爬了 4 个单位长 度到达点 A,再向右爬了 2 个单位长度到达点 B,然后又 向左爬了 10 个单位长度到达点 C. (1)在数轴上点 A 所表示的数的相反数是多少?是哪一个点?
分析:假设学校为原点画数 观察 移动数轴,找
轴表示各个场所位置
到合适的原点
解:假设以学校为原点,4 个公共场所位置表示如下:
商场 医院 青少年宫
学校
-600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600
由上图可知,商场到青少年宫的距离与学校到青少年宫
合作探究
知识点:相反数
探究一 观察在数轴上画的三组点,说说在数轴上与原 点的距离是 3、1 的点分别有几个,分别是哪些数?
2
-5
-3
1 1 22
3
5
–5 –4 –3 –2 –1 0 1 2 3 4 5
有两个,分别是 3 和 -3;
有两个,分别是
1 2

1 ;
2
思考1 对于一般数 a,设 a 是一个正数,数轴上与原点 的距离等于 a 的点有几个?探究这几组点表示的数之间 的关系.

人教版数学七年级上册有理数相反数绝对值

人教版数学七年级上册有理数相反数绝对值

分析 (1)检查结果的绝对值越小, 与规定直径的 偏差越小, 所以检查结果 的绝对值小的零件较好. (2)只要求出每件样品所对应的误差的绝对值, 再根据绝对值的结果范围 可确定正品、次品和废品.
解 (1)第四件样品的大小最符合要求. (2)因为|0.1|=0.1<0.18, |-0.15|=0.15<0.18, |0.05|=0.05<0.18, 所以第 一、二、四件样品是正品; 因为|0.2|=0.2, 0.18<0.2<0.22, 所以第三 件样品是次品; 因为|0.25|=0.25>0.22, 所以第五件样品是废品.
例题3 求下列各数的绝对值:
锦囊妙计 求一个数的绝对值的方法
求一个数的绝对值时, 必须按照“先判后 去”的原则, 即先判 断这个数是正数、0或负数, 再去绝对值符号, 一个数的绝对值 为非负数.
题型四 与绝对值有关的计算
例题4 计算或化简: (1)-|-4|; (2)|-18|-|-6|.
分析
例题5 (1)如果|a-3|=0, 求|a+2019|的值; (2)如果a=-4, 且|a|=|b|, 求|b+4|的值. (提示:互为相反数的两数 相加, 和为0)
解 (1)因为|a-3|=0, 所以a-3=0, 即a=3. 所以 |a+2019|=|3+2019|=|2022|=2022. (2)因为a=-4, 所以|b|=|a|=|-4|=4. 所以b=4或b=-4. 当b=4时, |b+4|=|4+4|=8; 当b=-4时, |b+4|=|-4+4|=0. 所以|b+4|的值是8或0.
锦囊妙计
正数的相反数是负数, 负数的相反数是正 数, 0的相反数是0.
题型七 绝对值的非负性

新人教版七年级数学上册《相反数》精品教学课件

新人教版七年级数学上册《相反数》精品教学课件

A
C2
解析思路:在数轴找出距离A点两个单 位长度的点为3和7,分别用 C1、C2表示,要进行分类讨论; 当B与C1互为相反数时,B表示 的数是-3;
当B与C2互为相反数时,B表示的 数是-7;
我们一起整理 下解题思路 吧!
已知数轴上点A表示的数为5,点B、C表示互为相反数的两个 数,且点C与点A间的距离为2.求点B、C表示的数.

像-1和1,-0.5和 0.5这样只有符号 不同的两个数, 我们称这两个数 互为相反数,其 中一个数为另一 个数的相反数。
-7、89、-20%的相反数分别是多少? 7、 -8、20%
9
a的相反数是-a。即求一个数的相反数就 是在前面添个负号。 如:-a表示的是a的相Байду номын сангаас数。
我出道题给你 们,估计没人 做的出来吧! 毕竟我是神奇 的镜子!
3.6前面有三 个负号,最 后得出的结 果是个负数
一个正数前面有偶数个“-”, 结果为正;一个数前面有奇 数个“-”, 结果为负。
注意:0 前面无论有几个符号,结果都为 0.
你发现 了吗?
相反数多重符号的化简问题的一般思路:
把所有的“+”号去掉,由“-”号的个数决定: ①一个数前面有偶数个“-”, 结果为正; ②一个数前面有奇数个“-”, 结果为负。
①先去小括号,-(+43)
表示+43的相反数是-43
②化简为-(-43),这个 表示-43的相反数是43
下面2道题有什么 规律呢?我们一起 分析下吧!
解答过程:
解:-[-(+43)]=(+43)=43.
故答案为:43.
题型对比2
计算:-[-(-3.6)]= _-_3_._6

人教版数学七年级上册第一章有理数相反数

人教版数学七年级上册第一章有理数相反数

1.2.3 相反数
栏目索引
3.下列说法正确的是 ( )
A.-6是相反数 B.- 2 与 1 互为相反数
33
C.-4是4的相反数 D.- 1 是2的相反数
2
答案 C 相反数是成对出现的,故A错;B和D不符合相反数的定义.故 选C.
1.2.3 相反数
栏目索引
4.下列说法正确的是 ( ) A.因为相反数是成对出现的,所以0没有相反数 B.数轴上原点两旁的两点表示的数互为相反数 C.符号不同的两个数互为相反数 D.正数的中,特别规定了0的相反数是0,故A不 正确;选项B,数轴上原点两旁的两点到原点的距离不一定相等,所以它 们表示的数不一定互为相反数,故B不正确;选项C,符号不同的两个数不 一定互为相反数,如+2和-3,故C不正确,故选D.

.
答案 2和-2
解析 由相反数是在数轴上原点的两侧且与原点的距离相等的两个点
所表示的数,知这两个数是2和-2.
1.2.3 相反数
栏目索引
7.如图1-2-3-3,数轴上一动点A向左移动2个单位长度到达点B,再向右移动
5个单位长度到达点C.若点C表示的数为1,则与点A表示的数互为相反
数的数是
.
图1-2-3-3
+(-2)=-2,
(2)当最前面的符号是“-”号时,去掉这个“-”号,并写出括号内的数 +(+2)=2,
的相反数;
-(+2)=-2,
(3)当这个数还能继续化简时,重复使用上述方法
-(-2)=2
化简多重符号的主要依据是相反数的定义,因为-(-a)可理解为求-a的相反数,而-a的相反 数是a,所以-(-a)=a,从而达到化简的目的
1.2.3 相反数

相反数 优质教案 人教版七年级上册

相反数 优质教案 人教版七年级上册

七年级数学上册人教版第一章 有理数1.2.3相反数教学目标1. 能够借助数轴理解相反数的概念,知道表示相反数的两个点与原点的位置关系。

2. 能求出给定数的相反数。

3. 知道“在一个数的前面加上‘﹣号表示该数的相反数” 教学重点 理解相反数的意义,会求一个数的相反数。

教学难点 理解掌握双重符号的简化教学准备:多媒体教学平台教学过程:一、新课导入观察下面两个数,有什么异同?得出相反数定义:只有符号不同的两个数叫做互为相反数. 0.5—请同学举几个互为相反数的例子二、相反数的表示方法例1:口答:说出下列各数的相反数.500, -80, -3.5 , +11.2归纳:1、一个正数的相反数是一个负数,一个负数的相反数是一个正数2、在一个数的前面加上“﹣”号表示该数的相反数3、数a 和-a 互为相反数例2 求下列各数的相反数:(1)-5 (2) (3)0(4)-2b (5) a -b (6) a+2特别强调:0的相反数是0练习:1.下列语句,正确的个数是( )①一个数的相反数等于- 1 ,那么这个数是 -1 ②一个数的相反数是非正数,那么这个数一定是正数③符号不同的两个数互为相反数④一个数的相反数的相反数是它本身A.1个B.2个C.3个D.4个2. - 的相反数是 , 的相反数是0.5, 的相反数是-3.5.3.如果一个数的相反数是最小的正整数,则这个数是三、相反数的多重符号化简1095请说出下列各式表示的含义:-(+1.1)表示什么呢?-(-7)表示什么呢?,-(-9.8)表示什么呢?它们的结果应是多少?例3 简化下列各数的符号(1)-(+5); (2)-(-5); (3)+(+5);(4)+(-5); (5)-[-(+5)];本题先请同学小组之间互相说出每题意义再求出结果小结:一个数的前面有偶数个“-”,结果为正,一个数前面有奇数个“-”,结果为负,“+”的个数不影响化简的结果..练习4.化简下列各数(1)-(+3 );(2)+(-0.5);(3)-[-(-1)];(4)-(+8);(5)-[+(-10)]四、利用数轴求相反数例4:如图所示,数轴上各点表示的数互为相反数的是()A.点G和点HB.点F和点GC.点E和点GD.点F和点H 相反数的几何意义:在数轴上有两点位于原点的两侧,并且与原点的距离相等,则这两个数互为相反数.因为点E和点G表示的有理数分别为2和-2,所以它们互为相反数.练习5.在数轴上与原点距离是4的点表示的数是()A.4B.-4C.±4D.86.图中表示互为相反数的两个点是7.在数轴上标记出-3,2,0,-3.5各数与它们的相反数,并说明它们与其相反数在数轴上表示的点到原点的距离有什么关系?五、课堂小结:1.相反数的概念2.数a和-a互为相反数3.多重符号的化简六、作业:同步练习册。

人教版七年级数学上册 第一章:有理数_1.2.3:相反数 学案(含答案)

人教版七年级数学上册 第一章:有理数_1.2.3:相反数 学案(含答案)

初中七年级数学上册第一章:有理数——1.2.3:相反数(解析)一:知识点讲解知识点一:相反数相反数:✧ 代数定义:像2和﹣2,5和﹣5这样,只有符号不同的两个数叫做互为相反数,把其中一个数叫做另一个数的相反数。

✧ 几何定义:相反数所对应的点在数轴上分别位于原点的左、右两侧,到原点的距离相等。

表示方法:数a 的相反数是﹣a ,这里的数a 是任意有理数,即a 可以是正数、负数或0。

性质:✧ 任何一个数都有相反数,而且只有一个;✧ 正数的相反数是负数,即当有理数a >0时,﹣a <0; ✧ 负数的相反数是正数,即当有理数a <0时,﹣a >0;✧ 0的相反数是0,即当a =0时,﹣a =0,因此,﹣a 表示的数不一定是负数。

特征:✧ 若a 与b 互为相反数,则a +b =0(或a =﹣b ); ✧ 若a +b =0(或a =﹣b ),则a 与b 互为相反数。

互为相反数的两个数一定是成对出现的,不能单独存在,单独的一个数不能说是相反数。

互为相反数的两个数只是符号不同。

求一个具体的数字的相反数时,只需改变这个数字前面的符号,其他部分不变,即可得到该数的相反数。

求一个式子(如:x -y )的相反数时,只需将这个式子括起来,在括号前面加上“﹣”号。

例1:填空1)985-的相反数为 985 ;2) 2m 是 ﹣2m 的相反数; 3)3-π的相反数是 ()3--π 。

知识点二:多重符号的化简多重符号的化简:✧ 当最前面的符号是“﹢”号时,直接省略这个“﹢”号;✧ 当最前面的符号是“﹣”号时,去掉这个“﹣”号,并写出括号内的数的相反数; ✧ 当这个数还能继续化简时,重复使用上述方法。

例如:﹢(﹣2)=﹣2;﹢(﹢2)=2;﹣(﹢2)=﹣2;﹣(﹣2)=2 例2:化简下列各数:①⎪⎭⎫ ⎝⎛--312;②()5+-;③()25.0--;解:312解:5-解:25.0④()[]1+--; ⑤()a -- 解:1解:a二:知识点复习知识点一:相反数1. 2017的相反数是( A )A. ﹣2017B. 2017C.20171D.20171-2. 下面的数中,与﹣6的和为0的数是( A )A. 6B. ﹣6C.61 D.61- 3. 如图所示,如果数轴上A 、B 两点表示的数互为相反数,那么点B 表示的数为( D )A. 2B. ﹣2C. 3D. ﹣34. 下列说法正确的是( D )A.81和﹣0.125不互为相反数 B. ﹣m 不可能等于0 C. 正数和负数互为相反数 D. 任何一个数都有相反数5. 如果a 与﹣3互为相反数,那么a 等于( A )A. 3B. ﹣3C.31 D.31- 6. 若数轴上表示互为相反数的两点之间的距离是4,则这两点表示的数是 2或﹣2 。

2024秋七年级数学上册第一章有理数1.2有理数3相反数说课稿(新版)新人教版

2024秋七年级数学上册第一章有理数1.2有理数3相反数说课稿(新版)新人教版
-总结阶段:通过多媒体回顾本节课的重点,强调相反数在实际生活中的应用。
教学实施过程
1.课前自主探索
教师活动:
-发布预习任务:通过学校的在线学习平台,发布关于有理数及其相反数的预习资料,包括PPT、概念视频和预习指导文档,明确预习目标和要求。
-设计预习问题:围绕“有理数的相反数”课题,设计如“什么是相反数?”“相反数在数轴上如何表示?”等问题,启发学生思考。
学习者分析
1.学生已经掌握了整数和分数的基本概念,能够进行简单的加减运算,了解数轴的基本使用方法。在学习有理数之前,学生已经具备了正负数的初步认识,能够区分正数和负数,并理解它们在数轴上的表示。
2.学生对数学的学习兴趣参差不齐,部分学生对数学有较高的兴趣和自信,能够主动探索数学问题;而另一部分学生可能对数学感到畏惧,学习能力和自信较低。学生的认知风格多样,有的擅长逻辑推理,有的擅长直观感受,有的则需要通过实际操作来加深理解。
-提问与讨论:对不懂的问题提出疑问,参与小组讨论,分享自己的想法。
教学方法/手段/资源:
-讲授法:通过讲解,确保学生掌握相反数的基本概念。
-实践活动法:通过数轴操作,增强学生对相反数的直观理解。
-合作学习法:通过小组合作,提高学生的沟通和协作能力。
作用与目的:
-帮助学生深入理解相反数的定义和性质,掌握相反数的运算。
在改进措施方面,我会根据反思结果制定相应的计划。如果发现学生对有理数及其相反数的理解不够深入,我会在未来的教学中增加更多实例和练习,以帮助他们更好地掌握这些概念。如果发现学生的学习兴趣不够高,我会尝试引入更多有趣的教学资源,如视频和游戏,以激发他们的学习兴趣。
教学方法/手段/资源:
-自主学习法:鼓励学生自主探索新知识,培养自主学习习惯。

人教版七年级数学上册1.2.3《相反数》教案

人教版七年级数学上册1.2.3《相反数》教案
4.培养学生合作交流的意识,通过小组讨论和互动,提高表达和倾听能力,促进数学思维的发展。
三、教学难点与重点
1.教学重点
-重点一:相反数的定义及其表示方法。使学生理解相反数的概念,掌握如何表示一个数的相反数,如正数的相反数是其符号相反的数,负数的相反数是其符号取反的数,零的相反数仍为零。
举例:3的相反数是-3,-5的相反数是5,0的相反数是0。
3.重点难点解析:在讲授过程中,我会特别强调相反数的定义和性质这两个重点。对于难点部分,比如负数的相反数,我会通过数轴和实际例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相反数相关的实际问题,如温度变化、方向相反等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用数轴表示相反数,通过移动箭头来演示相反数的概念。
其次,在讲解相反数的性质时,我够的练习。为此,我计划在下一节课中增加一些有针对性的练习题,让学生在实践中掌握相反数的性质。
此外,在小组讨论环节,我发现学生们在讨论相反数在实际生活中的应用时,思路不够开阔。这可能是因为他们对数学与生活的联系认识不够。在以后的教学中,我会更多地引导学生关注生活中的数学现象,提高他们运用数学知识解决实际问题的能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相反数的基本概念。相反数是指两个数互为相反,它们的和为零。例如,3和-3就是一对相反数。相反数在数学运算中非常重要,它可以帮助我们简化计算过程。
2.案例分析:接下来,我们来看一个具体的案例。假设天气中温度上升了3度,然后又下降了3度,最终温度如何变化?这里上升的3度和下降的-3度就是一对相反数,它们相互抵消,温度回到了初始状态。

人教版七年级数学上册 (相反数)有理数 课件

人教版七年级数学上册 (相反数)有理数 课件

自我展示
3、已知a与b互为相反数,b与c互为相反数,且c=-6,则a=________
课后小结
1、熟练掌握相反数的概念 2、相反数的四个特征 3、相反数的灵活运用技巧
下次课 再 见!
有理数
相反数
知识回顾
有理数
数与点 的转化
数轴
三要素
原点 正方向 单位长度
学习目标
1.借助数轴理解相反数的意义,了解数轴上表示相反 数的两个点关于原点对称.
1)-60
1)-( -60 )=60
2)+78
2)-( +78 )=-78
3)-3.94
3)-( -3.94)=3.94
4)+5.38
4)-(+5.38)=-5.38
5)0
5)-( 0 )=0
6)-π
6)-(- π )=π
例题讲解
1 、如果a+b=0,那么a、b两个有理数一定是( )
A、都等于0
ቤተ መጻሕፍቲ ባይዱ
B、互为相反数
一些常见的特殊数 相反数等于本身的数是0; 绝对值最小的数是0; 最大的负整数是-1; 最小的正整数是1; 绝对值等于本身的数是0或正数; 绝对值等于它的相反数的数是0或负数.
课堂小结
相反数
定义
求法
在原数前面加负号
多重符号的化简
拓展提升
A
2.若-[-(-x)]=8,则x的相反数是 8 .
解析:因为-[-(-x)]=8, 所以x=-8, 所以x的相反数是8.
相反数的求法 (1) 求一个数的相反数,只需改变这个数前面的符号, 即可得到这个数的相反数. (2) 求一个数的相反数就是在这个数的前面加上“-”号, 即a的相反数是-a,其实只是改变这个数的符号.

《相反数》有理数PPT优秀课件

《相反数》有理数PPT优秀课件

A.原点左侧
B.原点右侧
C.原点上或原点右侧
D.原点上
解析:a = –a表示a与它的相反数–a相等,因为只有0的相反 数等于它本身.
探究新知 知识点 2 多重符号的化简
问题1:a的相反数是什么? a的相反数是–a , a可表示任意有理数.
问题2:如何求一个数的相反数? 在这个数前加一个“–”号.
探究新知
问题3:若把a分别换成+5,–7, +5, a = –7, a = 0,
– a = –(+5) – a = –(–7) –a =0
–(+1.1)表示什么?–(–7)呢?–(–9.8)呢?
–1.1
7
9.8
探究新知
归纳总结
1.在一个数前面加上“–”号表示求这个数的相反数. 2.若a与b互为相反数,则a+b=0(或a=-b);反之,若 a+b=0(或a=-b),则a与b互为相反数.
C.–(–8)与–(+8)
3.5的相反数是__–_5_;a的相反数是_–_a__;
课堂检测
4.若a= –13,则–a=_1_3__;若–a= –6,则a=__6__.
5.若a是负数,则–a是__正___数;若–a是负数,则 a是__正___数.
6.
x 2
的相反数是___2x__,–3x的相反数是_3_x___.
这两个有理数互为相反数.
课堂小结
通过本课时的学习,需要我们掌握:
相反数
概念
只有符号不同的两个数叫做互为 相反数;特别地,0的相反数是0.
在数轴上,表示互为相反数的两个点, 位于原点两侧,且到原点距离相等.
在数轴上
字母表示
–a表示a的相反数.

人教版七年级数学上册1.2.3《相反数》说课稿

人教版七年级数学上册1.2.3《相反数》说课稿

人教版七年级数学上册1.2.3《相反数》说课稿一. 教材分析《人教版七年级数学上册》第一章第二节第三小节《相反数》是整个初中数学基础知识的重要组成部分。

它不仅为学习绝对值、有理数乘法等知识打下基础,而且也培养学生的抽象思维能力。

本节内容主要让学生理解相反数的含义,掌握求一个数的相反数的方法,以及了解相反数在实际问题中的应用。

二. 学情分析面对刚从小学升入初中的学生,他们的思维方式正在从具体形象思维向抽象逻辑思维过渡。

在这个阶段,学生对新鲜事物充满好奇,善于发现和探索。

但同时,他们也可能因为缺乏实际操作经验,对抽象概念的理解存在一定的困难。

因此,在教学过程中,我们需要结合学生的认知特点,采用生动、形象的教学手段,帮助他们理解和掌握相反数的概念。

三. 说教学目标1.知识与技能目标:让学生理解相反数的含义,掌握求一个数的相反数的方法,能运用相反数解决实际问题。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生抽象思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们积极思考、合作探究的良好学习习惯。

四. 说教学重难点1.教学重点:相反数的定义及其求法。

2.教学难点:相反数在实际问题中的应用,以及学生对相反数概念的理解。

五. 说教学方法与手段1.采用问题驱动法,引导学生主动探究相反数的含义。

2.利用多媒体演示,帮助学生形象地理解相反数的概念。

3.运用合作学习法,让学生在小组讨论中共同解决问题,提高他们的团队协作能力。

4.通过课后实践,让学生将所学知识应用于实际问题,巩固所学内容。

六. 说教学过程1.导入新课:利用生活实例,如电梯上升和下降,引出相反数的概念。

2.自主学习:让学生阅读教材,理解相反数的定义。

3.课堂讲解:详细讲解相反数的含义,以及如何求一个数的相反数。

4.互动环节:学生提问,教师解答;学生上台演示,加深对相反数概念的理解。

5.巩固练习:设置适量习题,让学生独立完成,检查他们对相反数的掌握程度。

人教版数学七年级上册《有理数》(第三课时相反数)

人教版数学七年级上册《有理数》(第三课时相反数)

2.判断下列语句是否正确,为什么?
(1) 符号相反的两个为相反数的两个数不一定一个是正数,一个是负数;
(3)相反数和我们以前学过的倒数是一样的. 概念不同
课堂测试
3.-1.8是__1_.8_的相反数,_-_0._5的相反数是0.5. 4.下列几对数中互为相反数的一对为( ). A. (8)和 (8B) . (8与) (8)
负数
(9)什么数的相反数等于本身?
0
(10)什么数的相反数小于本身?
正数
课堂测试 11、下面是一个正方体纸盒的展图请把-11、8、11、-2、-8、2 分别填入六个正方形,使得按虚线折成正方体后,相对面上的两上 数互为相反数。
答案不唯一,请同学动手尝试。
感谢各位的聆听
人教版 数学(初中) (七年级 上)
重点难点
重点:了解相反数的意义。 难点:多重符号的化简。
探究
问题一:在数轴上,与原点的距离是2的点有几个?这些点各表示哪个数? 问题二:设a是一个正数,数轴上与原点的距离等于a的点有几个?这些点 表示的数有什么关系?
分析:你还记得如何画数轴吗?画出数轴解答上述问题。
-3 -2 -1 0 1 2 3
例:a=-3,-a=-(-3)=?
-3 -2 -1 0 1 2 3
正方向
一般a和-a互为相反数,在数轴上-3到原点的距离为3,而原点的右侧也有一个点与原点的距离为 3,所以-(-3)=3
化简下列各数
-(-68) -(+75) -(-0.96) -(+0.38)
68 -75 0.96 -0.38
课堂测试
注意: 1、通常a与-a互为相反数; 2、a表示任意一个数,可以是正数、负数,也可以是0; 3、特别注意,0的相反数是0.

人教版(2024版)初中数学七年级上册 第一章有理数 1.2.3 相反数 教学设计

人教版(2024版)初中数学七年级上册 第一章有理数 1.2.3 相反数  教学设计

课堂教学设计面对七年级的学生,他们已经具备了一定的逻辑思维能力和抽象思维能力。

但是,对于相反数这一概念,他们可能还比较陌生。

因此,在教学过程中,我将会以学生已有的知识为基础,引导学生逐步理解和掌握相反数的概念和性质。

课堂教学过程结构设计教学环节教学过程设计意图1、复习、导入规定了原点、正方向和单位长度的直线叫作数轴(numberaxis) 。

一般地,设a是一个正数,则数轴上表示数a的点在数轴的正半轴上,与原点的距离是a个单位长度;表示数-a的点在数轴的负半轴上,与原点的距离是a个单位长度。

数轴上与原点的距离是a个单位长度的点,简称为数轴上与原点的距离是a的点.练习1、在数轴上表示-4的点位于原点的________侧,与原点的距离是________个单位长度.2、在数轴上表示+2的点位于原点的侧,与原点的距离是个单位长度.3、若点A表示数-3,点B表示数7,那么点A,B间的距离是.复习巩固话题迅速将学生的注意力吸引到课堂上来。

使学生生认知冲突,渴望了解其中的奥秘从而调动了学生学习的积极性。

2、精讲探究1在数轴上找到表示-2,2和-3 ,3的点.(1)这两对数,各有哪些相同?哪些不同?只有符号不一样,其他都相同(2)这两对点,各有哪些相同?哪些不同?相同:到原点的距离相等不同:两个点位于原点两侧探究2观察数轴,说出在数轴上与原点的距离是2的点有几个?这些点各表示哪些数?设a是一个正数,数轴上与原点的距离等于a的点有几个?这些点表示的数有什么关系?结论:数轴上与原点的距离是2的点有两个,表示为-2和2;如果a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示为-a和a,我们说这两个点关于原以开放的形式创设情境,让学生进行讨论,培养学生分类的能力,培养学生观察与归纳能力,渗透数形结合思想新课点对称. 只有符号不同的两个数称为互为相反数(opposite number )几何意义:在数轴上表示互为相反数的两个点分别位于原点的两旁,且到原点的距离相等。

七年级数学上册第一章有理数有理数:相反数》

七年级数学上册第一章有理数有理数:相反数》

新2024秋季七年级人教版数学上册第一章有理数《有理数:相反数》听课记录一、教学目标(核心素养)1.知识与技能:学生能够理解相反数的概念,掌握求一个数的相反数的方法,并能熟练地在数轴上表示相反数。

2.过程与方法:通过具体实例,引导学生观察、比较、归纳,发现相反数的性质,培养学生的观察能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生严谨的科学态度和探索精神。

二、导入教师行为:•情境创设:教师展示一段视频或图片,如一个人在向前走和向后走,或者温度计上温度的变化,引导学生观察并思考这些情境中的数量变化。

•提问引导:教师提问:“在这些情境中,有哪些数量是互为相反的呢?你能用数学语言来描述它们之间的关系吗?”学生活动:•学生认真观察视频或图片,思考教师提出的问题。

•学生尝试用自己的语言描述情境中的相反数量,如“向前走5步和向后走5步”、“温度上升3℃和温度下降3℃”。

过程点评:•导入环节通过生活实例创设情境,贴近学生生活,易于引发学生的共鸣和兴趣。

•提问引导自然,能够激发学生的好奇心和求知欲,为后续学习做好铺垫。

三、教学过程1.1 相反数的概念教师行为:•定义讲解:教师明确给出相反数的定义,即“只有符号不同的两个数叫做互为相反数,零的相反数是零。

”•举例说明:教师列举几组相反数的例子,如+3与-3、+0.5与-0.5、5与-5等,帮助学生理解相反数的概念。

学生活动:•学生认真听讲,记录相反数的定义。

•学生尝试自己举出几组相反数的例子,并与同桌交流。

过程点评:•定义讲解清晰明了,有助于学生准确理解相反数的概念。

•举例说明具体生动,有助于学生将抽象概念具体化,加深理解。

1.2 相反数的性质与求法教师行为:•性质讲解:教师讲解相反数的性质,如“一个数与它的相反数在数轴上关于原点对称”、“一个正数的相反数是负数,一个负数的相反数是正数”。

•求法演示:教师演示如何求一个数的相反数,即改变这个数的符号(正数变负数,负数变正数,0的相反数还是0)。

最新人教版初中七年级上册数学《相反数》练习题

最新人教版初中七年级上册数学《相反数》练习题

第一章 有理数 1.2 有理数 1.2.3 相反数 1、下列说法中正确的是( )A 、正数和负数互为相反数B 、任何一个数的相反数都与它本身不相同C 、任何一个数都有它的相反数D 、数轴上原点两旁的两个点表示的数互为相反数2、下列结论正确的有( )①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b 互为相反数,那么a+b=0;⑤若有理数a,b 互为相反数,则它们一定异号。

A 、2个B 、3个C 、4个D 、5个3、(2009年,河南)﹣5的相反数是( ) A 、51 B 、51 C 、-5 D 、5 4、(2009年,杭州)如果a+b=0,那么a,b 两个有理数一定是( )A 、都等于0B 、一正一负C 、互为相反数D 、互为倒数(原题是“那么两个实数一定是”此处改为“两个有理数是”)5、﹣(+5)表示 的相反数,即﹣(+5)= ;﹣(﹣5)表示 的相反数,即﹣(﹣5)= 。

6、﹣2的相反数是 ;75的相反数是___;0的相反数是 。

7、化简下列各数:﹣(﹣68)= ﹣(+0.75)= ﹣(﹣53)= ﹣(+3.8)= +(﹣3)= +(+6)=阅读下面的文字,并回答问题8、1的相反数是﹣1,则1+(﹣1)=0;0的相反数是0,则0+0=0;2的相反数是﹣2,则2+(﹣2)=0,故a,b 互为相反数,则a+b=0;若a+b=0,则a,b 互为相反数。

说明了 ;相反, (用文字叙述)9、已知数轴上A 、B 表示的数互为相反数,并且两点间的距离是6,点A 在点B 的左边,则点A 、B 表示的数分别是 。

10、已知a 与b 互为相反数,b 与c 互为相反数,且c=﹣6,则a= 。

11、一个数a 的相反数是非负数,那么这个数a 与0的大小关系是a 0.12、数轴上A 点表示﹣3,B 、C 两点表示的数互为相反数,且点B 到点A 的距离是2,则点C 表示的数应该是 。

2024秋季新教材人教版七年级上册数学1.2 有理数1.2.3相反数课件

2024秋季新教材人教版七年级上册数学1.2 有理数1.2.3相反数课件

课堂导入
-3
-
1 2
0
1 2
3
-4 -3 -2 -1 0 1 2 3 4
2. 观察所画的数轴及表示的点回答下列问题: (1)3与-3分别在原点的__右__侧___和__左__侧___,它们到原点的距离为
___3____; (2)数轴上与原点距离是3的点有_两__个,这些点表示的数是_3_和__-_3_; 与原点距离是12的点是_12_和__-_12__;它们的_符__号___不同.
第一章 有理数
1.2 有理数
1.2.3 相反数 七上数学 RJ
学习目标
1.借助数轴理解相反数的意义,体会数形结合的思想方 法,会求一个数的相反数;
2.会对含多重符号的有理数进行化简.
课堂导入
1. 画数轴,并在数轴上表示出以下各点:
3,12,0,-
1 2
,-3
-3
-
1 2
0
1 2
3
-4 -3 -2 -1 0 1 2 3 4
5. 具有相反意义的量的两个数互为相反数. ( )
6. -8是相反数.
()
相反数成对出现(0除外)
新知探究 知识点2 多重符号的化简 ➢ 说一说:下列各数表示的意义. 1. -(-7.5)表示___-_7_.5_的__相__反__数__________; 2. -(+100)表示__+_1_0_0_的__相__反__数_________; 3. -(+0)表示____0_的__相__反__数___________ .
-10 100 -13
随堂练习 3. 如果a=-a,那么表示数a的点在数轴上的什么位置?
解:如果a=-a,说明a与它的相反数相等, 那么a=0,表示a的点在数轴的原点处.

人教版七年级数学上册《有理数的分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数的分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数的分类、数轴、相反数及绝对值》专题训练-附带答案【知识点梳理】考点1 正数和负数1.概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

2.意义:在同一个问题上用正数和负数表示具有相反意义的量。

考点2 有理数1.概念整数:正整数、0、负整数统称为整数。

分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注:正数和零统称为非负数负数和零统称为非正数正整数和零统称为非负整数负整数和零统称为非正整数。

2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数考点3 数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上右边的数总比左边的数大。

3.应用求两点之间的距离:两点在原点的同侧作减法在原点的两侧作加法。

(注意不带“+”“—”号)考点4 相反数1.概念代数:只有符号不同的两个数叫做相反数。

(0的相反数是0)几何:在数轴上离原点的距离相等的两个点所表示的数叫做相反数。

2.性质:若a与b互为相反数则a+b=0 即a=-b;反之若a+b=0 则a与b互为相反数。

两个符号:符号相同是正数符号不同是负数。

3.多重符号的化简多个符号:三个或三个以上的符号的化简看负号的个数(:当“—”号的个数是偶数个时结果取正号当“—”号的个数是奇数个时结果取负号)考点5 绝对值1.几何意义:一般地数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身(若|a|=|b| 则a=b或a=﹣b)2.代数意义一个负数的绝对值是它的相反数0的绝对值是03.代数符号意义:a >0 |a|=a 反之|a|=a 则a≥0 |a|=﹣a 则a≦0a = 0 |a|=0a<0 |a|=‐a注:非负数的绝对值是它本身非正数的绝对值是它的相反数。

七年级上册人教版数学初一有理数1.2.3:相反数

七年级上册人教版数学初一有理数1.2.3:相反数

第一章:有理数1.2.3相反数:如果你们学完数轴了,就会发现,数轴上与原点距离是某一个数的点有两个。

举个例子:数轴上与原点距离是3的数有两个:-3与3数轴上与原点距离是5的数有两个:-5与5-5 -4 -3 -2 -1 0 1 2 3 4 5向上边举的例子一样,数相同但数的符号不相同的,就叫互为相反数。

还拿3和5来举例:3的相反数是-3,-3的相反数是3.5的相反数是-5,-5的相反数是5.你看,这理不算太难吧,虽然讲起来跟绕口令一样。

也可以这么去解释:a的相反数是-a,-a的相反数是a. 这里说一下,这个a表示任何数但是在数学里,总有一位大哥最特殊,那就是:0这个家伙,走到哪里都是独一份的,这不又来了:0的相反数还是0!!先抛开这个0不谈,再说说相反数:通过前面3和5的例子,应该不难看出:在一个正数前添上“-”号,就会得到这个正数的相反数。

或许这么说这件事:在任意一个数(没错,任意一个数,也包括负数)前面添上“-”号,这个得出来的新数,就能得出这个数(原数)的相反数。

肯定有人这么问我:你说任意一个数,也包括负数,负数前加负号,这是什么理?负数前加负号“-”的话,就得写成这样:拿-7举例子-(-7)记住一个原则:负负为正正正为正负正为负正负为负继续拿7举例:负负为正:-(-7)=7正正为正:+(+7)=7负正为负:-(+7)=-7正负为负:+(-7)=-7所以:是任意一个数,在它的前面加上“-”就可以得到它的相反数。

但是记住:相反数和倒数不是一个概念。

虽然“相反”和“倒”在字面意思来看,他俩差不多,但这俩不一样:倒数:一个数乘以它的倒数,等于1.比如:6*1/6=1相反数:在任意一个数前面添上“-”号,这个得出来的新数,就能得出这个数(原数)的相反数。

比如:8的相反数是-8,-3的相反数是3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档