二次函数知识小结教案

合集下载

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。

二次函数教案(3篇)

二次函数教案(3篇)

二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

二次函数小结与复习教案

二次函数小结与复习教案

二次函数小结与复习教案一、教学目标1. 理解二次函数的定义、性质及图象特征。

2. 掌握二次函数的解析式、顶点式及标准式之间的转换。

3. 能够运用二次函数解决实际问题,提高解决问题的能力。

4. 培养学生的逻辑思维能力和团队协作能力。

二、教学内容1. 二次函数的定义与性质1.1 二次函数的定义:一般式为y=ax^2+bx+c(a≠0)1.2 二次函数的性质:开口方向、对称轴、顶点、单调性等。

2. 二次函数的图象特征2.1 开口方向:a>0时,开口向上;a<0时,开口向下。

2.2 对称轴:x=-b/(2a)2.3 顶点:(-b/(2a), c-b^2/(4a))2.4 与y轴的交点:x=0时,y=c。

3. 二次函数的解析式3.1 一般式:y=ax^2+bx+c3.2 顶点式:y=a(x-h)^2+k3.3 标准式:y=a(x-α)^2+β4. 二次函数的转换4.1 一般式与顶点式的转换:4.2 顶点式与标准式的转换:5. 实际问题中的应用5.1 抛物线与坐标轴的交点问题5.2 实际问题转化为二次函数问题,求最值等。

三、教学方法1. 采用问题驱动法,引导学生探究二次函数的性质及图象特征。

2. 利用数形结合法,让学生直观地理解二次函数的图象与性质之间的关系。

3. 运用小组合作探究法,培养学生的团队协作能力和解决问题的能力。

4. 结合实际例子,让学生感受二次函数在生活中的应用。

四、教学准备1. PPT课件:二次函数的性质、图象、实际应用等。

2. 练习题:涵盖本节课的主要知识点。

3. 小组讨论:分组安排。

五、教学过程1. 导入:复习一次函数和反比例函数,引出二次函数。

2. 讲解:介绍二次函数的定义、性质、图象特征等。

3. 演示:利用PPT展示二次函数的图象,让学生直观地感受开口方向、对称轴等。

4. 练习:让学生完成一些简单的练习题,巩固所学知识。

5. 小组讨论:布置一道实际问题,让学生分组讨论,运用二次函数解决问题。

20第22章二次函数小结与复习教案

20第22章二次函数小结与复习教案

第22章二次函数小结与复习一、教学目标1.通过复习二次函数的图象和性质,运用二次函数解决实际问题等内容,梳理本章知识,形成有关二次函数的知识体系.2.通过回顾探究二次函数的图象和性质的过程,再次体会类比归纳和数形结合的数学思想,形成分析和解决函数问题的一些基本方法.3.通过利用二次函数解决实际问题,再次体会建模思想,增强应用意识.二、教学重点、难点重点:复习二次函数的定义、图象和性质.难点:用二次函数解决实际问题.三、教学过程知识梳理一、二次函数的概念一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.注意:(1)等号右边必须是整式;(2)自变量的最高次数是2;(3)当b=0,c=0时,y=ax2是特殊的二次函数.二、二次函数的图象与性质三、二次函数图象的平移四、二次函数表达式的求法五、二次函数与一元二次方程的关系(1)如果抛物线y =ax 2+bx +c 与x 轴有公共点,公共点的横坐标是x 0,那么当x =x 0时,函数的值是0,因此x =x 0就是方程ax 2+bx +c =0的一个根.(2)二次函数y =ax 2+bx +c 的图象与x 轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax 2+bx +c =0的根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.六、二次函数的应用1.二次函数的应用包括以下两个方面:(1)用二次函数表示实际问题变量之间的关系,解决最大(小)化问题(即最值问题);(2)利用二次函数的图象求一元二次方程的近似解.2.一般步骤:(1)找出问题中的变量和常量以及它们之间的函数关系;(2)列出函数关系式,并确定自变量的取值范围;(3)利用二次函数的图象及性质解决实际问题;(4)检验结果的合理性,是否符合实际意义.考点讲练考点一 求抛物线的顶点坐标、对称轴、最值例1 求抛物线y =x 2-2x +3的顶点坐标.解法一:配方,得y =x 2-2x +3=(x -1)2+2,则顶点坐标为(1,2)解法二:由顶点公式,得,则顶点坐标为(1,2)方法总结解决此类题目可以先把二次函数y =ax 2+bx +c 配方为顶点式y =a (x -h )2+k 的形式,得到:对称轴是直线x =h ,最值为y =k ,顶点坐标为(h ,k );也可以直接利用公式求解.针对训练1.对于y =2(x +3)2+2的图象下列叙述正确的是( )A.顶点坐标为(3,2)B.对称轴为直线x =3C.函数的最大值为2D.函数的最小值为2考点二 二次函数的图象与性质及函数值的大小比较例2 二次函数y =-x 2+bx +c 的图象如图所示,点A(x 1,y 1),B(x 2,y 2)在此函数图象上,且x 1<x 2<1,则y 1与y 2的大小关系是( )A.y 1≤y 2B.y 1<y 2C.y 1≥y 2D.y 1>y 2针对训练2.下列函数中,当x >0时,y 随x 增大而减小的是( )A. B.y =x -1 C. D.y =-3x 2考点三 二次函数的图象与系数a ,b ,c 的关系例3 二次函数y =ax 2+bx +c 的图象如图所示,下列结论:①abc >0;②2a -b <0;③4a -2b +c <0;④(a +c )2<b 2.其中正确的个数是( )A.1B.2C.3D.4方法总结11222=⨯--=-=a b x 21423144422=⨯-⨯⨯=-=a b ac y 232x y =x y 43=1.根据图象开口方向及与y 轴交点位置来确定a 、c 符号.2.根据对称轴的位置确定b 的符号:b =0⇔对称轴是y 轴;a 、b 同号⇔对称轴在y 轴左侧;a 、b 异号⇔对称轴在y 轴右侧. 这个规律可简记为“左同右异”.3.当x =1时,函数y =a +b +c . 当图象上横坐标x =1的点在x 轴上方时,a +b +c >0;当图象上横坐标x =1的点在x 轴上时,a +b +c =0;当图象上横坐标x =1的点在x 轴下方时,a +b +c <0.同理,可由图象上横坐标x =-1的点判断a -b +c 的符号.针对训练3.已知二次函数y =-x 2+2bx +c ,当x >1时,y 的值随x 值的增大而减小,则实数b 的取值范围是( )A.b ≤1B.b ≥1C.b ≥-1D.b ≤-1考点四 抛物线的几何变换例4 将抛物线y =x 2-6x +5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )A.y =(x -4)2-6B.y =(x -4)2-2C.y =(x -2)2-2D.y =(x -1)2-3针对训练4.若将抛物线y =-7(x +4)2-1通过平移得到y =-7x 2,则下列平移方法正确的是( )A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移4个单位,再向上平移1个单位D.先向右平移4个单位,再向下平移1个单位考点五 二次函数表达式的确定例5 已知关于x 的二次函数,当x =-1时,函数值为10,当x =1时,函数值为4,当x =2时,函数值为7,求这个二次函数的解析式.解:设二次函数的解析式为y =ax 2+bx +c ,由题意得:,解这个方程组得∴ 这个二次函数的解析式为y =2x 2-3x +5.针对训练5.已知抛物线y =ax 2+bx +c 与抛物线y =-x 2-3x +7的形状相同,顶点在直线x =1上,且顶点到x 轴的距离为5,请写出满足此条件的抛物线的表达式.解:∵ 抛物线y =ax 2+bx +c 与抛物线y =-x 2-3x +7的形状相同∴ a =1或-1又∵ 顶点在直线x =1上,且顶点到x 轴的距离为5∴ 顶点坐标为(1,5)或(1,-5)∴ 其表达式可以为:(1) y =(x -1)2+5 (2) y =(x -1)2-5 (3) y =-(x -1)2+5 (4) y =-(x -1)2-5考点六 二次函数与一元二次方程例6 若二次函数y =x 2+mx 的对称轴是直线x =3,则关于x 的方程x 2+mx =7的解为( )A.x 1=0,x 2=6B.x 1=1,x 2=7C.x 1=1,x 2=-7D.x 1=-1,x 2=7针对训练6.已知二次函数y =ax 2+bx +2的部分图象如图所示,则关于x 的一元二次方程ax 2+bx +2=0的解为____________________.⎪⎩⎪⎨⎧=++=++=+-724410c b a c b a c b a ⎪⎩⎪⎨⎧=-==532c ba考点七 二次函数的应用例7 某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y =kx +b ,且x =65时,y =55;x =75时,y =45.(1)求一次函数的表达式;(2)若该商场获得利润为w 元,试写出利润w 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?解:(1)根据题意,得,解得故所求一次函数的表达式为y =-x +120.(2)w =(x -60)(-x +120)=-x 2+180x -7200,配方得w =-(x -90)2+900∵ 抛物线的开口向下∴ 当x <90时,w 随x 的增大而增大∵ 60≤x ≤60×(1+45%),即60≤x ≤87∴ 当x =87时,w 有最大值,此时w =-(87-90)2+900=891故销售单价定为87元时,商场可获得最大利润891元.针对训练7.一家电脑公司推出一款新型电脑,投放市场以来3个月的利润情况如图所示,该图可以近似看作为抛物线的一部分,请结合图象,解答以下问题:(1)求该抛物线对应的二次函数解析式;(2)该公司在经营此款电脑过程中,第几月的利润最大?最大利润是多少?(3)若照此经营下去,请你结合所学的知识,对公司在此款电脑的经营状况(是否亏损?何时亏损?)作预测分析.解:(1)因图象过原点,则设函数解析式为y =ax 2+bx ,由图象的点的含义,得,解得故所求一次函数的表达式为y =-x 2+14x(2)y =-x 2+14x =-(x -7)2+49∴ 当x =7时,y 最大=49故第7个月时,利润最大为49万元.(3)没有利润,即-x 2+14x =0解得x 1=0(舍去)或x 2=14而这时利润为滑坡状态,所以第15个月,公司亏损.例8 如图,梯形ABCD 中,AB ∥DC ,∠ABC =90°,∠A =45°,AB =30,BC =x ,其中15<x <30.作DE ⊥AB 于点E ,将△ADE 沿直线DE 折叠,点A 落在F 处,DF 交BC 于点G.(1)用含有x 的代数式表示BF 的长;(2)设四边形DEBG 的面积为S ,求S 与x 的函数关系式;(3)当x 为何值时,S 有最大值?并求出这个最大值.解:(1)由题意,得EF=AE=DE=BC=x ,AB=30∴ BF=2x -30(2)∵ ∠F=∠A=45°,∠CBF=∠ABC=90°∴ ∠BGF=∠F=45°,BG=BF=2x -30⎩⎨⎧=+=+45755565b k b k ⎩⎨⎧=-=1201b k ⎩⎨⎧=+=+242413b a b a ⎩⎨⎧=-=141ba∴ S=S △DEF -S △GBF =DE 2-BF 2=x 2-(2x -30)2=-x 2+60x -450(3)∴ S=-x 2+60x -450=-(x -20)2+150∵ a =-<0,15<20<30∴ 当x =20时,S 有最大值,最大值为150.针对训练8.张大伯准备用40m 长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m 的墙,设计了如图一个矩形的羊圈.(1)请你求出张大伯矩形羊圈的面积;(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由.解:(1)由题意,得羊圈的长为25m ,宽为(40-25)÷2=7.5(m ),故羊圈的面积为25×7.5=187.5(m 2)(2)设羊圈与墙垂直的一边为x m ,则与墙相对的一边长为(40-2x )m ,羊圈的面积:S=x (40-2x )=-2x 2+40x =-2(x -10)2+200 (0<x <20)∵ 0<10<20∴ 当x =10时,S 有最大值,最大值为200.∴ 张大伯的设计不合理合理的设计是:羊圈与墙垂直的两边长为10m ,而与墙相对的一边长为20m ,此时羊圈的面积最大为200m 2.2121212123232323。

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。

在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。

因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。

二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。

在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。

三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。

3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。

4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。

四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。

在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。

教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。

整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。

五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。

二次函数小结与复习教案

二次函数小结与复习教案

二次函数小结与复习教案一、教学目标1. 知识与技能:(1)理解二次函数的定义、性质和图像;(2)掌握二次函数的求解方法,包括配方法、公式法、图像法;(3)能够运用二次函数解决实际问题。

2. 过程与方法:(2)培养学生运用二次函数解决实际问题的能力;(3)培养学生合作学习、讨论交流的能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养其自信心;(2)培养学生勇于探究、积极思考的精神;(3)培养学生团队协作、分享的品质。

二、教学内容1. 复习二次函数的定义:函数式y = ax^2 + bx + c(a ≠0);2. 复习二次函数的性质:开口方向、对称轴、顶点、单调性等;3. 复习二次函数的图像:开口向上/向下的抛物线,顶点式、对称轴式等;4. 复习二次函数的求解方法:配方法、公式法、图像法;5. 运用二次函数解决实际问题:长度、面积、最大值、最小值等问题。

三、教学重点与难点1. 教学重点:(1)二次函数的定义、性质和图像;(2)二次函数的求解方法;(3)运用二次函数解决实际问题。

2. 教学难点:(1)二次函数的图像分析;(2)运用二次函数解决实际问题。

四、教学过程1. 导入:通过提问方式引导学生回顾二次函数的相关知识,激发学生的学习兴趣;2. 讲解:根据教材,系统讲解二次函数的定义、性质、图像和求解方法,让学生清晰地理解二次函数的基本概念;3. 案例分析:分析实际问题,引导学生运用二次函数解决问题,培养学生运用知识的能力;4. 练习:布置课堂练习题,让学生巩固所学知识,并及时给予解答和指导;五、课后作业1. 复习二次函数的定义、性质、图像和求解方法;2. 完成课后练习题,巩固所学知识;3. 选择一个实际问题,运用二次函数解决,并将解题过程和答案写在作业本上。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 课后作业:检查学生完成的课后作业,评估其对二次函数知识的掌握程度;3. 练习题:分析学生完成的练习题,了解其在二次函数求解方法和实际问题解决方面的能力;4. 小组讨论:评估学生在小组讨论中的表现,了解其合作学习、交流分享的能力。

二次函数教案(全)

二次函数教案(全)

二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。

2. 学会如何列写二次函数的一般形式。

3. 掌握二次函数的图像特点。

教学重点:1. 二次函数的定义和一般形式。

2. 二次函数的图像特点。

教学难点:1. 理解二次函数的图像特点。

2. 掌握如何求解二次函数的零点。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。

2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。

2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。

3. 举例说明如何列写二次函数的一般形式。

4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 讲解练习题的答案,解析解题思路。

四、课堂小结(5分钟)2. 强调二次函数的图像特点。

教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。

在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。

在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。

二次函数教案(二)教学目标:1. 学会如何求解二次方程。

2. 理解二次函数的零点与二次方程的关系。

3. 掌握二次函数的图像与x轴的交点。

教学重点:1. 求解二次方程的方法。

2. 二次函数的零点与图像的关系。

教学难点:1. 理解二次方程的解法。

2. 掌握二次函数的图像与x轴的交点。

1. 教学课件或黑板。

2. 练习题。

教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。

2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。

2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。

数学《二次函数》教案(4篇)

数学《二次函数》教案(4篇)

数学《二次函数》教案(4篇)数学《二次函数》教案篇一教学目标(一)教学学问点1、经受探究二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

(二)力量训练要求1、经受探究二次函数与一元二次方程的关系的过程,培育学生的探究力量和创新精神。

2、通过观看二次函数图象与x轴的交点个数,争论一元二次方程的根的状况,进一步培育学生的数形结合思想。

3、通过学生共同观看和争论,培育大家的合作沟通意识。

(三)情感与价值观要求1、经受探究二次函数与一元二次方程的关系的过程,体验数学活动布满着探究与制造,感受数学的严谨性以及数学结论确实定性。

2、具有初步的创新精神和实践力量。

教学重点1、体会方程与函数之间的联系。

2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

教学难点1、探究方程与函数之间的联系的过程。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法争论探究法。

教具预备投影片二张第一张:(记作§2.8.1A)其次张:(记作§2.8.1B)教学过程Ⅰ。

创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,争论了它们之间的关系。

当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。

数学《二次函数》教案篇二教学目标(一)教学学问点1、能够利用二次函数的图象求一元二次方程的近似根。

2、进一步进展估算力量。

(二)力量训练要求1、经受用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。

《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。

2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。

教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。

教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。

教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。

问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。

师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。

3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。

数学《二次函数》优秀教案

数学《二次函数》优秀教案

数学《二次函数》优秀教案教案:二次函数教学目标:1. 了解二次函数的定义和特征。

2. 掌握二次函数的图像特点、形状和性质。

3. 学会求解二次函数的零点、顶点和最值。

4. 能够应用二次函数解决实际问题。

教学重点:1. 二次函数的图像特点和性质。

2. 二次函数的零点、顶点和最值的求解方法。

教学难点:1. 如何确定二次函数的图像的形状和性质。

2. 如何求解二次函数的零点、顶点和最值。

教学准备:1. 教师准备PPT、教科书、黑板、彩色粉笔等教学工具。

2. 学生准备笔记本、铅笔、直尺等学习用具。

教学过程:一、导入新知识(5分钟)1. 展示一张二次函数的图像。

2. 引导学生观察图像特征,让学生猜测图像所表示的函数类型。

二、引入新知识(10分钟)1. 教师介绍二次函数的定义和特征,并解释二次函数与线性函数的区别。

2. 教师讲解二次函数的一般形式f(x) = ax^2 + bx + c,并解释每个参数的含义。

三、学习新知识(30分钟)1. 教师讲解二次函数的图像特点和性质,如开口方向、开口位置、对称轴、顶点等。

2. 教师通过实例演示,解释如何通过参数a、b和c来确定二次函数的图像形状和性质。

四、巩固练习(15分钟)1. 让学生自主完成一组题目,求解二次函数的零点、顶点和最值。

2. 教师抽查学生的答案,进行讲解和纠正。

五、运用知识(10分钟)1. 教师提供一些实际问题,要求学生运用二次函数解决问题。

2. 学生分组讨论并呈现解决过程和结果。

六、归纳总结(5分钟)1. 教师总结本节课的重点和难点,并与学生共同归纳要点。

2. 学生自主完成本节课的学习笔记,做好知识回顾和巩固。

七、作业布置(5分钟)1. 布置完成一定数量的二次函数求解题目。

2. 要求学生总结本节课所学的图像特点和性质。

教学反思:本节课主要通过讲解和实例演示,让学生了解二次函数的图像特点和性质,并掌握求解二次函数的零点、顶点和最值的方法。

通过实际问题的应用,培养学生运用二次函数解决问题的能力。

九年级数学二次函数教案(优秀9篇)

九年级数学二次函数教案(优秀9篇)

九年级数学二次函数教案(优秀9篇)二次函数教学教案参考篇一教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。

2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

3.通过学生共同观察和讨论,培养大家的合作交流意识。

(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2.具有初步的创新精神和实践能力。

教学重点1.体会方程与函数之间的联系。

2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

教学难点1.探索方程与函数之间的联系的过程。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法讨论探索法。

教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。

当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。

现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。

最新-二次函数数学教案(优秀11篇)二次函数教案

最新-二次函数数学教案(优秀11篇)二次函数教案

二次函数数学教案(优秀11篇) 二次函数教案作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么大家知道正规的教案是怎么写的吗?它山之石可以攻玉,本页是爱岗敬业的小编小月月给大家整理的二次函数数学教案【优秀11篇】,希望对大家有所帮助。

《1.1二次函数》教学设计篇一【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式。

2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围。

【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系。

【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识。

【教学重点】二次函数的概念。

【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程。

一、情境导入,初步认识1.教材p2“动脑筋”中的两个问题:矩形植物园的面积s(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是s=-2x2+100x,(0x50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-1+6000,(0x1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数。

2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有。

二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项。

注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出。

《1.1二次函数》教学设计篇二二次函数的教学设计马玉宝教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

中学数学二次函数知识点总结教案

中学数学二次函数知识点总结教案

二次函数知识点总结二次函数知识点:1.二次函数的概念:一般地,形如2y ax bx c =++(a 、b 、c 是常数,0a ≠)的函数,叫做二次函数 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b 、c 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a 、b 、c 是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二次函数的基本形式2()y a x h k =-+的性质:总结:二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式2()y a x h k =-+,确定其顶点坐标(,)h k ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到(,)h k 处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成“自变量加减左右移,函数加减上下移”.二次函数2y ax bx c =++的性质 对称轴为2bx a=-,顶点坐标为24(,)24b ac b a a -- 1.当0a >时,抛物线开口向上,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,2min 44ac b y a -=.2.当0a <时,抛物线开口向下,当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 2max 44ac b y a-=.六、二次函数解析式的表示方法1. 一般式:2(,,0)y ax bx c a b c a =++≠为常数,;2. 顶点式:2()(,,0)y a x h k a h k a =-+≠为常数,,其中2bh a=-,244ac b k a -=;3. 两根式:1212()()(0,,y a x x x x a x x x =--≠是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点1212(,0),(,0)()A x B x x x ≠,其中的12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根.这两点间的距离12||AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a 、b 、c 的符号,或由二次函数中a 、b 、c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.一、填空题1、二次函数的解析式是______,取值范围是______;当a=0时,函数变成为_____函数。

2024北师大版数学九年级下册2.1《二次函数》教案

2024北师大版数学九年级下册2.1《二次函数》教案

2024北师大版数学九年级下册2.1《二次函数》教案一. 教材分析《二次函数》是北师大版数学九年级下册第2.1节的内容。

本节课主要让学生了解二次函数的定义、性质及图像,培养学生利用二次函数解决实际问题的能力。

教材通过引入二次函数的概念,让学生从图像和解析式两个方面理解二次函数的性质,为后续学习二次方程和二次不等式打下基础。

二. 学情分析九年级的学生已经掌握了函数的基本概念和一次函数的性质,具备了一定的函数思维。

但在二次函数方面,学生可能对函数图像的解读、对称性、顶点坐标的求解等方面存在困难。

因此,在教学过程中,要注重引导学生从实际问题中抽象出二次函数模型,培养学生运用数学知识解决实际问题的能力。

三. 教学目标1.了解二次函数的定义,理解二次函数的图像特征,掌握二次函数的性质。

2.能够从实际问题中识别二次函数模型,运用二次函数解决实际问题。

3.培养学生的抽象思维能力、数学表达能力及合作交流能力。

四. 教学重难点1.二次函数的定义及其图像特征。

2.二次函数的性质,包括对称性、顶点坐标、开口方向等。

3.运用二次函数解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出二次函数模型。

2.利用数形结合的方法,让学生直观地理解二次函数的图像特征。

3.采用合作交流的学习方式,培养学生的主体参与意识。

4.运用启发式教学,激发学生的思维,引导学生发现和总结二次函数的性质。

六. 教学准备1.准备相关的实际问题,用于引入二次函数的概念。

2.制作二次函数图像的课件,用于展示二次函数的图像特征。

3.准备一些关于二次函数性质的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用一个实际问题,引导学生从实际问题中抽象出二次函数模型。

例如:抛物线与x轴的交点问题。

2.呈现(15分钟)展示二次函数图像的课件,让学生直观地了解二次函数的图像特征,如顶点、开口方向等。

同时,引导学生观察图像,发现二次函数的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数中考复习专题教学重点◆二次函数的三种解析式形式◆二次函数的图像与性质教学难点◆二次函数与其他函数共存问题◆根据二次函数图像,确定解析式系数符号◆根据二次函数图像的对称性、增减性解决相对应的综合问题教学过程一、数学知识及要求层次二、近年二次函数考题及分值分布情况纵观近两年调考,样卷及中考试卷,能够发现中考中二次函数的题型有如下一些特点:1、综合性强。

初中阶段所有的知识点几乎都能够与二次函数联系起来,特别是与一元二次方程,几何图形、实际问题的联系更紧密些。

2、分值较重。

从07年到08年,二次函数的分值逐年增大。

3、覆盖面广。

二次函数的图象性质在调考、样题、中考中都出现了。

三、二次函数知识点1. 二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x的二次函数. 例:如果函数y=(m -2)x 42-+m m是二次函数, 求常数m 的值.【思路点拨】该函数是二次函数, 那么m 2+m -4=2, 且m -2≠0 解: ∵y=(m -2)x 42-+m m是二次函数∴m 2+m -4=2, 即m 2+m -6=0解这个一元二次方程, 得m 1=-3, m 2=2 当m=-3时, m -2=-5≠0, 符合题意 当m=2时, m -2=0, 不合题意. ∴常数m 的值为-3.同类练习:已知:函数x m x m y m m )1()1(232-++=--(m 是常数). m 为何值时,它是二次函数?2. 二次函数的解析式三种形式一般式 : y=ax 2 +bx+c(a ≠0) 顶点坐标(24,24b ac b a a--) 顶点式 : 二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式(a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=),其中ab ac k a b h 4422-=-=,.()k h x a y +-=2顶点坐标(h, k )224()24b ac b y a x a a-=-+交点式 12()()y a x x x x =-- 对称轴122x x x +=例:1.将二次函数y =x 2-2x +3,化为y =(x -h )2+k 的形式,结果为( )A .y =(x +1)2+4 B .y =(x -1)2+4 C .y =(x +1)2+2D . y =(x -1)2+22.若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为( ) A 、0.5 B 、0.1 C 、—4.5 D 、—4.1 3. 二次函数图像与性质(1)抛物线c bx ax y ++=2中,c b a ,,的作用1)a 决定抛物线的开口方向:-1 y x5 x =22 O 当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.2)b 和a 共同决定抛物线对称轴的位置:对称轴:2bx a=-a 与b 同号(即ab >0) 对称轴在y 轴左侧 a 与b 异号(即ab <0) 对称轴在y 轴右侧3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.总结:以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<a b .(中考非常喜欢考查根据图像判断a 、b 、c 的符号或者反过来根据a 、b 、c 符号来判断图像。

) 例1:已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c , 2a+b ,2a -b 中,其值大于0的个数为( )A .2B 3C 、4D 、5 点拨:本题考查二次函数图像性质,a 的符号由开口方向确定,b 的符号由对称轴和a 共同决定,c 看其与y 轴的交点坐标,a+b+c ,4a -2b+c 看x 取某个特殊值时y 的值可从图像中直观发现 例2:(2009湖北省荆门市)函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )点拨:本题考查函数图象与性质,当0a >时,直线从左向右是上升的,抛物线开口向上,D 是错的,函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),所以C 是准确的,故选C .课堂练习:1、已知二次函数y =ax 2+bx +c 的图像如图所示, 那么下列判断不准确的是( ) A .ac <0 B .a -b +c >0C .b = -4aD .关于x 的方程ax 2+bx +c =0的根是x 1=-1,x 2=5B .C .D .1111xo yyo x yo xxoyy xO2、如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫⎪⎝⎭,下列结论:①ac <0;②a+b=0;③4ac -b 2=4a ;④a+b+c <0.其中准确的个数是( )A. 1B. 2 C . 3 D. 43. 二次函数y=ax 2+bx+c 与一次函数y=ax+c 在同一坐标系中的图象大致是 ( )(2)抛物线的三要素:开口方向、对称轴、顶点.1)a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.2)求抛物线的顶点、对称轴的方法:1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. 2)配方法:使用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是h x =.3)使用抛物线的对称性:当横坐标为x 1, x 2 ,其对应的纵坐标相等,那么对称轴122x x x += 例1:.二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式例2:二次函数9)2(32+--=x y 图像的开口方向、对称轴和顶点坐标分别为( ) A . 开口向下、对称轴为2-=x 、顶点坐标(2,9) B .开口向下、对称轴为2=x ,顶点坐标(2,9)C .开口向上,对称轴为2-=x ,顶点坐标(-2,9)D .开口向上,对称轴为2=x ,顶点坐标(-2,-9)例3:已知抛物线c x ax y ++=22与x 轴的交点都在原点右侧,则点M (c a ,)在第 象限.例4:二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( )A .x =4 B. x =3 C. x =-5 D. x =-1。

例5:(2007佛山中考题)已知二次函数2y ax bx c =++(a b c ,,是常数),x 与y 的部分对应值如下表,则当x 满足的条件是 时,0y =;当x 满足的条件是 时,0y >。

(当x=4时,y= )(3)增减性,最大或最小值当a>0时,在对称轴左侧(当2bx a<-时),y 随着x 的增大而减少;在对称轴右侧(当2bx a<-时),y 随着x 的增大而增大; 当a<0时,在对称轴左侧(当2bx a<-时),y 随着x 的增大而增大;在对称轴右侧(当2bx a <-时),y 随着x 的增大而减少; 当a>0时,函数有最小值,并且当x=a b2-,2min 44ac b y a -=;当a<0时,函数有最大值,并且当x=a b 2-,2max 44ac b y a-=;例1: 已知二次函数y=21x 2+2x+1. (1) 写出其图象的开口方向、对称轴和顶点坐标; (2) 当x 为何值时, y 随x 的增大而减小? 当x 为何值时, y 随x 的增大而增大? (3) 该函数是有最大值还是最小值? 此时x 的值为多少?【思路点拨】利用公式法求顶点坐标和对称轴. 解: (1) ∵21>0, ∴函数图像开口向上. ∵-2122⨯=-2, 214212142⨯-⨯⨯=22-=-1. ∴函数图象的对称轴是直线x=-2, 顶点坐标是(-2, -1).(2) 由(1) 可知: 当x <-2时, y 随x 的增大而减小; 当x >-2时, y 随x 的增大而增大. (3) 由21>0知, 该函数有最小值. 由(1)可知当x =-2时, 函数有最小值-1. 【方法点评】(1) 求二次函数图象的对称轴、顶点坐标可用配方法和公式法两种方法, 本例使用公式法. (2) 讨论二次函数的性质时, 可先求出其图象对称轴和顶点坐标, 并明确图明的开口方向. 再画出草图, 然后根据草图说明性质, 也可不画草图, 直接说明.例2:阅读下列材料, 探究问题.已知正方形的周长为4a, 面积为S. (1) 求S 与a 的函数关系式; (2) 画出它的图象, 求出S =6cm 2时, 正方形的周长; (4) 根据函数图象, 求出a 取何值时, S ≥41. 解: (1) ∵正方形的周长为4a, ∴其边长为a.∴正方形的面积为S =a 2. a -3-2-10 1 2 3 … S9 4 1 0149…画出图象如图所示(3) 当S=6cm 2时, a=±6cm,故正方形的周长为46cm. (4) ∵当a=±21cm 时, S=41cm 2, 且此函数在其取值范围内, S 随a 的增大而增大. ∴当a ≥21或a ≤-21时, S ≥41. 请你就上述材料谈谈你的感受, 并与同伴交流从中获利的启迪【思路点拨】上述问题是二次函数y=x 2的实际应用题. 在解题过程中, 因为忽视了对自变量a 的取值范围的讨论, 致使整个过程发生错误. 作为几何量, 边长a 应是个正数, 即a >0, 所以图象仅仅抛物线S=a 2的一部分, 且不包括最低点(0, 0).准确解法如下:(1) ∵正方形的周长为4a, ∴其边长为a.∴正方形的面积S =a 2(a >0). a 1 2 3 … S149…画出图象如图所示.(3) 当S =6cm 2, a=6cm(a =-6cm 不合题意, 舍去). 故正方形的周长为46cm. (4) ∵当a=21cm 时, S=41cm 2, 且函数在取值范围内S 随a 的增大而增大, ∴当a ≥21cm 时, S =41cm 2. 【方法点评】上述问题是一个实际应用题, 所以注意自变量a 的取值范围, 使用图象来解决问题.例3:若二次函数24y ax bx =+-的图像开口向上,与x 轴的交点为(4,0),(-2,0)知,c+此抛物线的对称轴为直线x=1,此时121,2x x =-=时,对应的y 1 与y 2的大小关系是( ) A .y 1 <y 2 B. y 1 =y 2 C. y 1 >y 2 D.不确定 点拨:本题可用两种解法 解法1:利用二次函数的对称性以及抛物线上函数值y 随x 的变化规律确定:a>0时,抛物线上越远离对称轴的点对应的函数值越大;a<0时,抛物线上越靠近对称轴的点对应的函数值越大解法2:求值法:将已知两点代入函数解析式,求出a ,b 的值 再把横坐标值代入求出y 1 与y 2 的值,进而比较它们的大小变式1:已知12(2,),(3,)q q 二次函数22y x x m =-++上两点,试比较12q q 与的大小 变式2:已知12(0,),(3,)q q 二次函数22y x x m =-++上两点,试比较12q q 与的大小 变式3:已知二次函数2y ax bx m =++的图像与22y x x m =-++的图像关于y 轴对称,12(2,),(3,)q q --是前者图像上的两点,试比较12q q 与的大小练习:1.如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),当y 随x的增大而增大时,x 的取值范围是 .2. 已知二次函数y=x 2-2x -3, 则函数值y <0时, 对应x 是 .3. 二次函数522-+=x x y 有( )A . 最大值5-B . 最小值5-C . 最大值6-D . 最小值6-4. 求二次函数y=3x 2+12x-29的最小值。

相关文档
最新文档