一元一次方程练习题及答案_题型归纳

合集下载

一元一次方程100题含答案

一元一次方程100题含答案

3.一元一次方程100题含答案(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--解一元一次方程专项练习100题1..2.=﹣2;3.﹣2=.4.5..6.x ﹣=2﹣.7.8..9.10.11. ﹣6x=﹣x+1;12. y ﹣(y﹣1)=(y﹣1);13. [(x ﹣)﹣8]=x+1;14..15.﹣=1.16.17.2﹣=﹣.18.﹣1=﹣.19..20..21.22..23.;24..25..26.27..28. 2﹣=x ﹣;29. ﹣1=.30..31.(x﹣1)=2﹣(x+2).32..33.34.35. ;36. .37..38.39.40.41.42. x ﹣43.;44..45.(x﹣1)﹣(3x+2)=﹣(x﹣1).46.47. ;48. .49.+1=;50. 75%(x﹣1)﹣25%(x﹣4)=25%(x+6)51.52.53.54.55.56.57. ;58. .59. 2x ﹣(x﹣3)=[x ﹣(3x+1)].60.61.62.x+=1﹣63..64. 65. ﹣=.66.=67.68.69.70.=;71. 3(x+2)﹣2(x ﹣)=5﹣4x.72. 2x ﹣73.74.[(﹣1)﹣2]﹣x=2.75.﹣1=.76.,77..78.79.80. ;81. .82.83.84.85. ﹣=.86.=1﹣.87.88..89..90..91.92. ;93..94..95.;96. .97..98. ;99. [(x﹣1)﹣3]=2x﹣5;100..解一元一次方程100题难题解析1.去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得: 6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣32.去分母得,3(x﹣1)=4(2x﹣1)﹣24,去括号得,3x﹣3=8x﹣4﹣24,移项、合并同类项得,5x=25,系数化为1得,x=5;3. 原方程变形为:﹣2=,去分母得,4(2x﹣1)﹣24=3(10x﹣10),去括号得,8x﹣4﹣24=30x﹣30,移项、合并同类项得,22x=2,系数化为1得,x=4.去分母得,7(1.7﹣2x)=3x﹣2.1去括号,11.9﹣14x=3x﹣2.1移项合并同类项得,﹣17x=﹣14系数化为1得,x=.5.原方程变形成5(3x+1)﹣20=3x﹣2﹣2(2x+3)15x﹣15=﹣x﹣816x=7∴6.去分母得:6x﹣3(x﹣1)=12﹣2(x+2)去括号得:6x﹣3x+3=12﹣2x﹣4移项得:6x﹣3x+2x=12﹣4﹣3合并得:5x=5系数化为1得:x=1.7.去分母得:5(4﹣x)=3(x﹣3)﹣15,化简可得: 2x=11,系数化1得: x=8.原式可变形为:3(3y﹣1)﹣12=2(5y﹣7)去括号得: 9y﹣3﹣12=10y﹣14 移项得: 9y﹣10y=﹣14+12+3合并得:﹣y=1系数化1得: y=﹣19.原方程分母化整得:去分母,得 5(x+4)﹣2(x﹣3)=1.6,去括号,得 5x+20﹣2x+6=1.6,移项、合并同类项,得 15x=﹣122,系数化1,得 x=10.去分母得:4(x+1)=5(x+1)﹣6,去括号得: 4x+4=5x+5﹣6,移项、合并得:﹣x=﹣5,系数化为1得: x=5.11. 移项,合并得x=,化系数为1,得x=;12. 去分母,得6y﹣3(y﹣1)=4(y﹣1),去括号,得 6y﹣3y+3=4y﹣4,移项,合并得 y=7;13. 去括号,得(x ﹣)﹣6=x+1,x ﹣﹣6=x+1,移项,合并得x=;14. 原方程变形为﹣1=,去分母,得2(2﹣10x)﹣6=3(1+10x),去括号,得 4﹣20x﹣6=3+30x,移项,合并得﹣50x=5,化系数为1,得 x=﹣.15.去分母得:3(x﹣7)+4(5x﹣6)=12,去括号得: 3x﹣21+20x﹣24=12,移项得: 3x+6x=12+21+24,合并同类项得: 9x=57,化系数为1得: x=16.去分母:6(x﹣3)+4(6﹣x)=12+3(1+2x),去括号:6x﹣18+24﹣4x=12+3+6x,移项:6x﹣4x﹣6x=12+3+18﹣24,化简:﹣4x=9,化系数为1:x=﹣.17.去分母得:12﹣2(2x﹣4)=﹣(x﹣7),去括号得: 12﹣4x+8=﹣x+7,移项得:﹣4x+x=7﹣20,合并得:﹣3x=﹣13,系数化为1得: x=.18.去分母得:3(2x+1)﹣12=4(2x﹣1)﹣(10x+1),去括号得: 6x+3﹣12=8x﹣4﹣10x﹣1,移项合并同类项得: 8x=4,系数化为得: x=19.去分母得:2(5x﹣7)+12=3(3x﹣1)去括号得: 10x﹣14+12=9x﹣3移项得: 10x﹣9x=﹣3+14﹣12 系数化为1得: x=﹣120.去分母得:3(3x+4)﹣2(6x﹣1)=6 去括号得: 9x+12﹣12x+2=6移项、合并同类项得:﹣3x=﹣8系数化为1得: x=21.去分母得:6(x+4)﹣30x+150=10(x+3)﹣15(x﹣2)去括号得: 6x+24﹣30x+150=10x+30﹣15x+30移项、合并得:﹣19x=﹣114化系数为1得: x=6.22.去分母得:4(2x﹣1)﹣3(3x﹣1)=24,去括号得: 8x﹣4﹣9x+3=24,移项合并得:﹣x=25,化系数为1得: x=﹣2523. 原方程可以变形为:5x﹣10﹣2(x+1)=3, 5x﹣10﹣2x﹣2=3, 3x=15, x=5;24. 原方程可以变形为[x ﹣(x ﹣x+)﹣]=x+,(x ﹣x+x ﹣﹣)=x+,(x ﹣)=x+,,,x=﹣25.﹣=﹣12(2x﹣1)﹣(5﹣x)=3(x+3)﹣62x=10x=526.去括号得:x ﹣﹣8=x,移项、合并同类项得:﹣x=8,系数化为1得: x=﹣8.27.,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得: 2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得: x=528. 12﹣(x+5)=6x﹣2(x﹣1)12﹣x﹣5=6x﹣2x+2﹣x﹣6x+2x=2﹣12+5﹣5x=﹣5x=1;29.4(10﹣20x)﹣12=3(7﹣10x)40﹣80x﹣12=21﹣30x﹣80x+30x=21﹣40+12﹣50x=﹣7.30.去分母得:3(2x+1)﹣12=12x﹣(10x+1),去括号得:6x﹣9=2x﹣1,合并得: 4x=8,化系数为1得: x=2.31.去分母得:5(x﹣1)=20﹣2(x+2),去括号得: 5x﹣5=20﹣2x﹣4,移项合并得: 7x=21,系数化为1得: x=3.32.原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得: 40x=﹣15,系数化为1得: x=33.原方程变形为:50(0.1x﹣0.2)﹣2(x+1)=3,5x﹣10﹣2x﹣2=3,3x=15, x=5.34.去分母得:2(2x﹣1)=6﹣3x,去括号得: 4x﹣2=6﹣3x,移项得: 4x+3x=8,系数化为1得: x=35. 方程两边同乘15,得3(x﹣3)﹣5(x﹣4)=15,整理,得 3x﹣9﹣5x+20=15,解得﹣2x=4,x=﹣2.36. 方程两边同乘1,得50(0.1x﹣0.2)﹣2(x+1)=3,整理,得 5x﹣10﹣2x ﹣2=3,解得: 3x=15,∴x=5 37.去分母得:3y﹣18=﹣5+2(1﹣y),去括号得:3y﹣18=﹣5+2﹣2y,移项合并得: 5y=15,系数化为1得: y=3.38..解:去括号得:12﹣2y﹣2﹣3y=2,移项得:﹣2y﹣3y=2﹣12+2,合并同类项得:﹣5y=﹣8,系数化为1得:.39. 解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=2x﹣2x﹣3,移项得:﹣3x﹣2x+2x=﹣3﹣6+18(或﹣3x=﹣3﹣6+18),合并同类项得:﹣3x=9,系数化为1得:x=﹣340.去分母得:3x(x﹣1)﹣2(x+1)(x+6)﹣(x+1)(x﹣1)=6去括号得:3x2﹣3x﹣2x2﹣14x﹣12﹣x2+1=6合并得:﹣17x=17化系数为1得:x=﹣141. 原式通分得:,整理得:,将其变形得:﹣x+3=6,∴x=﹣3.42. 原式变形为:x+3=,将其通分并整理得:10x﹣25+3x﹣6=15x+45,即﹣2x=76,∴x=﹣38 43. 解:去分母得,3(x﹣7)﹣4(5x+8)=12,去括号得,3x﹣21﹣20x﹣32=12,移项合并同类项得,﹣17x=65,系数化为1得,x=;44. 解:去括号得,2x ﹣x+x ﹣=x ﹣,去分母得,24x﹣6x+3x﹣3=8x﹣8,移项合并同类项得,13x=﹣5,系数化为1得,x=﹣45.去分母得:15(x﹣1)﹣8(3x+2)=2﹣30(x ﹣1),∴21x=63,∴x=346.去括号,得a ﹣﹣2﹣a=2,去分母,得a﹣4﹣6﹣3a=6,移项,合并得﹣2a=16,化系数为1,得a=﹣8;47. 去分母,得5(x﹣3)﹣2(4x+1)=10,去括号,得5x﹣15﹣8x﹣2=10,移项、合并得﹣3x=27,化系数为1,得x=﹣9;48. 把分母化为整数,得﹣=2,去分母,得5(10x+40)﹣2(10x﹣30)=20,去括号,得50x+200﹣20x+60=20,移项、合并得30x=﹣240,化系数为1,得x=﹣849. +1=解:去分母,得3x+6=2(2﹣x);去括号,得3x+6=4﹣2x移项,得3x+2x=4﹣6合并同类项,得5x=﹣2系数化成1,得x=﹣;50. 75%(x﹣1)﹣25%(x﹣4)=25%(x+6)解:将原方程等价为:0.75(x﹣1)﹣0.25(x﹣4)=0.25(x+6)去括号,得0.75x﹣0.75﹣0.25x+1=0.25x+1.5 移项,得0.75x﹣0.25x﹣0.25x=1.5﹣1+0.75合并同类项,得0.25x=1.25系数化成1,得x=551. 去分母得:5(x﹣3)﹣2(4x+1)=10,去括号得:5x﹣15﹣8x﹣2=10,移项、合并得:﹣3x=27,系数化为1得:x=﹣9.52. 去括号得:2x﹣4﹣x+2=4,移项、合并得:x=6.53. 去分母得:12x﹣(2x+1)=12﹣3(3x﹣2),去括号得:12x﹣2x﹣1=12﹣9x+6,移项、合并得:19x=19,系数化为1得:x=154. 去括号得:x﹣1﹣3﹣x=2,移项,合并同类项得:﹣x=6,系数化为1得:x=﹣8.55 去分母得:18x+3(x﹣1)=18﹣2(2x﹣1),去括号得:18x+3x﹣3=18﹣4x+2,移项,合并得:25x=23,系数化为1得:x=.56. 去分母得:3x﹣7﹣2(5x+8)=4,去括号得:3x﹣7﹣10x﹣16=4,移项、合并得:﹣7x=27,系数化为1得:x=﹣.57. 去分母得:3(3x+5)=2(2x﹣1),去括号得:9x+15=4x﹣2,移项合并得:5x=﹣17,系数化为1得:;58. 去分母得:(5x+2)﹣2(x﹣3)=2,去括号得:5x﹣2x=﹣6+2﹣2,移项合并得:3x=﹣6,系数化为1得:x=﹣259.去小括号得:2x ﹣x+2=[x ﹣x ﹣],去中括号得:2x ﹣x+2=x ﹣x ﹣,去分母得:12x﹣4x+12=2x﹣3x﹣1,移项、合并得:9x=﹣13,系数化为1得:x=﹣60. ,去分母得3(x﹣15)=﹣15﹣5(x+7),∴3x﹣45=﹣15﹣5x﹣35,∴x=;61. ,方程变形为,去分母得20x﹣20x+30=﹣2x+6,∴x=﹣1262.去分母得:15x+5(x+2)=15﹣3(x﹣6)去括号得:15x+5x+10=15﹣3x+18移项得:15x+5x+3x=15+18﹣10合并得:23x=23系数化为1得:x=163.原方程可化为:﹣=,去分母得:4x+8﹣2(3x+4)=2(x﹣1),去括号得:4x+8﹣6x﹣8=2x﹣2,移项合并同类项得:﹣4x=﹣2,系数化为1得:x=64.原方程可化为:,去分母得:3(7x﹣1)=4(1﹣2x)﹣6(5x+1)去括号得:21x﹣3=4﹣8x﹣30x﹣6移项合并同类项得:59x=1系数化为1得:x=65.去分母得:4(3x﹣2)﹣6=7x﹣4.去括号得:12x﹣8﹣6=7x﹣4.移项、合并同类项得:5x=10.系数化为1得:x=2.66.原方程可以化为:=+1去分母得: 2(2x﹣1)=3(x+2)+6去括号得: 4x﹣2=3x+6+6即 x=1467 去分母得:4(2x﹣1)﹣3(2x﹣3)=12,整理得:2x﹣7=0,解得:x=3.5.68. 去括号,,∴,∴x+1=2,解得:x=169.去分母得:6(4x+9)﹣15(x﹣5)=30+20x 去括号得:24x+54﹣15x+75=30+20x移项,合并同类项得:﹣11x=﹣99化系数为1得:x=970. 去分母得:7(5﹣7x)=8(5x﹣2),去括号得:35﹣49x=40x﹣16,移项合并同类项得,﹣89x=﹣51,系数化为得:x=;71. 去括号得:3x+6﹣2x+3=5﹣4x,移项合并同类项得:5x=﹣4,系数化为得:x=﹣.72..去分母得:12x﹣2(5x﹣2)=24﹣3(3x+1),去括号得:12x﹣10x+4=24﹣9x﹣3,移项、合并得:11x=17,系数化为1得:x=.73.去分母得:6x﹣2(1﹣x)=(x+2)﹣6,去括号得:6x﹣2+2x=x+2﹣6,移项得:6x+2x﹣x=2﹣6+2,合并同类项得:7x=﹣2,系数化为得:x=74.去中括号得:(﹣1)﹣3﹣x=2,去括号、移项、合并得:﹣x=6,系数化为1得:x=﹣875. 去分母得:(2x+5)﹣24=3(3x﹣2),去括号得:8x+20﹣24=9x﹣6,移项得:8x﹣9x=﹣6﹣20+24,合并同类项得:﹣x=﹣2,系数化为1得:x=2.76.去括号得:x+++=1去分母得: x+1+6+56=64移项得: x=177.去分母得:3﹣(x﹣7)=12(x﹣10),去括号得:3﹣x+7=12x﹣120,移项、合并得:﹣13x=﹣130,系数化为1得:x=1078.去分母得:8﹣(7+3x)=2(3x﹣10)﹣8x 去括号得: 8﹣7﹣3x=6x﹣20﹣8x移项合并得:﹣x=﹣21系数化为1得: x=2179.去括号,得3(x ﹣)+1=5x,3x ﹣+1=5x,6x﹣3+2=10x,移项、合并同类项得:﹣4x=1,系数化为1得: x=80.4(2x﹣1)﹣12=3(5x﹣3)8x﹣4﹣12=15x﹣9﹣7x=7x=﹣1;81.5(3x﹣1)=2(4x+2)﹣1015x﹣5=8x+4﹣107x=﹣1x=﹣.82.去括号得,2(﹣1)﹣4﹣2x=3,x﹣2﹣4﹣2x=3,移项合并同类项得,﹣x=9,系数化为得, x=﹣983. 去括号得:x﹣2﹣3x+1=1﹣x,解得:x=﹣2.84. 原方程可化为:=﹣,去分母得:3(7x﹣1)=4(1﹣0.2x)﹣6(5x+1),去括号得:21x﹣1=4﹣0.8x﹣30x﹣6,移项、合并同类项得:51.8x=﹣1,系数化为1得:x=85.原方程化为:﹣=,整理得: 12x=6,解得: x=86.原式变形为:+=1,把小数化为分数、整理得:,去分母得:4(4﹣x)=12﹣(2x﹣6),去括号得16﹣4x=12﹣2x+6,移项、合并得:﹣2x=2,系数化为1得:x=﹣187.去大括号,得:,去中括号得:,去小括号得:=0,移项得:y=3,系数化1得:y=6 88..原方程化为:(1分)去分母得:3(5x+9)+5(x﹣5)=5(1+2x)化简得:10x=3解得:.89.去分母得:5(3x+2)﹣15=3(7x﹣3)+2(x ﹣2)去括号得:15x+10﹣15=21x﹣9+2x﹣4移项合并得:﹣8x=﹣8系数化为1得:x=190.去分母得:2(2x﹣5)+3(3﹣x)=12,去括号得:4x﹣10+9﹣3x=12,移项、合并得:x=1391. 解:,,6x﹣3x+3=8x﹣8,6x﹣3x﹣8x=﹣8﹣3,﹣5x=﹣1,.92. 解:3(2x﹣1)=4(x﹣5)+12,6x﹣3=4x﹣20+12,6x﹣4x=﹣20+12+3,2x=﹣5,93.去分母得:4×3x﹣5(1.4﹣x)=2去括号得:12x﹣7+5x=0.2移项、合并得:17x=9系数化为1,得x=94.去分母得:2(3x﹣2)+10=5(x+3),去括号得:6x﹣4+10=5x+15,移项、合并同类项得:6x﹣5x=15﹣6,化系数为1得:x=995. 去分母,得3(x﹣3)﹣4(5x﹣4)=18,去括号,得3x﹣9﹣20x+16=18,移项、合并同类项,得﹣17x=11,系数化为1,得x=﹣;96. 去分母,得3(x+1)﹣12=2(2x﹣1),去括号,得3x+3﹣12=4x﹣2,移项、合并同类项,得﹣x=7,系数化为1,得x=﹣797.原方程可化为:(8x﹣3)﹣(25x﹣4)=12﹣10x,去括号得:8x﹣3﹣25x+4=12﹣10x,移项、合并同类项得:﹣7x=11,系数化为1得:x=98. 去分母得:4(2x+4)﹣6(4x﹣3)=3,去括号得:8x+16﹣24x+18=3,移项,合并同类项得:﹣16x=﹣31,系数化为1得:x=;99. 去中括号得:(x﹣1)﹣2=2x﹣5,去小括号得:x﹣1﹣2=2x﹣5,移项、合并同类项得:x=2100..把中分子,分母都乘以5得:5x﹣20,把中的分子、分母都乘以20得:20x﹣60.即原方程可化为:5x﹣20﹣2.5=20x﹣60.移项得:5x﹣20x=﹣60+20+2.5,合并同类项得:﹣15x=﹣37.5,化系数为1得:x=2.5。

小学一元一次方程练习题及答案

小学一元一次方程练习题及答案

小学一元一次方程练习题及答案一、选择题1,家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x元,以下方程正确的是A.20x?13%?2340 B.20x?2340?13% C.20x?2340D.13%?x?23402. 今年“十.一”长假期间,我市磁器口古镇在10月1日接待游客约2.83万人,“2.83万”的有效数字和精确度为A.个、十分位 B.3个、百位 C.个、十分位 D.个、百位3下列各组数中,不相等的一组是2233A.??3?与? B.-?3与? C. -?3与 ?D.??3? 与?2233 .计算+-2+的结果是A.B. -18C. -3D. 123225.下列说法中正确的是A. 0不是单项式B. 12是整式C. -x2y的系数是1D.-3x2y的次数是x。

某书店按标价的八折售出,仍可获利20﹪,若该书的进价为18元,则标价为A.7元B.8元C.9元 D,30元、方程2x?a?1与方程3x?1?2x?2的解相同,则a的值为A. -5B . -C.D.设a表示三位数, b表示两位数, 如果把a放在b的左边组成一个五位数, 可表示为A. abB. 1000 a + bC. a + bD. 100 a + b9. 甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设xs后甲可追上乙,则下列四个方程中不正确的是A.7x=6.5x+B.7x+5=6.5xC.x=D.6.5x=7x-510.某种手机卡的市话费上次已按原收费标准降低了b 元/分钟,现在又下调20﹪,使收费标准为a元/分钟,那么原收费标准为5a34?ba?ba?b4435a?b411.一项工程,甲单独做需x天完成,乙单独做需y天完成,两人合做这项工程所需天数为A.1 x?y B.11? xyC.1 xyD.111?xy12.小明把400元钱存入银行,年利率为1.8%,到期时小明得到利息36元,则她一共存了A、6年B、5年C、4年D、3年13,足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队进行了14场比赛,其中负5场,共得19分,那么这个队胜了A.3场 B.4场C.5场D.6场14,我国股市交易中每买、卖一次需交千分之七点五的各种费用。

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。

【一元一次方程核心题型50题(完善版)

【一元一次方程核心题型50题(完善版)

4、 方程的解 4. 【中】(人大附中 2012-2013 学年度第一学期期中初一年级数学练习)若关于 x 的方 程 3x 2 k 与方程 2 x k 1 的解相同,则 k ________. 【中】(广东模拟)若 x A.0 三、 一元一次方程的定义 1、 判断方程是否为一元一次方程 6.
25. 【易】(2009 年西安高新一中初一分班数学真卷)小明以 8 折优惠买了一双鞋,省了 20 元,那么他买鞋实际付了________元.
26. 【易】(山东淄博市)家电下乡是我国应对当前国际金融危机,惠农强农,带动工业 生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得 到销售价格 13%的补贴资金.今年 5 月 1 日,甲商场向农民销售某种家电下乡手机 20 部.已知从甲商场售出的这 20 部手机,国家共发放了 2340 元的补贴,若设该手机的 销售价格为 x 元,以下方程正确的是 A. 20x 13% 2340 B. 20x 2340 13% C. 20 x(1 13%) 2340 D. 13% x 2340
23. 【易】(河南郑州市初一上期末)商场推出全场打八折的优惠活动,持贵宾卡可在八 折基础上继续打折.小明妈妈持贵宾卡买了标价为 10000 元的商品,共节省 2800 元, 则她用贵宾卡在八折基础上继续享受________优惠.
24. 【易】(太原市七年级第二次测评)元旦时,某服装店将一件衣服按成本价提高 40% 后标价,又打 8 折卖出,结果这件衣服获利 24 元,这件衣服的成本价是________元
1 x ;④ t 2 3t 2 0 ;⑤ 3x y 3x 5 ; x ⑥ 2 4 6 ;⑦ x 1 2 中,方程有________个,一元一次方程有________(填序号). 1 是方程 mx 3m 2 0 的根,则 x m 的值为( m B.1 C. 1 D.2

一元一次方程的解法(六大类型)(题型专练)(原卷版)

一元一次方程的解法(六大类型)(题型专练)(原卷版)

专题02 一元一次方程的解法(六大类型)【题型1 解一元一次方程】【题型2 一元一次方程的整数解问题】【题型3 根据两个一元一次方程的解之间的关系求参数】【题型4 错解一元一次方程的问题】【题型5 一元一次方程的解与参数无关】【题型6 一元一次方程的解在新定义中运用】【题型1 解一元一次方程】1.解方程1﹣2(2x﹣1)=x,以下去括号正确的是()A.1﹣4x﹣2=x B.1﹣4x+1=x C.1﹣4x+2=x D.1﹣4x+2=﹣x 2.若与互为相反数,则a的值为()A.﹣6B.2C.6D.123.解方程3﹣4(x﹣2)=1,去括号正确的是()A.3﹣4x+2=1B.3﹣4x﹣2=1C.3﹣4x﹣8=1D.3﹣4x+8=1 4.解方程:(1)3x+7=22﹣2x;(2).5.解方程:=1﹣.6.解方程:(1)4(2﹣y)+2(3y﹣1)=7;(2).7.解方程:(1);(2).8.解方程.(1)3(x﹣2)﹣4(2x+1)=7;(2).9.解方程:﹣=﹣1.10.(2022秋•丹徒区期末)解方程:(1)3(2x﹣1)+1=4(x+2);(2).11.(2022秋•零陵区期末)解方程:(1)2(x﹣1)=3x﹣3;(2).【题型2 一元一次方程的整数解问题】12.已知关于x的方程2mx﹣6=(m+2)x有正整数解,则整数m的值是.13.(2022秋•通川区校级期末)若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有()个.A.1个B.2个C.3个D.4个【题型3 根据两个一元一次方程的解之间的关系求参数】14.(2023春•新乡期末)若和3﹣2x互为相反数,则x的值为()A.﹣3B.3C.1D.﹣1 15.(2022秋•柳州期末)已知代数式5a+1与a﹣3的值相等,那么a=.16.(2023春•通许县期末)设M=2x﹣2,N=2x+3,若2M﹣N=1,则x的值是.【题型4 错解一元一次方程的问题】17.王涵同学在解关于x的一元一次方程7a+x=18时,误将+x看作﹣x,得方程的解为x=﹣4,那么原方程的解为()A.x=4B.x=2C.x=0D.x=﹣2 18.小明在解方程3a﹣2x=11(x是未知数)时,误将﹣2x看成了+2x,得到的解为x=﹣2,请聪明的你帮小明算一算,方程正确的解为()A.x=2B.x=0C.x=﹣3D.x=119.某同学在解关于x的方程5a﹣x=13时,误将﹣x看作+x,得到方程的解为x=﹣2,则a的值为()A.3B.C.2D.1 20.(2022秋•莱州市期末)某同学解方程2x﹣3=ax+3时,把x的系数a看错了,解得x=﹣2,他把x的系数看成了()A.5B.6C.7D.8 21.(2022春•唐河县月考)某同学解方程4x﹣3=□x+1时,把“□”处的系数看错了,解得x=4,他把“□”处的系数看成了()A.3B.﹣3C.4D.﹣4 22.(2022秋•咸丰县期末)海旭同学在解方程5x﹣1=()x+3时,把“()”处的数字看错了,解得x=﹣,则该同学把“()”看成了()23.某同学在解方程5x﹣1=■x+3时,把■处的数字看错了,解得x=﹣,则该同学把■看成了()A.3B.﹣3C.﹣8D.824.小明同学在解方程:5x﹣1=mx+3时,把数字m看错了,解得x=1,则该同学把m看成了()A.7B.﹣7C.1D.﹣1【题型5 一元一次方程的解与参数无关】25.(2021春•伊春期末)若代数式(a、b 为常数)的值与字母x、y的取值无关,则方程3ax+b=0的解为.26.(1)先化简,后求值3(3a2﹣b)﹣2(5a2﹣3b),其中a=﹣3,b=﹣1.(2)解方程:.(3)已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,求a b的值.27.定义:若A﹣B=m,则称A与B是关于m的关联数.例如:若A﹣B=2,则称A与B是关于2的关联数;(1)若3与a是关于2的关联数,则a=.(2)若2x﹣1与3x﹣5是关于2的关联数,求x的值.(3)若M与N是关于m的关联数,M=3mn+n+3,N的值与m无关,求N 的值.【题型6 一元一次方程的解在新定义中运用】28.定义a*b=ab+a+b,若5*x=35,则x的值是()29.定义:“*”运算为“a*b=ab+2a”,若(3*x)+(x*3)=22,则x的值为()A.1B.﹣1C.﹣2D.2 30.(2022秋•东明县校级期末)规定一种运算法则:a※b=a2+2ab,若(﹣3)※2x=﹣3﹣2x,则x的值为()A.B.C.D.﹣1 31.(2022秋•滕州市校级期末)对于任意有理数a、b,规定一种新运算“*”,使a*b=3a﹣2b,例如:5*(﹣3)=3×5﹣2×(﹣3)=21.(2x﹣1)*(x ﹣2)=﹣3,则x的值为()A.﹣3B.3C.﹣1D.132.新定义一种运算符号“△”,规定x△y=xy+x2﹣3y,已知2△m=6,则m 的值为.33.对于任意有理数a,b,我们规定:a⊗b=a2﹣2b,例如:3⊗4=32﹣2×4=9﹣8=1.若2⊗x=3+x,则x的值为.34.对于数a,b定义这样一种运算:a*b=2b﹣a,例如1*3=2×3﹣1,若3*(x+1)=1,则x的值为.35.用符号※定义一种新运算a※b=ab+2(a+b),若﹣3※x=2022,则x的值为.36.(2022秋•泗水县期末)对于有理数a,b,定义运算“★”;a★b=2ab﹣b,例如:2★1=2×2×1﹣1=3,所以,若(x+2)★3=27,则x=.37.(2022秋•松原期末)已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(﹣3x)=29,则x值为.38.(2023春•巴州区期中)定义一种新运算“※”:a※b=ab﹣a+b.例如3※1=3×1﹣3+1=1,(2a)※2=(2a)×2﹣2a+2=2a+2.(1)计算:5※(﹣1)的值为;(2)已知(2m)※3=2※m,求m的值.。

解一元一次方程专项练习60题+解析答案

解一元一次方程专项练习60题+解析答案

解一元一次方程-红老师一.解答题(共60小题)1.解方程:.2.解方程:.3.解方程:.4.解方程:.5.解方程:.6.解方程:(1)2﹣=x﹣;(2).7.解方程:.8.解方程:﹣1=.9.解方程:.10.解方程:.11.解方程:.12.解方程.13.解方程:.14.解方程:.15.解方程:.16.解方程:﹣=1.17.解方程:=1.18.解方程:=1﹣.19.解方程:﹣2=.20.解方程:.21.解方程:.22.解关于x的一元一次方程.23.解方程:.24.解方程:.25.解方程:.26.解方程:y﹣=2﹣27.解方程:.28.解方程:.29.解方程:3x+.30.解方程:.31.解方程:.32.解方程:.33.解方程:.34.解方程:.35.解方程:.36.解方程:.37.解方程:﹣=1.38.解方程:.39.解方程:.40.解方程:.41.解方程:.42.解方程:﹣1=.43.解方程:=1﹣.44.解方程:.45.解方程:.46.解方程.47.解方程:(1)3(5﹣x)=18+2x;(2);(3).48.解方程:(1);(2).49.解方程:(1)2(x﹣4)﹣3(4x﹣1)=5(1﹣x);(2);(3).50.解下列方程(1)(2)51.解方程(1)x=﹣1;(2)﹣=1.52.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3);(2);(3).53.解方程:(1)3x+=3﹣;(2)+2=.54.解方程(1)4x+3(x﹣20)=8x﹣7(20﹣x)(2)﹣=1.55.解方程:﹣=.56.若3x+1的值比的值少1,求x的值.57.k取何值时,代数式值比的值小1.58.当x为何值时,代数式的值与的值的和等于3?59.已知代数式与代数式.(1)当x为何值时,两个代数式的值相等?(2)当x为何值时,代数式的值比代数式的值大2?60.我们规定一种运算:=ad﹣bc,例如=3×6﹣4×5=﹣2,=4x+6,按照这种运算规定,当x等于多少时,=0.解一元一次方程-红老师参考答案与试题解析一.解答题(共60小题)1.解方程:.【解答】解:去分母得:6﹣2(3﹣5x)=3(3x+1),去括号得:6﹣6+10x=9x+3,移项合并得:x=3.2.解方程:.【解答】解:去分母得:5(3x+1)=2(4x+2),去括号得:15x+5=8x+4,移项得:15x﹣8x=4﹣5,合并同类项得:7x=﹣1,解得:x=﹣.3.解方程:.【解答】解:,去分母,3(2x﹣1)=60﹣5(x﹣5),去括号,6x﹣3=60﹣5x+25,移项,6x+5x=60+3+25,合并同类项,11x=88,化系数为1,x=8.4.解方程:.【解答】解:去分母,得3(x﹣2)=12﹣4x,去括号,得3x﹣6=12﹣4x,移项、合并同类项,得7x=18,系数化为1,得.5.解方程:.【解答】解:去分母得:10x﹣5(x﹣1)=20﹣2(x+18),去括号得:10x﹣5x+5=20﹣2x﹣36,移项合并得:7x=﹣21,解得:x=﹣3.6.解方程:(1)2﹣=x﹣;(2).【解答】解:(1)去分母得:12﹣(x+5)=6x﹣2(x﹣1),去括号得:12﹣x﹣5=6x﹣2x+2,移项得:﹣x﹣6x+2x=2﹣12+5,合并得:﹣5x=﹣5,系数化为1得:x=1;(2)方程整理得:﹣2=,即2x﹣2=5x ﹣2,移项得:2x﹣5x=﹣2+2,合并得:﹣3x=0,系数化为1得:x=0.7.解方程:.【解答】解:去分母,得2(3x﹣2)﹣6=5﹣4x,去括号,得6x﹣4﹣6=5﹣4x,移项,合并同类项,得10x=15,系数化为1,得x=1.5.8.解方程:﹣1=.【解答】解:﹣1=3(x+1)﹣6=2(x﹣2)3x+3﹣6=2x﹣43x﹣2x=﹣1x=﹣1.9.解方程:.【解答】解:去分母得:6x﹣3=12﹣4x﹣8,移项合并得:10x=7,解得:x=0.7.10.解方程:.【解答】解:去分母得:4x﹣10=5﹣2x,移项得:4x+2x=5+10,合并同类项得:6x=15,系数化为1得:x=.11.解方程:.【解答】解:,去分母,得3(x﹣1)+12=4(2x+1),去括号,得3x﹣3+12=8x+4,移项,得3x﹣8x=4+3﹣12,合并同类项,得﹣5x=﹣5,系数化成1,得x=1.12.解方程.【解答】解:去分母得:3(3y﹣1)﹣12=2(5y﹣7),去括号得:9y﹣3﹣12=10y﹣14,移项得:9y﹣10y=﹣14+3+12,合并得:﹣y=1,解得:y=﹣1.13.解方程:.【解答】解:去分母,得3(4x﹣3)﹣15=5(2x﹣2),去括号,得12x﹣9﹣15=10x﹣10,移项,得12x﹣10x=﹣10+9+15,合并同类项,得2x=14,系数化为1,得x=7.14.解方程:.【解答】解:原方程去分母,得:2(3x+2)﹣4=2x ﹣1,去括号,得:6x+4﹣4=2x﹣1,移项,合并同类项,得:4x=﹣1,系数化为1,得:.15.解方程:.【解答】解:4﹣(3x﹣1)=2(3+x),去分母,得4﹣3x+1=6+2x,移项,得﹣3x﹣2x=6﹣4﹣1,合并同类项,得﹣5x=1,系数化1,得x=﹣.16.解方程:﹣=1.【解答】解:方程两边同乘以12得:12×﹣12×=12,则3(x+2)﹣2(2x﹣3)=12,故3x+6﹣4x+6=12,移项合并同类项得:﹣x=0,解得:x=0.17.解方程:=1.【解答】解:,去分母,得4x﹣1=6﹣2(3x﹣1),去括号,得4x﹣1=6﹣6x+2,移项,得4x+6x=6+2+1,合并,得10x=9,系数化为1,得.18.解方程:=1﹣.【解答】解:去分母得:3(x﹣1)=6﹣2(x﹣3),去括号得:3x﹣3=6﹣2x+6,移项得:3x+2x=6+6+3,合并同类项得:5x=15,系数化1得:x=3.19.解方程:﹣2=.【解答】解:去分母:2(x+1)﹣8=x,去括号:2x+2﹣8=x,移项:2x﹣x=8﹣2,合并同类项:x=6.20.解方程:.【解答】解:方程两边同乘以12得:12×﹣12×=12,则3(x+2)﹣2(2x﹣5)=12,故3x+6﹣4x+10=12,移项合并同类项得:﹣x=﹣4,解得:x=4.21.解方程:.【解答】解:,去分母,得2x﹣1﹣6=3(2x+3),去括号,得2x﹣1﹣6=6x+9,移项,得2x﹣6x=9+1+6,合并同类项,得﹣4x=16,系数化为1,得x=﹣4.22.解关于x的一元一次方程.【解答】解:去分母得:3(4x﹣3)﹣15=5(2x﹣2),去括号得:12x﹣9﹣15=10x﹣10,移项得:12x﹣10x=24﹣10,合并同类项得:2x=14,解得:x=7.23.解方程:.【解答】解:,去分母,得2(2x﹣1)+3(x+1)=4,去括号,得4x﹣2+3x+3=4,移项、合并同类项,得7x=3,系数化为1,得.24.解方程:.【解答】解:,去分母得,3(x+2)﹣(4x+3)=6,去括号得,3x+6﹣4x﹣3=6,移项得,3x﹣4x=6﹣6+3,合并同类项得,﹣x=3,系数化为1得,x=﹣3.25.解方程:.【解答】解:去分母得:6x﹣(3x﹣3)=2x+4+6,去括号得:6x﹣3x+3=2x+4+6,移项合并得:x=7.26.解方程:y﹣=2﹣【解答】解:10y﹣5(y﹣1)=20﹣2(y+3),10y﹣5y+5=20﹣2y﹣6,10y﹣5y+2y=20﹣6﹣5,7y=9,y=.27.解方程:.【解答】解:×6﹣×6=2×6,3(x﹣1)﹣2(2﹣x)=12,3x﹣3﹣4+2x=12,5x=19,∴x=.28.解方程:.【解答】解:去分母,得5(1﹣2x)=3(3x+4)﹣15,去括号,得5﹣10x=9x+12﹣15,移项,得﹣10x﹣9x=12﹣15﹣5,合并同类项,得﹣19x=﹣8,系数化为1,得.29.解方程:3x+.【解答】解:去分母得,18x+3(x﹣1)=18﹣2(2x ﹣1),去括号得,18x+3x﹣3=18﹣4x+2,移项得,18x+3x+4x=18+2+3,合并同类项得,25x=23,系数化为1得,x=.30.解方程:.【解答】解:去分母得:3(2x+1)﹣(4x﹣1)=6,去括号得:6x+3﹣4x+1=6,移项得:6x﹣4x=6﹣3﹣1,合并得:2x=2,系数化为1得:x=1.31.解方程:.【解答】解:去分母,可得:3(x﹣3)﹣2(4x+1)=6,去括号,可得:3x﹣9﹣8x﹣2=6,移项,可得:3x﹣8x=6+9+2,合并同类项,可得:﹣5x=17,系数化为1,可得:x=﹣3.4.32.解方程:.【解答】解:去分母,方程两边同时乘以6,得:3(x+2)=12﹣2(x﹣2).去括号,得:3x+6=12﹣2x+4.移项、合并同类项,得:5x=10.未知数的系数化为1,得:x=2.33.解方程:.【解答】解:去分母,可得:3(2x﹣3)﹣12=4(x ﹣4),去括号,可得:6x﹣9﹣12=4x﹣16,移项,可得:6x﹣4x=﹣16+9+12,合并同类项,可得:2x=5,系数化为1,可得:x=2.5.34.解方程:.【解答】解:,去分母,得2(x+1)﹣3(x﹣3)=6,去括号,得2x+2﹣3x+9=6,移项,得2x﹣3x=6﹣9﹣2,合并同类项,得﹣x=﹣5,系数化为1,得x=5.35.解方程:.【解答】解:,去分母,得3(x+1)﹣6=2(3x﹣2),去括号,得3x+3﹣6=6x﹣4,移项,得3x﹣6x=﹣4﹣3+6,合并同类项,﹣3x=﹣1,系数化为1,得.36.解方程:.【解答】解:,3(3y﹣1)﹣12=4(2y+7),9y﹣3﹣12=8y+28,9y﹣8y=28+3+12y=43.37.解方程:﹣=1.【解答】解:2(x﹣3)﹣3(4x+1)=6,2x﹣6﹣12x﹣3=6,2x﹣12x=6+6+3,﹣10x=15,x=﹣.38.解方程:.【解答】解:,去分母,得4(2x+1)﹣(x﹣3)=12,去括号,得8x+4﹣x+3=12,移项,得8x﹣x=12﹣4﹣3,合并同类项,得7x=5,系数化成1,得x=.39.解方程:.【解答】解:去分母得:2x=12+3(2x﹣1),去括号得:2x=12+6x﹣3,移项得:2x﹣6x=12﹣3,合并同类项得:﹣4x=9,系数化为1得:x=﹣.40.解方程:.【解答】解:,去分母,得3(3y+2)﹣12=2(2y﹣1),去括号,得9y+6﹣12=4y﹣2,合并同类项,得9y﹣6=4y﹣2,移项,得9y﹣4y=﹣2+6,合并同类项,得5y=4,系数化为1,得.41.解方程:.【解答】解:去分母得,4(x﹣2)=12﹣3(3x﹣2),去括号得,4x﹣8=12﹣9x+6,移项得,4x+9x=12+6+8,合并同类项得,13x=26,系数化1得,x=2.42.解方程:﹣1=.【解答】解:﹣1=,5x﹣3﹣6=3x,5x﹣3x=3+6,2x=9,x=.43.解方程:=1﹣.【解答】解:方程=1﹣,去分母得:5(2x﹣1)=10﹣2(x﹣3),去括号得:10x﹣5=10﹣2x+6,移项合并得:12x=21,解得:x=.44.解方程:.【解答】解:,两边同时乘以6得:2(2x+1)﹣12=﹣x,整理得:4x﹣10=﹣x,解得x=2,45.解方程:.【解答】解:∵,∴+=3,去分母,可得:2(10x﹣20)+5(10x﹣10)=30,去括号,可得:20x﹣40+50x﹣50=30,移项,可得:20x+50x=30+40+50,合并同类项,可得:70x=120,系数化为1,可得:x=.46.解方程.【解答】解:方程整理得:﹣=1,即﹣2x+1=1,去分母得:2x﹣4﹣6x+3=3,移项得:2x﹣6x=3+4﹣3,合并同类项得:﹣4x=4,解得:x=﹣1.47.解方程:(1)3(5﹣x)=18+2x;(2);(3).【解答】解:(1)去括号得:15﹣3x=18+2x,移项得:﹣3x﹣2x=18﹣15,合并同类项得:﹣5x=3,解得:x=﹣;(2)去括号得:﹣=(x﹣4),去分母得:2﹣(2x﹣5)=x﹣4,去括号得:2﹣2x+5=x﹣4,移项得:﹣2x﹣x=﹣4﹣2﹣5,合并同类项得:﹣3x=﹣11,解得:x=;(3)方程整理得:﹣(2x+4)=1.2,去分母得:10x﹣10﹣3(2x+4)=3.6,去括号得:10x﹣10﹣6x﹣12=3.6,移项得:10x﹣6x=3.6+10+12,合并同类项得:4x=25.6,解得:x=6.4.48.解方程:(1);(2).【解答】解:(1)去分母得:3(3x﹣1)﹣12=2(5x﹣7),去括号得:9x﹣3﹣12=10x﹣14,移项得:9x﹣10x=﹣14+3+12,合并同类项得:﹣x=1,系数化为1得:x=﹣1.(2)化整得:,去分母得:3(3x﹣1)﹣2(2x+9)=﹣36,去括号得:9x﹣3﹣4x﹣18=﹣36,移项得:9x﹣4x=﹣36+3+18,合并同类项得:5x=﹣15,系数化为1得:x=﹣3.49.解方程:(1)2(x﹣4)﹣3(4x﹣1)=5(1﹣x);(2);(3).【解答】解:(1)2(x﹣4)﹣3(4x﹣1)=5(1﹣x),2x﹣8﹣12x+3=5﹣5x,2x﹣12x+5x=5+8﹣3,﹣5x=10,x=﹣2;(2),2(2x+1)﹣6=6x﹣(10x+1),4x+2﹣6=6x﹣10x﹣1,4x﹣6x+10x=﹣1﹣2+6,8x=3,x=;(3),﹣1=,15x﹣6=2(17﹣20x),15x﹣6=34﹣40x,15x+40x=34+6,55x=40,x=.50.解下列方程(1)(2)【解答】解:(1)去分母得:15x﹣10=8x+4﹣10,移项合并得:7x=4,解得:x=;(2)方程整理得:=1+,去分母得:1﹣20x=3+20x,移项合并得:40x=﹣2,解得:x=﹣.51.解方程(1)x=﹣1;(2)﹣=1.【解答】解:(1)去分母,可得:6x+2(1﹣x)=x+2﹣6,去括号,可得:6x+2﹣2x=x+2﹣6,移项,可得:6x﹣2x﹣x=2﹣6﹣2,合并同类项,可得:3x=﹣6,系数化为1,可得:x=﹣2.(2)∵﹣=1,∴﹣=1,去分母,可得:30x﹣7(17﹣20x)=21,去括号,可得:30x﹣119+140x=21,移项,可得:30x+140x=21+119,合并同类项,可得:170x=140,系数化为1,可得:x=.52.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3);(2);(3).【解答】解:(1)3x﹣7(x﹣1)=3﹣2(x+3),去括号得:3x﹣7x+7=3﹣2x﹣6,移项得:3x﹣7x+2x=3﹣6﹣7,合并同类项得:﹣2x=﹣10,系数化为1得:x=5;(2),去分母得:2(1﹣2x)﹣18x=3(x﹣1)﹣18,去括号得:2﹣4x﹣18x=3x﹣3﹣18,移项得:2+3+18=3x+4x+18x,合并同类项得:25x=23,系数化为1得:x=;(3)﹣=x,分母化为整数得:﹣=x,去分母得:3(3x﹣5)﹣2(12﹣5x)=6x,去括号得:9x﹣15﹣24+10x=6x,移项得:9x+10x﹣6x=15+24,合并同类项得:13x=39,系数化为1得:x=3.53.解方程:(1)3x+=3﹣;(2)+2=.【解答】解:(1)3x+=3﹣,去分母得:18x+3(x﹣1)=18﹣2(2x﹣1),去括号得:18x+3x﹣3=18﹣4x+2,移项得:18x+3x+4x=18+3+2,合并同类项得:25x=23,系数化为1得:x=;(2)+2=化简得,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,移项得:9x﹣10x=﹣4,合并同类项得:﹣x=﹣4,系数化为1得:x=4.54.解方程(1)4x+3(x﹣20)=8x﹣7(20﹣x)(2)﹣=1.【解答】解:(1)去括号得:4x+3x﹣60=8x﹣140+7x,移项合并得:8x=80,解得:x=10;(2)方程整理得:﹣=1,去分母得:30y﹣119+140y=21,解得:y=.55.解方程:﹣=.【解答】解:化简得:﹣=,去分母得:9(30x﹣15)﹣2(20x﹣10)=18(4﹣8x),去括号得:270x﹣135﹣40x+20=72﹣144x,移项合并同类项得:374x=187,系数化为1得:x=0.5.56.若3x+1的值比的值少1,求x的值.【解答】解:由题意,得,去分母,得6x+2=5x+1﹣2,移项合并,得x=﹣3.57.k取何值时,代数式值比的值小1.【解答】解:由题意得:﹣=﹣1,去分母得2(k+1)﹣3(3k+1)=﹣6,去括号得2k+2﹣9k﹣3=﹣6,移项、合并同类项得:﹣7k=﹣5,系数化1得:.58.当x为何值时,代数式的值与的值的和等于3?【解答】解:根据题意得:+=3,去分母得:6﹣3x+2x+2=18,移项合并得:﹣x=10,解得:x=﹣10.59.已知代数式与代数式.(1)当x为何值时,两个代数式的值相等?(2)当x为何值时,代数式的值比代数式的值大2?【解答】解:(1)根据题意列式为:,去分母得:3x=4(2﹣x),去括号得:3x=8﹣4x,移项、合并同类项,得:7x=8,系数化为1得:.(2)根据题意列式为:,去分母得:3x﹣4(2﹣x)=24,去括号得:3x﹣8+4x=24,移项、合并同类项得:7x=32,系数化为1得:.60.我们规定一种运算:=ad﹣bc,例如=3×6﹣4×5=﹣2,=4x+6,按照这种运算规定,当x等于多少时,=0.【解答】解:∵=ad﹣bc,∴(+1)×(﹣1)=(﹣2)x,解得:x=,故当x=时,=0.。

七年级数学上册一元一次方程的应用经典题型整理

七年级数学上册一元一次方程的应用经典题型整理

七年级数学上册一元一次方程的应用经典题型整理题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。

一元一次方程(十大类型)(题型专练)(原卷版)

一元一次方程(十大类型)(题型专练)(原卷版)

专题01 一元一次方程(十大类型)【题型1 方程及一元一次方程的定义】【题型2 利用一元一次方程的定义求值】【题型3 方程的解】【题型4 列方程】【题型5 利用等式的性质变形】【题型6等式的性质变形】【题型7 利用等式的性质解方程】【题型8 方程的解中遮挡问题】【题型9 利用等式的性质检验方程的解】【题型10 方程的解的规律问题】【题型1 方程及一元一次方程的定义】1.下列各式中,是方程的个数为()①x=0;②3x﹣5=2x+1;③2x+6;④x﹣y=0;⑤=5y+3;⑥a2+a﹣6=0.A.2个B.3个C.5个D.4个2.在①2x+1;②1+7=15﹣8+1;③;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个3.下列是一元一次方程的是()A.B.x+x2=3C.D.4.下列各式中,一元一次方程的个数是()①3+2=5;②3x﹣2=4;③3x=2(x+1);④2x+3.A.1个B.2个C.3个D.4个5.在下列方程:①3x﹣y=2,②x2﹣2x﹣3=0,③,④,⑤中,一元一次方程的个数为()A.1个B.2个C.3个D.4个【题型2 利用一元一次方程的定义求值】6.已知关于x的方程(m﹣1)x|m|﹣4=0是一元一次方程,则m的值为()A.﹣1B.1C.﹣1或1D.07.若关于x的方程(m﹣2)x|m|﹣1=6是一元一次方程,则m的值为()A.±2B.﹣2C.2D.±18.若方程(m﹣1)x|m﹣2|﹣8=0是关于x的一元一次方程,则m=()A.1B.2C.3D.1或39.已知(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则()A.m=2B.m=﹣3C.m=±3D.m=110.若方程(k﹣1)x|k﹣2|=3是关于x的一元一次方程,则k是()A.1B.2C.﹣1D.3【题型3 方程的解】11.如果关于m的方程2m+b=m﹣1的解是﹣4,求b的值.12.已知x=1是方程x+2m=7的解,则m=.13.下列方程中,解是x=4的是()A.3x+1=11B.﹣2x﹣4=0C.3x﹣8=4D.4x=114.如果﹣4是关于x的方程2x+k=x﹣1的解,那么k等于()A.﹣13B.3C.﹣5D.515.下列方程中,解是x=4的是()A.x+3=1B.2x=6C.x=0D.3x﹣12=0 16.下列方程中,解为x=2的是()A.2x=6B.(x﹣3)(x+2)=0C.x2=3D.3x﹣6=017.关于x的方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2,若a,b,c满足4a+2b+c=0和4a﹣2b+c=0,则方程的根是()A.0B.1,﹣1C.2,﹣2D.无法确定【题型4 列方程】18.我国明代数学读本《算法统宗》中有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问银子共有几两?设银子共有x两,则可列方程为()A.7x+4=9x﹣8B.7x﹣4=9x+8C.D.19.我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.若设牧童有x人,根据题意可列方程为()A.6x+14=8x B.6(x+14)=8x C.8x+14=6x D.8(x﹣14)=6x 20.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,《孙子算经》中有这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何.这道题的意思是:今有若干人乘车,每三人共乘一辆车,则剩余两辆车是空的;每两人共乘一辆车,则剩余九个人无车可乘,问车和人各多少.若我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=【题型5 利用等式的性质变形】21.已知a=b,下列等式不一定成立的是()A.a+a=2b B.a﹣b=0C.ac=bc D.22.下列变形正确的是()A.若a+3=9,则a=3+9B.若4x=7x﹣2,则4x﹣7x=2C.若2a﹣2=﹣6,则2a=6+2D.若2x﹣5=3x+3,则2x﹣3x=3+5 23.等式变形一定正确的是()A.如果ax=ay那么x=y B.如果a=b,那么a﹣5=5﹣bC.如果a=b,那么2a=3b D.如果a+1=b+1,那么a=b【题型6等式的性质变形】24.如图1,在第一个天平上,物块A的质量等于物块B加上物块C的质量;如图2,在第二个天平上,物块A加上物块B的质量等于3个物块C的质量.已知物块A的质量为10g.请你判断:1个物块B的质量是g.25.现有9颗外观和大小都完全相同的小球,已知8颗球的质量相等,另外一颗球的质量略大一些.小颖想用一架托盘天平称出这颗质量较大的球.她思考后发现最少称n次就一定能找出这颗球,则n的值等于.26.有一堆实心的几何体:圆锥、正方体和球,已知相同的几何体具有相同的质量,某同学借助天平探究三种几何体之间的质量关系时,画出了如下四幅图,图中用“△”“□”和“〇”分别表示圆锥、正方体和球,其中有一幅图画错了,它是④.(填序号)26.如图,天平两边盘中标有相同字母的物体的质量相同,若A物体的质量为20克,当天平处于平衡状态时,B物体的质量为.27.若x﹣2y=3,则x=.28.假设“▲、●、■”分别表示三种不同的物体.如图,前两架天平保持平衡,如果要使第三架天平也保持平衡,那么“?”处应放个■.29.若a=b,则a﹣c=.30.如图所示,在天平的左盘上的两个物品取下一个,右盘取下个砝码才能使天平仍然平衡.【题型7 利用等式的性质解方程】31.利用等式性质解方程:(1)5x﹣2=﹣7x+8;(2)3x+1=x+9;(3).32.利用等式的性质解下列方程.(1)y+3=2;(2)﹣y﹣2=3;(3)9x=8x﹣6;(4)8m=4m+1.【题型8 方程的解中遮挡问题】33.方程2+▲=3x,▲处被墨水盖住了,已知方程的解是x=2,那么▲处的数字是.34.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是.35.小强在解方程时,不小心把一个数字用墨水污染成了﹣2x+●=3x,他翻阅了答案知道这个方程的解为x=﹣1,于是他判断●的值应为.36.方程3+=2x,处被墨水盖住了,已知该方程的解是x=0,那么处的数字是.【题型9 利用等式的性质检验方程的解】37.利用等式的性质解方程并检验:.38.利用等式的性质解方程,并检验.(1)4x﹣6=﹣10;(2)﹣5x=﹣15;(3)10x=5x﹣3;(4)7x﹣6=8x.39.检验下列方程后面小括号内的数是否为相应方程的解.(1)2x+5=10x﹣3(x=1)(2)2(x﹣1)﹣(x+1)=3(x+1)﹣(x﹣1)(x=0)40.检验下列方程后面括号内所列各数是否为相应方程的解:(1);(2)2(y﹣2)﹣9(1﹣y)=3(4y﹣1).(﹣10,10)【题型10 方程的解的规律问题】41.一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,…根据观察得到的规律,写出其中解是x=2017的方程:.。

第4章 一元一次方程(压轴必刷30题3种题型专项训练)(原卷版)-2024-2025学年七年级数学上

第4章 一元一次方程(压轴必刷30题3种题型专项训练)(原卷版)-2024-2025学年七年级数学上

第4章一元一次方程(压轴必刷30题3种题型专项训练)一.一元一次方程的解(共2小题)1.(2022秋•启东市校级月考)我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上述规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.2.(2022秋•宿城区期中)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.二.解一元一次方程(共3小题)3.(2021秋•高新区期末)用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16(1)求2*(﹣2)的值;(2)若(其中x为有理数),试比较m,n的大小;(3)若=a+4,求a的值.4.(2022秋•工业园区校级月考)如图,小明在一张纸面上画了一条数轴,折叠纸面,使表示数﹣1的点与表示数5的点重合,请你回答以下问题:(1)表示数﹣2的点与表示数的点重合;表示数7的点与表示数的点重合.(2)若数轴上点A在点B的左侧,A,B两点之间的距离为12,且A,B两点按小明的方法折叠后重合,则点A表示的数是;点B表示的数是;(3)已知数轴上的点M分别到(2)中A,B两点的距离之和为2022,求点M表示的数是多少?5.(2021秋•溧阳市期末)阅读理解学:我们都应该知道,任何无限循环小数都应该属于有理数,那是因为所有无限循环小数都可以化成分数形式,而分数属于有理数.那么无限循环小数怎么化成分数呢?下面的学习材料会告诉我们原因和方法:问题:利用一元一次方程将0.化成分数.设0.=x.由0.=0.7777…,可知10×0.=7777…=7+0.7777…=7+0.,即10x=7+x.可解得,即0.=.(1)将0.直接写成分数形式为.(2)请仿照上述方法把下列小数化成分数,要求写出利用一元一次方程进行解答的过程.①0.;②0.1.三.一元一次方程的应用(共25小题)6.(2022秋•高新区期末)甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团中儿童人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?7.(2022秋•兴化市校级期末)甲、乙两班学生到集市上购买苹果,苹果的价格如表:50千克以上购买苹果数不超过30千克30千克以上但不超过50千克每千克价格3元 2.5元2元甲班分两次共购买苹果80千克(第二次多于第一次),共付出185元,乙班则一次购买苹果80千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?8.(2023秋•海门市校级月考)已知A、B、C三点在同一条数轴上,点A、B表示的数分别为﹣2,18,点C在原点右侧,且AC=AB.(1)A、B两点相距个单位;(2)求点C表示的数;(3)点P、Q是该数轴上的两个动点,点P从点A出发,沿数轴以每秒1个单位的速度向右运动,点Q 从点B出发,沿数轴以每秒2个单位的速度向左运动,它们同时出发,运动时间为t秒,求当t为何值时,P、Q两点到C点的距离相等?9.(2022秋•建邺区校级期末)扬子江药业集团生产的某种药品的长方体包装盒的侧面展开图如图所示.根据图中数据,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.10.(2023秋•滨海县月考)生活与数学日一二三四五六12345678910111213141516171819202122232425262728293031(1)山姆同学在某月的日历上圈出2×2个数,如图1,正方形的方框内的四个数的和是48,那么这四个数是.(2)小丽也在上面的日历上圈出2×2个数,如图2,斜框内的四个数的和是46,则它们分别是.(3)刘莉也在日历上圈出5个数,呈十字框形,如图3,它们的和是55,则中间的数是.(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号?11.(2022秋•兴化市校级月考)结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣1和﹣5的两点之间的距离是.③数轴上表示﹣3和4的两点之间的距离是.(2)归纳:一般的,数轴上表示数a和数b的两点之间的距离等于.(3)应用:①若数轴上表示数a的点位于﹣4与3之间,则|a+4|+|a﹣3|的值=.②若a表示数轴上的一个有理数,且|a﹣1|=|a+3|,则a=.③若a表示数轴上的一个有理数,|a﹣1|+|a+2|的最小值是.④若a表示数轴上的一个有理数,且|a+3|+|a﹣5|>8,则有理数a的取值范围是.(4)拓展:已知,如图2,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.若当电子蚂蚁P 从A点出发,以4个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距20个单位长度,并写出此时点P所表示的数.12.(2022秋•海安市月考)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|+(b﹣16)2=0.(1)求此时刻快车头A与慢车头C之间相距单位长度;(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD 为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.13.(2022秋•淮阴区期中)据电力部门统计,每天8:00至21:00是用电高峰期,简称“峰时”,21:00至次日8:00是用电低谷期,简称“谷时”.为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表: 时间换表前换表后峰时(8:00﹣21:00)谷时(21:00﹣8:00)电价每度0.52元每度0.55元每度0.30元小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时”电和“谷时”电分别是多少度?14.(2022秋•姜堰区期中)阅读理解:M 、N 、P 为数轴上三点,若点P 到M 的距离是点P 到N 的距离的k (k >0)倍,即满足PM =k .PN 时,则称点P 关于M 、N 的“相对关系值”为k .例如,当点M 、N 、P 表示的数分别为0、2、3时,PM =3PN ,则称点P 关于M 、N 的“相对关系值”为3;PN =MN ,则称点N 关于P 、M 的“相对关系值”为.如图,点A 、B 、C 、D 在数轴上,它们所表示的数分别为﹣1、2、6、﹣6.(1)原点O 关于A 、B 的“相对关系值“为a ,原点O 关于B 、A 的“相对关系值”为b ,则a = ,b = .(2)点E 为数轴上一动点,点E 所表示的数为x ,若x 满足|x +3|+|x ﹣2|=5,且点E 关于C 、D 的“相对关系值”为k ,则k 的取值范围是 .(3)点F 从点B 出发,以每秒1个单位的速度向左运动,设运动时间为t (t >0)秒,当经过t 秒时,C 、D 、F 三点中恰有一个点关于另外两点的“相对关系值”为2,求t 的值.15.(2022秋•苏州期中)【问题背景】落实“双减”政策后,某校开展了丰富多彩的科技活动.如图1,电子蚂蚁P 、Q 在长18分米的赛道AB 上同时相向匀速运动,电子蚂蚁P 从A 出发,速度为4分米/分钟,电子蚂蚁Q从B出发,速度为2分米/分钟,当电子蚂蚁P到达B时,电子蚂蚁P,Q停止运动.经过几分钟P,Q之间相距6分米?【问题解决】小辰同学在学习《有理数》之后,发现运用数形结合的方法建立数轴可以较快地解决上述问题:如图2,将点A与数轴的原点O重合,点B落在正半轴上.设运动的时间为t(0≤t≤4.5).(1)t分钟后点P在数轴上对应的数是;点Q对应的数是;(用含t的代数式表示)(2)我们知道,如果数轴上M,N两点分别对应数m,n,则MN=|m﹣n|.试运用该方法求经过几分钟P,Q之间相距6分米?(3)在赛道AB上有一个标记位置C,AC=6.若电子蚂蚁P与标记位置C之间的距离为a,电子蚂蚁Q与B之间的距离为b.在运动过程中,是否存在某一时刻t,使得a+b=4?若存在,请求出运动的时间;若不存在,请说明理由.16.(2022秋•海陵区校级月考)阅读理解,完成下列各题:定义:已知A、B、C为数轴上任意三点,若点C到点A的距离是它到点B的距离的3倍,则称点C是[A,B]的3倍点,例如:如图1,点C是[A,B]的3倍点,点D不是[A,B]的3倍点,但点D是[B,A]的3倍点,根据这个定义解决下面问题:(1)在图1中,点A[C,D]的3倍点(填写“是”或“不是”);[D,C]的3倍点是点(填写A或B或C或D);(2)如图2,M、N为数轴上两点,点M表示的数是﹣3,点N表示的数是5,若点E是[M,N]的3倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,PQ=a,一动点H从点P出发,以每秒3个单位长度的速度沿数轴向右运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的3倍点?(用含a的代数式表示)17.(2022秋•昆山市校级月考)如图所示,将连续的奇数1,3,5,7…排列成如下的数表,用十字形框框出5个数.探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为,这说明被十字框框中的五个奇数的和一定是正整数p(p>1)的倍数,这个正整数p是.探究规律二:落在十字框中间且位于第二列的一组奇数是15,27,39…,则这一组数可以用整式表示为12m+3 (m为正整数),同样,落在十字框中间且位于第三列的一组奇数可以表示为;(用含m的式子表示)运用规律(1)被十字框框中的五个奇数的和可能是625吗?若能,请求出这五个数,若不能,请说明理由.(2)请问(1)中的十字框中间的奇数落在第几行第几列?18.(2022秋•广陵区校级月考)从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?19.(2022秋•江都区月考)某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.20.(2023秋•锡山区期中)如图,数轴上有A、B、C、D四点,点D对应的数为x,已知OA=5,OB=3,CD=2,P、Q两点同时从原点O出发,沿着数轴正方向分别以每秒钟a和b个单位长度的速度运动,且a<b.点Q到点D后立即朝数轴的负方向运动,速度不变,在点C处与点P相遇,相遇后点P也立即朝着数轴的负方向运动,且P点的速度变为2a,Q点的速度不变.(1)P、Q两点相遇时,点P前进的路程为;Q、P两点相遇前的速度比=;(用含有x的式子表示)(2)若点B为线段AD的中点,①此时,点D表示的数x=;②相遇后,当点P到达点A处时,点Q在原点O的(填“左”或“右”)侧,并求出此时点Q在数轴上所表示的数字;(3)在(2)的条件下,当点P到达点A处时,立即掉头朝数轴的正方向运动,速度变为3a,点Q的速度始终不变,这两点在点M处第二次相遇,则点M在数轴上所表示的数字为.21.(2023秋•沭阳县校级月考)探索规律:将连续的偶2,4,6,8,…,排成如图:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.22.(2021秋•姑苏区校级期末)为增强公民节水意识,合理利用水资源,某市采用“阶梯收费”,标准如下表:用水量单价不超过6m3的部分2元/m3超过6m3不超过10m3的部分4元/m3超出10m3的部分8元/m3譬如:某用户2月份用水9m3,则应缴水费:2×6+4×(9﹣6)=24(元)(1)某用户3月用水15m3应缴水费多少元?(2)已知某用户4月份缴水费20元,求该用户4月份的用水量;(3)如果该用户5、6月份共用水20m3(6月份用水量超过5月份用水量),共交水费64元,则该户居民5、6月份各用水多少立方米?23.(2021秋•惠山区期末)【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(填“=”或“≠”)【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)在图2中,若点D在射线OC上,且线段CD与图中以O、C、D中某两点为端点的线段互为圆周率伴侣线段,直接写出D点所表示的数.24.(2022秋•江都区校级月考)元旦期间,某商场打出促销广告(如下表)优惠条件一次性购物不超过200元一次性购物超过200元但不超过一次性购物超过500元500元优惠办法无优惠全部按9折优惠其中500元仍按9折优惠,超过500元部分按8折优惠小明妈妈第一次购物用了134元,第二次购物用了490元.(1)小明妈妈第一次所购物品的原价是元;(2)小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3)若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?25.(2022秋•梁溪区校级月考)在数轴上A点表示数a,B点表示数b,且a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)如果M、N为数轴上两个动点,点M从点A出发,速度为每秒1个单位长度;点N从点B出发,速度为点A的3倍,它们同时向左运动,点O为原点.当运动2秒时,点M、N对应的数分别是、.当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)26.(2022秋•兴化市校级月考)如图,已知A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80.(1)请直接写出AB的中点M对应的数;(2)现在有一只电子蚂蚁P从A点出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少;(3)若当电子蚂蚁P从A点出发时,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B 点出发,以3个单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距25个单位长度?27.(2022秋•昆山市校级月考)在购买足球赛门票时,设购买门票张数为x(张),现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位购买门票的价格为60元(总费用=广告赞助费+门票费).方案二:若购买的门票数不超过100张,每张100元,若所购门票超过100张,则超出部分按八折计算.解答下列问题:(1)方案一中,用含x的代数式来表示总费用为.方案二中,当购买的门票数x不超过100张时,用含x的代数式来表示总费用为.当所购门票数x超过100张时,用含x 的代数式来表示总费用为.(2)甲、乙两单位分别采用方案一、方案二购买本次足球赛门票,合计700张,花去的总费用计58000元,求甲、乙两单位各购买门票多少张?28.(2021秋•江都区期中)把2100个连续的正整数1、2、3、…、2100,按如图方式排成一个数表,如图用一个正方形框在表中任意框住4个数,设左上角的数为x.(1)另外三个数用含x的式子表示出来,从小到大排列是;(2)被框住4个数的和为416时,x值为多少?(3)能否框住四个数和为324?若能,求出x值,若不能,说明理由;(4)从左到右,第1至第7列各数之和分别为a1、a2、a3、a4、a5、a6、a7,求7个数中最大的数与最小的数之差.29.(2021秋•秦淮区期中)生活与数学:(1)吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是32,那么第一个数是;(2)玛丽也在日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是;(3)莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是;(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号;(5)若干个偶数按每行8个数排成图4:①图中方框内的9个数的和与中间的数有什么关系:;②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是;③托马斯也画了一个斜框,斜框内9个数的和为252,则斜框的中间一个数是.30.(2021秋•洪泽区校级月考)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.。

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题题型一:利率问题利率问题利息=本金×利率×期数本利和=本金十利息=本金×(1+利率×期数)利息税=利息×税率税后利息=利息一利息税=利息×(1-税率)税后本利和=本金+税后利息【总结】若利率是年利率,期数以“年”为单位计数,若是月利率,则期数以“月”为单位计数,解题时要注意.【例1】某人把若干元按三年期的定期储蓄存入银行,假设年利率为3. 69%,到期支取时扣除所得税实得利息2 103.3元,求存入银行的本金.(利息税为5%)【答案】设存入银行的本金为x元,根据题意,得()()%%3 3.69152103.3x⨯⨯⨯-=x⨯=0.1051652103.3x=,20000因此,存入银行的本金是20000元.【总结】利息=本金×利率×期数×利息税题型二:折扣问题利润额=成本价×利润率售价=成本价+利润额新售价=原售价×折扣【例2】小丽和小明相约去书城买书,请你根据他们的对话内容(如图),求出小明上次所买书籍的原价.--图641【分析】设小明上次购买书籍的原价是x元,由题意,得0.82012+=-,x xx=.解得160因此,小明上次所买书籍的原价是160元,【答案】160元.1:一件衣服按标价的八折出售,获得利润18元,占标价的10%,问该衣服的买入价?分析:本金:标价利率:-20%利息:成交价-标价=买入价+利润-标价解:设该衣服的买入价为x元x+18-18/10%=18/10%×(80%-1)当然,这道题这样解是一种方法,还可以按照我们常规的算术方法解来,倒也简单,因此,列方程解应用题是针对过程清楚的问题比较简单方便。

2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X元进价折扣率标价优惠价利润X元8折(1+40%)X元80%(1+40%)X 15元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15解:设进价为X元,80%X(1+40%)—X=15,X=125答:进价是125元。

专题03 一元一次方程(真题测试)(解析版)

专题03 一元一次方程(真题测试)(解析版)

专题03 一元一次方程(真题测试)一、单选题1.(2019 四川南充)关于x的一元一次方程2x a−2+m=4的解为x=1,则a+m的值为()A. 9B. 8C. 5D. 4【答案】C【考点】一元一次方程的定义,一元一次方程的解【解析】解:因为关于x的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故答案为:C.【分析】先根据一元一次方程的定义求出a的值,再根据一元一次方程的解的定义求出m 的值,即可求出a+m.2.(2019 安徽)已知三个实数a,b,c满足a-2b+c=0,a+2b+c<0,则()A. b>0,b2-ac≤0B. b<0,b2-ac≤0C. b>0,b2-ac≥0D. b<0,b2-ac≥0【答案】D【考点】等式的性质【解析】∵a-2b+c=0,∵a+c=2b,∵a+2b+c=4b<0,∵b<0,∵a2+2ac+c2=4b2,即b2=a2+2ac+c24∵b2-ac= a2+2ac+c24−ac=a2−2ac+c24=(a−c)24≥0,故答案为:D.【分析】由a-2b+c=0,可得a+c=2b,即得a+2b+c=4b<0,根据等式性质可得a2+2ac+c2=4b2,从而求出b2-ac≥0,据此判断即可.3.(2017 滨州)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A. 22x=16(27﹣x)B. 16x=22(27﹣x)C. 2×16x=22(27﹣x)D. 2×22x=16(27﹣x)【答案】D【考点】一元一次方程的实际应用-配套问题【解析】【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∵可得2×22x=16(27﹣x).故选D.【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.4.(2019 浙江杭州)已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设男生有e人,则()A. 2x+3(72-x)=30B. 3x+2(72-x)=30C. 2x+3(30-x)=72D. 3x+2(30-x)=72【答案】D【考点】一元一次方程的其他应用【解析】解:依题可得,3x+2(30-x)=72.故答案为:D.【分析】男生种树棵数+女生种树棵数=72,依此列出一元一次方程即可.二、填空题5.(2019 内蒙古呼和浩特)关于x的方程mx2m﹣1+(m﹣1)x-2=0如果是一元一次方程,则其解为________.【答案】x=2或x=−2或x=-3【考点】一元一次方程的定义【解析】解:∵关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,∴2m﹣1=1,即m=1或m=0,方程为x﹣2=0或−x−2=0,解得:x=2或x=−2,当2m-1=0,即m= 12时,方程为12−12x−2=0解得:x=-3,故答案为:x=2或x=-2或x=-3.【分析】一元一次方程:只含有一个未知数,未知数最高次数是1且两边都为整式的等式。

一元一次方程经典40题

一元一次方程经典40题

一元一次方程经典40题一、选择题(1 - 10题)1. 下列方程是一元一次方程的是()A. x^2 - 2x + 3 = 0B. 2x - 5y = 4C. x = 0D. (1)/(x)=3解析:一元一次方程是只含有一个未知数,并且未知数的次数都是1,等号两边都是整式的方程。

A选项未知数的最高次数是2;B选项有两个未知数x和y;D选项(1)/(x)不是整式。

只有C选项符合一元一次方程的定义,所以答案是C。

2. 方程3x + 6 = 0的解是()A. x = 2B. x=-2C. x = 3D. x=-3解析:对于方程3x+6 = 0,首先移项得到3x=-6,然后两边同时除以3,解得x=-2,所以答案是B。

3. 若x = 2是方程ax - 3 = 1的解,则a的值是()A. 2B. -2C. 1D. -1解析:因为x = 2是方程ax-3 = 1的解,将x = 2代入方程得2a-3 = 1,移项可得2a=1 + 3=4,两边同时除以2,解得a = 2,所以答案是A。

4. 方程2(x - 1)=x+2的解是()A. x = 4B. x=-4C. x = 0D. x = 1解析:先去括号得2x-2=x + 2,然后移项2x-x=2 + 2,即x = 4,所以答案是A。

5. 关于x的方程3x+2m = 5 - x的解为x = 1,则m的值为()A. (1)/(2)B. -(1)/(2)C. (3)/(2)D. -(3)/(2)解析:把x = 1代入方程3x+2m=5 - x,得到3×1+2m = 5-1,即3 + 2m=4,移项得2m=4 - 3 = 1,解得m=(1)/(2),所以答案是A。

6. 下列变形正确的是()A. 由3x+5 = 4x得3x - 4x=-5B. 由6x = 3得x = 2C. 由x-1 = 2x+3得x+2x = 3 - 1D. 由2x = 1得x = 2解析:A选项,移项正确,3x+5 = 4x移项后为3x-4x=-5;B选项,由6x = 3,两边同时除以6,得x=(1)/(2);C选项,x - 1=2x + 3移项应该是x-2x = 3+1;D选项,由2x = 1得x=(1)/(2)。

一元一次方程习题精选附答案

一元一次方程习题精选附答案

一元一次方程习题精选附答案6.2.4 解一元一次方程(三)一、解答题(共30小题)1.解方程:2x+1=72.删除此题3.1)解方程:4-x=3(2-x);2)解方程:删除此题4.解方程:删除此题5.解方程1)4(x-1)-3(20-x)=5(x-2);2)x-1=2(x-3)。

6.1)解方程:3(x-1)=2x+3;2)解方程:x-1=1/x。

7.-1+2x=3x+18.解方程:5(x-1)-2(x+1)=3(x-1)+x+1;9.解方程:删除此题10.1)4x-3(4-x)=2;2)(x-1)+2=2-(x+2)。

11.1)计算:删除此题2)解方程:删除此题12.解方程:删除此题13.1)删除此题2)删除此题14.1)5(2x+1)-2(2x-3)=6;2)删除此题3)3(x-1)+|x-2|=5x-1.15.A类)解方程:5x-2=7x+8;B类)解方程:(x-1)-(x+5)=-2;C类)解方程:删除此题16.1)3(x+6)=9-5(1-2x);2)删除此题17.1)4x-3(5-x)=13;2)x+3=2x-3.18.1)计算:-42×|-2|÷(3-|3|);2)计算:-12-|0.5-|-2-(-3)|÷2;3)解方程:4x-3(5-x)=2;4)解方程:删除此题19.1)计算:-7×(-1/3)÷(4/5);2)删除此题3)解方程:3x+3=2x+7;4)解方程:6x-2=4x+10.20.1)-0.2(x-5)=1;2)删除此题21.解方程:4x+5=9.22.3x=-12.23.1)0.5x-0.7=5.2-1.3(x-1);2)5x+2(3x-7)=9-4(2+x);3)2x+3(x+1)=5-4(x-1);4)删除此题24.解方程:x=21/6.25.解方程:-2x+5=3x+4.26.1)5x=27;2)删除此题27.解方程:x^2+3x-4=0.28.当k=3时,式子比值少3.29.I)7.5y=14;II)删除此题。

初中数学:一元一次方程习题精选(附参考答案)

初中数学:一元一次方程习题精选(附参考答案)

初中数学:一元一次方程习题精选(附参考答案)1.下列式子中,是一元一次方程的是( )A .x +4>2B .x+1xC .x -3=y +5D .y +2=722.已知(m -3)x |m -2|+6=0是关于x 的一元一次方程,则m 的值为( )A .1B .2C .3D .1或33.(2022·海南)若代数式x +1的值为6,则x 等于( )A .5B .-5C .7D .-74.根据等式的性质,下列变形正确的是( )A .由-13x =23y ,得x =2yB .由3x =2x +2,得x =2C .由2x -3=3x ,得x =3D .由3x -5=7,得3x =7-55.方程3x =2x +7的解是( )A .x =4B .x =-4C .x =7D .x =-7 6.下列解方程的步骤中正确的是( )A .由x -5=7,可得x =7-5B .由8-2(3x +1)=x ,可得8-6x -2=xC .由16x =-1,可得x =-16D .由x−12=x 4-3,可得2(x -1)=x -3 7.如果单项式-xy b +1与12x a +2y 3是同类项,那么关于x 的方程ax +b =0的解为( )A .x =1B .x =-1C .x =2D .x =-28.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目,其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问:木长多少尺?设木长x尺,则可列方程为()(x+4.5)=x-1A.12B.1(x+4.5)=x+12(x+1)=x-4.5C.12(x-1)=x+4.5D.129.一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g.设蛋白质、脂肪的含量分别为x g,y g,可列出方程为()A.5x+y=302y=30B.x+52C.3x+y=302D.x+3y=30210.古代中国的数学著作《九章算术》中有一题,其大意是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两),今有干丝12斤,问:原有生丝多少?”则原有生丝为______斤.11.《孙子算经》中有个问题:若三人共车,余两车空;若两人共车,剩九人步.问:人与车各几何?设有x辆车,则根据题意可列出方程为()A.3(x+2)=2x-9B.3(x+2)=2x+9C.3(x-2)=2x-9D.3(x-2)=2x+912.若关于x的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是() A.x=0B.x=3C.x=2D.x=-313.小丽同学在做作业时,不小心将方程2(x-3)-■=x+1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x=9,请问这个被污染的常数■是()A .4B .3C .2D .1参考答案1.下列式子中,是一元一次方程的是( D )A .x +4>2B .x+1xC .x -3=y +5D .y +2=722.已知(m -3)x |m -2|+6=0是关于x 的一元一次方程,则m 的值为(A )A .1B .2C .3D .1或33.若代数式x +1的值为6,则x 等于( A )A .5B .-5C .7D .-7解析:∵代数式x +1的值为6,∴x +1=6,解得x =5.故选A.4.根据等式的性质,下列变形正确的是( B )A .由-13x =23y ,得x =2yB .由3x =2x +2,得x =2C .由2x -3=3x ,得x =3D .由3x -5=7,得3x =7-55.方程3x =2x +7的解是( C )A .x =4B .x =-4C .x =7D .x =-7解析:3x =2x +7,移项,得3x -2x =7,合并同类项,得x =7.故选C.6.下列解方程的步骤中正确的是( B )A .由x -5=7,可得x =7-5B .由8-2(3x +1)=x ,可得8-6x -2=xC .由16x =-1,可得x =-16D .由x−12=x 4-3,可得2(x -1)=x -37.如果单项式-xy b +1与12x a +2y 3是同类项,那么关于x 的方程ax +b =0的解为( C )A .x =1B .x =-1C .x =2D .x =-28.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目,其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问:木长多少尺?设木长x 尺,则可列方程为( A )A .12(x +4.5)=x -1B .12(x +4.5)=x +1C .12(x +1)=x -4.5D .12(x -1)=x +4.59.一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g .设蛋白质、脂肪的含量分别为x g ,y g ,可列出方程为( A )A .52x +y =30B .x +52y =30C .32x +y =30D .x +32y =30 解析:设蛋白质、脂肪的含量分别为x g ,y g ,则碳水化合物的含量为(1.5x )g. 由题意,得x +1.5x +y =30,即52x +y =30.故选A.10. 古代中国的数学著作《九章算术》中有一题,其大意是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两),今有干丝12斤,问:原有生丝多少?”则原有生丝为967斤.解析:设原有生丝x 斤.依题意,得3030−31216=x 12 解得x =967.故答案为967.11.《孙子算经》中有个问题:若三人共车,余两车空;若两人共车,剩九人步.问:人与车各几何?设有x 辆车,则根据题意可列出方程为( )A .3(x +2)=2x -9B .3(x +2)=2x +9C .3(x -2)=2x -9D .3(x -2)=2x +912.若关于x 的方程mx m -2-m +3=0是一元一次方程,则这个方程的解是( A )A .x =0B .x =3C .x =2D .x =-3 13.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是( C )A .4B .3C .2D .1。

一元一次方程练习题及答案

一元一次方程练习题及答案

一元一次方程练习题及答案篇1:一元一次方程练习题及答案一元一次方程练习题及答案一、选择题(每小题3分,共30分)1.下列方程是一元一次方程的是 ( )A.x+2y=5B. =2C.x2=8x-3D.y=12.下列方程中,解是x=2的是 ( )A.2x-2=0B. x=4C.4x=2D. -1=3.将方程5x-1=4x变形为5x-4x=1,这个过程利用的性质是( )A.等式性质1B.等式性质2C.移项D.以上说法都不对4.方程3- =1变形如下,正确的是 ( )A.6-x+1=2B.3-x+1=2C.6-x+1=1D.6-x-1=25.如果x=-8是方程3x+8= -a的解,则a的值为 ( )A.-14B.14C.30D.-306.某工作,甲单独完成需4天,乙单独完成需8天,现甲先工作1天后和乙共同完成余下的工作,甲一共做了 ( )A.2天B.3天C.4天D.5天7.小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款 ( )A.106元B.102元C.111.6元D.101.6元8.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为 ( )A.105元B.100元C.108元D.118元9.某工地调来72人挖土和运土,已知3人挖的±1人恰好能全部运走,怎样调配劳动力才能使挖出来的土能够及时运走且不窝工,解决此问题可设x人挖土,其他人运土,列方程(1) =3;(2)72-x= ;(3) =3;(4)x+3x=72,上述所列方程正确的是( )A.1个B.2个C.3个D.4个10.某轮船在两个码头之间航行,顺水航行需4h,逆水航行需6h,水流速度是2km/h,求两个码头之间的距离,我们可以设两个码头之间的距离为xkm,得到方程 ( )A. =B. -2= +2C. - =2D. = -2二、填空题(每小题4分,共24分)11.若2的2倍与3的差等于2的一半,则可列方程为 .12.写出一个以x=- 为解的一元一次方程13.已知5x+3=8x-3和 = 这两个方程的解是互为相反数,则a= .14.小强的速度为5千米/时,小刚的速度为4千米/时.两人同时出发,相向而行.经过x小时相遇,则两地相距千米.15.某酒店为招揽生意,对消费者实施如下优惠:凡订餐5桌以上,多于5桌的部分按定价的`7折收费.小叶集团公司组织工会活动,预定了10桌,缴纳现金2550元,那么每桌定价是元.16.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:(1)稿费低于800元的不纳税;(2)稿费高于800元,又不高于4000元,应纳超过800元的那一部分稿费的14%的税;(3)稿费高于4000元,应缴纳全部稿费的11%的税.某作家缴纳了280元税,那么他获得的稿费是元.三、解答题(共66分)17.(6分)解下列方程:(1)4x-2(x-3)=x; (2)x- -1.18.(6分)当x取何值时,代数式和x-2是互为相反数?19.(6分)若代数式3a3b4-5n“与-6a6-(m+1)bm-1是同类项,求m2-5mn的值.20.(8分)如图,小明将一个正方形纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?21.(8分)一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,则两队合作,几个月可以完工?22.(10分)某市按以下规定收取每月水费:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费.如果某居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水?23.(10分)小强、小芳、小亮在郊游,看到远处一列火车匀速通过一个隧道后,产生了以下对话.各位同学,请根据他们的对话求出这列火车的长.24.(12分)温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台.现在决定给武汉8台,南昌6台.每台机器的运费如下表.设杭州运往南昌的机器为x台.(1)用x的代数式来表示总运费(单位:百元);(2)若总运费为8400元,则杭州运往南昌的机器应为多少台?终点起点南昌武汉温州厂 4 8杭州厂 3 5(3)试问有无可能使总运费是7400元?若有可能,请写出相应的调运方案;若无可能,请说明理由.参考答案:1.D2.D3.A4.A5.B6.B7.D8.C9.B 10.B 11.2x-3= x 12.略 13.24 14.9x 15.30016.2800 17.(1)x=-6 (2)x=- 18.解:由题意,得 +x-2=0 解得x=219.解:由题意解得:m=2,n= . 把m=2,n= 代入m2-5mn得原式=22-5×2× =-2.20.解:设了正方形边长为x厘米,由题意,得4x=5(x-4) 解得x=20所以4×20=80答:每一个长条的面积为80平方厘米.21.解:设两队合作2个月完成,由题意,得x=1解得x=5答:两队合作,5个月可以完工.22.解:(1)∵1.5>1.2 ∴用水量超过20立方米. 设超过了x立方米1.2×20+2x=1.5(20+x) 解得x=12. ∴1.2×10+20=32. 答:这个月他共用了32立方米水.23.解:设火车的长为x米,由题意,得 = 解得x=100.答:这列火车长100米.24.解:(1)总运费为4(6-x)+8.(4+x)+3x+5(4-x)=2x+76.(2)2x+76=84. x=4.答:运往南昌的机器应为4台.(3)若2x+76=74,解得x=-1.∵x不能为负数,∴不存在.答:略.篇2:一元一次方程的练习题及答案一元一次方程的练习题及答案一、填空题.1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式 x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).A.0B.1C.-2D.-10.方程│3x│=18的解的情况是( ).A.有一个解是6B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足( ).A.a≠ ,b≠3B.a= ,b=-3C.a≠ ,b=-3D.a= ,b≠-312.把方程的分母化为整数后的方程是( ).13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).A.增加10%B.减少10%C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A.1B.5C.3D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.A.3B.4C.5D.6三、解答题20.解方程: (x-1)- (3x+2)= - (x-1).21.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的`三位数与原三位数的和是1171,求这个三位数.23.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元 4.5元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)24.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).参考答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3. (点拨:解方程 x-1=- ,得x= )4. x+3x=2x-65.y= - x6.525 (点拨:设标价为x元,则 =5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x( + )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.22.解:(1)由已知可得 =0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元) (2)设王大妈实际乘车里程数为x千米,根据题意,得 =66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.篇3:一元一次方程同步练习题及答案一元一次方程同步练习题及答案一、选择题1、方程3x+6=2x-8移项后,正确的是( )A.3x+2x=6-8B.3x-2x=-8+6C.3x-2x=-6-8D.3x-2x=8-62、方程7(2x-1)-3(4x-1)=11去括号后,正确的.是A.14x-7-12x+1=11B.14x-1-12x-3=11C.14x-7-12x+3=11D.14x-1-12x+3=113、如果代数式与的值互为相反数,则的值等于()A.B.C.D.4、如果与是同类项,则是()A.2B.1C.D.05、已知矩形周长为20cm,设长为cm,则宽为()A.B.C.D.二、填空题1、方程2x-0.3=1.2+3x移项得.2、方程12-(2x-4)=-(x-7)去括号得.3、若︱a﹣1︱+(b+2)2=0,则ab=.4、若3x+2与﹣2x+1互为相反数,则x-2的值是.5、若2(4a﹣2)﹣6=3(4a﹣2),则代数式a2﹣3a+4=.三、解答题1、解下列方程(1)3(2x+5)=2(4x+3)-3(2)4y﹣3(20﹣y)=6y﹣7(9﹣y)(3)7(2x-1)-3(4x-1)=4(3x+2)-11、观察方程[(x-4)-6]=2x+1的特点,你有好的解法吗?写出你的解法.【知能升级】1、已知a是整数,且a比0大,比10小.请你设法找出a的一些数值,使关于x的方程1―ax=―5的解是偶数,看看你能找出几个.2、解方程(1)|4x-1|=7(2)2|x-3|+5=13答案一、选择题1、C2、C3、D4、A5、B二、填空题1、2x-3x=1.2+0.32、12-2x+4=-x+73、14、-55、8三、解答题1、(1)x=6(2)y=(3)x=2、x=-9【知能升级】1、a=1,2,3,4,62、(1)x=2,(2)x=7,-1。

一元一次方程(题型篇)-初中数学题型大全

一元一次方程(题型篇)-初中数学题型大全

一元一次方程题型一:一元一次方程与它的解例1.1下列方程:①3x﹣y=2:②x+1x+2=0;③2x=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦21136x+=x.其中一元一次方程有()A.5个B.4个C.3个D.2个【详解】解:下列方程:①3x﹣y=2:②x+1x+2=0;③2x=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦21136x+=x.其中一元一次方程有③④⑦,共3个.故选:C.变式1.11. 若关于x的方程(2-m)x2+3mx-(5-2m)=0是一元一次方程,则m的值是()A. 2B. 0C. 1D. 52【答案】A【解析】【分析】根据一元一次方程的定义,最高次数是一,不能含有二次项,列式求出m 的值.【详解】解:因为方程是关于x的一元一次方程,则不可能含有x2项,所以2-m=0,所以m=2.故选:A.【点睛】本题考查一元一次方程的定义,解题的关键是掌握一元一次方程的定义.②一元一次方程的解例1.2检验x =1是不是下列方程的解.(1)x 2-2x =-1; (2)x +2=2x +1.【详解】(1)把x =1代入方程,左边=12-2×1=-1,右边=-1,所以 左边=右边,所以x =1是方程x 2-2x =-1的解.(2)把x =1代入方程,左边=1+2=3,右边=2×1+1=3,所以 左边=右边,可得x =1是方程x +2=2x +1的解.变式1.22. 若x=﹣3是方程x+a=4的解,则a 的值是( )A. 7B. 1C. ﹣1D. ﹣7 【答案】A【解析】【详解】解:∵x =﹣3是方程x +a =4的解﹣﹣-3+a =4,移项得:a =4+3﹣a =7﹣故选A﹣ 题型二:等式的性质下列运用等式性质正确的是( )A .如果a b =,那么a c b c +=-B .如果23a a =,那么3a =C .如果a b c c =,那么a b =D .如果a b =,那么a b c c= 【详解】A :如果a =b ,那么当c =0时,a +c =b -c ;当c ≠0时,a +c ≠b -c ,故A 错误;B :如果23a a =,那么a =0或a =3,故B 错误;C :如果a b c c=,那么a b =,故C 正确; D :没有说明c 不等于0,故D 错误;故答案选择C .变式3. 下列变形正确的有( )①由6x=5x-2,得x=2;﹣由1223x x+-=,得x+1=x-2;﹣由-6x=6y,得x=y;﹣从等式ax=ab变形得到x=b,必须满足条件a≠0;﹣由12x2+14y2=14y2-12x2,得x2=0.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据一元一次方程的运算法则进行计算,然后判断即可.【详解】解:①由6x=5x-2,得x=-2,故①错误;②由1223x x+-=,得3(x+1)=2(x-2),故②错误;③由-6x=6y,得-x=y,故③错误;④从等式ax=ab变形得到x=b,必须满足条件a≠0,④正确;⑤由12x2+14y2=14y2-12x2,得x2=0,⑤正确;故正确的是﹣﹣,故选:B.【点睛】本题考查了解一元一次方程,掌握运算法则是解题关键.题型三:求解一元一次方程的基本步骤例3.1解下列方程(1)5m -8m -m =3-11;(2)3x +3=2x +7【详解】(1)合并同类项,得 :﹣4m =﹣8,系数化为1,得: m =2,(2)移项,得:3x ﹣2x =7﹣3,合并同类项,得: x =4变式3.14. 解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x .【答案】(1)x=2;(2)x=2【解析】【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程移项合并,把x 系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. ②去括号例3.2解方程:122(1)(1)23x x x x ⎡⎤---=+⎢⎥⎣⎦. 【详解】[]22(1)(1)3x x x x ---=+, 222133x x x x -+-=+, 解得:52x =- 变式3.25. 解下列方程:(1)2(x-1)=6;(2)4-x=3(2-x);(3)5(x+1)=3(3x+1)【答案】(1)x=4;(2)x=1;(3)x=1 2【解析】【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解;(2)方程去括号,移项合并,将未知数系数化为1,即可求出解;(3)方程去括号,移项合并,将未知数系数化为1,即可求出解;【详解】(1)去括号,得2x-2=6.移项,得2x=8.系数化为1,得x=4.(2)去括号,得4-x=6-3x.移项,得-x+3x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(3)去括号,得5x+5=9x+3.移项,得5x-9x=3-5.合并同类项,得-4x=-2.系数化为1,得x=1 2 .【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.③去分母例3.3解方程:(1)2121 43x x-+=-.(2)52210712210y y y-+--=-.【详解】(1)212143x x -+=-, 两边同乘以12去分母,得3(21)4(2)12x x -=+-,去括号,得634812x x -=+-,移项,得648123x x -=-+,合并同类项,得21x =-,系数化为1,得12x =-; (2)52210712210y y y -+--=-, 两边同乘以10去分母,得105(52)5(2)(107)y y y --=+--,去括号,得102510510107y y y -+=+-+,移项,得105710101025y y y --=--+,合并同类项,得215y -=,系数化为1,得152y =-. 变式3.36. 解方程:(1)321123x x -+-=; (2)31322322105x x x +-+-=-. 【答案】(1)17x =-;(2)716x =. 【解析】【分析】(1)方程两边都乘以6,再去括号,移项,整理可得:17x -=,从而可得答案;(2)方程两边都乘以10,再去括号,移项,整理可得:167x =,从而可得答案.【详解】解:(1)去分母,得3(3)2(21)6x x --+=,去括号,得39426x x ---=,合并同类项,得17x -=,系数化为1,得17x =-;(2)去分母,得5(31)20322(23)x x x +-=--+,去括号,得155203246x x x +-=---,移项,得153426520x x x -+=---+,合并同类项,得167x =,系数化为1,得716x =. 【点睛】本题考查的是一元一次方程的解法,掌握去分母,去括号,解一元一次方程是解题的关键.题型四:一元一次方程的实际应用例4.1一个两位数,个位数字与十位数字的和为6,若调换位置则新数是原数的47,原来的两位数是( )A .24B .42C .15D .51【详解】解:设这个两位数十位上的数字为x ,则个位上的数字为()6x -,根据题意得:()()41061067x x x x +-=-+⎡⎤⎣⎦,解得4x =, ∴原数为42,故选:B .变式4.17. 有一个两位数,其数字之和是8,个位上的数字与十位上的数字互换后所得新数比原数小36,求原数.分析:设个位上和十位上的数字分别为x 、y ,则原数表示为________,新数表示为________;题目中的相等关系是:①________;②_______,故列方程组为_______.【答案】 ①. 10y x + ①. 10x y + ①. 8x y += ①.()()101036x y x y +-+= ①. 8(10)(10)36x y x y x y +=⎧⎨+-+=⎩【解析】【分析】设个位上和十位上的数字分别为x ,y ,则可分别表示原数和新数,再找出两个等量关系,列方程组;【详解】依题意,原数表示为10y x +,新数表示为10x y +,两个等量关系为:①个位上的数字+十位上的数字=8;②新数+36=原数;列方程组为8103610x y x y y x ⎧+=⎨++=+⎩; 故答案为:10y x +;10x y +;8x y +=;()()101036x y x y +-+=;8(10)(10)36x y x y x y +=⎧⎨+-+=⎩. 【点睛】本题主要考查了由实际问题抽象出二元一次方程组,准确计算是解题的关键.②行程问题例4.2有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第三天走的路程为( )A .96里B .48里C .24里D .12里详解】解:设此人第三天走的路程为x 里,则其它五天走的路程分别为4x 里,2x 里,12x 里,14x 里,18x 里,依题意,得:4x+2x+x+12x+14x+18x=378,解得:x=48故选:B.变式4.28. 甲、乙两站的路程为360千米,一列慢车从甲站开出,每小时行驶48千米;一列快车从乙站开出,每小时行驶72千米.(1)两列火车同时开出,相向而行,经过_____小时相遇;(2)快车先开25分钟,两车相向而行,慢车行驶了______小时两车相遇;(3)若两车同时开出,同向而行,_______小时后,两相距720千米.【答案】 ①. 3 ①. 114①. 15或45【解析】【分析】(1)设x小时后,两车相遇,根据两车一共行驶了360千米列出方程,即可解题;(2)设x小时后,两车相遇,根据快车先走25分钟,即可计算快车行驶距离,根据共行驶了360千米列出方程,即可解题;(3)设x小时后,快车与慢车相距720千米,分慢车在快车的后面,快车在慢车的后面两种情况,列方程求解.【详解】解:(1)设x小时后,两车相遇,由题意得:72x+48x=360,解得x=3,∴经过3小时两车相遇,故答案为:3;(2)设慢车行驶了x小时,两车相遇,由题意得:72(x+2560)+48x=360,解得x=114,∴慢车行驶了114小时两车相遇,故答案为:114;(3)设x小时后,快车与慢车相距720千米,若慢车在快车的后面,72x-48x=720-360,解得x=15,若快车在慢车的后面,72x-48x=720+360,解得x=45,∴15小时或45小时后快车与慢车相距720千米,故答案为:15或45.【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系是解决问题的关键.③配套问题例4.3一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌的桌面50个或制作桌腿300条,现有5立方米木料,用________立方米木料做桌面,恰好都配成方桌()A.1B.2C.3D.4【详解】设用x立方米木料做桌面,则可做50x个桌面,剩下的(5-x)立方米木料做桌腿,可做300(5-x)条桌腿.因为桌腿的数量是桌面数量的4倍,所以可列方程4×50x=300(5-x).解得x=3故选:C变式4.39. 某圆柱形饮料瓶由铝片加工做成,现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做几个瓶底?(2)这些铝片一共有多少张?(3)若一个瓶身与两个瓶底配成一套,则从这些铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多? 【答案】(1)80个(2)15张(3)6张;9张 【解析】【分析】(1)列方程求解即可得到结果; (2)用总量除以(1)的结果即可;(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多,代入值计算即可;【详解】解:(1)设一张这样的铝片可做x 个瓶底. 根据题意,得9001200(20)x x =-. 解得80x =.2060x -=.答:一张这样的铝片可做80个瓶底. (2)12001580=(张) 答:这些铝片一共有15张.(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多.根据题意,得26080(15)a a ⨯⋅=-. 解得6a =.则159a -=.答:从这些铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多. 【点睛】本题主要考查了一元一次方程的应用,准确理解题意是解题的关键.④工程问题例4.4一项工程甲单独做需要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A .1404050x x +=+B .41404050x+=⨯ C .414050x +=D .41404050x x++= 详解】解:设两人合作x 天完成这项工程,根据题意可列的方程:41404050x x ++= 故选:D .变式4.410. 两个工程队共同铺设一段长为1350 km 的天然气管道.甲工程队每天铺设5 km ,乙工程队每天铺设7 km ,甲工程队先施工30天后,乙工程队也开始施工,乙工程队施工多少天后能完成这项工程?【答案】乙工程队施工100天后能完成这项工程. 【解析】【分析】设乙工程队施工x 天后能完成这项工程,利用工作量的和等于1350km 列方程解答即可.【详解】设乙工程队施工x 天后能完成这项工程, 依题意,得30×5+(5+7)x =1350, 解得x =100.答:乙工程队施工100天后能完成这项工程.【点睛】此题考查一元一次方程的实际运用,掌握工作总量、工作时间、工作效率之间的关系是解决问题的关键.⑤比赛问题例4.5在世界杯足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是( )A .两胜一负B .一胜两平C .一胜一平一负D .一胜两负 【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y ,∵该球队小组赛共积5分, ∴y =5-3x , 又∵0≤y ≤3, ∴0≤5-3x ≤3, ∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场. 故选B .变式4.511. 为了促进全民健身运动的开展,某市组织了一次足球比赛,下表记录了比赛过程中部分代表队的积分情况.(2)参加此次比赛的F 代表队完成10场比赛后,只输了一场,积分是23分,请你求出F 代表队胜出的场数. 【答案】(1)3;(2)7 【解析】【分析】(1)根据B 代表队的积分情况可直接得出胜一场的积分情况(2)先根据A,B,C,D 代表队的积分情况分别算出胜一场,平一场,负一场各自的积分情况,再列一元一次方程求解即可.【详解】解:(1)根据B 代表队的积分情况可得胜一场的积分情况:1863÷=(分)(2)由A 代表队的积分情况得出平一场的积分情况:163511-⨯÷=()(分) 由C 代表队的积分情况得出负一场的积分情况:()11332110-⨯-⨯÷=(分)设F 代表队胜出的场数为x ,则平场为(9-x )场,列方程得:3x+1⨯(9-x)=23解方程得:x=7答:F 代表队胜出的场数为7场.【点睛】本题是典型的比赛积分问题,清楚积分的组成部分及胜负积分的规则是解本题的关键.⑥销售问题例4.6一件衣服进价120元,按标价的八折出售仍能赚32元,则标价是__元.【详解】解:设标价为x元,x-=,由题意可知:0.812032x=,解得:190故答案为:190变式4.612. 一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是()A. 120元B. 125元C. 135元D. 140元【答案】B【解析】【分析】设每件的成本价为x元,列方程求解即可.【详解】设每件的成本价为x元,⨯+=+,x x0.8(140%)15解得x=125,故选:B.【点睛】此题考查一元一次方程的实际应用—销售问题,正确理解题意是列方程解决问题的关键.⑦几何问题例4.7如图,长方形ABCD被分成六个大小不同的正方形,现在只知道中间一个最小的正方形的面积为1,求长方形ABCD的面积.【详解】设第四个大正方形的边长为x (如图所示).111=⨯,故最小的正方形的边长为1;21111x x -=+++ 231x x -=+4x =长方形的长:()244113⨯++= 长方形的宽:43411++= 长方形的面积:1311143⨯=.变式4.713. 如图,每个圆纸片的面积都是30,圆纸片A 与B ,B 与C ,C 与A 的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为( )A. 54B. 56C. 58D. 69【答案】C 【解析】【分析】根据图形可知:三个圆纸片覆盖的总面积+A 与B 的重叠面积+B 与C 的重叠面积+C 与A 的重叠面积−A 、B 、C 共同重叠面积=每个圆纸片的面积×3,由此等量关系列方程求出A 、B 、C 共同重叠面积,从而求出图中阴影部分面积. 【详解】解:设三个圆纸片重叠部分的面积为x , 则73+6+8+5−x =30×3, 得x =2.所以三个圆纸片重叠部分的面积为2.图中阴影部分的面积为:73−(6+8+5−2×2)=58. 故选:C .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出式子,再求解.⑧水电问题例4.8为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费x 元,超过5方,超过部分每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于x 的方程,正确的是( )A .56(2)56x x +-=B .56(2)56x x ++=C .11(2)56x +=D .11(2)6256x +-⨯= 解:依题意,得:5(115)(2)56x x +-⨯+=, 即56(2)56x x ++=. 故选:B .变式4.814. 节约用水.市政府决定对居民用水实行三级阶梯水价:(2)若小明家去年2月份用水量是26立方米,缴费64.4元,请求出用水在22~30立方米之间的收费标准a元/立方米?(3)在(2)的条件下,若小明家去年8月份用水量增大,共缴费87.4元,请求出他家8月份的月水量是多少立方米?【答案】(1)46;(2)3.45;(3)32【解析】【分析】(1)因为20立方米不超过22立方米,所以直接按2.3元计算即可;(2)因为26立方米超过22立方米且不超过30立方米,所以22×2.3+(26−22)×a=64.4,根据方程即可求出a的值;(3)先根据第(2)问中得出的结果计算30立方米的费用,从而确定属于第几个阶梯,再列方程解决.【详解】(1)∵20<22∴20立方米应缴费为20×2.3=46故答案为46.(2)∵22<26<30∴根据题意有22×2.3+(26−22)×a=64.4解得a=3.45故用水在22~30立方米之间的收费标准为3.45元/立方米.(3)若用水为30立方米,则收费为22×2.3+8×3.45=78.2<87.4∴小明家去年8月份用水量超过了30立方米.设小明家去年8月份用水量为x立方米,由题意可得22×2.3+8×3.45+(x−30)×4.6=87.4解得x=32答:小明家去年8月份用水量为32立方米.【点睛】本题考查的是一元一次方程的应用,理解三级阶梯水价收费标准是重点,根据等量关系列方程求解是关键.⑨方案问题例4.9李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m ,如图所示(单位:m ,卫生间的宽未定,设宽为x m ),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m ,其中卫生间可免费赠送一半的面积; 方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x =时,通过计算说明哪种方案更优惠,优惠多少元. 【详解】解:(1)该户型商品房的面积为:2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元;按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元); 方案二总金额为2280009500247000x +=(元). 方案二比方案一优惠2500002470003000-=(元).所以方案二更优惠,优惠3000元.变式4.915. 一位商人来到一座新城市,想租一套房子,A 家房东的条件是先交2000元,每月租金1200元;B 家房东的条件是每月租金1400元. (1)这位商人想在这座城市住半年,则租哪家的房子划算? (2)如果这位商人想住一年,租哪家的房子划算? (3)这位商人住多长时间时,租两家的房子租金一样?【答案】(1)住半年时,租B 家的房子划算;(2)住一年时,租A 家的房子划算;(3)这位商人住10个月时,租两家的房子租金一样. 【解析】【分析】(1)分别根据A 、B 两家租金的缴费方式计算A 、B 两家半年的租金,然后比较即得答案;(2)分别根据A 、B 两家租金的缴费方式计算A 、B 两家一年的租金,然后比较即得答案;(3)根据A 家租金(2000+1200×租的月数)=B 家租金(1400×租的月数)设未知数列方程解答即可.【详解】解:(1)如果住半年,交给A 家的租金是1200620009200⨯+=(元), 交给B 家的租金是140068400⨯=(元),因为9200>8400,所以住半年时,租B 家的房子划算.(2)如果住一年,交给A 家的租金是120012200016400⨯+=(元), 交给B 家的租金是14001216800⨯=(元),因为16400<16800,所以住一年时,租A 家的房子划算. (3)设这位商人住x 个月时,租两家的房子租金一样, 根据题意,得120020001400x x +=. 解方程,得10x =.答:这位商人住10个月时,租两家的房子租金一样.【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、明确A 、B 两家租金的缴费方式是解题的关键.⑩日历问题例4.101.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由. 【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯, ∴十字框中五个数的和是正中心数的5倍. (2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍. (3)十字框中五个数的和不能等于180. ∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411变式4.1016. 如图,将连续的奇数1、3、5、7 …,排列成如下的数表,用十字框框出5个数.问:①十字框框出5个数字的和与框子正中间的数17有什么关系?②若将十字框上下左右平移,可框住另外5个数,若设中间的数为a ,用代数式表示十字框框住的5个数字之和;③十字框框住的5个数字之和能等于2000吗?若能,分别写出十字框框住的5个数;若不能,请说明理由.【答案】(1)十字框框出5个数字的和=数17的5倍;(2)5,a (3)十字框框住的5个数字之和能等于2000.理由见解析.【解析】【分析】(1)算出这5个数的和,和31进行比较;(2)由图易知同一竖列相邻的两个数相隔12,横行相邻的两个数相隔2.用中间的数表示出其他四个数,然后相加即可;(3)求出(2)中的代数式的和等于5a ,可列方程求出中间的数,然后根据方程的解的情况就可以作出判断.【详解】解:(1) 5+15+17+19+29=85=517,⨯故十字框框出5个数字的和=数17的5倍;(2) a -12+a -2+a +a +2+a +12=5a ,故5个数字之和为5a ;(3)不能,5a =2000,解得a =400.而a 不能为偶数,∴十字框框住的5个数字之和能等于2000.实战练17. 下列方程中,解是3x =的方程是( )A. 684x x =+B. ()527x x -=-C. ()3323x x -=-D.()211020.1x x -=+ 【答案】D【解析】【分析】使方程左右两边相等的未知数的值是方程的解.把x =3代入以上各个方程进行检验,可得到正确答案.【详解】解:对于A ,x =3代入方程,左边=18,右边=20,左边≠右边,故此选项不符合题意;对于B ,x =3代入方程,左边=5,右边=4,左边≠右边,故此选项不符合题意; 对于C ,x =3代入方程,左边=0,右边=3,左边≠右边,故此选项不符合题意; 对于D ,x =3代入方程,左边=50,右边=50,左边=右边,故此选项符合题意; 故选:D .【点睛】本题考查了一元一次方程的解,解题的关键是根据方程的解的定义.使方程左右两边的值相等的未知数的值是该方程的解.18. 下列说法中,正确的是( )A. 若ca=cb ,则a=bB. 若a b c c=,则a=b C. 若a 2=b 2,则a=bD. 由4-532x x =+,得到4352x x -=-+【答案】B【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】A. 因为c=0时式子不成立,所以A 错误;B. 根据等式性质2,两边都乘以c ,即可得到a=b ,所以B 正确;C. 若a 2=b 2,则a=b 或a=−b ,所以C 错误;D.根据等式的性质1,两边同时减去3x ,再加上5得4352x x -=+,所以D 错误.【点睛】本题主要考查了等式的性质.理解等式的基本性质即可直接利用等式的基本性质进而判断得出.19. 解方程21101136x x ++-=时,去分母、去括号后,正确的结果是( ) A. 411011x x +-+= B. 421011x x +--=C. 421016x x +--=D. 421016x x +-+= 【答案】C【解析】【分析】对原方程按要求去分母,去括号得到变形后的方程,再和每个选项比较,选出正确选项. 【详解】21101136x x ++-=, 去分母,两边同时乘以6为:()()2211016x x +-+=去括号为:421016x x +--=.故选:C .【点睛】此题考查解一元一次方程的去分母和去括号,注意去分母是给方程两边都乘以分母的最小公倍数;去括号时,括号前是负号括在括号内的各项要变号. 20. 下列去分母错误的是( ) A. 232y y -=,去分母,得2y =3(y +2) B.235136x x +-==0,去分母,得2(2x +3)-5x -1=0C. 23(y-8)=9,去分母,得2(y-8)=27D. 151103237x x-+-=,去分母,得21(1-5x)-14=6(10x+3)【答案】B【解析】【分析】将各项方程去分母得到结果,即可做出判断.【详解】解:A、由232y y-=得2y=3(y+2),本选项正确;B、235136x x+-==0,得:2(2x+3)−(5x−1)=0,本选项错误;C、23(y-8)=9,得:2(y−8)=27,本选项正确;D、由151103237x x-+-=得21(1−5x)−14=6(10x+3),本选项正确;故选:B.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.21. 某商店换季准备打折出售某商品,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的成本为()A. 230元B. 250元C. 270元D. 300元【答案】B【解析】【分析】设该商品的售价为x元,根据按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,列方程求出售价,继而可求出成本.【详解】解:设该商品的售价为x元,由题意得,0.75x+25=0.9x-20,解得:x=300﹣则成本价为:300×0.75+25=250(元).故选:B.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.22. 某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.【答案】12【解析】【分析】找到关键描述语,进而找到所求的量的等量关系.得到不等式6x-2(15-x )>60,求解即可.【详解】设答对x 道.故6x-2(15-x )>60解得:x >908. 所以至少要答对12道题,成绩才能在60分以上.【点睛】考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.23. 一个两位数个位上的数是1,十位上的数是x ,把1与x 对调,若新两位数比原两位数小18,则x 的值为_____________【答案】3【解析】【分析】个位上的数是1,十位上的数是x ,则这个数为10x+1;把个位上的数与十位上的数对调得到的数为10+x ,根据新两位数比原两位数小18列出方程,解出即可.【详解】根据题意列方程得:10x+1-18=10+x解得:x=3故答案为:3【点睛】此题主要考查了一元一次方程的应用,此题的关键表示出这个数,据题意列出方程解决问题.24. 解下列方程:(1)36156x x -=--(2)1.5 1.510.62x x --= 【答案】(1)1x =-;(2)7=12x 【解析】 【分析】(1)根据解方程步骤,移项,合并同类项,把x 系数化为1,即可求出解; (1)根据解方程步骤,方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.【详解】解:(1)移项得:36156x x +=-+,合并同类项得:99x =-,解得:1x =-;(2)去分母得:2?1.50.6(1.5) 1.2x x --=,去括号得:30.90.6 1.2x x -+=,移项得:30.6 1.20.9x x +=+,合并同类项得:3.6 2.1x =, 解得:7=12x . 【点睛】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.25. 解下列方程:(1)5(x +8)-5=6(2x -7)(2)2x -3(x -3)=12+(x -4).【答案】(1)x =11;(2)12x =【解析】【分析】据去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可;【详解】(1)5(x +8)-5=6(2x -7),去括号,得5x +40-5=12x -42,移项,得5x -12x =-42-40+5,合并同类项,得-7x =-77,系数化为1,得x =11;(2)2x -3(x -3)=12+(x -4),去括号,得2x -3x +9=12+x -4,移项,得2x -3x -x =12-4-9,合并同类项,得-2x =-1,系数化为1,得x =12. 【点睛】本题主要考查了解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.26. 某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( )A. ()182812x x -=B. ()1828212x x -=⨯C. ()181412x x -=D. ()2182812x x ⨯-= 【答案】B【解析】【分析】若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,然后根据1个盒身与2个盒底配成一套列出方程即可.【详解】解:若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,由题意可得,18(28-x )=2×12x ,故选:B .【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.27. 一件工程,由甲、乙两个工程队共同合作完成,工期不得超过一个月,甲独做需要50天才能完成,乙独做需要45天才能完成,现甲乙合作20天后,甲队有任务调离,由乙队单独工作,问此工程是否能如期完工.(列方程计算)【答案】此工程能如期完成.【解析】【分析】等量关系为:合作20天的工作量+乙单独完成的剩余的工作量=1,据此列出方程求解.【详解】设剩余工程乙独做需要x 天完成,根据题意可得:()11202014550x ++⨯=, 解得x=7,∵20+7<30∴此工程能如期完成.【点睛】本题考查了一元一次方程的应用,解题的关键是能够了解工作量、工作效率及工作时间之间的关系,难度不大.28. 某商品的进价是2 000元,标价为2 800元,该商品打多少折才能获得12%的利润率?【答案】该商品需打8折才能获得12%的利润率.【解析】【详解】试题分析:设该商品需打x 折才能使利润率为12%,根据等量关系“标价×10x -进价=进价×利润率(利润)”,列出方程,解方程即可. 试题解析:设该商品需打x 折才能使利润率为12%,则根据题意,得2 800×-2 000=2 000×12%.解得x =8.答:该商品需打8折才能获得12%的利润率.29. 甲、乙两人从A ,B 两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行.出发后经3小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A 地问:(1)甲车速度是________千米/小时,乙车速度是_________千米/小时.A ,B 距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程练习题及答案_题型归纳
其实一元一次方程并不难学,关键在于多做题多动手动脑,小编整理了关于一元一次方程练习题及答案,希望同学们可以多多练习和参考!
一元一次方程练习题:
一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式x-1和的值互为相反数.
4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做, 则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).
A.0
B.1
C.-2
D.-
10.方程│3x│=18的解的情况是( ).
A.有一个解是6
B.有两个解,是6
C.无解
D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足( ).
A.a ,b3
B.a= ,b=-3
C.a ,b=-3
D.a= ,b-3
12.把方程的分母化为整数后的方程是( ).
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米, 两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).
A.10分
B.15分
C.20分
D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).
A.增加10%
B.减少10%
C.不增也不减
D.减少1%
15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.
A.1
B.5
C.3
D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).
A.从甲组调12人去乙组
B.从乙组调4人去甲组
C.从乙组调12人去甲组
D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分, 一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.
A.3
B.4
C.5
D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
A.3个
B.4个
C.5个
D.6个
三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分
20.解方程:(x-1)- (3x+2)= - (x-1).
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片, 这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明. 已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.
22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
23.某公园的门票价格规定如下表:
购票人数1~50人51~100人100人以上
票价5元4.5元4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
24.据了解,火车票价按的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为=87.3687(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: 我快到站了吗?乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).
一元一次方程练习题及答案:
一、1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3. (点拨:解方程x-1=-,得x= )
4. x+3x=2x-6
5.y= - x
6.525 (点拨:设标价为x元,则=5%,解得x=525元)
7.18,20,22
8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]
二、9.D
10.B (点拨:用分类讨论法:
当x0时,3x=18,x=6
当x0时,-3=18,x=-6
故本题应选B)
11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+30,b-3,故本题应选D.)
12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、 分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)
13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800 米, 列方程得260t+800=300t,解得t=20)
14.D
15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)
16.D 17.C
18.A (点拨:根据等式的性质2)
三、
20.解:去分母,得
15(x-1)-8(3x+2)=2-30(x-1)
21x=63
x=3
21.解:设卡片的长度为x厘米,根据图意和题意,得
5x=3(x+10),解得x=15
所以需配正方形图片的边长为15-10=5(厘米)
答:需要配边长为5厘米的正方形图片.
22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解得x=3
答:原三位数是437.
23.解:(1) 103100
每张门票按4元收费的总票额为1034=412(元)
可节省486-412=74(元)
(2) 甲、乙两班共103人,甲班人数乙班人数
甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486
解得x=45,103-45=58(人)
即甲班有58人,乙班有45人.
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
此等式不成立,这种情况不存在.
故甲班为58人,乙班为45人.
24.解:(1)由已知可得=0.12
A站至H站的实际里程数为1500-219=1281(千米)
所以A站至F站的火车票价为0.121281=153.72154(元)
(2)设王大妈实际乘车里程数为x千米,根据题意,得=66
解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G 站下的车.
(注:一元一次方程练习题及答案,仅供练习和参考,要想熟练掌握一元一次方程的做题方法,还需同学们勤加练习和思考!祝同学们学习成绩越来越棒,加油!)
初一数学一元一次方程相关链接》》》》
一元一次方程教案
一元一次方程的解法
一元一次方程应用题一元一次方程练习题一元一次方程应用题归类。

相关文档
最新文档