挤塑机螺杆知识[1]

合集下载

挤出机常识与工艺温度螺杆

挤出机常识与工艺温度螺杆

• B结晶性塑料, • 随温度逐渐升高有二个物态特性,且变化都较为突然如: • Tm Td • (熔融温度) (分解温度) 其熔融经历:固态床的形成、破裂、形成大量颗粒漂浮于熔体中,后逐渐融化。
ቤተ መጻሕፍቲ ባይዱ
⑵温度设定原则:
• ①共混合金各组分熔点及其比列:以共混组分熔点为依据, 以连续相熔点为调整范围。 • ②塑料的热性能,如熔融吸热放热、热降解历程及热氧化 难易。 • ③塑料各组分熔点范围内,流动性能及形态变化。 • 如PC/ABS(6:4),PC:熔点230度左右,分解点350 度左右;ABS:熔点180~190度左右,分解点245-290度 左右——因此PC/ABS加工温度230-250度——考虑到其 他助剂,如相容剂,润滑剂的热稳定性等等
• • • • • •
四、螺杆各段螺杆排布与温度设定
• 1、塑料的物理变化特性及温度设定原则:
• • • ⑴塑料的物理变化特性: A非结晶性塑料 随温度逐渐升高有三个物态特性如:
• • • •
高弹态
粘流态
Tg Tf Td (玻璃化温度) ( 熔融温度) (分解温度) 其熔融在剪切流动引起粘性耗散下进行。
挤出机常识与工艺(温度、螺杆)
一.挤出机分类
产品代号 规格参数 说明:例如SHJM-Z40×25×800,指螺杆直径为40mm,长径比 为25,牵引辊筒长为800mm的双螺杆混合塑料挤出改塑薄 膜机。 1、“SH”类别代号,指双螺杆混合型(也有写:SHSJ,SJ指塑 料挤出机) 2、“J”组别代号,指挤出机。 3、“M”指品种代号,指吹塑薄膜机 4、“Z”指辅助代号,指主要机组,另如是“F”指辅助机。 5、“40×25×800”指规格参数,指螺杆有直径为40mm,长径比 为25,牵引辊筒长为800mm。 6、最后一位为厂商识别序号,一般不出现,被省略

挤橡机螺杆基本知识

挤橡机螺杆基本知识

挤橡机螺杆基本知识螺杆的作用是使胶料随螺杆旋转运动逐渐变为直线运动,向机头方向推移,并与机身相配合,压缩生热、软化搅拌,混合胶料。

螺杆是由螺纹和圆柱体组成的。

螺杆沿中心线有长孔,可通冷却水。

螺杆的尾部装在止推轴承内,避免挤橡时产生反作用力把螺杆推出。

螺杆的直径比机身的钢套内径稍小,即螺杆的直径与钢套内表面要有间隙,其间隙一般控制在螺杆直径的0.002~0.004倍。

间隙太小会造成螺杆“扫膛”,产生磨损,甚至产生卡死螺杆的现象;间隙太大胶料回流影响挤出量,生产效率低,还会影响产品品质。

螺杆的螺纹特性螺纹深度与设备生产能力有直接关系,螺纹深度大,在一定压力下,挤出胶料多。

但胶料塑化困难,螺杆强度也差。

螺杆螺纹深度一般控制在螺杆直径的0.18~0.25倍。

螺纹的推进面应该垂直于螺杆的轴线,而推进面的相对面应该有一定的斜度。

相邻螺纹的轴向距离称为螺距,橡胶挤出机螺杆一般为等距不等深双头螺纹螺杆。

螺距之间的容积计算如下:tgФ=L/πDF=h(πD tgФ-e)式中:Ф——螺杆推进面的相对面的斜度L——螺距D——螺杆直径e——螺纹顶峰宽度F——螺距之间的容积螺纹顶峰宽度一般取0.07~0.1倍螺杆直径,其中小规格挤橡机的螺杆可取较大值,而大规格挤橡机的螺杆可取较小值,螺纹顶峰宽度不能取得太小,取得太小顶峰处强度太小;取得太大,将减小螺纹容积。

影响产量,并因摩擦生热引起胶料焦烧。

螺纹的距离一般等于或稍大于螺杆直径。

螺杆的头部有三种形状:平形、半圆形及圆锥形。

现常用的是圆锥形螺杆。

螺杆的长径比螺杆的长径比是螺杆的长度L与螺杆的直径D之比。

螺杆长径比大,也就是螺杆工作部分长,胶料塑化好,混合均匀,胶料受压力大,产品质量好。

但螺杆长易引起胶料焦烧,螺杆加工困难,增加挤出功率。

用于热喂料挤橡机的螺杆一般取长径比4~6倍,用于冷喂料挤橡机的螺杆一般取长径比8~12倍。

螺杆的压缩比螺杆进料端第一个螺距的容积与出料端最后一个螺距的容积之比,称为螺杆压缩比。

挤出机螺杆基础知识讲解

挤出机螺杆基础知识讲解

挤出机螺杆基础知识讲解
1、基础知识挤出机螺杆是由外螺纹和圆柱形构成的。

丝杆沿轴线有长孔,可通冷却循环水。

丝杆的尾端装在止推轴承内,防止挤橡时造成反冲力把丝杆发布。

挤出机螺杆的直徑比整体机身的蒸汽保温管公称直径稍小,即丝杆的直徑与蒸汽保温管内表层要有空隙,其空隙一般调节在丝杆直徑的0.002~0.004倍。

空隙过小会导致丝杆“扫膛”,造成损坏,乃至造成卡住丝杆的状况;空隙很大塑胶粒流回危害挤压量,生产率低,还会继续危害产品质量。

2、挤出机螺杆的外螺纹特点外螺纹深层与机器设备生产量有立即关联,外螺纹深层大,在一定的压力下,挤压塑胶粒多。

但塑胶粒熔融艰难,丝杆抗压强度也差。

丝杆外螺纹深层一般调节在丝杆直徑的0.18~0.25倍。

外螺纹的推动面应当垂直平分丝杆的中心线,而推动面的相对性面应当有一定的倾斜度。

邻近外螺纹的径向间距称之为牙距,塑胶挤出机螺杆一般为定距不一深多头外螺纹丝杆。

3、丝杆的长径比丝杆的长径比是丝杆的长短L与丝杆的直徑D比例。

丝杆长径比大,也就是丝杆工作中一部分长,塑胶粒熔融好,混和匀称,塑胶粒受压力很大,产品品质好。

但丝杆长易造成塑胶粒脆化,丝杆生产加工艰难,提升挤压输出功率。

用以热上料挤橡机的丝杆一般取长径比4~6倍,用以冷上料挤橡机的丝杆一般取长径比8~12倍。

塑料挤出机培训资料

塑料挤出机培训资料

塑料挤出机培训资料挤出成型是塑料成型加工的重要方法之一,具有生产过程连续、应用范围广、生产效率高、投资少及收效快等特点,因此发展很快,应用普遍。

一、塑料挤出成型机械的主要构成与分类(一)、塑料挤出机组的构成1、主机挤出机主机主要由以下几部份组成:1.1挤压系统:主要由螺杆和料筒组成。

它是挤出机的关键部分。

1.2传动系统:其作用是向螺杆提供所需的扭矩和转速。

它主要是由电动机、变速器等组成。

1.3加热冷却系统:其作用是对通过对料筒(螺杆)进行加热或冷却,保证挤压成型过程在工艺要求的温度范围内进行。

它主要由沿料筒外表面所设置的加热器、冷却风机(或其它冷却介质)和螺杆的内冷却设施等组成。

2、辅机挤出机的辅机组成是根据制品的种类而确定的。

其一般是由成型机头(口模)、定型装置、牵引装置、切割装置、制品的卷曲或堆放装置等部分组成。

以后要详加介绍。

(二)塑料挤出机的分类国标GB/T12783—91已对塑料挤出机械的类别、组成、品种及辅助代号作出规定,其中用S表示塑料类别,用J表示挤出机械,品种代号、辅助代号等。

一般而言,人们最常用螺杆的直径来表示挤出机的规格,即常用的螺杆直径从20mm—200mm.二、单螺杆挤出机的使用与维修(一)、单螺杆挤出机的工作原理塑料在不同的温度范围内会呈现不同物理状态,即玻璃态、高弹态、粘流态。

挤出机正是根据塑料这种特性来设计的。

通常螺杆的螺纹分为三段来加工,即加料段(又叫固体输送段)、熔融段(又叫压缩段)和均化段(又叫计量段)。

当塑料自加料装置加到料斗进入料筒中(此时塑料已加到工艺要求的温度),即在旋转的螺杆推动作用下(塑料受料筒的内壁和螺杆表面的磨擦作用),塑料被向前输送和压实。

在加料段的未端,塑料由于受到料筒的外加热及螺杆转动磨擦所生产的磨擦热,而逐渐熔融进而达到粘流态的温度。

当塑料进入熔融段后,隨着螺槽的容积逐渐变小及模具的阻力作用,塑料进一步被压实而形成了高压。

在这个过程中,塑料由于受到料筒的外部传来的热量及螺杆转动时产生的剪切热,而使塑料的固态逐渐减少,粘流态不断增加,到了熔融段的未端,塑料基本上已全部熔融。

挤出机螺杆工作原理

挤出机螺杆工作原理

挤出机螺杆工作原理
挤出机螺杆工作原理是利用螺杆的旋转运动和螺槽的挤压作用将熔融塑料物料从进料口逐渐推进至机筒口,并通过模具形成所需形状的制品的工艺过程。

具体来说,挤出机螺杆的工作原理如下:
1. 进料段:熔融塑料物料从进料口进入进料段,在螺杆的推动下,物料被逐渐推进向前。

2. 压力段:在压力段,塑料物料被推进至机筒螺槽的高压区域,螺杆的旋转运动使物料受到挤压和塑化作用,同时增加了物料的压力和温度。

3. 流动段:在流动段,物料开始变为熔融状态,并沿着螺杆螺槽的流动方向逐渐流动,并受到更多的挤压和塑化作用。

4. 冷却段:在冷却段,通过水冷却系统控制机筒温度,使熔融物料逐渐冷却凝固,并保持所需形状。

5. 模具:熔融物料通过机筒口进入模具,经过模具形成所需形状的制品,如管道、板材等。

6. 切割:成型后的制品通过切割装置切割成合适长度,完成整个挤出过程。

通过以上工作原理,挤出机螺杆能够将熔融塑料物料进行挤压、塑化并形成制品,实现塑料制品的批量生产。

同时,挤出机螺杆的转速、机筒温度、冷却效果等因素也会对成品质量产生影响,需要进行合理的调节和控制。

挤出机螺杆型号及尺寸规格表及挤出量

挤出机螺杆型号及尺寸规格表及挤出量

挤出机螺杆型号及尺寸规格表及挤出量1. 引言挤出机是一种常见的塑料加工设备,用于将塑料颗粒加热融化并通过模具挤出成型。

螺杆是挤出机的核心部件之一,起到将塑料颗粒从进料端输送至出料端的作用。

本文将介绍挤出机螺杆的型号及尺寸规格表,并讨论挤出量的相关概念和计算方法。

2. 螺杆型号及尺寸规格表挤出机螺杆的型号及尺寸规格表是根据不同的挤出机型号和生产要求而确定的。

以下是一个示例的螺杆型号及尺寸规格表:螺杆型号螺杆直径(mm)螺杆长径比螺杆梁比螺杆螺距(mm)A 45 20 25 60B 50 22 28 65C 55 24 30 70上述表格列出了三种不同型号的挤出机螺杆,分别命名为A、B和C。

每个型号的螺杆直径、螺杆长径比、螺杆梁比和螺杆螺距都有所不同。

这些参数的选择取决于挤出机的规格和所需的挤出效果。

螺杆直径是指螺杆的最大直径,通常以毫米(mm)为单位。

螺杆长径比是螺杆长度与螺杆直径之比,它反映了螺杆的拉伸程度。

螺杆梁比是螺杆的梁宽与螺杆梁厚之比,它影响了塑料的剪切和混合效果。

螺杆螺距是相邻螺旋的中心距离,它决定了塑料在螺旋槽中的停留时间。

3. 挤出量的概念和计算方法挤出量是指单位时间内挤出机从进料端到出料端挤出的塑料量,通常以千克/小时(kg/h)为单位。

它是衡量挤出机生产能力的重要指标之一。

挤出量的计算方法可以根据挤出机螺杆的直径和螺距进行估算。

常用的计算公式如下:挤出量(kg/h)= π * 螺杆直径^2 * 螺杆螺距 * 每转螺杆转速 * 每转螺杆进给量 * 60 / 1000其中,π取近似值3.14,螺杆直径和螺距的单位需保持一致,每转螺杆转速是指螺杆每分钟转动的圈数,每转螺杆进给量是指螺杆每转进给的距离。

需要注意的是,挤出量的计算结果仅供参考,实际挤出量还受到挤出机的工作状态、塑料材料的性质和加工条件的影响。

4. 结论本文介绍了挤出机螺杆型号及尺寸规格表以及挤出量的相关概念和计算方法。

螺杆的型号和尺寸规格表是根据不同的挤出机型号和生产要求而确定的,螺杆直径、螺杆长径比、螺杆梁比和螺杆螺距的选择取决于挤出机的规格和所需的挤出效果。

挤出机螺杆分类

挤出机螺杆分类

挤出机螺杆分类
挤出机螺杆是挤出机的核心部件,它的作用是将塑料颗粒或粉末加热融化并压缩,最终形成所需的产品。

根据挤出机螺杆的不同形状、结构和材质,可以分为以下几类:
1. 直径变化型螺杆:螺杆直径从进料段到出料段逐渐变大,适
用于加工大颗粒或高粘度的材料。

2. 混炼型螺杆:螺杆结构中加入混炼段,加强塑料的混炼和塑
化作用,适用于加工填充剂、色母等材料。

3. 反转型螺杆:螺杆螺旋方向在进料段和出料段相反,增加塑
料的剪切混炼作用,适用于加工高分子聚合物和高分子共混物。

4. 节距变化型螺杆:螺距从进料段到出料段逐渐变大或变小,
对塑料的流动和剪切作用不同,适用于加工高粘度或高分子量的材料。

5. 等节距型螺杆:螺距在整个螺杆长度上保持不变,适用于加
工低粘度或低分子量的材料。

6. 螺杆镀层型:螺杆表面镀上耐磨蚀或耐腐蚀的合金层或涂层,延长螺杆使用寿命,适用于加工容易磨损或腐蚀的材料。

7. 双螺杆型:螺杆数目为两根或以上,增加塑料的剪切和混炼
作用,适用于加工高分子共混物、聚合物合金等复合材料。

不同类型的挤出机螺杆在塑料加工过程中具有不同的优势和适
用范围,选择合适的螺杆可以提高生产效率、降低能耗、改善产品质量。

- 1 -。

挤出机螺杆的几个重要几何参数

挤出机螺杆的几个重要几何参数

挤出机螺杆的几个重要几何参数作者:-1、螺杆直径(D)a、与所要求的注射量相关:射出容积=1/4*n*D2*S (射出行程)*0.85; b、一般而言,螺杆直径D与最高注射压力成反比, 与塑化能力成正比。

2、输送段a、负责塑料的输送,推挤与预热,应保证预热到熔点;b、结晶性塑料宜长(如:POM、PA)非晶性料次之(如:PS、PU、ABS),热敏性最短(如:PVC)。

3、压缩段a、负责塑料的混炼、压缩与加压排气,通过这一段的原料已经几乎全部熔解,但不一定会均匀混合;b、在此区域,塑料逐渐熔融,螺槽体积必须相应下降,以对应塑料几何体积的下降,否则料压不实,传热慢,排气不良;c、一般占25%以上螺杆工作长度,但尼龙(结晶性料)螺杆的压缩段约占15%螺杆工作长度,高粘度、耐火性、低传导性、高添加物等塑料螺杆,占40%50%螺杆工作长度,PVC螺杆可占100%螺杆工作长度,以免产生激烈的剪切热。

4、计量段 a、一般占2025%螺杆工作长度,确保塑料全部熔融以及温度均匀,混炼均匀;b、计量段长则混炼效果佳,太长则易使熔体停留过久而产生热分解,太短则易使温度不均匀;c、PVC等热敏性塑料不宜停留时间过长,以免热分解,可用较短的计量段或不要计量段。

5、进料螺槽深度,计量螺槽深度 a、进料螺槽深度越深,则输送量越大,但需考虑螺杆强度,计量螺槽深度越浅,则塑化发热、混合性能指数越高,但计量螺槽深度太浅则剪切热增加,自生热增加,温升太高,造成塑胶变色或烧焦,尤其不利于热敏性塑料;b、计量螺槽深度=KD=(0.03.07)*D,D增大,则K 选小值。

二、影响塑化品质的主要因素影响塑化品质的主要因素为:长径比、压缩比、背压、螺杆转速、料筒加热温度等。

1、长径比:为螺杆有效工作长度与螺杆直径的比值。

a、长径比大则吃料易均匀;b、热稳定性较佳的塑料可用较长的螺杆以提高混炼性而不烧焦,热稳定性较差的塑料可用较短的螺杆或螺杆尾端无螺纹。

挤出机螺杆基础知识讲解

挤出机螺杆基础知识讲解

挤出机螺杆基础知识讲解挤出机螺杆是挤出机的核心组件之一,它起着将固态物料熔化并排出的关键作用。

本文将详细介绍挤出机螺杆的工作原理、结构组成以及常见类型等基础知识。

一、工作原理挤出机螺杆的工作原理可以简单概括为三个过程:供料、熔化和挤出。

1. 供料挤出机螺杆通过旋转将固态原料从进料口送入挤出机的料筒中。

在此过程中,使用电机驱动螺杆的旋转,使原料顺序推进至下一个阶段。

2. 熔化当原料进入料筒后,由于螺杆旋转的摩擦和外加的加热系统,固态原料逐渐升温并转变为熔融状态。

此过程中,螺杆的直径逐渐减小,形成了与螺杆槽配合的环形空间,使得原料在此区域内受到高温和高压的共同作用,从而实现了熔化的目的。

3. 挤出熔化后的物料通过挤出机螺杆的螺旋运动,被推送到机筒的出料口,并通过模具排出。

在此过程中,螺杆的运动和外加的压力使得熔化物料保持一定的流动性,从而实现了挤出成型。

二、结构组成挤出机螺杆由螺杆、螺纹和衬套等组成,它们各自承担着不同的功能。

1. 螺杆螺杆是挤出机螺杆的主体部分,采用圆柱形或变径型的设计。

螺杆通过电机带动旋转,实现原料的供料、熔化和挤出过程。

2. 螺纹螺纹是螺杆上的凸起结构,起到与螺杆槽配合的作用。

螺纹的形状和数量会影响原料在螺杆中的流动性和温度分布,进而影响挤出成型的品质。

3. 衬套衬套位于螺纹和螺杆之间,用于减少磨损和摩擦。

衬套通常由耐磨、耐高温的材料制成,如高速钢或硬质合金等。

三、常见类型根据挤出机的不同应用领域和要求,挤出机螺杆可以分为单螺杆和双螺杆两种类型。

1. 单螺杆单螺杆挤出机螺杆结构简单,适用于较小的生产规模和较低的挤出压力。

它广泛应用于制造塑料制品、橡胶制品、食品包装膜等领域。

2. 双螺杆双螺杆挤出机螺杆由两根螺杆并列组成,能够更好地实现原料的混合和熔化。

双螺杆挤出机螺杆适用于需要高精度、高速和复杂结构的产品,如塑料管材、塑料板材、造粒等。

四、总结挤出机螺杆是挤出机的核心组件,其工作原理和结构组成直接影响着挤出生产的效果和品质。

螺杆挤出机工作原理

螺杆挤出机工作原理

螺杆挤出机工作原理
螺杆挤出机是一种常见的塑料加工设备,它主要通过螺杆和筒体之间的相互配合,将塑料原料加热、熔化,并经过螺杆转动的作用,将熔融塑料挤出成型。

螺杆挤出机工作原理如下:
1. 进料:将塑料原料以固态或颗粒状形式投入到加料口,经过传送装置(如给料机)将原料平均送入螺杆进料段。

2. 熔化:当原料进入螺杆进料段时,由于螺杆的螺旋纹理设计,螺杆会将原料逐渐向前推进,并且沿着筒体内壁形成定量的料层。

同步进行的是加热系统的加热作用,使得原料逐渐升温,最终熔化为黏稠的熔融塑料。

3. 压力增大:随着螺杆转动,进料段的螺杆将熔融塑料逐渐推向挤出段。

由于螺杆逐渐变细,螺槽深度减小,使得通过改变料螺杆间的压缩比,提高了熔融塑料的压力。

4. 挤出成型:当熔融塑料进入挤出段后,由于挤出段螺杆的推动作用,熔融塑料被推进到机筒的出料口。

出料口处通常设置有模头,通过模头的特定形状,使得熔融塑料被形成成所需的截面形状,如管状、片状等。

5. 冷却和固化:挤出后的塑料制品经过模头出来后,通过传送装置(如水冷装置)进行冷却和固化处理,使其形成最终的塑料制品。

总结起来,螺杆挤出机的工作原理主要是通过螺杆的转动和筒体的加热作用,将塑料原料加热、熔化,并通过螺杆的螺旋纹理设计实现进料、挤出和压力增大的过程,最终将熔融塑料通过模头挤出成型。

第四章-螺杆挤出机-1(新)

第四章-螺杆挤出机-1(新)
由以上各部分组成的挤出装置为挤出机组。
三、分类
按螺杆数目分
单、双、多 (前两种用得最多)
按喂料方式分
冷喂、热喂(要预热>50℃)
按螺杆安装位置分
卧式、立式
按螺杆转速分
常规(100~300r/min)、高速(300~900r/min)、 超高速(900~1500r/min)
四、规格表示及技术特征
挤出成型过程可分为如下三个阶段:
1、塑化阶段 在挤出机上进行塑料的加热和混炼, 使固态原料变为均匀的粘性流体。
2、成型阶段 在挤出机螺杆的作用下,熔融塑料 以一定的压力和速度连续通过装在挤出机上的成型 机头,获得一定的断面形状。
3、定形阶段 通过冷却等方法使熔融塑料已获取 的形状固定下来,成为固态制件。
2. 摩擦系数 f
在螺杆结构参数确定,以及工艺参 数设定后,移动角只与摩擦因数 有关。
a. 提高螺杆光洁度;涂F4
b. 在料筒上开设纵向槽沟,提高 物料与机筒之间的摩擦因数;
c. 降低螺杆温度,通冷却水;
d. 根据摩擦因数与温度的关系, 适当提高加工温度。
总结:为获得最大的固体输送速率
从挤出机结构来考虑:
一台挤出机的生产率、塑化质量、填加物的 分散性、熔体温度、动力消耗等,主要决定 于螺杆的性能。
(一)常规螺杆 一、评价螺杆的标准及设计时应考虑的因素 1、评价螺杆质量的标准有: ①塑化质量 一根螺杆必须能生产出合乎质量要
求的制品。即制品:
A、具有合乎要求的各种性能。具有合乎规定的物 理、化学、力学、电学性能;
a.增加螺槽深度是有利的,但会受到螺杆
扭矩的限制。其次,降低塑料与螺杆的摩擦系数 也是有利的。再者,增大塑料与料筒的摩擦系数, 也可以提高固体输送速率,但要注意会引起物料 停滞甚至分解,因此料筒内表面还是要尽量光洁。

挤出机常识与工艺(温度、螺杆)教材

挤出机常识与工艺(温度、螺杆)教材

5.均化(料量)段


A螺杆组合
螺纹块导程渐变小或螺槽渐变小来实现增压,减少背压段长度,同时注意采用单 头螺纹与宽螺棱螺纹来提高排料能力,避免冒料。 B温度设定, 以适当降低温度,但模头高温利于排料。 在熔融段温度基础上,适当降低温度,其原则:根据带光泽降度而定
• • •
五、转速问题:

• • • • • • • •
三、螺杆排列及其工艺设定
①螺杆的分段及其功能
• • • • • • • • (1)螺杆一般分:输送段、熔融段、混炼段、排气段、均化段5个段。 1、输送段,输送物料,防止溢料。 2、熔融段,此段通过热传递和摩擦剪切,使物料充分熔融和均化。 3、混炼段,使物料组分尺寸进一步细化与均匀,形成理想的结构, 具分布性与分散性混合功能。 4、排气段,排出水汽、低分子量物质等杂质。 5、均化(计量)段,输送和增压,建立一定压力,使模口处物料有 一定的致密度,同时进一步混合,最终达到顺利挤出造粒的目的。 (2)分布(分配)与分散混合之段别 1、分布混合,使熔体分割与重组,使各组分空间分布均匀,主要通过 分离,拉伸(压缩与膨胀交替产生)、扭曲、流体活动重新取向等应力 作用下置换流动而实现。 2、分散混合,使组分破碎成微粒或使不相容的两组分分散相尺寸达至 要求范围,主靠剪切压力和接伸应力实现。

②输送元件,螺纹式的
• 表示法:如“56/56”输送块,前一个”56”指导程为56MM,后一 个”56”指长度为56MM。 • 大导程,指螺距为1.5D~2D • 小导程,指螺距为0.4D左右。 • 其使用规律:随着导程增加,螺杆挤出量增加,物料停留时间减少, 混合效果降低。 • A、选用大导程螺纹的场合,以输送为主的场合,利于提高产量;热 敏性聚合物,缩短停留时间,减少降解;排气处,选用(也有选用浅 槽),增大表面积,利于排气,挥发等。 • B、选用中导程螺纹场合,以混合为主的场合,具不同的工作段逐渐 缩小的组合,用于输送和增压。 • C、选取用小导程螺纹的场合,为一般是组合上逐渐减小,用于输送 段和均化计量段,起到增压,提高熔融;提高混合物化程度及挤出稳 定。

塑料型材挤出螺杆、螺筒介绍

塑料型材挤出螺杆、螺筒介绍
脱落和螺筒表面的渗氮层磨损后,螺杆和螺筒内部相对 较软的金属暴露在表面相互摩擦,运行过程中产生咬合、 擦伤,产生的局部高温使少量物料炭化而产生黑线。该 区域物料压力最大,螺杆的混炼作用基本结束,炭化的 物料直接浮在型材小面被挤出。按照前期3184挤出机处 理的经验,对螺棱表面重新进行堆焊硬质合金以恢复其 原始尺寸和硬度,同时对磨损量达到0.3-0.5mm以上的 螺筒进行重新氮化以恢复其硬度(螺筒表面氮化层深度 一般为0.3-0.5mm左右)。 对于如3213挤出机修复后的螺杆调试过程中,虽然螺棱 表面已磨削到要求的光洁度,但螺筒内表面以产生磨损 的部位仅进行了氮化处理,其光洁度无法恢复(螺筒内 如进行磨削将加剧其尺寸超差)。因此修复螺杆与旧螺 筒配合调试过程中产生的擦痕是螺筒表面不平整引起的, 处理的方法只有对螺杆擦痕进行反复抛光或运行磨合。
%
200
150
100
50
0 -4
侧角
-2 0 2 4 6 8 10 支承面 % 螺纹宽度 % 磨损率%
被动式螺杆温度控制系统 热传导原理
液体介质 的蒸发
能量传导通过液 体介质的蒸发和 冷凝实现
冷凝为液体
以水为主的液体介质的 热传导原理
主动式螺杆温度控制系统(油介质)
螺杆的油封
•油封部分为陶瓷涂覆 保证了密封系统的工 作寿命.
出。 2、另一种是位置一直在型材的下表面断续线装或云纹
状,这主要原因是: (1)随着运行周期的加长,造成的螺杆和螺筒磨损严重,这
时要进行抛光和间隙重新调整,严重时要更换; (2)原料润滑系统失衡,可以切换成后期外润滑(如PE等)或适
当加大用量; (3)适当增加稳定剂的量。
目前我公司产生型材黑线的挤出机主要有两种情况: 由于计量段螺杆、螺筒磨损严重,螺棱表面的硬质镀层

挤塑机螺杆知识

挤塑机螺杆知识

挤塑机螺杆知识一、螺杆的类型为适应不同塑料加工的需要,螺杆的型式有很多种,常见的有以下几种:渐变型(等距不等深),渐变型(等深不等距),突变型,鱼雷头型等。

1、螺杆的选择螺杆型式的选用主要根据塑料的物理性能及挤塑机的生产技术规范来确定。

(1)非结晶型聚合物的软化是在一个比较宽的温度内完成的,一般选用等距渐变螺杆。

结晶型聚合物熔融的温度范围比较窄,一般选用等距突变螺杆。

(2)在小型挤塑机上,如φ45挤塑机螺杆采用的是等距不等深的全螺纹型式,螺杆的长径比较小,主要用于挤出小截面的绝缘层和护套层,挤出速度较快。

(3)中型螺杆采用等距而螺纹深度渐变的全螺纹型式,它的长径比比小型螺杆大些,螺纹的节距相等,从根部起由浅到深。

螺纹端部的螺纹较深,根部的螺纹较浅,这样塑料挤出量较多,又不影响螺杆强度,挤出速度快,塑料塑化好,是一般中小型挤塑机生产绝缘层和护套层的理想螺杆。

(4)大型螺杆直径一般在150mm以上,如φ150、φ200、φ250挤塑机。

大型螺杆采用两种型式,一是等距不等深,如φ150、φ200挤塑机;二是螺杆分三段,即等距等深、等距不等深、不等距不等深,如φ250挤塑机,压缩比在2~3之间,长径比在15:1左右,主要用于生产大截面的电线电缆绝缘层和护套层。

二、螺杆的主要参数螺杆的主要参数有直径、长径比、压缩比、螺距、螺槽宽度、螺槽深度、螺旋角、螺杆与机筒之间的间隙等,这些参数对挤塑工艺和性能有很大影响。

1、螺杆直径Ds螺杆直径即螺纹的外径,挤塑机的生产能力(挤塑量)近似与螺杆直径的平方成正比,在其它条件相同时,螺杆直径少许增大,将引起挤出量的显著增加,其影响甚至比螺杆转数的提高对挤出量的影响还大。

故常用螺杆直径来表征挤塑机规格大小的技术参数。

2、螺杆长径比L/Ds螺杆工作部分长度L与螺杆直径Ds之比称为长径比,在其它条件一定时(如螺杆直径),增大长径比就意味着增加螺杆的长度。

L/Ds 值大,温度分布合理有利于塑料的混合和塑化,此时塑料在机筒中受热的时间也较长,塑料的塑化将充分、更均匀。

挤塑机的螺杆

挤塑机的螺杆

a
10
8、螺杆与机筒的间隙δ 即机筒内径与螺杆外径之差的一半。螺杆与机
筒间隙的大小,对挤塑质量和产量都有很大的 影响,特别是对塑化起着主要作用。当螺杆与 机筒的间隙太大时,尤其时均化段间隙增大, 则塑料的逆流、漏流现象增加,引起挤出压力 的波动,影响挤出量;由于这些回流的增加, 使塑料过热,这是由于摩擦加剧的结果,这种 过热,尤其发生在散热不良的环境中,往往导 致塑料分解,造成塑化差、成型困难。螺杆与 机筒间隙一般控制在0.1~0.6mm间。
塑化时间,降低螺杆的塑化质量,太小则螺纹密, 螺槽容积减小,影响挤出量。对于送料段,30o螺 旋角最合适于粉料;15o螺旋角合适于方形料粒; 17o左右螺旋角合适于球状或柱状料粒。
a
8
6、螺距S和螺槽宽度W 螺距即螺纹的轴向距离,螺槽宽度即垂直于螺
棱的螺槽宽度。在其它条件相同时,螺距和槽 宽的变化,不但决定螺杆的螺旋角,而且还影 响螺槽的容积,从而影响塑料的挤出量和塑化 的程度。螺槽宽度加大则意味着螺棱宽度减小 ,螺槽容积相应增大,挤出量提高;同时螺棱 宽度减小,螺杆旋转摩擦阻力减小,所以功率 消耗低。
a
5
3、螺杆三段长度 ①加料段长度L1 对物料压实、预热和输送。有固体输送理论可
知,增大L1,有利于Qs的提高. ②熔融段长度L2 使物料得到进一步的压缩,以排除所夹杂的空
气或挥发性气体,能保证物料得以完全熔融。 ③均化段长度L3
a
6
4、压缩比ε 亦称为螺杆的几何压缩比,是螺杆加料段第一个螺
a
17
⑵口模的几何形状和机头阻力特性 不同几何形状的口模,对物料挤出时的阻力特
性是不同的 ⑶机筒的结构形式和加热冷却情况 加料段机筒采用IKV结构并进行强行冷却会大

挤出机螺杆知识

挤出机螺杆知识

挤出机螺杆知识00对于压缩段,其主要作用是受热熔融并将料压实、剪切。

螺槽淡,热传导好,剪切力大,混炼效果好。

螺沼深,热传导差,甚至在压实过程形成一个由熔体包围的固体心层,影响整体热的交换和熔体的均匀文错,混炼效果差。

但是,过浅的螺槽同样妨碍料的输送,对产量不利。

对于均化段,主要作用显然是均匀塑化并定量地推出混炼好的料。

螺槽浅,有利于塑料之间的相互剪切和热传递,保证出料压力和流量的均衡。

螺槽深,输送料量大,产量大,但当工作压力增高时或当温度升高时,处于粘性较低状态的料将会倒向反流而造成出料速度变化不定,产量下降。

用作提供注塑机原料的挤出机拉条切粒,均化段螺槽深度取0.06D左右。

由于螺杆的很部直径都是从小变大,所以又称为鱼雷式螺杆。

其端部多为半球形,也有圆锥形或平顶形,但效果都不如半球形。

鱼雷头与机筒的间隙通常小于均化段最后一个螺槽的深度。

3、过滤孔板这是螺杆鱼雷头前端与模头之间钻有很多小孔的圆形板,塑化后变成粘流态的塑料首先要穿越孔板亡的小孔才能进入模头,它主要有五个作用:(1)改变塑料流向。

从螺杆端部挤压出来的熔融塑料,有螺旋运动惯性,进入孔板可在较短距离内克服惯性而改为轴向直线运动,便于出料。

(2)建立工作压力。

如果不设置孔板,塑料来多少出多少,模头压力难以稳定下来,影响到料斗进料时快时慢,料筒内温度分布紊乱、料量也变化不定。

加入孔板实质上是在出料方向利用阻尼作用建立工作压力。

(3)提高塑化效果。

塑料在高压下穿越孔板小孔时,由于受到大的剪切、搅拌、混合作用,所以能进一步提高熔料的均匀性及着色剂的分散性。

这对于某些塑化要求较高的塑料,如聚乙烯、聚丙烯等作用更加明显。

(4)清除杂质。

用于拉条切粒的挤出机一般不需加入滤网(个别的有例外),清除大的杂质的任务由孔板负担。

杂质有时候还包含因受热状况不良而交联不化的粒料。

(5)保证模头受力均杨。

经过孔板的料流,压力差异基本消除,从?行使模头截面各点受力均衡,减少变形,提高使用寿命。

挤出机螺杆参数及影响

挤出机螺杆参数及影响

挤出机螺杆参数及影响挤出机是一种常见的塑料加工设备,用于将塑料料粒加热熔化后通过挤出机螺杆的旋转运动,将熔融的塑料挤出成型。

1.螺杆直径:螺杆直径是指螺杆的最大直径,是挤出机螺杆的一个重要参数。

螺杆直径的选择与挤出机的规格有关,一般来说,较大直径的螺杆能提供更大的挤出压力和产量,适用于大规模生产。

而较小直径的螺杆则适用于小规模生产或特殊工艺要求。

2.螺杆长度与直径比:螺杆长度与直径比是指螺杆的长度与其直径之比。

该参数对挤出机的熔融效果和输出能力有着重要影响。

较大的螺杆长度与直径比能够提供更大的塑化能力和更好的熔融效果,适用于高粘度塑料料粒的加工。

而较小的比值则适用于低粘度塑料料粒。

3.螺杆混合段长度:挤出机螺杆一般由若干个区域组成,其中最后一个区域是混合段。

混合段是指将塑料料粒加热熔化并充分混合的区域,其长度对挤出成品的均匀度和质量有着重要影响。

较长的混合段长度有助于提高熔融和混合效果,但也会增加能耗和成本。

因此,混合段长度的选择需要考虑生产要求和经济性。

4.螺杆螺距:螺杆螺距是指螺杆的螺线间距,影响着螺杆的输送能力和熔融均匀度。

较大的螺距可以提供更大的产量,但也可能导致熔融不均匀和混合不充分。

适当的螺距选择应根据塑料的特性和生产需求来确定。

5.螺杆转速:螺杆转速是指螺杆的旋转速度,对挤出机的生产能力和挤出产品的质量起着重要影响。

较高的转速可以提高产量,但也可能导致熔融温度升高和产品品质下降。

因此,选择适当的螺杆转速需要综合考虑生产需求和产品要求。

螺杆的参数选择对挤出机的性能和生产效果有着重要的影响。

不同的塑料料粒和生产要求需要不同的螺杆参数来优化挤出过程。

因此,在选择和调整挤出机螺杆参数时,需综合考虑原料特性、产品要求和经济性,通过实际生产验证和调整来获得最佳的挤出效果和产品质量。

交联电缆挤塑机工作原理、螺杆参数以及机头与模具的调整

交联电缆挤塑机工作原理、螺杆参数以及机头与模具的调整

交联电缆挤塑机工作原理、螺杆参数以及机头与模具的调整一.挤塑机工作原理挤塑机的工作原理是:利用特定形状的螺杆在加热的机筒中旋转,将由料斗中送来的塑料向前挤压,使塑料均匀地塑化,通过机头和不同形状的模具,使塑料挤压成各种形状的制品。

挤出过程中,塑料将要经过两个阶段:第一阶段是塑化阶段是在机筒内完成的,经过螺杆的旋转,使塑料由固体的颗粒状变为可塑性的熔融体;第二阶段是成型阶段,它是在机头内进行的,经过机头内的模具,使熔融体成型为所需要的各种尺寸及形状的制品。

挤出过程中塑料的流动状态:在挤出过程中,由于螺杆的旋转,推移塑料,在机筒和螺杆之间产生相对运动,物料和机筒之间产生摩擦作用,使物料沿着螺槽方向前进。

另外,由于机头模具及滤网的阻力,使塑料在前进中又产生反作用力,这就是物料在螺杆中的流动状态。

二.挤塑机的基本结构挤塑机由挤压系统、传动系统和加热冷却系统组成。

1.挤压系统挤压系统包括螺杆、机筒、料斗、机头和模具5部分。

(1)螺杆:螺杆是挤出机中的重要部件,它是由高强度、耐热和耐腐蚀的合金钢制成。

其作用是将塑料向前推进,产生压力,搅拌,旋转时与塑料产生摩擦热,使塑料熔化,并连续不断地将融体送入机头挤出。

它直接关系到挤塑机的应用范围和生产率。

(2)机筒:是一个金属圆筒,一般用耐热耐压的强度较高的、坚固耐磨、耐腐蚀的合金钢或内衬合金钢的复合钢管制成。

它与螺杆构成了塑料塑化和输送作用的挤压系统的基本结构。

机筒的长度一般为其直径的15~30倍,以使物料得到充分加热和塑化充分为原则。

机筒应有足够的厚度、刚度、内壁应光滑。

在机筒的外面装有电阻或感应加热器、测温装置及冷却系统。

(3)料斗:通常为锥形容器,其容积至少应能容1小时的用料。

料斗底部装有切断料流的截断装置,料斗侧面装有视孔,可标定和计量。

(4)机头:机头是挤塑机的成型部件,机头主要有过滤装置(多孔板和筛网)、连接管,分流器,模芯座,模具等组成。

2.传动系统它的功能是保证螺杆以所需要的力矩和转速匀速地旋转。

挤出机排气螺杆的功能概述

挤出机排气螺杆的功能概述

挤出机排气螺杆的功能概述在挤出过程中,需要从原料中排出的气体包括三个部分:原料颗粒间带入的空气;粒粉料上吸附的水分;原料内部包含的气体或液体,例如剩余单体,低分子挥发物及水分等等。

这些气体如果不能排出,除了制品的物理机械性能,化学性能和电性能会有所下降之外,在制品表面或颞部也会出现孔隙、气泡、疤痘和表面昏暗等缺陷,严重地影响了制品的外观性能,例如空隙会影响电缆的介电强度;气泡会使单丝无法拉伸;含有水分的硬管会使硬管承受的压力下降;板材中的气泡和疤痘会在真空成型中造成废品等等。

一般认为:在挤出前原料中这些成分的含量不得大于0.2%,面在某些情况下,例如涤纶拉膜时至少应小于0.02%。

在普通螺杆上,原料带入的空气和吸附的水分可在塑料被挤压时从加料口逸出,或者在加入加料口前用烘干的方法除去,这一工序叫预干燥。

但是预干燥需要增加干燥设备,还要消耗费相当的电能和人工,因此成本必然上升,而对某些单体和某些高沸点的溶剂的去除效果旺旺也不够好。

对某些透明制品,预干燥工序旺旺增加原料的污染机会。

除此以外,随着告诉挤出的发展,那些过去排气要求不高的塑料(如聚乙烯),由于螺杆转速提高,原料夹带的空气来不及从料口逸出,这也会影响制品的质量。

实践表明,排气挤出机的效果是比较优越的。

挤出机排气螺杆主要应用于下述方面:用于吸湿性很强的聚合物;含水分,溶剂的聚合物在不预干燥情况下直接挤出;用于加有各种助剂和填料的干粉混料直接挤出;用于夹带大量空气的松散的絮状聚合物直接挤出;用于连续聚合或后处理挤出等等。

在这些挤出工艺中,通过在螺杆上增设直接排气的排气段去除水分、空气、单体挥发物等影响质量的气体。

由于排气螺杆具有这些特点,因此在塑料工业中运用很广。

世界上主要的挤出机制造厂往往既生产不排气的挤出机,同时又生产同样直径的排气挤出机,形成了独立的两个系列。

在我国也已经开始生产了不同直径的排气挤出机,在塑料工业中日益得到了广泛地运用。

挤出机螺杆的工作原理从整体上说挤出机螺杆理论虽然已经算很成熟了,但仍有进步的空间。

挤出成型工艺与设备 螺杆挤出机的主要参数

挤出成型工艺与设备 螺杆挤出机的主要参数
H=KD K=0.02~0.06,H为均化段的螺槽深度。
二、螺杆的主要参数
θ是螺纹与螺杆横截面之间的夹角,通常在100~300之间。随着θ增大, 出料快,生产能力提高,但挤压剪切作用减少,停留时间短,塑化效果下降。
e大,动力消耗大; e小,漏流增加。一般e=0.08~0.12D。
δ值大生产效率低,δ值过小时,强烈剪切,会引起过热降解,一般δ与 螺杆直径之比为0.0005~0.002左右。
二、螺杆的主要参数
螺杆长度:
对普通螺杆来说,根据物料在挤出机中经历的三个阶段,人们 常常把螺杆的有效工作长度L分为三段。
1 加料段L1(feeding zone):
其作用是将松散的物料逐渐压实并送入下一段;减小压力和
产量的波动,从而杆的主要参数
2 熔融段(压缩段)L(compression zone):
其作用是把物料进一步压实;将物料中的空气推向加料段排出;
使物料全部熔融并送入下一段。
3 均化段(计量段)L3(metering zone):
其作用是将已熔融物料进一步均匀塑化,并使其定温、定压、
定量、连续地挤入机头。
螺杆的长度用mm作单位。
一、螺杆挤出机的技术参数
机器中心高度:
用H表示,指螺杆中心线到地面的高度,单位mm。
机器外形尺寸:
长、宽、高,表示为长×宽×高,单位mm。
机器质量 (重量):
用W表示,单位为t或kg。
目录
01 螺杆挤出机的技术参数 02 螺杆的主要参数
二、螺杆的主要参数
D—螺杆外径;d—螺杆根径;t—螺距;W—螺槽宽度;
螺杆直径D :
指螺杆外径,代表挤出机的规格。随着直径增大,生产能力提高。
螺杆长径比L/D :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

挤塑机螺杆知识一、螺杆的类型为适应不同塑料加工的需要,螺杆的型式有很多种,常见的有以下几种:渐变型(等距不等深),渐变型(等深不等距),突变型,鱼雷头型等。

1、螺杆的选择螺杆型式的选用主要根据塑料的物理性能及挤塑机的生产技术规范来确定。

(1)非结晶型聚合物的软化是在一个比较宽的温度内完成的,一般选用等距渐变螺杆。

结晶型聚合物熔融的温度范围比较窄,一般选用等距突变螺杆。

(2)在小型挤塑机上,如φ45挤塑机螺杆采用的是等距不等深的全螺纹型式,螺杆的长径比较小,主要用于挤出小截面的绝缘层和护套层,挤出速度较快。

(3)中型螺杆采用等距而螺纹深度渐变的全螺纹型式,它的长径比比小型螺杆大些,螺纹的节距相等,从根部起由浅到深。

螺纹端部的螺纹较深,根部的螺纹较浅,这样塑料挤出量较多,又不影响螺杆强度,挤出速度快,塑料塑化好,是一般中小型挤塑机生产绝缘层和护套层的理想螺杆。

(4)大型螺杆直径一般在150mm以上,如φ150、φ200、φ250挤塑机。

大型螺杆采用两种型式,一是等距不等深,如φ150、φ200挤塑机;二是螺杆分三段,即等距等深、等距不等深、不等距不等深,如φ250挤塑机,压缩比在2~3之间,长径比在15:1左右,主要用于生产大截面的电线电缆绝缘层和护套层。

二、螺杆的主要参数螺杆的主要参数有直径、长径比、压缩比、螺距、螺槽宽度、螺槽深度、螺旋角、螺杆与机筒之间的间隙等,这些参数对挤塑工艺和性能有很大影响。

1、螺杆直径Ds螺杆直径即螺纹的外径,挤塑机的生产能力(挤塑量)近似与螺杆直径的平方成正比,在其它条件相同时,螺杆直径少许增大,将引起挤出量的显著增加,其影响甚至比螺杆转数的提高对挤出量的影响还大。

故常用螺杆直径来表征挤塑机规格大小的技术参数。

2、螺杆长径比L/Ds螺杆工作部分长度L与螺杆直径Ds之比称为长径比,在其它条件一定时(如螺杆直径),增大长径比就意味着增加螺杆的长度。

L/Ds 值大,温度分布合理有利于塑料的混合和塑化,此时塑料在机筒中受热的时间也较长,塑料的塑化将充分、更均匀。

从而提高机塑质量。

如果在塑化质量要求不变的前提下,长径比增大后,螺杆的转速可提高,从而增加了塑料的挤出量。

但是,选择过大的长径比,螺杆消耗的功率将相应增大,而且螺杆和机筒的加工和装配鸡难度增加;螺杆弯曲的可能性也会增加,将会引起螺杆与机筒内壁的刮磨,降低使用寿命。

另外,对于热敏性塑料,过大的长径比因停留时间长而热分解,影响塑料的塑化和挤出质量。

因此,在充分利用长径比加大后的优点,选取时要根据加工塑料的物理性能和对产品的挤塑质量要求而定。

3、压缩比ε亦称为螺杆的几何压缩比,是螺杆加料段第一个螺槽容积与均化段最后一个螺槽容积之比。

它是由塑料的物理压缩比――即制品的密度与进料的表现密度之比来决定的。

使挤塑机压缩比较大,目的是为了使颗粒状塑料能充分塑化、压实。

加工塑料的种类不同时,压缩比的选择也应不同。

按压缩比来分,螺杆的型式可分为三种:等距不等深、等深不等距、不等深不等距。

其中等距不等深是最常用的一种,这种螺杆加工容易,塑料与机筒的接触面积大,传热效果好。

4、螺旋升角θ即螺纹与螺杆横断面的夹角。

螺旋角太大保证不了塑化时间,降低螺杆的塑化质量,太小则螺纹密,螺槽容积减小,影响挤出量。

对于送料段,30o螺旋角最合适于粉料;15o螺旋角合适于方形料粒;17o 左右螺旋角合适于球状或柱状料粒。

由均匀段理论分析得知,螺旋角30o时的挤出流率最高。

实际上为了加工方便,多取螺旋角17o41′。

5、螺距S和螺槽宽度W螺距即螺纹的轴向距离,螺槽宽度即垂直于螺棱的螺槽宽度。

在其它条件相同时,螺距和槽宽的变化,不但决定螺杆的螺旋角,而且还影响螺槽的容积,从而影响塑料的挤出量和塑化的程度。

螺槽宽度加大则意味着螺棱宽度减小,螺槽容积相应增大,挤出量提高;同时螺棱宽度减小,螺杆旋转摩擦阻力减小,所以功率消耗低。

6、螺槽深度H即螺纹外半径于根部半径之差。

根据压缩比的要求,加料段槽深大于熔融段,熔融段槽深又大于均化段。

加料段螺槽深度大,有利于提高其输送能力;但槽深太深,一则使螺杆强度下降,导致螺杆在较大扭力作用下发生剪断;二则太深使塑料在槽间混合不均、搅拌不匀,影响热传导和热平衡,导致螺杆塑化能力下降。

而熔融段和均化段螺槽渐浅,螺杆对物料产生较高的剪切速率,有利于筒壁向物料传热和物料的混合、塑化;但是太浅,螺槽容积减小,直接影响挤出量。

7、螺杆与机筒的间隙δ即机筒内径与螺杆外径之差的一半。

螺杆与机筒间隙的大小,对挤塑质量和产量都有很大的影响,特别是对塑化起着主要作用。

当螺杆与机筒的间隙太大时,尤其时均化段间隙增大,则塑料的逆流、漏流现象增加,不但引起挤出压力的波动,影响挤出量;而且由于这些回流的增加,使塑料过热,这是由于摩擦加剧的结果,这种过热,尤其发生在散热不良的环境中,往往导致塑料分解,造成塑化差、成型困难。

因此,螺杆与机筒间隙一般控制在0.1~0.6mm间。

8、螺杆头部结构螺杆头部的形状和几何尺寸,与物料能否平衡的从螺杆进入机头,能避免滞流,以免局部物料受热时间过长而产生热分解现象等。

不同形状的螺杆头,在挤塑过程中,塑料从螺杆进入机头时的流动方式也不同。

从旋转运动变为直线运动,这时靠筒壁处的塑料流动慢,在中心处的流动快,根据塑料的流动状态,螺纹深度和两侧的圆弧半径可以相应变化,以适应螺杆各段的要求。

螺杆头部常采用锥角较小的锥体形状,为了增加搅拌作用,可在锥体形状上制成与螺杆均化段连续的螺纹。

9、螺杆螺纹的头数在其它条件相同时,多头螺纹与单头螺纹相比,多头螺纹对物料的正推力较大,攫取物料的能力较强,并可降低塑料熔体的倒流现象。

但螺纹全部都是多头螺纹时,会由于各条螺槽的熔融、均化或对熔体输送能力不一致,容易引起挤出量波动和压力波动,不利于挤出质量。

所以,有时只是为了提高加料段攫取物料的能力,在加料段设臵双头螺纹,以提高塑料粒子的输送能力。

浅谈注塑机机架设计--------------------------------------------------------------------------------(时间:2009-4-1 9:50:34 共有 526 人次浏览)所谓机架,即在机器(或仪器)中支承或容纳零、部件的零件。

按制造方法,机架可分为铸造机架、焊接机架和螺栓联接或铆接机架,而注塑机机架一般为框架式的焊接金属机架。

机架设计的准则1、工况要求:即任何机架的设计首先必须保证机器的特定工作要求。

例如,保证机架上安装的零部件能顺利运转,机架的外形或内部结构不致有阻碍运动件通过的突起;设臵执行某一工况所必需的平台;保证上下料的要求、人工操作的方便及安全等。

2、刚度要求:在必须保证特定的外形条件下,对机架的主要要求是刚度。

如果基础部件的刚性不足,则在工作的重力、夹紧力、摩擦力、惯性力和工作载荷等的作用下,就会产生变形,振动或爬行,而影响产品定位精度、加工精度及其它性能。

例如机床的零部件中,床身的刚度则决定了机床的生产率和加工产品的精度。

3、强度要求:对于一般设备的机架,刚度达到要求,同时也能满足强度的要求4、稳定性要求:对于细长的或薄壁的受压结构及受弯-压结构存在失稳问题,某些板壳结构也存在失稳问题或局部失稳问题。

失稳对结构会产生很大的破坏,设计时必须校核。

5、美观:目前对机器的要求不仅要能完成特定的工作,还要使外形美观。

6、其它:如散热的要求,防腐蚀及特定环境的要求。

机架设计的一般要求在满足机架设计准则的前提下,必须根据机架的不同用途和所处环境,考虑下列各项要求,并有所偏重。

1、机架的重量轻,材料选择合适,成本低。

2、结构合理,便于制造。

3、结构应使机架上的零部件安装、调整、修理和更换都方便。

4、结构设计合理,工艺性好,还应使机架本身的内应力小,由温度变化引起的变形应力小。

5、抗振性能好。

6、耐腐蚀,使机架结构在服务期限内尽量少修理。

7、有导轨的机架要求机架导轨面受力合理,耐磨性良好。

设计步骤1、初步确定机架的形状和尺寸。

根据设计准则和一般要求,初步确定机架结构的形状和尺寸,以保证其内外部零件能正常运转。

2、根据机架的制造数量、结构形状及尺寸大小,初定制造工艺。

例如非标准设备单件的机架、机座、可采用焊接代替铸造。

3、分析载荷情况,载荷包括机架上的设备重量、机架本身重量、设备运转的动载荷等。

4、确定结构的形式,例如采用桁架结构还是板结构等。

再参考有关资料,确定结构的主要参数(即高、宽、板厚与材料等)。

5、画出结构简图。

6、参照类似设备的有关规范、规程,确定本机架结构所允许的挠度和应力。

7、进行计算,确定尺寸。

8、有必要时,进行详细计算并校核或做模型试验,对设计进行修改,确定最终尺寸。

综上所述:注塑机机架设计要符合机架设计的准则与一般要求,并要注意以下几点:1、应根据锁模结构在容模量最大时及射移行程最大的状态确定机架的长度,并兼顾油箱及电机油泵的布局具体确定。

根据锁模、射台、油箱、电箱及电机油泵布局确定机架的宽度与高度,高度要考虑人机工程学,适当时候要考虑用高低机架结构。

2、机架结构的主要构件是梁。

梁分纵梁与端梁。

注塑机中的梁可以是型材(角钢、槽钢、方通、工字钢、H型钢等),也可以的折弯板材焊接梁,也可以是型材与折弯板组焊梁。

3、机架结构还有另一主要构件是柱。

焊接柱按外形分为实腹柱和格构柱。

实腹柱分为型钢实腹柱和钢板实腹柱两种,前者焊缝少,应优先选用。

后者适应性强,可按使用要求设计成各种大小尺寸。

当腹板的计算高度h与腹板厚度δ之比大于80时,应有横向隔板加强,间距不得大于3h;柱腹外伸自由宽度b不宜超过15t,箱形柱的两腹板间宽度b也不宜超过40t(t为板厚)。

4、梁和柱的连接有铰接和刚性连接两种。

以焊接连接为主,很少用螺钉或铆接。

焊接方法可参看有关焊接规范和手册。

5、油箱的设计油箱在系统中的功能,主要是储油和散热,也起着分离油液中的气体及沉淀物的作用。

根据系统的具体条件,合理选用油箱的容积、形式和附件,以使油箱充分发挥作用。

油箱有开式和闭式两种,油箱的形状一般采用矩形、而容量大于2立方米的油箱采用圆筒形结构比较合理,设备重量轻,油箱内部压力达0.5MPa。

其中油箱的构造与设计要点:(1)必须有足够大的容量,以保证系统工作时能够保持一定的液位高度,在油箱容积不能够增大而又不能满足散热要求时,需要设冷却装臵。

(2)设臵过滤器。

油箱的回油口一般都设臵系统所要求的过滤精度的回油过滤器,以保持返回油箱的油液具有允许的污染等级。

油箱的排油口(即泵的吸口)为了防止意外落入油箱中的污染物,有时也装设吸油网式过滤器。

(3)设臵油箱主要油口。

油箱的排油口与回油口之间的距离应尽可能远些,管口都应插入最低油面之下,以免发生吸空和回油冲溅产生气泡。

相关文档
最新文档