空间夹角和距离

合集下载

142 用空间向量研究距离、夹角问题(基础知识+基本题型)(含解析)--2022高二数学上

142 用空间向量研究距离、夹角问题(基础知识+基本题型)(含解析)--2022高二数学上

1.4.2用空间向量研究距离、夹角问题(基础知识+基本题型)知识点一、用向量方法求空间角(1)求异面直线所成的角已知a ,b 为两异面直线,A ,C 与B ,D 分别是a ,b 上的任意两点,a ,b 所成的角为θ,则||cos ||||AC BD AC BD θ⋅=⋅。

要点诠释:两异面直线所成的角的范围为(00,900]。

两异面直线所成的角可以通过这两直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角。

(2)求直线和平面所成的角设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的角为ϕ,则有||sin |cos |||||θϕ⋅==⋅a u a u 。

(3)求二面角如图,若PA α⊥于A ,PB β⊥于B ,平面PAB 交l 于E ,则∠AEB 为二面角l αβ--的平面角,∠AEB+∠APB=180°。

若12⋅n n 分别为面α,β的法向量,121212,arccos ||||n n n n n n ⋅〈〉=⋅则二面角的平面角12,AEB ∠=〈〉n n 或12,π-〈〉n n ,即二面角θ等于它的两个面的法向量的夹角或夹角的补角。

①当法向量1n 与2n 的方向分别指向二面角的内侧与外侧时,二面角θ的大小等于1n ,2n 的夹角12,〈〉n n 的大小。

②当法向量1n ,2n 的方向同时指向二面角的内侧或外侧时,二面角θ的大小等于1n ,2n的夹角的补角12,π-〈〉n n 的大小。

知识点二、用向量方法求空间距离1.求点面距的一般步骤:①求出该平面的一个法向量;②找出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即可求出点到平面的距离。

即:点A 到平面α的距离||AB n d n ⋅= ,其中B α∈,n是平面α的法向量。

2.线面距、面面距均可转化为点面距离,用求点面距的方法进行求解。

用空间向量研究距离、夹角问题(第一课时)-高中数学获奖教案

用空间向量研究距离、夹角问题(第一课时)-高中数学获奖教案

1.4.2用空间向量研究距离、夹角(第一课时)(人教A 版普通高中教科书数学选择性必修第一册第一章)一、教学目标1. 能利用投影向量得到点到直线的距离公式、点到平面的距离公式.2. 能用向量方法解决点到直线、平行线间、点到平面、直线到平面(直线与平面平行)、平行平面间的距离问题.3. 结合一些具体的距离问题的解决,体会向量方法在研究距离问题中的作用,提升学生的直观想象、逻辑推理、数学运算等素养.二、教学重难点1. (重点)利用投影向量推导点到直线的距离公式、点到平面的距离公式..2. (难点)利用投影向量统一研究空间距离问题.三、教学过程1.公式的推导1.1复习回顾【实际情境】如图,在空间中任取一点,作,.问题1:(1)怎样表示向量方向上的单位向量?(2)如何作出向量在向量方向上的投影向量?(3)怎样用单位向量表示向量在向量方向上的投影向量及投影向量的模?【活动预设】学生回忆已学的概念、讨论交流.【预设的答案】(1); (2)过点作垂直于直线,垂足为,向量即为向量在向量方向上的投影向量;(3),即,.【设计意图】投影向量的概念是一个比较抽象的概念,不易被学生理解,而本节课距离公式的推导主要依赖于投影向量.投影向量的几何意义、代数表示及模,既体现了几何直观,又体现了代数定量刻画,从而提供了研究距离的方法. 复习回顾求任意非零向量方向上的单位向O OM = a ON = b b u a b u a b ||b u =b M 1MM ON 1M 1OMab 1=cos=cos |)|(OM θθ |a |u |u u =a |u a u 1=()OM a u u 1||=||OM a u x量,及投影向量的相关知识点,以便于学生更好的参与后续公式的推导过程,以及对公式的理解,进而突破难点.1.2探究思考,提炼公式探究一:已知直线的单位方向向量,是直线上的定点,P 是直线外一点.如何利用这些条件求点到直线的距离?【活动预设】结合已有知识,小组讨论思考,每组选出代表回答. 连接,得到向量在直线直线上的投影向量,表示投影向量,求.进而利用勾股定理,可以求出点到直线的距离.【预设的答案】如图,设,则向量在直线上的投影向量.在中,由勾股定理,得.【设计意图】学生多思考,多发言,老师引导学生实现问题的转化,让学生经历公式的推导过程, 发展学生逻辑推理和数学运算的核心素养.问题2:若与直线垂直,点到直线【预设的答案】若与直线垂直,则.问题3:在立体几何图形中求解距离的问题时,已知条件中一般只会给出点以及直线,l u A l l P l AP APl AQAQ ||AQ P l PQ AP = a AP l |cos |cos |()AQ PAQ PAQ =∠=∠= a |u a |u |u a u u Rt AQP △PQ ==AP l P l AP l 0= a u ||||PA PQ ==P l那么点应该如何确定?【预设的答案】 点到直线的距离,即点到直线的垂线段的长度不会随着点的变化而变化,故点可以是直线上的任意一点.问题4:求解距离的过程中是否需要确定垂线段的垂足?【预设的答案】不需要,只需要参考向量和直线的单位方向向量.【设计意图】通过问题串,引导学生继续深入理解用空间向量的方法解决点到直线距离问题的方法,理解利用向量求解点到直线距离问题时,只需该点和直线上的任意一点确定的参考向量,不必确定垂足的位置,体会向量方法的的优越性.教师讲授:要理解公式中各字母的含义,明确点到直线的距离为参考向量的平方与投影向量的平方差的算术平方根.因此,求解点到直线距离问题时,只需直线的方向向量及直线上的任意一点,这样得到参考向量或, 再求得直线的单位方向向量带入公式即可.问题5:求点到直线距离的主要有哪些方法?【预设的答案】(1)作点到直线的垂线,点到垂足的距离即为点到直线的距离;(2)在三角形中用等面积法求解;(3)向量法,即点到直线的距离为参考向量的平方与投影向量的平方差的算术平方根.思考:类比点到直线的距离的求法,如何求两条平行线间的距离?【预设的答案】在其中一条直线上任取一点,将求两条平行直线之间的距离转化为求点到另一条直线的距离.【设计意图】根据已有知识类比学习,引导学生明确平行直线间的距离的求法:转化为一条直线上的任一点到另一条直线的距离,让学生感悟转化思想,化未知为已知.为后续把直线与平面间的距离、两个平行平面间的距离转化为点到平面的距离,在思想方法上做铺垫.A A A l P l P l A P l l l A AP PA P P2探究二 已知平面的法向量为,是平面内的定点,是平面外一点.过点作出平面的垂线,交平面于点.类比点到直线距离的研究过程,如何用向量表示?【预设的答案】如图,向量在直线上的投影向量是,且. 问题6:点到平面的距离应该怎样表示?【预设的答案】 . 【设计意图】 教师提出问题串,类比点到直线距离的研究过程,合作探究,得到点到平面的距离公式,让学生进一步体会平面的法向量在刻画平面、求距离中的作用.在求解点到平面的距离的过程中,平面的法向量的方向和法向量上投影向量的长度既体现了图形直观,又提供了代数定量刻画.在这个过程中,向量与起点无关的自由性也为求距离带来了便利.问题7: 在立体几何图形中求解距离的问题时,已知条件中一般只会给出点以及平面,那么点应该如何确定?求解距离的过程中是否需要找出点在平面内的投影以及垂线段?【预设的答案】点可以是平面内的任意一点.不需要找出点在平面内的投影以及垂线段.【活动预设】教师提出问题串,引导学生思考,加深对公式的理解,教师总结.αn A αP αP αl αQ AP QP APl QP |cos QP AP PAQ =∠ n ||n |P α|||||||||cos |||||AP QP AP PAQ ⋅=∠= n n n n P αA P αA αPα教师讲授:求解点到平面距离问题时,理解公式中各字母的含义,只需平面的法向量及平面内的任意一点,这样得到“参考向量”,明确点到平面的距离为参考向量与法向量数量积的绝对值与法向量的模之比,即参考向量与法向量方向上的单位向量的数量积取绝对值.【设计意图】 类比点到直线距离的研究方法,以类似的方法研究点到平面的距离,使学生学会距离公式的同时,体会数学中常见的研究问题的方法“类比”.思考:如果直线与平面平行,如何求直线与平面的距离?如何求两平行平面之间的距离?【预设的答案】 先证明直线与平面平行或面面平行,再转化为点到平面的距离.【设计意图】 通过对所提问题的思考,引导学生明确直线到平面的距离以及两平行平面的距离的求法:都可以转化为点到平面的距离.师生共析,将平行于平面的直线和两个平行平面间的距离转化为点到平面的距离,得到统一的向量表达式,进一步体会转化的思想.问题8:求点到平面的距离主要有哪些方法?【预设的答案】 (1)作点到平面的垂线,点与垂足的距离即为点到平面的距离. (2)在三棱锥中用等体积法求解. (3)向量法,即点到平面的距离为参考向量与法向量数量积的绝对值与法向量的模之比.2.初步应用,解决问题例1 如图,在棱长为1的正方体中,为线段的中点,为线段的中点.(1)求点到直线的距离;(2)求直线到平面的距离.P αααA l α1111ABCD A B C D -E 11A B F AB B 1AC FC 1AEC【活动预设】学生分析解题思路,教师给出解答示范.让学生注意到点在直线上,因此,可以选择作为参考向量.事实上,可以选择直线上的任意一点和确定“参考向量”,另外,让学生注意到平面的法向量不唯一.【预设的答案】解:以为原点, ,,所在直线为轴、轴、轴,建立如图所示的空间直角坐标系,则,,,,,,所以,,,,,. (1) 取,,则 ,. 所以,点到直线. (2) 因为,所以,又面,面,所以平面,所以点到平面的距离,即为直线到平面的距离.设平面的法向量为,则 所以 所以取,则,,所以,是平面的一个法向量,又因为, A 1AC AB 1AC F 1AEC 1D 11D A 11D C 1D D x y z (1,0,1)A (1,1,1)B (0,1,1)C 1(0,1,0)C 1(1,,0)2E 1(1,,1)2F (0,1,0)AB = 1(1,1,1)AC =-- 1(0,,1)2AE =- 11(1,,0)2EC =- 1(1,,0)2FC =- 1(0,,0)2AF = (0,1,0)AB == a 11||1,1,1)AC AC ==-- u 21=a ⋅=a u B 1AC ==11(1,,0)2FC EC ==- 1//FC EC FC ⊄1AEC 1EC ⊂1AEC //FC 1AEC F 1AEC FC 1AEC 1AEC (,,)x y z =n 10,0.AE EC ⎧⋅=⎪⎨⋅=⎪⎩ n n 10,210.2y z x y ⎧-=⎪⎪⎨⎪-+=⎪⎩2,.y z x z =⎧⎨=⎩1z =1x =2y =(1,2,1)=n 1AEC 1(0,,0)2AF =所以点到平面的距离为即直线到平面【设计意图】通过典型例题,使学生巩固并逐步掌握利用向量方法求空间距离的方法,体会向量方法再解决距离问题中的作用,渗透用空间向量解决立体几何问题的一般过程,并注意培养学生规范的解题能力.追问: 求两种距离的步骤是怎样的?【活动预设】学生结合具体实例及公式特征,尝试总结解题步骤,教师总结.【预设的答案】点到直线的距离 :第一步:建系,在直线上任取一点 (注:选择特殊便于计算的点),求“参考向量(或)”的坐标. 第二步: 依据图形先求出直线的单位方向向量.第三步:带入公式求解.点到面的距离 :第一步:建系,选择“参考向量”;第二步:确定平面的法向量;第三步: 带入公式求值.【设计意图】总结求解距离问题的步骤,培养学生抽象概括的数学素养.3. 梳理归纳,感悟本质思考:回顾这节课的学习,我们学习了哪些内容?用的是什么方法?【预设的答案】本节课我们一起应用空间向量及其运算研究了求空间中的距离问题,包括两点间的距离,点到直线的距离,平行直线之间的距离,点到平面的距离,直线到平面的距离,平行平面之间的距离等,结合投影向量、勾股定理以及向量数量积运算等,我们得到F 1AEC ||||AF ⋅== n n FC 1AEC P l l A AP PA l u P αAP αn了这些距离问题的计算公式,并通过例题的解决,体会了公式的使用,在很多问题中,我们需要建立空间直角坐标系,求出点的坐标,以及直线的方向向量、平面的法向量的坐标表示,代入公式进行计算.我们用类比和转化的研究方法,把要解决的五个距离问题转化为两个距离问题,几何问题转化为向量问题,求解距离转化为向量运算,在此过程中提升直观想象、数学运算和逻辑推理等数学学科核心素养.教师讲授:本节课的学习你体会到向量方法解决立体几何问题的“三步曲”吗?与用平面向量解决平面几何问题的 “三步曲”类似,我们可以得出用空间向量解决立体几何问题的 “三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面, 把立体几何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间的距离和夹角等问题;(3)把向量运算的结果“翻译”成相应的几何结论.四、课后作业1.在棱长为的正方体中,点到平面的距离等于_________;直线到平面的距离等于________;平面到平面的距离等于__________.2.已知直线过定点,且为其一个方向向量,则点到直线的距离为( )ABCD3.已知平面的一个法向量,点在平面内,则点到平面的距离为( )A .B .C .D . 4.如图,在棱长为的正方体中,求平面与平面的距离.11111ABCD A B CD -A 1B C CD1AB 1DA 1CB l (2,3,1)A (0,1,1)=n ()4,3,2P l α()2,2,1=--n ()1,3,0A -α()2,1,4P -α1038310311111ABCD A B C D -1A DB 11D CB【设计意图】作业中的4个题目,包括了求点到直线的距离、点到平面的距离、直线到平面的距离以及两平行平面间的距离等主要的距离问题,尤其突出训练了本节课的重点以及难点,即点到直线、点到平面的距离.这样可以使学生巩固课上所学习的知识,提升对公式的应用能力.。

空间向量的夹角与距离求解公式-高中数学知识点讲解

空间向量的夹角与距离求解公式-高中数学知识点讲解

空间向量的夹角与距离求解公式1.空间向量的夹角与距离求解公式【知识点的认识】1.空间向量的夹角公式→→设空间向量푎=(a1,a2,a3),푏=(b1,b2,b3),→→cos<푎,푏>=→→푎⋅푏→→|푎|⋅|푏|=푎1푏1+푎2푏2+푎3푏3푎12+푎22+푎32⋅푏12+푏22+푏32注意:→→→→(1)当 cos<푎,푏>= 1时,푎与푏同向;→→→→(2)当 cos<푎,푏>=― 1时,푎与푏反向;→→→→(3)当 cos<푎,푏>= 0时,푎⊥푏.2.空间两点的距离公式设A(x1,y1,z1),B(x2,y2,z2),则→퐴퐵=(푥2―푥1,푦2―푦1,푧2―푧1)→d A,B=|퐴퐵| =→퐴퐵⋅→퐴퐵=(푥2―푥1)2+(푦2―푦1)2+(푧2―푧1)2.【解题思路点拨】1.求空间两条直线的夹角建系→写出向量坐标→利用公式求夹角2.求空间两点的距离建系→写出点的坐标→利用公式求距离.【命题方向】(1)利用公式求空间向量的夹角→→例:已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量퐴퐵与퐴퐶的夹角为()1/ 3A.30°B.45°C.60°D.90°→→→分析:由题意可得:퐴퐵=(0,3,3),퐴퐶=(―1,1,0),进而得到퐴퐵⋅→→→→→퐴퐶与|퐴퐵|,|퐴퐶|,再由cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→可得答案.|퐴퐵||퐴퐶|解答:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),所以→→퐴퐵=(0,3,3),퐴퐶=(―1,1,0),→所以퐴퐵⋅→→→퐴퐶═0×(﹣1)+3×1+3×0=3,并且|퐴퐵|=3 2,|퐴퐶| = 2,→→所以 cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→|퐴퐵||퐴퐶|=332×2=12,→→∴퐴퐶的夹角为 60°퐴퐵与故选C.点评:解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题.(2)利用公式求空间两点的距离例:已知空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),则A,B 两点间的距离是()A.3B. 29C.25D.5分析:求出AB 对应的向量,然后求出AB 的距离即可.解答:因为空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),→→所以퐴퐵=(﹣3,0,﹣4),所以|퐴퐵|=(―3)2+02+(―4)2= 5.故选D.点评:本题考查空间两点的距离求法,考查计算能力.2/ 33/ 3。

用空间向量研究距离、夹角问题 (3)

用空间向量研究距离、夹角问题 (3)
与2 ′所成的角叫做异面直线1 与
2 所成的角(或夹角).
β
α
l
α
β
空间中,平面与平面相交,形成四个
二面角,我们把这四个二面角中不大于
90°的二面角称为平面与平面的夹角.
追问1:两个平面夹角的取值范围是什么?
0° ≤ ≤ 90°
β
α
l
α
β
= 0°
0° < ≤ 90°
追问2:二面角的大小是如何度量的?
思考:在例题条件下,如何求“平面1 1 与平面
1 1 1 夹角的余弦值”?
C
P
B
A
R
Q
C1
A1
B1
问:转化为哪种向量的夹角?
z
C
B
A
C1
B1 y
A1
x
思路 1.两平面内与交线垂直的
直线的方向向量的夹角
2.两个平面的
法向量的夹角
例题小结
用空间向量求平面与平面的夹角的步骤与方法:
都为2,求平面1 1 与平面1 夹角的余弦值.
A1
A
C
B
C1
B1
课后作业
A
2. 如图,△ 和△ 所
B
在平面垂直,且== ,
∠=∠=120°,求:
D
(1)直线与直线所成角的大小;
(2)直线与平面所成角的大小;
(3)平面和平面的夹角的余弦值.
化为向量问题
①转化为求平面,的法向量
, 的夹角


进行向量运算
②计算cos , =
回到图形问题
③平面与平面夹角的余弦值
cos = cos ,
的值

空间向量的夹角和距离公式(讲课)

空间向量的夹角和距离公式(讲课)
aba1b1a2b2a3b3 ;
a//b a 1 b 1 ,a 2 b 2 ,a 3 b 3 ( R ) ;
a 1/b 1a 2/b 2a 2/b 2 . a b a1b 1a2b2a3b30;
二、距离与夹角 (1)空间两点间的距离公式
在空间直角坐标系中,已知 A(x1 , y1 , z1) 、 B(x2 , y2 ,z2),则
例2 如图,在正方体 A B C DA 1B 1C 1D 1中,B1E1
D1F1
A1B1 4
,求
BE1

D
F1
所成的角的余弦值。
z
D1
F1
C1
D F 1 0 , 1 4, 1 (0 ,0 ,0 ) 0 , 1 4, 1 .
A1
E1 B1
B E 1D F 1 0 0 1 4 1 4 1 1 1 1 6 5,
| AM| 5 30 6.故 点 A到 直 线 EF的 距 离 为6.
2 10 4
4
课堂练习:
1 . 若 正 方 体 A B C D A 1 B 1 C 1 D 1 的 边 长 为 1 , E , F 分 别 是
C C 1 , D 1 A 1 的 中 点 . 求 ( 1 ) < F E , F A , ( 2 ) 点 A 到 直 线 E F 的 距 离 .
D1
F A1
C1 B1
E
2021/3/11
D A
C B
9
课堂练习:
1 . 若 正 方 体 A B C D A 1 B 1 C 1 D 1 的 边 长 为 1 , E , F 分 别 是
C C 1 , D 1 A 1 的 中 点 . 求 ( 1 ) < F E , F A , ( 2 ) 点 A 到 直 线 E F 的 距 离 .

用空间向量研究距离、夹角:距离问题

用空间向量研究距离、夹角:距离问题

用空间向量研究距离、夹角:距离问题学习目标1.能用向量方法解决点到直线、点到平面、相互平行的直线、相互平行的平面间的距离问题.2.通过空间中距离问题的求解,体会向量方法在研究几何问题中的作用.导语如图,在蔬菜大棚基地有一条笔直的公路,某人要在点A 处,修建一个蔬菜存储库.如何在公路上选择一个点,修一条公路到达A 点,要想使这个路线长度理论上最短,应该如何设计?一、点到直线的距离问题1如图,已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点.如何利用这些条件求点P 到直线l 的距离?提示设AP →=a ,则向量AP →在直线l 上的投影向量AQ →=(a ·u )u .在Rt △APQ 中,由勾股定理,得点P 到直线l 的距离为PQ =|AP →|2-|AQ →|2=a 2-(a ·u )2.知识梳理PQ =(|AP →|2-|AQ →|2)=a 2-(a ·u )2.问题2类比点到直线的距离的求法,如何求两条平行直线之间的距离?提示在其中一条直线上取定一点,则该点到另一条直线的距离即为两条平行直线之间的距离.例1如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,O 为平面A 1ABB 1的中心,E 为BC的中点,求点O 到直线A 1E 的距离.解建立如图所示的空间直角坐标系,则A 1(1,0,1),E 12,1,0,O 1,12,12,因为A 1E —→=-12,1,-1u =A 1E —→|A 1E —→|=-13,23,-23,取a =OA 1—→0,-12,12所以a 2=12,a ·u =-23.所以点O 到直线A 1E 的距离为a 2-(a ·u )2=12-49=26.反思感悟用向量法求点到直线的距离的一般步骤(1)求直线的方向向量.(2)计算所求点与直线上某一点所构成的向量在直线的方向向量上的投影向量的长度.(3)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化.跟踪训练1如图,P 为矩形ABCD 所在平面外一点,PA ⊥平面ABCD ,若已知AB =3,AD=4,PA =1,求点P 到BD 的距离.解如图,分别以AB ,AD ,AP 所在直线为x ,y ,z 轴建立空间直角坐标系,则P (0,0,1),B (3,0,0),D (0,4,0),所以PB →=(3,0,-1),BD →=(-3,4,0),取a =PB →=(3,0,-1),u =BD →|BD →|=-35,45,0则a 2=10,a ·u =-95,所以点P 到BD 的距离为a 2-(a ·u )2=10-8125=135.二、点、直线、平面到平面的距离问题3已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.如何求平面α外一点P 到平面α的距离?提示过点P 作平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为PQ =|AP →·n ||n |.知识梳理PQ =|AP →·n ||n |.注意点:(1)实质上,n 是直线l 的方向向量,点P 到平面α的距离就是AP →在直线l 上的投影向量QP →的长度.(2)如果一条直线l 与一个平面α平行,可在直线l 上任取一点P ,将线面距离转化为点P 到平面α的距离求解.(3)如果两个平面α,β互相平行,在其中一个平面α内任取一点P ,可将两个平行平面的距离转化为点P 到平面β的距离求解.例2如图,已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离;(2)求直线AC 到平面PEF 的距离.解(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E 1,12,0,F 12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP→=x +12y ,12x +y ,z ,x +y +z =1,PE →1,12,-1PF →12,1,-1所以DH →·PE →=x +12y +1212x +y z=54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,解得x =y =417,z =917.所以DH →=317(2,2,3),所以|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)由题意得,AC ∥EF ,直线AC 到平面PEF 的距离即为点A 到平面PEF 的距离,由(1)知AE →=0,12,0平面PEF 的一个法向量为n =(2,2,3),所求距离为|AE →·n ||n |=117=1717.反思感悟用向量法求点面距离的步骤(1)建系:建立恰当的空间直角坐标系.(2)求点坐标:写出(求出)相关点的坐标.(3)求向量:求出相关向量的坐标(AP →,α内两不共线向量,平面α的法向量n ).(4)求距离d =|AP →·n ||n |.跟踪训练2如图所示,已知四棱柱ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱.若点C到平面AB 1D 1的距离为43,求正四棱柱ABCD -A 1B 1C 1D 1的高.解设正四棱柱的高为h (h >0),建立如图所示的空间直角坐标系,有A (0,0,h ),B 1(1,0,0),D 1(0,1,0),C (1,1,h ),则AB 1—→=(1,0,-h ),AD 1—→=(0,1,-h ),AC →=(1,1,0),设平面AB 1D 1的法向量为n =(x ,y ,z ),·AB 1—→=0,·AD 1—→=0,-hz =0,-hz =0,取z =1,得n =(h ,h ,1),所以点C 到平面AB 1D 1的距离为d =|n ·AC →||n |=h +h +0h 2+h 2+1=43,解得h =2.故正四棱柱ABCD -A 1B 1C 1D 1的高为2.1.知识清单:(1)点到直线的距离.(2)点到平面的距离与直线到平面的距离和两个平行平面的距离的转化.2.方法归纳:数形结合、转化法.3.常见误区:对距离公式理解不到位,在使用时生硬套用.对公式推导过程的理解是应用的1.已知A (0,0,2),B (1,0,2),C (0,2,0),则点A 到直线BC 的距离为()A .223B .1C .2D .22答案A解析∵A (0,0,2),B (1,0,2),C (0,2,0),AB →=(1,0,0),BC →=(-1,2,-2),∴点A 到直线BC 的距离为d=223.2.若三棱锥P -ABC 的三条侧棱两两垂直,且满足PA =PB =PC =1,则点P 到平面ABC 的距离是()A .66B .63C .36D .33答案D解析以P 为坐标原点,分别以PA ,PB ,PC 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则P (0,0,0),A (1,0,0),B (0,1,0),C (0,0,1).可以求得平面ABC 的一个法向量为n =(1,1,1),则d =|PA →·n ||n |=33.3.已知棱长为1的正方体ABCD -A 1B 1C 1D 1,则平面AB 1C 与平面A 1C 1D 之间的距离为()A .36B .33C .233D .32答案B解析建立如图所示的空间直角坐标系,则A 1(1,0,0),C 1(0,1,0),D (0,0,1),A (1,0,1),所以DA 1—→=(1,0,-1),DC 1—→=(0,1,-1),AD →=(-1,0,0),设平面A 1C 1D 的一个法向量为m =(x ,⊥DA 1—→,⊥DC 1—→,-1=0,-1=0,=1,=1,故m =(1,1,1),显然平面AB 1C ∥平面A 1C 1D ,所以平面AB 1C 与平面A 1C 1D 之间的距离d =|AD →·m ||m |=13=33.4.已知直线l 经过点A (2,3,1),且向量n =(1,0,-1)所在直线与l 垂直,则点P (4,3,2)到l 的距离为________.答案22解析因为PA →=(-2,0,-1),又n 与l 垂直,所以点P 到l 的距离为|PA →·n ||n |=|-2+1|2=22.练习1.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =a ,AA 1=2a ,则点D 1到直线AC 的距离为()A .3aB .3a 2C .22a 3D .32a 2答案D 解析方法一连接BD ,AC 交于点O (图略),则D 1O =32a2所求.方法二如图建立空间直角坐标系,易得C (a ,a ,0),D 1(0,a ,2a ),取a =CD 1—→=(-a ,0,2a ),u =AC →|AC →|=22,22,0则点D 1到直线AC 的距离为a 2-(a ·u )2=5a 2-12a 2=32a 2.2.两平行平面α,β分别经过坐标原点O 和点A (2,1,1),且两平面的一个法向量n =(-1,0,1),则两平面间的距离是()A .32B .22C .3D .32答案B解析∵两平行平面α,β分别经过坐标原点O 和点A (2,1,1),OA →=(2,1,1),且两平面的一个法向量n =(-1,0,1),∴两平面间的距离d =|n ·OA →||n |=|-2+0+1|2=22.3.已知动直线l 过点A (1,-1,2),和l 垂直的一个向量为n =(-3,0,4),则P (3,5,0)到l 确定的平面的距离为()A .5B .14C .145D .45答案C解析∵PA →=(-2,-6,2),PA →·n =(-2,-6,2)·(-3,0,4)=14,|n |=5,∴点P 到直线l 的距离d =|PA →·n ||n |=145.4.如图,已知长方体ABCD -A 1B 1C 1D 1中,A 1A =5,AB =12,则直线B 1C 1到平面A 1BCD 1的距离是()A .5B .8C .6013D .133答案C解析以D 为坐标原点,DA →,DC →,DD 1—→的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则C (0,12,0),D 1(0,0,5).设B (x ,12,0),B 1(x ,12,5)(x >0).设平面A 1BCD 1的法向量为n =(a ,b ,c ),由n ⊥BC →,n ⊥CD 1—→,得n ·BC →=(a ,b ,c )·(-x ,0,0)=-ax =0,n ·CD 1—→=(a ,b ,c )·(0,-12,5)=-12b +5c =0,所以a =0,b =512c ,所以可取n =(0,5,12).又B 1B —→=(0,0,-5),所以点B 1到平面A 1BCD 1的距离为|B 1B —→·n ||n |=6013.因为B 1C 1∥平面A 1BCD 1,所以B 1C 1到平面A 1BCD 1的距离为6013.5.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BC 的中点,则点C 1到平面B 1EF 的距离等于()A .23B .223C .233D .43答案D解析以D 1为坐标原点,分别以D 1A 1——→,D 1C 1—→,D 1D —→的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,则B 1(2,2,0),C 1(0,2,0),E (2,1,2),F (1,2,2).B 1E —→=(0,-1,2),B 1F —→=(-1,0,2),设平面B 1EF 的法向量为n =(x ,y ,z ),n ·B 1E —→=0,n ·B 1F —→=0,-y +2z =0,-x +2z =0,令z =1,得n =(2,2,1).又∵B 1C 1——→=(-2,0,0),∴点C 1到平面B 1EF 的距离d =|n ·B 1C 1——→||n |=|-2×2+0+0|22+22+1=43.6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面ABC 1D 1的距离为()A .32B .24C .12D .33答案B解析以{DA →,DC →,DD 1—→}为正交基底建立如图所示的空间直角坐标系,则A 1(1,0,1),C 1(0,1,1),C 1O —→=12C 1A 1——→=12,-12,0ABC 1D 1的一个法向量为DA 1—→=(1,0,1),点O 到平面ABC 1D 1的距离d =|DA 1—→·C 1O —→||DA 1—→|=122=24.7.Rt △ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是________.答案3解析以C 为坐标原点,CA ,CB ,CP 为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),,0所以AB →=(-4,3,0),AP →4,0取a =AP →4,0u =AB →|AB →|=-45,35,则P 到AB 的距离为d =a 2-(a ·u )2=16+8125-25625=3.8.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑(bie nao),如图.已知在鳖臑P -ABC 中,PA ⊥平面ABC ,PA =AB =BC =2,M 为PC 的中点,则点P 到平面MAB 的距离为________.答案2解析以B 为坐标原点,BA ,BC 所在直线分别为x 轴、y 轴建立空间直角坐标系,如图,则B (0,0,0),A (2,0,0),P (2,0,2),C (0,2,0),由M 为PC 的中点可得M (1,1,1).BM →=(1,1,1),BA →=(2,0,0),BP →=(2,0,2).设n =(x ,y ,z )为平面ABM 的一个法向量,n ·BA →=0,n ·BM →=0,2x =0,x +y +z =0,令z =-1,可得n =(0,1,-1),点P 到平面MAB 的距离为d =|n ·BP →||n |= 2.9.在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,M 为BB 1的中点,N 为BC 的中点.(1)求点M 到直线AC 1的距离;(2)求点N 到平面MA 1C 1的距离.解(1)建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),M (2,0,1),C 1(0,2,2),直线AC 1的一个单位方向向量为s 0=0,22,22AM →=(2,0,1),故点M 到直线AC 1的距离d =|AM →|2-|AM →·s 0|2=5-12=322.(2)设平面MA 1C 1的一个法向量为n =(x ,y ,z ),n ·A 1C 1—→=0,n ·A 1M —→=0,2y =0,2x -z =0,取x =1,得z =2,故n =(1,0,2)为平面MA 1C 1的一个法向量,因为N (1,1,0),所以MN →=(-1,1,-1),故N 到平面MA 1C 1的距离d =|MN →·n ||n |=35=355.10.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 为线段DD 1的中点,F 为线段BB 1的中点.(1)求直线FC 1到直线AE 的距离;(2)求直线FC 1到平面AB 1E 的距离.解建立如图所示的空间直角坐标系,则B 1(1,1,1),,0,1C 1(0,1,1),A (1,0,0).(1)因为AE →1,0FC 1—→1,0所以AE →∥FC 1—→,即AE ∥FC 1,所以点F 到直线AE 的距离即为直线FC 1到直线AE 的距离.u =AE →|AE →|=-255,0AF →,1AF →2=54,AF →·u =510,所以直线FC 1到直线AE =305.(2)因为AE ∥FC 1,所以FC 1∥平面AB 1E ,所以直线FC 1到平面AB 1E 的距离等于C 1到平面AB 1E 的距离.C 1B 1——→=(1,0,0),AB 1—→=(0,1,1),设平面AB 1E 的一个法向量为n =(x ,y ,z ),·AB 1—→=0,·AE →=0,+z=0,x+12z=0,取z=2,可得n=(1,-2,2),所以C1到平面AB1E的距离为|C1B1——→·n||n|=13,所以直线FC1到平面AB1E的距离为13.11.如图,ABCD-EFGH是棱长为1的正方体,若P在正方体内部且满足AP→=34AB→+12AD→+23AE→,则P到AB的距离为()A.34B.45C.56D.35答案C解析如图,分别以AB,AD,AE所在直线为x,y,z轴建立空间直角坐标系,AB→,AD→,AE→可作为x,y,z轴方向上的单位向量,因为AP→=34AB→+12AD→+23AE→,所以AP→,12,AB→=(1,0,0),|AP→·AB→||AB→|=34,所以P点到AB的距离d=|AP→|2-|AP→·AB→|AB→||2=181144-916=56.12.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,BB1的中点,M为棱A1B1上的一点,且A1M=λ(0<λ<2),设点N为ME的中点,则点N到平面D1EF的距离为()A .3λB .22C .23λD .55答案D 解析以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系(图略),则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),ED 1—→=(-2,0,1),EF →=(0,2,0),EM →=(0,λ,1).设平面D 1EF 的一个法向量为n =(x ,y ,z ),n ·ED 1—→=-2x +z =0,n ·EF →=2y =0,取x =1,得n =(1,0,2),所以点M 到平面D 1EF 的距离为d =|EM →·n ||n |=25=255.因为N 为EM 的中点,所以N 到平面D 1EF 的距离为55.13.棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是线段BB 1,B 1C 1的中点,则直线MN 到平面ACD 1的距离为__________.答案32解析如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.则D (0,0,0),C (0,1,0),D 1(0,0,1),M 1,1,12,A (1,0,0),∴AM →0,1,12AC →=(-1,1,0),AD 1—→=(-1,0,1).设平面ACD 1的一个法向量为n =(x ,y ,z ),·AC →=0,·AD 1—→=0,x +y =0,x +z =0.令x =1,则y =z =1,∴n =(1,1,1).∴点M 到平面ACD 1的距离d =|AM →·n ||n |=32.又MN ∥AD 1,且MN =12AD 1,故MN ∥平面ACD 1,故直线MN 到平面ACD 1的距离为32.14.如图,在三棱柱ABC -A 1B 1C 1中,所有棱长均为1,且AA 1⊥底面ABC ,则点B 1到平面ABC 1的距离为________.答案217解析建立如图所示的空间直角坐标系,则,12,B (0,1,0),B 1(0,1,1),C 1(0,0,1),则C 1A —→,12,-C 1B 1——→=(0,1,0),C 1B —→=(0,1,-1).设平面ABC 1的一个法向量为n =(x ,y ,1),1A →·n =32x +12y -1=0,1B →·n =y -1=0,解得n 1,则所求距离为|C 1B 1——→·n ||n |=113+1+1=217.15.如图,在四棱锥P -ABCD 的平面展开图中,四边形ABCD 是边长为2的正方形,△ADE 是以AD 为斜边的等腰直角三角形,∠HDC =∠FAB =90°,则四棱锥P -ABCD 外接球的球心到平面PBC 的距离为()A .305B .306C .55D .56答案C 解析该几何体的直观图如图所示,分别取AD ,BC 的中点O ,M ,连接OM ,PM ,PO ,∵PO =1,OM =2,PM =PB 2-BM 2=6-1=5,∴OP 2+OM 2=PM 2,∴OP ⊥OM ,又∵PO ⊥AD ,∴由线面垂直的判定定理得出PO ⊥平面ABCD ,以点O 为坐标原点,建立空间直角坐标系.则A (1,0,0),B (1,2,0),C (-1,2,0),D (-1,0,0),P (0,0,1),设四棱锥P -ABCD 外接球的球心为N (0,1,a ),∵PN =NA ,∴1+(1-a )2=1+1+a 2,解得a =0.设平面PBC 的法向量为n =(x ,y ,z ),PB →=(1,2,-1),PC →=(-1,2,-1),NP →=(0,-1,1),·n =0,·n =0,+2y -z =0,x +2y -z =0,取z =2,则n =(0,1,2),则四棱锥P -ABCD 外接球的球心到平面PBC 的距离为d =|NP →·n ||n |=|-1+2|5=15=55.16.如图所示,在直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90°,CA =2,侧棱AA 1=2,D 是CC 1的中点,则在线段A 1B 上是否存在一点E (异于A 1,B 两点),使得点A 1到平面AED 的距离为263.解假设存在点E 满足题意.以点C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴和z 轴建立如图所示的空间直角坐标系.则A (2,0,0),A 1(2,0,2),D (0,0,1),B (0,2,0),AA 1—→=(0,0,2),BA 1—→=(2,-2,2).设BE →=λBA 1—→,λ∈(0,1),则E (2λ,2(1-λ),2λ),AD →=(-2,0,1),AE →=(2(λ-1),2(1-λ),2λ),设n =(x ,y ,z )为平面AED 的一个法向量,·AD →=0,·AE →=0,2x +z =0,(λ-1)x +2(1-λ)y +2λz =0,取x =1,则y =1-3λ1-λ,z =2,即n ,1-3λ1-λ,AED 的一个法向量.因为点A 1到平面AED 的距离d =|AA 1—→·n ||n |=263,所以26 3=又λ∈(0,1),所以λ=1 2 .故存在点E,且当点E为A1B的中点时,点A1到平面AED的距离为26 3.。

空间向量的距离和夹角公式

空间向量的距离和夹角公式

例2 在正方體ABCD-A1B1C1D1中,E、F分別是BB1、 D1 B1的中點,求證:EF⊥ DA1
例3 在正方體ABCD-A1B1C1D1中,E、F分別是BB1、 CD的中點,求證:D1F⊥ 平面ADE
例4 如圖,在正方體ABCD-A1B1C1D1中,已知
B1E1
D1F1
1 4
AB
,與BE1與DF1所成的角的余弦值。
BC=1,AA1=√6,M是棱CC1的中點,
求證:A1B⊥AM
C1
B1
A1
M
C
B
A
3、在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別
是DD1,DB中點,G在棱CD上,CD=4CG,H是C1G的
中點,
z
(1) 求證:EF⊥B1C ;
D1
C1
A1 E
B1 H
D
G
C y
F
A
B
x
3、在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別
| a| | b |
a12 a22 a32 b12 b22 b32
(2) 空間兩點間的距離公式 在空間直角坐標系中,已知A(x1 , y1 , z1),
B(x2 , y2 , z2),則
AB (x2 x1, y2 y1, z2 z1)
| AB | AB AB (x2 x1)2 ( y2 y1)2 (z2 z1)2
是DD1,DB中點,G在棱CD上,CD=4CG,H是C1G的
中點,
z
(2) 求EF與C1G所成的角的余弦; D1
C1
(3) 求FH的長。A1 EB1 H NhomakorabeaD
G
C y
F

高一数学《夹角和距离公式》

高一数学《夹角和距离公式》

做一做: 教师备用:已知 a=(0,-1,1),b=(1,2,-1),则 a 与 b 的夹角等于( D ) (A)30° (B)60° (C)90° (D)150°
解析:a·b=0-2-1=-3,
|a|= 2,|b|= 1+22+1= 6,
∴cos〈a,b〉=|aa|·|bb|=
-3 =- 2· 6
nn··ab= =00 .
④解方程组,取其中的一个解,即得法向量. (3)方法二必须建立空间直角坐标系,方法一不一定要建立空间直角坐标系. (4)在求平面的法向量时,要先找有没有和平面垂直的直线,若没有则用待定系数法.
(5)在利用方法二求解平面的法向量时,方程组nn··ab= =00 有无数多个解,只需给 x,y,z
角时可以在两条异面直线上分别取出两个向量,通过求这两个向量所成的角来求异面直线所
成的角,但需注意异面直线所成角范围(0°,90°],注意这两个角相互转化时范围的不同.
知识要点二:线段的长度的求法
1.利用 a·a离公式来求.
知识要点三:对平面法向量的理解 1.所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然,一个平面的法向 量有无数多个,它们是共线向量.由于过直线外一点作与已知直线垂直的平面有且只有一个, 因此,在空间中,给定一个点 A 和一个向量 a,那么以向量 a 为法向量且经过 A 的平面是唯 一确定的. 2.求平面法向量的方法 (1)方法一:找到一条与已知平面垂直的直线,则该直线的任意方向向量都是该平面的法 向量. (2)方法二:待定系数法 若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求 解,一般步骤如下: ①设出平面的法向量为 n=(x,y,z). ②找出(求出)平面内的两个不共线的向量的坐标 a=(a1,b1,c1),b=(a2,b2,c2). ③根据法向量的定义建立关于 x、y、z 的方程组

高三数学空间向量夹角与距离

高三数学空间向量夹角与距离
要面对社会、政府要面对群众。古往今来,诸如成功、荣誉,挫折、困难,乃至灾祸等等,无一不要人们面对。
设a=(a1,a2,a3), b=(b1,b2,b3)
a//b
a1=λb1,a2=λb2,a3=λb3(λ∈R)
a⊥b
a1b1+a2b2+a3b3=0
例1.已知A(3,3,1),B(1,0,5)求:
确实是一种不好的行为,它会给人们带来不幸和灾难,但也有些“闯祸”恰恰是对旧事物的破坏,对旧传统的反叛,因此,就带有一种革命性的色彩,具有创新的内涵。你可以写写生活中的这类事件,也可以虚构故事来表现这一道理。 25、21世纪世界教育的核心主题之一是“学会共同生 活,”而“学会共同生活”的核心内容是“学会合作”。 试围绕“学会合作”的话题,写一篇600字左右的文章,题目自拟,文体不限。 思路点拨 合作的领域很多,同学们可以从自己的学习与生活中选取材料,可以写与老师、家长、同学、朋友等熟悉的人合作,也可以写与陌生人合作,还 可以写与集体的合作,更可以写与“自己”合作(学会用理智控制自己的感情,或自己的毅力与勤奋等)。可从大处着眼,也可以从小处说起;可高层建瓴叙谈,也可以小见大行文;既可写正面的(成功的)合作经历,也可写反面的(失败的)合作经历。可以写记叙文,也可写议。可以表达 这样的主题:合作是事业取得成功的保,合作万事兴。 26、阅读下面的材料,根据要求作文。 1830年,法国作家雨果同出版商签订合同,半年内交出一部作品。于是,雨果把外出的所有衣服锁进柜子里,把钥匙扔进了湖里,彻底断了外出会友和游玩的念头,一心写作,文学巨著《巴黎圣母 院》就是这样写成的。是的,在漫漫人生路上,往往只有不留下退路,才更容易赢得出路。当我们难以驾驭自己的惰性和欲望,不能专心致志地前行时,不妨也采取一些斩断退路之举,逼着自己全力以赴地寻找出路,走向成功。 请以“不留退路,才有出路”为题写一篇作文,所写内容必须 与“退路和出路”有关,文体不限,文题自拟,不得少于800字,不得抄袭。 27、阅读下面的材料,根据要求作文。 登山的人,有的目不旁视,奋力攀登,他执著于到达峰顶的瞬间风光;有的则流连沿途风景,且走且赏,山顶不过是他歇脚的地方。不只登山,生活也是这样:两种心态,两 种行为,两种价值观。你怎么看待这个问题呢? 请以“进取心与平常心”为题,联系现实生活,写一篇文章。自定立意,自拟标题,自选文体,不少于800字。 28、阅读下面的材料,根据要求作文。 巴豆,药性最能泻,但只要用量适度,非但不会引起腹泻,反倒能治好腹泻,剂量大了才会 引起严重腹泻。 由此,你会得到哪些启示?请以“度”为题,写一篇作文。题目自拟,立意自定,文体自选,不少于800字。 29、联系生活实际,以“包装”为题,写一篇不少于800字的作文,立意自定,题目自拟,文体不限。 [写作提示]联系现实生活,说明包装是为了使产品美观,吸引 消费者乐于购买,收到外观与内质相得益彰的效果。而今有些“包装”,诸如歌星矫揉造作,打扮过分;商品包装花样翻新;房屋装修华而不实。凡此种种,其效果适得其反,追求形式而损害了内容。要结合画面寓意予以剖析。 30、阅读下面的材料,根据要求作文。 两只蚂蚁想翻越一段墙, 寻找墙那边的食物。这段墙长有20米,高有10米。其中一只蚂蚁来到墙脚就毫不犹豫地向上爬去,可每爬到大半时,就会因劳累跌落下来。可是它不气馁,它相信只要付出就会有回报。一次次跌下来,它都迅速地调整一下自己,重新开始向上爬。 而另一只蚂蚁观察一下,决定绕过这段墙。 很快地,这只蚂蚁绕过这段墙来到食物面前,开始享用起来;而那只“勇敢”“坚定”的蚂蚁还在不停地跌落下去,又重新开始。 很多时候,我们赞扬那些做事情锲而不舍的人,但是往往忽视方向的选择与方法的运用。实际上,成功需要坚持,也需要方向、机遇、方法。请以“坚持与选择” 为题写一篇不少于800字的文章。立意自定,文体自拟。 三、半命题作文预测 31、请以“听听那 的声音”为题,写一篇作文。可讲述你自己或身边的故事,抒发你的真情实感,也可阐明你的思想观点。 【注意】①把题目补充完整。②立意自定,角度自选。③除诗歌外,文体不限。④不少 于800字。⑤不得抄袭。 写作点拨 这个命题非常贴近学生的生活可以写自然界的各种声音,也可以写家庭中、社会上的各种声音,还可以写心灵的声音等等等等。而我们要选择的,是最最触动我们心灵的声音。 32、阅读下面材料,按要求作文。 喧闹、快节奏的生活和工作给人们带来了满 足,也带来了烦恼。心灵时常被搓揉得疲惫不堪。那么,我们该到哪里去寻找心灵的憩息地呢? 请以“让心灵在 中憩息”为标题写一篇文章,文体自选,立意自定,字数不少于800,不得抄袭和套作。 思路点拨 这是一篇半命题作文。文题“让心灵在 中憩息”包含着一定的哲理意义。审题 立意的关键在于明确设定“心灵”与“憩息”的含义,并准确把握“憩息”的条件。可以选择宽容、爱等。 33、“? 的滋味” 以“? 的滋味”为题,写一篇记叙文。 要求:①补全题目;②自定立意;③不少于800字。 思路点拨: 文题中的“滋味”本义是“味道”,喻义是“某种感受”。 为此,本文的写作要注意以下三点:一是缘事生感。必须叙写一个中心事件,或围绕一个中心叙写一组事件,在此基础上生发出自己的内心感受。而且,只有事件叙写得“厚实”,生发的感受才会“真切”。那种通篇无事、跟着感觉走的文章只会给人以无病呻吟、为赋新词强说愁之感。二是 多法生感。对于“感受”的生发,既可先“事”后“感”,卒章生发,升华情感;也可将“感受”融化在“事件”的叙写过程之中,“生发”于无痕。三是用足描写。中学生的生活一般都是风平浪静的,很难“惊世骇俗”,很难给人以“超级震撼”。那么,要想在“平凡的世界”里生发出让 人怦然心动的感受,就必须用敏锐的触觉去捕捉,用细腻的笔触去描写生活中那些让人的心灵为之一颤的场景、画面、镜头,让读者的心弦在你柔柔地拨弄下产生出共鸣,这样才能收到“平凡的人给我以最多感动”的构思之效。 34、阅读下面的文字,根据要求作文。 人类要面对自然,个人

距离和夹角公式(空间向量) 精品

距离和夹角公式(空间向量) 精品
A1
D1
C1
思路二:利用空间向量的知识,
转化为求 EF和BG的 夹角,进一步转化为求 它们的数量积和长度.
B1 D
G
Cy F A E B
x
问题:正方体ABCD-A1B1C1D1中,E,F,G分别为AB,BC, CC1的中点,那么EF与BG所成角的余弦值为----z 解:不妨设已知正方体的棱长 为1个单位长度,且设DA=i D1 C1 DC=j,DD1=k,以i,j,k为坐标 向量建立空间直角坐标系 G A1 D-xyz B1
cos a, b a b | a ||b |

a1b1 a2b2 a3b3 a1 a2 a3 b1 b2 b3
2 2 2 2 2 2
;
a b a1b1 a2b2 a3b3 ;
| a | a a a1 a2 a3
2 2 2 2
| b | b b b b2 b3
2
2 1
2
2
练习:求下列向量的夹角的余弦: (1)a=(2,-3, 3), b=(1,0,0) (2)a=(-1,-1,1), b=(-1,01,)
思 已知A(0,2,3)、B( 2,1,6), C (1,1,5), 用向量 考
方法求ABC的面积S。
距离和夹角公式
(空间向量)
复习
空间向量的数量积: a b a b cos a, b 空间向量的坐标运算:
设a (a1, a2 , a3 ),b (b1 , b2 , b3 )则
a b a1b1 a2b2 a3b3 ;
请思考: 2+a 2+a 2 2 a· a= a 1 2 3 |a| = |a|= √ a12+a22+a32 b=b12+b22+b32 |b|2= b· |b|= √ b12+b22+b323页第7题,第9题

空间向量研究距离,夹角问题

空间向量研究距离,夹角问题
解:以B为坐标原点,建立如图所示的空 间直角坐标系,则A1(4,0,1),C1(0,3,1), 所以直线A1C1的方向向量
又因为
所以点B到直线A1C1的距离
用向量法求点到直线的距离时需注意以下几点:
(1)不必找点在直线上的垂足以及垂线段;
(2)在直线上可以任意选点,但一般选较易求得坐标的特殊点;
讲 课
直线和平面间的距离:
如果一条直线l与一个平面α平行,可在直线l上任取一 点P,将线面距离转化为点P到平面α的距离求解. 两个平行平面之间的距离
如果两个平面α,β互相平行,在其中一个平面α内任取一 点P,可将两个平行平面的距离转化为点P到平面β的距 离求解.





启 强
6
典型例题
例1已知直三棱柱ABC-A1B1C1中,AA1=1,AB=4,BC=3, ∠ABC=90°,求点B到直线A1C1的距离.
P
N
D
C
M
A
B






启 强
10
解:如图,以D为原点建立空间直角坐标系D-xyz
则D(0,0,0),A(2a ,0,0),B( 2a ,a ,0),C(0,a ,0),P(0,0a, )
∵ M 、N 分别是 AD 、PB 的中点,∴ M ( 2 a , 0, 0) N ( 2 a , 1 a, 1 a)
1.4.2用空间向量研究距离、夹角问题
距离问题
前面,我们把 平面向量 推广到
空间向量
向量 渐渐成为重要工具
立体几何问题
(研究的基本对象是点、直线、平面 以及由它们组成的空间图形)
从今天开始,我们将进一步来体会向量这一工

1.4.2-用空间向量研究距离、夹角问题

1.4.2-用空间向量研究距离、夹角问题

探究 已知直线l的单位方向向量为u, A是直线l上的定点,P是直线l外一点. 如何利
用这些条件求点P到直线l的距离? 如图示,向量AP在直线l上的投影向量为 AQ ,则△APQ是直角
u
P
三角形,因为A,P都是定点,所以|AP|,AP 与 u 的夹角∠PAQ都
dn
是确定的. 于 是可求 |AQ|. 再利用勾股定理,可以求出点P到直线l
点C1到平面AB1 E
的距离为 |
C1B1 |n|
n
|
1 3
.
D
A x
F
C
y
B
即直线FC1到平面AB1
E的距离为
1 3
.
3. 如图,在棱长为1的正方体ABCD-A1B1C1D1中,求平面A1DB与平面D1CB1的距离.
解 : 平面A1DB//平面D1CB1,平面A1DB与平面D1CB1的距离 z
MN AN AM
1 ( AB AF ) 1 ( AB AD)
2
2
1 (c b) 2
∴|MN|2 1 (c b )2 1 ,
4
2
∴|MN| 2 ,即MN 2 .
2
2
【巩固训练4】如图,两条异面直线a, b所成的角为θ,在直线a, b上分别取点A′, E和
点A, F,使AA′⊥a,且AA′⊥b (AA′称为异面直线a, b的公垂线). 已知A′E=m, AF=n,
易得C1 (0, 1, 1),
A(1,
0, 0),
E(0,
0,
1 ). 2
E
∴C1 A
(1,
1, 1),
AE
(1, 0,
1 ). 2
D
F

空间向量的夹角和距离公式

空间向量的夹角和距离公式

空间向量的夹角和距离公式
cosθ = (A·B) / (,A, * ,B,)
其中,A·B表示向量A和向量B的点乘,A,和,B,表示向量A和向量B的模。

点乘的计算方法如下:
A·B=A1*B1+A2*B2+A3*B3
其中,A1、A2、A3和B1、B2、B3分别表示向量A和向量B的三个分量。

模的计算方法如下:
A,=√(A1^2+A2^2+A3^2)
B,=√(B1^2+B2^2+B3^2)
其中,^2表示求平方根的操作。

夹角θ的取值范围是[0,π],即0到180度。

此外,空间向量的夹角还可以通过向量的叉乘计算。

设有两个三维向量A和B,它们的夹角θ可以通过以下公式计算:
sinθ = ,A × B, / (,A, * ,B,)
其中,A×B表示向量A和向量B的叉乘。

叉乘的计算方法如下:
A×B=(A2*B3-A3*B2,A3*B1-A1*B3,A1*B2-A2*B1)
其中,A1、A2、A3和B1、B2、B3分别表示向量A和向量B的三个分量。

距离公式:
两点A(x1,y1,z1)和B(x2,y2,z2)之间的距离可以通过以下公式计算:d=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)
其中,^2表示求平方根的操作。

这个公式适用于二维和三维空间的点之间的距离计算。

总结起来,空间向量的夹角可以通过点乘和叉乘计算,距离可以通过
坐标差的平方和再开方计算。

这些公式在物理学、几何学和计算机图形学
等领域有广泛应用。

用空间向量研究距离、夹角问题

用空间向量研究距离、夹角问题

直角坐标系.
C
D
F
B
D1
C1
A1
E
B1
问:应用向量方法求距离,共同点是什么?
问:为此我们要做什么准备?
z
以D1为原点,D1 A1,D1 C1,
A
D1 D所在直线为x轴、y轴、
C
D
z轴,建立如图所示的空间
F
B
D1
直角坐标系.
C1
A1
E
x
B1
y
问: 相关点的坐标是什么?
A(1,0,1),B(1,1,1),
)

A
Q

= ∙

P
平面 α的法向量为n
A是平面α内的定点
点P 到平面 α的距离
n
A



= ∙
=
=



α
Q
小结:整理向量方法求距离的相关公式
距离问题
图示
两点间的距离
点到直线
的距离
两平行线之间
的距离
点到平面
的距离
向量法距离公式
Q
P
=
u
的距离可以转化为点到平面的距离.
P
β
P
α
n
α
n
A
Q
A
Q

= ∙

直线到平面的距离


=
=


两个平行平面间的距离
P
β
P
α
n
α
n
A
Q
A
Q
例题小结
2.用向量方法解决距离问题的“三步曲”:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D BA C α 普通高中课程标准实验教科书—数学 [人教版]高三新数学第一轮复习教案(讲座37)—空间夹角和距离一.课标要求:1.能借助空间几何体内的位置关系求空间的夹角和距离;2.能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。

二.命题走向空间的夹角和距离问题是立体几何的核心内容,高考对本讲的考察主要有以下情况:(1)空间的夹角;(2)空间的距离;(3)空间向量在求夹角和距离中的应用。

预测2007年高考对本讲内容的考察将侧重空间向量的应用求夹角、求距离。

课本淡化了利用空间关系找角、求距离这方面内容的讲解,而是加大了向量在这方面内容应用的讲解,因此作为立体几何的解答题,用向量方法处理有关夹角和距离将是主要方法,在复习时应加大这方面的训练力度。

题型上空间的夹角和距离主要以主观题形式考察。

三.要点精讲1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

(1)异面直线所成的角的范围是]2,0(π。

求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决。

具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角; ③利用三角形来求角。

(2)直线与平面所成的角的范围是2,0[π。

求直线和平面所成的角用的是射影转化法。

具体步骤如下:①找过斜线上一点与平面垂直的直线; ②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角;③把该角置于三角形中计算。

注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,α为斜线与平面内任何一条直线所成的角,则有αθ≤; (3)确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上; ②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围在课本中没有给出,一般是指],0(π,解题时要注意图形的位置和题目的要求。

作二面角的平面角常有三种方法①棱上一点双垂线法:在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;②面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;③空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角。

斜面面积和射影面积的关系公式:θcos ⋅='S S (S 为原斜面面积,S '为射影面积,θ为斜面与射影所成二面角的平面角)这个公式对于斜面为三角形,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时,如果能找得斜面面积的射影面积,可直接应用公式,求出二面角的大小。

2.空间的距离(1)点到直线的距离:点P到直线a 的距离为点P到直线a 的垂线段的长,常先找或作直线a 所在平面的垂线,得垂足为A,过A作a 的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线a 的距离。

在直角三角形PAB中求出PB的长即可。

点到平面的距离:点P到平面α的距离为点P到平面α的垂线段的长.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法(2)异面直线间的距离:异面直线b a ,间的距离为b a ,间的公垂线段的长.常有求法①先证线段AB为异面直线b a ,的公垂线段,然后求出AB的长即可.②找或作出过b 且与a 平行的平面,则直线a 到平面的距离就是异面直线b a ,间的距离.③找或作出分别过b a ,且与b ,a 分别平行的平面,则这两平面间的距离就是异面直线b a ,间的距离.④根据异面直线间的距离公式求距离。

(3)直线到平面的距离:只存在于直线和平面平行之间.为直线上任意一点到平面间的距离。

(4)平面与平面间的距离:只存在于两个平行平面之间.为一个平面上任意一点到另一个平面的距离。

以上所说的所有距离:点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离。

所以均可以用求函数的最小值法求各距离。

3.空间向量的应用(1)用法向量求异面直线间的距离如右图所示,a 、b 是两异面直线,n 是a 和b 的法向量,点E ∈a ,F ∈b ,则异面直线 a 与b之间的距离是d =;(2)用法向量求点到平面的距离如右图所示,已知AB 是平面α的 一条斜线,为平面α的法向量,则 A到平面α的距离为d =;(3)用法向量求直线到平面间的距离首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题。

(4)用法向量求两平行平面间的距离首先必须确定两个平面是否平行,这时可以在一个平面上任取一点,将两平面间的距离问题转化成点到平面的距离问题。

(5)用法向量求二面角如图,有两个平面α与β,分别作这两个平面的法向量1n 与2n ,则平面α与β所成的角跟法向量1n 与2n 所成的角相等或互补,所以首先必须判断二面角是锐角还是钝角。

(6)法向量求直线与平面所成的角要求直线a 与平面α所成的角θ,先求这个平面α的法向量与直线a的夹角的余弦a ,易知θ=a或者a 2-π。

四.典例解析题型1:异面直线所成的角例1.(1)直三棱住A 1B 1C 1—ABC ,∠BCA=090,点D 1、F 1 分别是A 1B 1、A 1C 1的中点,BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是( )bE(A )1030 (B )21(C )1530 (D )1015 (2)(06四川)已知二面角l αβ--的大小为060,,m n 为异面直线,且,m n ββ⊥⊥,则,m n 所成的角为( )(A )030 (B )060 (C )090 (D )0120 解析:(1)连结D 1F 1,则D 1F 1//1121C B , ∵BC //11C B ∴D 1F 1//BC 21设点E 为BC 中点,∴D 1F 1//BE ,∴BD 1∥EF 1,∴∠EF 1A 或其补角即为BD 1与AF 1所成的角。

由余弦定理可求得1030cos 1=∠A EF 。

故选A 。

(2)二面角l αβ--的大小为060,,m n 为异面直线,且,m n αβ⊥⊥,则,m n 所成的角为两条直线所成的角,∴ θ=060,选B 。

点评:通过平移将异面直线的夹角转化为平面内的两条相交直线的夹角。

例2.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 为棱AB 的中点。

求:D 1E 与平面BC 1D 所成角的大小(用余弦值表示)解析:建立坐标系如图,则()2,0,0A 、()2,2,0B ,()0,2,0C ,()12,0,2A ,()12,2,2B ,()10,0,2D ,()2,1,0E ,()12,2,2A C =--,()12,1,2D E =-,()0,2,0AB =,()10,0,2BB =。

不难证明1A C 为平面BC 1D 的法向量, ∵ 1111113cos ,9AC D E AC D E AC D E ==。

∴ D 1E 与平面BC 1D 所成的角的余弦值为93。

点评:将异面直线间的夹角转化为空间向量的夹角。

题型2:直线与平面所成的角D例3.PA 、PB 、PC 是从P 点出发的三条射线,每两条射线的夹角均为060,那么直线PC 与平面PAB 所成角的余弦值是( )A.21B. 22C. 33D. 36解:构造正方体如图所示,过点C 作CO ⊥平面PAB ,垂足为O ,则O 为正ΔABP 的中心,于是∠CPO 为PC 与平面PAB 所成的角。

设PC=a ,则PO=a PD 3332=,故33cos ==∠PC PO CPO ,即选C 。

思维点拨:第(2)题也可利用公式γβθcos cos cos ⋅=直接求得。

例2.(03年高考试题)如图,直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90︒,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G 。

求A 1B 与平面ABD 所成角的大小(结果用余弦值表示);解析:如图所示,建立坐标系,坐标原点为C ,设CA =2a ,则A (2a ,0,0),B (0,2a ,0),D (0,0,1),A 1(2a ,0,2),E (a ,a ,1), G (221,,333a a ) ,∵ ()2,,333a a GE =---,()0,2,1BD a =-,222033GE BD a =-=,∴ a =1,()112,,333GE =---,()12,2,2A B =--∵ GE 为平面ABD 的法向量,且1112cos ,A B GEA B GE A B GE==。

∴ A 1B 与平面ABD 所成角的余弦值是32。

点评:先处理平面的法向量,再求直线的方向向量与法向量夹角间的夹角转化为线面角。

题型3:二面角GD D A 1C 1 B 1CB K x yz AEEFO例5.在四棱锥P -ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,E 为BC 中点。

(1)求平面PDE 与平面PAB 所成二面角的大小(用正切值表示);(2)求平面PBA 与平面PDC 所成二面角的大小。

解析:(1)延长AB 、DE 交于点F ,则PF 为平面PDE 与平面PAD 所成二面角的棱,∵PA ⊥平面ABCD ,∴AD ⊥PA 、AB, PA ∩AB=A ∴DA ⊥平面BPA 于A ,过A 作AO ⊥PF 于O ,连结OD ,则∠AOD 即为平面PDE 与平面PAD 所成二面角的平面角。

相关文档
最新文档