等差等比数列的运用公式大全
等差和等比数列前n项和公式
等差和等比数列前n项和公式
等差数列和等比数列是初中数学中较为基础的概念,求解前 n 项和是其重要的应用。
下面将介绍等差数列和等比数列前 n 项和的公式。
等差数列前 n 项和公式:Sn = n(a1 + an)/2,其中 Sn 表示前n 项和,a1 表示首项,an 表示末项。
由此可得,等差数列的公差 d = (an - a1)/(n - 1)。
等比数列前 n 项和公式:Sn = a1(1 - q^n)/(1 - q),其中 Sn 表示前 n 项和,a1 表示首项,q 表示公比。
由此可得,等比数列通项公式为 an = a1q^(n-1)。
以上公式是求解等差数列和等比数列前 n 项和的基本公式,掌握了这些公式可以方便地求解各类应用问题。
- 1 -。
数列求和7种方法(方法全-例子多)
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。
数学中的等差数列与等比数列公式整理与推导
数学中的等差数列与等比数列公式整理与推导在数学中,等差数列和等比数列是两种常见的数列形式。
它们在数学、科学和日常生活中都有重要的应用。
本文将对这两种数列的公式进行整理和推导。
一、等差数列等差数列是一种数列,其中相邻两项之差保持恒定。
设首项为a₁,公差为d,第n项为aₙ,则等差数列的通项公式可以表示为:aₙ = a₁ + (n-1)d(1)其中,a₁为首项,n为项数,d为公差。
为了更好地理解等差数列的公式,我们可以通过一个例子进行推导。
假设我们有一个等差数列:2, 5, 8, 11, 14, ...,其中首项a₁=2,公差d=3。
我们可以按照公式(1)计算第5项的值:a₅ = a₁ + (5-1)d= 2 + 4 × 3= 2 + 12= 14因此,这个等差数列的第5项为14。
二、等比数列等比数列是一种数列,其中相邻两项之比保持恒定。
设首项为a₁,公比为r,第n项为aₙ,则等比数列的通项公式可以表示为:aₙ = a₁ × r^(n-1)(2)其中,a₁为首项,n为项数,r为公比。
同样,我们通过一个例子来推导等比数列的公式。
假设我们有一个等比数列:2, 4, 8, 16, 32, ...,其中首项a₁=2,公比r=2。
按照公式(2),我们可以计算第5项的值:a₅ = a₁ × r^(5-1)= 2 × 2^4= 2 × 16= 32因此,这个等比数列的第5项为32。
三、等差数列的公式整理与推导在前面的讨论中,我们已经给出了等差数列的通项公式,即公式(1)。
现在,我们来推导这个公式的正确性。
设等差数列的首项为a₁,公差为d。
我们知道第n项aₙ与前一项aₙ₋₁之间的关系是:aₙ = aₙ₋₁ + d(3)我们使用数学归纳法来证明等差数列的通项公式。
(1)初始条件:当n=1时,等式(3)成立,即a₁=a₁+0,初始条件满足。
(2)归纳假设:假设当n=k时等式(3)成立,即aₙ=aₙ₋₁+d。
等差等比数列公式大全
等差等比数列公式大全《起点家教班》1、 a n ={()2)1(11≥-=-n s s n s n n 注意:1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥22、 等差数列通项公式:n a =1a +(n-1)d = m a +(n-m)d ⇒ d=mn a a mn --(重要)3、 若{n a }是等差数列,m+n=p+q 则m a +n a =p a +q a4、 若{n a }是等比数列,m+n=p+q 则m a .n a =p a .q a5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则mn a a mn --=q p a a q p --=d6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211dn n na -+(已知首项和公差) =n d a dn ⎪⎭⎫⎝⎛-+212112(可以求最值问题)7、 等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列其公差是原来公差的m 28、 n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ① 首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大 ② 首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小 9、 在等差数列{n a }中,奇s 与偶s 的关系:①当n 为奇数时,n s =n.a 21+n , 奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a , 奇s -偶s =d n 2偶奇s s =122+nna a10、若{n a }是等比数列,a,G ,b 成等比数列则G 2=ab(等比中项) 11、若{n a },{}n b (项数相同)是等比数列则{}{}{}⎭⎬⎫⎩⎨⎧∙⎭⎬⎫⎩⎨⎧n n n n n n n b a b a a a a ,,,1,2λ仍是等比数列 12、等比数列单调性的问题①当1a ≥0时,若0<q <1则{n a }是递减数列; q >1则{n a }是递增数列 ②当1a <0时,若0<q <1则{n a }是递增数列; q >1则{n a }是递减数列 13、在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若.,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d 14、在等比数列中抽取新数列:,......,,,321kn k k k a a a a 组成新数列{}nk a ,如果序号...,321k k k 组成数列为{}n k ,且n k 成公差为m 的等差数列,那么数列{}nk a 是以q m 为公比的等比数列15、等比数列的前n 项和n s =()q q a n --111=qqa a n --11。
等差数列与等比数列的求和公式
等差数列与等比数列的求和公式在数学中,等差数列和等比数列是常见且重要的数列类型。
对于这两种数列,我们可以使用求和公式来计算它们的和。
本文将介绍等差数列和等比数列的定义以及它们的求和公式,并通过具体例子进行说明。
一、等差数列(Arithmetic progression)等差数列是指数列中相邻两项之间的差都相等的数列。
设等差数列的首项为a₁,公差为d,则其通项公式为:aₙ = a₁ + (n-1)d其中,aₙ表示数列的第n项。
为了求解等差数列的和,我们介绍一个常用的求和公式,即等差数列的求和公式。
设等差数列的前n项和为Sₙ,则有:Sₙ = (a₁ + aₙ) * n / 2或者Sₙ = [2a₁ + (n-1)d] * n / 2其中,[]表示取整。
下面通过一个例子来说明等差数列的求和公式的应用。
例子:求等差数列1,4,7,10,...,前100项的和。
解:首先,我们可以得到等差数列的首项a₁为1,公差d为3(4-1=3)。
因此,我们可以使用等差数列的求和公式来计算前100项的和。
S₁₀₀ = [2*1 + (100-1)*3] * 100 / 2= (2 + 297) * 100 / 2= 299 * 100 / 2= 14950因此,等差数列1,4,7,10,...,前100项的和为14950。
二、等比数列(Geometric progression)等比数列是指数列中相邻两项之间的比值都相等的数列,这个比值称为公比。
设等比数列的首项为a₁,公比为q,则其通项公式为:aₙ = a₁ * q^(n-1)其中,aₙ表示数列的第n项。
为了求解等比数列的和,我们介绍一个常用的求和公式,即等比数列的求和公式。
设等比数列的前n项和为Sₙ,则有:Sₙ = a₁ * (1 - qⁿ) / (1 - q)下面通过一个例子来说明等比数列的求和公式的应用。
例子:求等比数列2,6,18,54,...,前8项的和。
解:首先,我们可以得到等比数列的首项a₁为2,公比q为3(6/2=3)。
高中数列求和方法大全
数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
6.合并求和法:如求22222212979899100-++-+-Λ的和。
7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①321ΛΛ个n n S 111111111++++=②22222)1()1()1(n n n xx x x x x S ++++++=Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a Λ321Λ个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ8110910]9)110(10[911--=--=+n n n n②)21()21()21(224422+++++++++=nnn x x x x x x S Λ n xx x x x x n n 2)111()(242242++++++++=ΛΛ(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=Λ2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n ΛΛΛ)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
数列与等差数列等比数列的通项公式
数列与等差数列等比数列的通项公式数列是数学中一个重要的概念,它由按照一定规律排列的一系列数所组成。
数列中的每个数称为该数列的项。
在数列中,等差数列和等比数列是两种常见的形式,它们在数学和其他科学领域中都有广泛的应用。
在本文中,我们将介绍等差数列和等比数列的通项公式以及其应用。
一、等差数列的通项公式等差数列是指数列中每两个相邻的项之间的差值都相等的数列。
设等差数列的首项为a1,公差为d,第n项为an,则等差数列的通项公式可以表示为:an = a1 + (n - 1)d其中,an表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差。
例如,对于等差数列1, 4, 7, 10, 13...来说,首项a1=1,公差d=3(每相邻两项之间的差值为3),第n项可以用通项公式表示为:an = 1 + (n - 1)3二、等比数列的通项公式等比数列是指数列中每两个相邻的项之间的比值都相等的数列。
设等比数列的首项为a1,公比为r,第n项为an,则等比数列的通项公式可以表示为:an = a1 * r^(n - 1)其中,an表示等比数列的第n项,a1表示等比数列的首项,r表示等比数列的公比。
例如,对于等比数列2, 4, 8, 16, 32...来说,首项a1=2,公比r=2(每相邻两项之间的比值为2),第n项可以用通项公式表示为:an = 2 * 2^(n - 1)三、等差数列和等比数列的应用等差数列和等比数列在实际问题中的应用非常广泛。
例如,在财务分析中,等差数列可以用来表示每年的收入或支出的增长情况;等比数列可以用来表示复利计算中的收益情况。
此外,在物理学中,等差数列可以用来描述匀速运动的位置变化;等比数列可以用来描述指数增长或衰减的情况。
总结:数列是数学中重要的概念,等差数列和等比数列是两种常见的数列形式。
等差数列的通项公式为an = a1 + (n - 1)d,等比数列的通项公式为an = a1 * r^(n - 1)。
高中数学数列公式大全(很齐全哟~!)
一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n—1)d a n=a k+(n—k)d (其中a1为首项、a k为已知的第k项)当d≠0时,a n是关于n 的一次式;当d=0时,a n是一个常数.3、等差数列的前n项和公式:S n= S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。
4、等比数列的通项公式: a n= a1 q n-1a n= a k q n—k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式);当q≠1时,S n= S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m—S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m—S m、S3m—S2m、S4m— S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n—b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列.7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列.8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a—d,a,a+d;四个数成等差的设法:a—3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{a n}为等差数列,则 (c〉0)是等比数列。
等差等比数列求解技巧
等差等比数列求解技巧等差数列和等比数列是在数学中经常遇到的一类数列,对于求解等差等比数列的问题,我们可以用到一些常见的技巧来简化计算过程。
在本文中,我将向您介绍并详细解释以下几种等差等比数列的求解技巧。
一、等差数列的求和公式等差数列是指数列中的每两个相邻项之间差值相等的数列,也就是说,每个后项与前项的差都是相等的。
1. 求等差数列的前n项和设等差数列的首项为a1,公差为d,要求前n项和Sn,我们可以应用求和公式来求解:Sn = (a1 + an) * n / 2其中,a1是首项,an是前n项的最后一项。
n是项数。
例如,要求等差数列1, 3, 5, 7, 9的前3项和,则a1=1,d=2,n=3,代入求和公式得:S3 = (1 + 5) * 3 / 2 = 9。
2. 求等差数列的末项根据等差数列的性质可知,等差数列的末项an可以表示为:an = a1 + (n-1) * d其中,a1是首项,n是项数,d是公差。
例如,已知等差数列的首项为3,公差为2,求其第10项的值,则代入公式得:a10 = 3 + (10-1) * 2 = 21。
二、等比数列的求和公式等比数列是指数列中的每两个相邻项之间的比值相等的数列,也就是说,每个后项与前项的比都是相等的。
1. 求等比数列的前n项和设等比数列的首项为a1,公比为q,要求前n项和Sn,我们可以应用求和公式来求解:Sn = (a1 * (1 - q^n)) / (1 - q)其中,a1是首项,q是公比,n是项数。
例如,要求等比数列2, 4, 8, 16的前3项和,则a1=2,q=2,n=3,代入求和公式得:S3 = (2 * (1 - 2^3)) / (1 - 2) = 14。
2. 求等比数列的末项根据等比数列的性质可知,等比数列的末项an可以表示为:an = a1 * q^(n-1)其中,a1是首项,q是公比,n是项数。
例如,已知等比数列的首项为3,公比为2,求其第10项的值,则代入公式得:a10 = 3 * 2^(10-1) = 1536。
(完整版)等差数列及等比数列的性质总结
等差数列与等比数列总结一、等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差常用小写字母d 表示;等差中项,如果2ba A +=,那么A 叫做a 与b 的等差中项;如果三个数成等差数列,那么等差中项等于另两项的算术平均数;等差数列}{a n 的通项公式:)N n (d )1-n (a a 1n *∈+=; 等差数列}{a n 的递推公式:)2n (d a a 1n n ≥+=-;等差数列}{a n 的前n 项和公式:n S =2n)a a (n 1⨯+=d 2)1-n (n na 1⨯+= 中12na n )2d-a (n )2d (=⨯+⨯; 【等差数列的性质】 1、d )1-n (a a m n +=【说明】n 11m a d )1-n (a d )m -n (d )1-m (a d )m -n (a =+=++=+ 2、若m 、n 、p 、q *∈N ,且m+n=p+q ,则有q p n m a a a a +=+【说明】q p 11n m a a )2-q p (a 2d )2-n m (a 2a a +=++=++=+3、md 成等差数列,公差为、a 、a 、a m 2k m k k ⋯⋯++ 【说明】md a -a a -a m k m 2k k m k =⋯⋯==+++4、k )1-n (nk k 2k 3k k 2k S -S S -S ,S -S ,S ⋯⋯成等差数列,公差为d n 2【说明】d n )a a a (-)a a a (S -)S -S (2n 21n 22n 1n n n n 2=+⋯⋯+++⋯⋯++=++,)a a a (-)a a a ()S -S (-)S -S (n 22n 1n n 32n 21n 2n 2n n 2n 3+⋯⋯+++⋯⋯++=++++⋯⋯=,d n 25、数列}{a n 成等差数列Bn An S ,a a a 2,q pn a 2n 1n 1-n n n +=+=+=⇔+【说明】)d -a (dn d )1-n (a a 1m n +=+=,n S =d 2)1-n (n na 1⨯+= n )2d -a (n )2d (12⨯+⨯ 6、若数列}{a n 是等差数列,则}{c n a为等比数列,c>0【说明】d a-a a ac c cc 1-n n 1-n n ==7、偶奇n 偶奇n S S S 表示偶数项的和,则S 表示奇数项的和,S 项和,n 是前S += 当n 为偶数时,d 2nS -S 奇偶⨯=当n 为奇数时,n a S 中n ⨯=,中偶奇a S -S =,1-n 1n S S 偶奇+=【说明】当n 为偶数时,d 2n)a -a ()a -a ()a -a (S -S 123-n 2-n 1-n n 奇偶⨯=+⋯⋯++= 当n 为奇数时,中11-n n 231偶奇a d 21-n a )a -a ()a -a (a S -S =+=+⋯⋯++=,,1-n 1n 21-n )a a (2121n )a a (21S S 1-n 2n 1偶奇+=⨯++⨯+=n a S S -S S S 中n 偶奇偶奇==+8、设1-2n 1-n 2n n n n n n T Sb a 项和,则n 的前}{b 、}{a 分别表示等差数列T 和S = 【说明】nn 中中1-2n 1-n 2b ab )1-n 2(a )1-n 2(T S == 【例】等差数列1515n n n n n n b a,求1-n 31n 5T S ,若T 和S 项和分别为n 的前}{b 、}{a += 9、1-d ,0a ),则q p (p a ,q a q p q p ==≠==+q --p a ),则q p (p S ,q S q p q p =≠==+ 0a ),则q p (S S q p q p =≠=+【说明】0q -q qd a a ,1-d q -p d )q -p (a -a p q p q p ==+==⇒==+ 2-a a p -q 2)q -p )(a a ()a a (S S p 1q p 1q p 1q q p =+⇒=+=+⋯⋯+=-+++q --p 2)q p )(a a (2)q p )(a a (S p 1q q p 1q p =++=++=+++二、等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比常用小写字母q 表示;等比中项,如果ab G 2=,那么G 叫做a 与b 的等差中项;如果三个数成等比数列,那么等差中项的平方等于另两项的积;等比数列}{a n 的通项公式:)N n (q a a 1-n 1n *∈=;等比数列}{a n 的递推公式:)2n (q a a 1n n ≥=-;等比数列}{a n 的前n 项和公式:n S =⎪⎩⎪⎨⎧≠==1q ,q -1q a -a q -1)q -1(a 1q ,na n 1n 11 【等比数列的性质】 1、m -n m n q a a ⋅=【说明】n 1-n 1m -n 1-m 1m -n m a q a q q a q a =⋅=⋅⋅=⋅ 2、若m 、n 、k 、l *∈N ,且l k n m a a a a ,l k n m ⋅=⋅⋅=⋅【说明】l k 2-l k 212-n m 21n m a a q a q a a a ⋅===⋅++ 3、m m 2k m k k q ,成等比数列,公比为、a 、a 、a ⋯⋯++ 【说明】m mk m 2k k m k q a aa a ==+++ 4、k )1-n (nk k 23k k k 2k S -S S -S 、S -S 、S ⋯⋯成等比数列,公比为nq【说明】n n21n22n 1n n n n 2q a a a a a a S S -S =+⋯⋯+++⋯⋯++=++ 5、数列}{a n 成等比数列)1-q (A S ,q p a ,a a a nn n n 1n 1-n 2n =⋅=⋅=⇔+【说明】)1-q (1-q a q -1)q -1(a S ,q q a qa a n 1n1n n 11-n 1n ==⋅=⋅= 6、若数列}{a n 是等比数列,则0a 为等差数列,}a {log n n c > 【说明】q log a a log a log -a log c 1-n nc1-n c n c == 7、偶奇n 偶奇n S S S 表示偶数项的和,则S 表示奇数项的和,S 项和,n 是前S +=;若n 为偶数时,q a a 奇偶=;当n 为奇数时,q S a -S 偶1奇=;【说明】当n 为偶数时,q a a a a a a a a 1-n 41n42奇偶=+⋯⋯+++⋯⋯++=; 当n 为奇数时,q a a a a a a S a -S 1-n 42n 53偶1奇=+⋯⋯+++⋯⋯++=; 8、设偶奇n 偶奇n T T T 表示偶数项的积,则T 表示奇数项的积,T 项积,n 是前T ⋅=当n 为偶数时,n中奇中偶奇2n奇偶a T ,a T T 为奇数时,n ;当q T T ===;【说明】当n 为偶数时,2n1-n 42n42奇偶q a a a a a a T T =⋅⋯⋯⋅⋅⋅⋯⋯⋅⋅=;当n 为奇数时,中1-n 42n421偶奇a a a a a a a a T T =⋅⋯⋯⋅⋅⋅⋯⋯⋅⋅=; n中1-n 2n 1n 21奇a a a a a a a a T =⋯⋯⋅⋅=⋅⋯⋯⋅⋅=。
等差数列、等比数列相关性质和公式以及数列的求和方法
等差、等比的公式性质以及数列的求和方法第一节:等差数列的公式和相关性质1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d aa n n=--1(d为公差)(2³n ,*n N Î)注:下面所有涉及n ,*n N Î省略,你懂的。
2、等差数列通项公式:1(1)n a a n d =+-,1a 为首项,d 为公差 推广公式:()nma a n m d =+-变形推广:变形推广:mn a a d mn --= 3、等差中项、等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列是等差数列)2(211-³+=Û+n a a a n n n 212+++=Ûn n n a a a 4、等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+(其中(其中A A 、B 是常数,所以当是常数,所以当d d ≠0时,时,S S n 是关于是关于n n 的二次式且常数项为项为00)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)和等于项数乘以中间项)5、等差数列的判定方法、等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*ÎN n )Û {}n a 是等差数列.等差数列.(2)等差中项:数列{}n a 是等差数列是等差数列)2(211-³+=Û+n aa a n n n212+++=Ûn n n aa a((3)数列{}n a 是等差数列Ûbkn a n +=(其中b k ,是常数)。
等差等比数列通项及前N项和公式
等差等比数列通项及前N项和公式数列是数学中的一个重要概念,它是由一组按照一定规律排列的数所组成的序列。
在数列中,等差数列和等比数列是最基本的两种形式。
而通项公式和前N项和公式则是用来表示等差数列和等比数列的重要公式。
本文将详细介绍等差数列和等比数列的概念,并给出它们的通项公式和前N 项和公式。
一、等差数列等差数列是指数列中相邻两项之间的差值是一个常数d,这个常数称为公差。
等差数列的通项公式和前N项和公式如下:1.通项公式:设等差数列的首项为a1,公差为d,第n项为an,则等差数列的通项公式为:an = a1 + (n - 1)d2.前N项和公式:设等差数列的首项为a1,公差为d,前N项的和为Sn,则等差数列的前N项和公式为:Sn = (a1 + an) * n / 2在等差数列中,从第一项到第N项的和可以用前N项和公式来表示。
根据这个公式,我们可以很方便地计算等差数列的前N项和。
二、等比数列等比数列是指数列中相邻两项之间的比值是一个常数q,这个常数称为公比。
等比数列的通项公式和前N项和公式如下:1.通项公式:设等比数列的首项为a1,公比为q,第n项为an,则等比数列的通项公式为:an = a1 * q^(n-1)2.前N项和公式:设等比数列的首项为a1,公比为q,前N项的和为Sn,则等比数列的前N项和公式为:Sn=(a1*(q^N-1))/(q-1)(当q≠1时)在等比数列中,从第一项到第N项的和可以用前N项和公式来表示。
需要注意的是,当公比q等于1时,等比数列通项公式中含有0的指数项,这时候通项公式的形式为an = a1,等比数列变成了一个常数数列。
三、等差数列和等比数列的应用等差数列和等比数列在数学中有着广泛的应用。
在实际生活中,很多事物的变化规律都可以用等差数列或等比数列来描述。
1.等差数列应用举例:(1)一些数学问题中常常出现等差数列的求和问题,比如计算一些等差数列的前N项和,这在数学竞赛中是经常出现的题型。
等差数列和等比数列公式
等差数列和等比数列公式等差数列公式是指具有相同公差的数列,其中每一项的值与前一项的值之差都相等。
等比数列公式是指具有相同比例的数列,其中每一项的值与前一项的值之比都相等。
等差数列公式:设等差数列的首项为a₁,公差为d,第n项为aₙ,则等差数列的通项公式为:aₙ=a₁+(n-1)*d等差数列的前n项和公式为:Sₙ=n/2*(a₁+aₙ)=n/2*(2a₁+(n-1)*d)等差数列的前n项和为首项与尾项之和乘以项数的一半。
等差数列的示例:1,4,7,10,13,...以此等差数列的首项a₁=1,公差d=3,求该等差数列的第n项aₙ和前n项和Sₙ。
首先,利用等差数列的通项公式可以求得任意一项的值:aₙ=a₁+(n-1)*d假设要求第10项a₁₀,则代入a₁=1,d=3,n=10:a₁₀=1+(10-1)*3=1+9*3=1+27=28其次,利用等差数列的前n项和公式可以求得前n项的和:Sₙ=n/2*(a₁+aₙ)假设要求前10项和S₁₀,则代入a₁=1,aₙ=28,n=10:S₁₀=10/2*(1+28)=5*29=145因此,等差数列1,4,7,10,13,...的第10项为28,前10项和为145等比数列公式:设等比数列的首项为a₁,公比为r,第n项为aₙ,则等比数列的通项公式为:aₙ=a₁*r^(n-1)等比数列的前n项和公式为:Sₙ=(a₁*(r^n-1))/(r-1)(当r≠1)Sₙ=n*a₁(当r=1)等比数列的前n项和为首项与第n项乘以公比的n次方之差除以公比减1的结果。
等比数列的示例:2,6,18,54,162,...以此等比数列的首项a₁=2,公比r=3,求该等比数列的第n项aₙ和前n项和Sₙ。
首先,利用等比数列的通项公式可以求得任意一项的值:aₙ=a₁*r^(n-1)假设要求第6项a₆,则代入a₁=2,r=3,n=6:a₆=2*3^(6-1)=2*3^5=2*3*3*3*3*3=2*243=486其次,利用等比数列的前n项和公式可以求得前n项的和:Sₙ=(a₁*(r^n-1))/(r-1)假设要求前6项和S₆,则代入a₁=2,r=3,n=6:S₆=(2*(3^6-1))/(3-1)=(2*(729-1))/2=(2*728)/2=728因此,等比数列2,6,18,54,162,...的第6项为486,前6项和为728综上所述,等差数列和等比数列是数学中常见的数列,通过等差数列的通项公式和前n项和公式以及等比数列的通项公式和前n项和公式,可以方便地计算出数列中任意一项的值和前n项的和。
等比和等差公式
等比和等差公式:答案解析一、等差数列如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:an=a1+(n-1)d (1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An 的等差中项,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)*项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等差数列的应用:日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级.若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q).若为等差数列,且有an=m,am=n.则a(m+n)=0.等比数列:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列.这个常数叫做等比数列的公比,公比通常用字母q表示.(1)等比数列的通项公式是:An=A1*q^(n-1)(2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}(4)若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.注意:上述公式中A^n表示A的n次方.等比数列在生活中也是常常运用的.如:银行有一种支付利息的方式---复利.即把前一期的利息赫本金价在一起算作本金,在计算下一期的利息,也就是人们通常说的利滚利.按照复利计算本利和的公式:本利和=本金*(1+利率)存期。
等差等比数列公式大全
等差等比数列公式大全等差数列公式1.n个项的等差数列的前n项和公式如下:Sn=(n/2)*(a+l)其中,Sn表示前n项的和,a为首项,l为末项,n为项数。
2.等差数列通项公式如下:an = a + (n-1)d其中,an表示第n项,a为首项,d为公差,n为项数。
3.等差数列求和公式如下:Sn=(n/2)*(2a+(n-1)d)其中,Sn表示前n项的和,a为首项,d为公差,n为项数。
4.等差中项公式如下:a+c=2b其中,a为首项,c为末项,b为中项。
等比数列公式1.等比数列通项公式如下:an = a * r^(n-1)其中,an表示第n项,a为首项,r为公比,n为项数。
2.等比数列求和公式(当公比r不等于1时)如下:Sn=(a*(r^n-1))/(r-1)其中,Sn表示前n项的和,a为首项,r为公比,n为项数。
3.等比数列求和公式(当公比r等于1时)如下:Sn=a*n其中,Sn表示前n项的和,a为首项,n为项数。
4.无穷等比数列的和公式如下:S=a/(1-r)其中,S表示无穷等比数列的和,a为首项,r为公比。
综合应用1.如果已知等差数列的首项a、末项l和项数n,可以通过末项的求和公式反推得到公差d:d=(l-a)/(n-1)2.如果已知等比数列的首项a、末项l和项数n,可以通过末项的求和公式反推得到公比r:r=(l/a)^(1/(n-1))3.如果已知等差数列的和Sn、首项a和项数n,可以通过和的求和公式反推得到末项l:l=a+(n-1)*d4.如果已知等比数列的和Sn、首项a和项数n,可以通过和的求和公式反推得到末项l:l=a*r^(n-1)5.如果已知等差数列的和Sn、首项a和末项l,可以通过和的求和公式反推得到项数n:n=(2Sn-(l-a))/d6.如果已知等比数列的和Sn、首项a和末项l,可以通过和的求和公式反推得到项数n:n = log(l / a) / log(r)以上是常见的等差数列和等比数列的公式,可用于求解相关问题和进行数列的计算。
等比数列和等差数列公式
等比数列和等差数列公式等差数列(Arithmetic Sequence)是一种常见的数列,其中每一项与它前一项的差都是一个常数。
等比数列(Geometric Sequence)是一种特殊的数列,其中每一项与它前一项的比都是一个常数。
等差数列的通项公式:对于等差数列{a₁,a₂,a₃,...,aₙ},其中公差为d,则第n项的值可以通过以下公式计算出来:aₙ=a₁+(n-1)d等差数列的前n项和公式:前n项和Sn可以通过以下公式计算出来:Sn=(n/2)(a₁+aₙ)=(n/2)(2a₁+(n-1)d)等差数列的性质:1.等差数列的前n项和与项数成正比,当n增大时,前n项和也随之增大。
2.等差数列的前n项和与公差成正比,公差越大,前n项和增长的速度越快。
等比数列的通项公式:对于等比数列{a₁,a₂,a₃,...,aₙ},其中公比为r,则第n项的值可以通过以下公式计算出来:aₙ=a₁×r^(n-1)等比数列的前n项和公式:前n项和Sn可以通过以下公式计算出来:Sn=a₁×(1-r^n)/(1-r)(当r≠1)等比数列的性质:1.等比数列的前n项和与项数成正比,当n增大时,前n项和也随之增大。
2.等比数列的前n项和与公比成正比,当公比绝对值小于1时,累加和趋近于一个有限值;当公比绝对值大于1时,累加和无限增长。
等差数列和等比数列在数学中的应用广泛,由于其规律性和计算简便性,被广泛应用于数学、物理、经济等领域。
举例:1.等差数列:2,5,8,11,14...其中公差为3,第n项的通项公式为aₙ=2+(n-1)×3第6项的值为a₆=2+(6-1)×3=2+15=17前6项的和为S₆=(6/2)×(2+17)=3×19=572.等比数列:3,6,12,24,48...其中公比为2,第n项的通项公式为aₙ=3×2^(n-1)第6项的值为a₆=3×2^(6-1)=3×2^5=3×32=96。
等比数列等差数列知识点归纳总结
等比数列等差数列知识点归纳总结等比数列和等差数列是数学中常见且重要的概念之一。
在解决各种数学问题和应用中,它们都有着广泛的应用。
本文将对等比数列和等差数列的知识点进行归纳总结,以帮助读者更好地理解和掌握这两个数列的特点和应用。
一、等差数列等差数列是一种特殊的数列,其中每一项与前一项之差保持恒定。
具体来说,对于一个等差数列a₁, a₂, a₃, ..., an,它的通项公式可以表示为:an = a₁ + (n-1)d其中,a₁表示首项,d表示公差,n表示项数。
等差数列的常用术语包括首项、公差、通项公式和项数等。
1. 首项(a₁):等差数列的第一项称为首项。
2. 公差(d):等差数列中相邻两项的差称为公差。
公差可以是正数、负数或零。
3. 通项公式:等差数列的第n项通项公式可以用来求出数列中任意一项的值。
在通项公式中,n表示项数。
4. 项数:等差数列包含的项的个数称为项数。
等差数列的主要特点是任意两项之差相等,这使得我们可以根据已知的条件,快速求解未知项的值。
一些常见的应用包括求和公式、平均数问题、等差数列的图像和几何问题等。
二、等比数列等比数列是一种特殊的数列,其中每一项与前一项之比保持恒定。
具体来说,对于一个等比数列a₁, a₂, a₃, ..., an,它的通项公式可以表示为:an = a₁ * r^(n-1)其中,a₁表示首项,r表示公比,n表示项数。
等比数列的常用术语包括首项、公比、通项公式和项数等。
1. 首项(a₁):等比数列的第一项称为首项。
2. 公比(r):等比数列中相邻两项的比称为公比。
公比可以是正数、负数或零,但不能为1。
3. 通项公式:等比数列的第n项通项公式可以用来求出数列中任意一项的值。
在通项公式中,n表示项数。
4. 项数:等比数列包含的项的个数称为项数。
等比数列的主要特点是任意两项之比相等,这使得我们可以根据已知的条件,快速求解未知项的值。
一些常见的应用包括求和公式、计算几何问题和金融领域的应用等。
数列常见数列公式(超全的数列公式及详细解法编撰)
数列常见数列公式(超全的数列公式及详细解法编撰)1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)2.等差数列的通项公式:d n a a n )1(1-+==n a d m n a m )(-+或n a =pn+q (p 、q 是常数))3.有几种方法可以计算公差d ① d=n a -1-n a ② d=11--n a a n ③ d=mn a a mn -- 4.等差中项:,,2b a ba A ⇔+=成等差数列 5.等差数列的性质: m+n=p+q ⇒q p n m a a a a +=+ (m, n, p, q ∈N ) 等差数列前n 项和公式 6.等差数列的前n 项和公式 (1)2)(1n n a a n S +=(2)2)1(1dn n na S n -+=(3)n )2d a (n 2d S 12n -+=,当d ≠0,是一个常数项为零的二次式8.对等差数列前项和的最值问题有两种方法:(1) 利用n a :当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值当n a <0,d>0,前n 项和有最小值可由n a ≤0,且1+n a ≥0,求得n 的值(2) 利用n S :由n )2da (n 2d S 12n -+=二次函数配方法求得最值时n 的值 等比数列1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:1-n na a =q (q ≠0) 2.等比数列的通项公式: )0(111≠⋅⋅=-q a q a a n n ,)0(1≠⋅⋅=-q a q a a m n m n 3.{n a }成等比数列⇔nn a a 1+=q (+∈N n ,q ≠0)“n a ≠0”是数列{n a }成等比数列的必要非充分条件 4.既是等差又是等比数列的数列:非零常数列.5.等比中项:G 为a 与b 的等比中项. 即G =±ab (a ,b 同号).6.性质:若m+n=p+q ,q p n m a a a a ⋅=⋅7.判断等比数列的方法:定义法,中项法,通项公式法 8.等比数列的增减性:当q>1, 1a >0或0<q<1, 1a <0时, {n a }是递增数列; 当q>1, 1a <0,或0<q<1, 1a >0时, {n a }是递减数列; 当q=1时, {n a }是常数列; 当q<0时, {n a }是摆动数列; 等比数列前n 项和等比数列的前n 项和公式:∴当1≠q 时,qq a S n n --=1)1(1①或q qa a S n n --=11②当q=1时,1na S n =当已知1a , q, n 时用公式①;当已知1a , q, n a 时,用公式②.数列通项公式的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d ,∴d a =1………………………………①∵255a S =∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
等差数列等比数列相关性质和公式以及数列的求和方法
等差数列等比数列相关性质和公式以及数列的求和方法数列是数学中重要的概念之一,是由一系列按照特定规律排列的数所组成的序列。
其中,等差数列和等比数列是最常见且最重要的两种数列。
本文将介绍等差数列和等比数列的相关性质和公式,以及数列的求和方法。
一、等差数列等差数列是指数列中的任意两个相邻的项之差都相等的数列。
常见的等差数列通常以"a"开头,公差为"d"。
以"an"表示等差数列的第n项,其通项公式为:an = a + (n - 1)d其中,a为首项,d为公差,n为项数。
等差数列的性质和公式有:1.任意连续三个项可以构成一个等差中项数列,中项数等于项数减一2.等差数列的前n项和公式为:Sn=(2a+(n-1)d)*n/2其中,Sn为前n项和。
二、等比数列等比数列是指数列中的任意两个相邻的项之比都相等的数列。
常见的等比数列通常以"a"开头,公比为"r"。
以"an"表示等比数列的第n项,其通项公式为:an = a * r^(n - 1)其中,a为首项,r为公比,n为项数。
等比数列的性质和公式有:1.任意连续三个项可以构成一个等比中项数列,中项数等于项数减一2.等比数列的前n项和公式为:Sn=a*(r^n-1)/(r-1)其中,Sn为前n项和。
数列的求和是指计算数列中一定项数的所有项的和。
常见的数列求和方法有以下几种:1.直接相加法:即将数列中的每一项相加得到和。
适用于项数较少、数值较小的数列。
2.通项法:利用数列的通项公式计算出每一项的值,再将这些值相加得到和。
适用于项数较多的数列。
3.分组求和法:将数列分成若干组,然后计算每组的和,最后将每组的和相加得到总和。
适用于数列中存在规律性的分组。
4.差分法:对等差数列求和,可以通过差分法简化计算。
差分法是指利用等差数列的性质,将数列的求和问题转化为差分的求和问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
……
1 2n
an
2n
5 ,求 an
解
n
1 时,
1 2
a1
21
5
,∴
a1
14
①
n
2 时,
1 2
a1
1 22
a2
……
1 2n1
an1
2n
1
5
②
①—②得:
1 2n
an
2
,∴ an
2n1 ,∴ an
14 (n 1) 2n1 (n 2)
[练习]数列an
满足
Sn
Sn1
5 3
an1,a1
4
,求
an
a1
d ,c c 1
为公比的等比数列
∴
an
c
d 1
a1
c
d 1
·
cn1 ,∴ an
a1
c
d 1
c n 1
c
d
1
(5)倒数法
如:
a1
1,an1
2an an 2
,求
an
由已知得: 1 an 2 1 1 ,∴ 1 1 1
an1 2an 2 an
an1 an 2
∴
1 an
为等差数列,
S2n n(a1 a2n ) n(a2 a2n1 ) n(an an1 )(an , an1为中间两项 )
S偶
S奇
nd
, S奇 S偶
an an1
.
(7)项数为奇数 2n 1的等差数列an ,有
S2n1 (2n 1)an (an为中间项 ) ,
S奇
S偶
an
,
S奇 S偶
n. n 1
Sn Sn
a1 an
a2 …… an1 an1 …… a2
Hale Waihona Puke an a1相加2Sn
a1
an
a2
an1
… a1
an
…
[练习]已知
f
(x)
x2 1 x2
,则
f
(1)
f
(2)
f
1 2
f
(3)
f
1 3
f
(4)
f
1 4
1 2
由
f
(x)
f
1 x
1
x
2
x
2
1
x
(2)数列 a2n1 , a2n ,a2n1仍为等差数列, Sn,S2n Sn,S3n S2n…… 仍为等差数列,
公差为 n2d ;
(3)若三个成等差数列,可设为 a d,a,a d
(4)
若
an,
bn
是等差数列,且前
n
项和分别为
S
n,Tn
,则
am bm
S2m1 T2m1
(5)an 为等差数列 Sn an2 bn( a,b 为常数,是关于 n 的常数项为 0 的二次函数)
5. 迭加法:主要应用于数列{an}满足 an+1=an+f(n),其中 f(n)是等差数列或等 比数列的条件下,可把这个式子变成 an+1-an=f(n),代入各项,得到一系列 式子,把所有的式子加到一起,经过整理,可求出 an ,从而求出 Sn。
6. 分组求和法:是对一类既不是等差数列,也不是等比数列的数列,若将这 类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和, 再将其合并。
注意到 an1
Sn1
Sn
,代入得
S n 1 Sn
4 又 S1 ;
4 ,∴
Sn
是等比数列, Sn 4n
n 2 时, an Sn Sn1 …… 3· 4n1
(2)叠乘法
如:数列an 中, a1
3,an1 an
n
n
1
,求
an
解
a2· a1
a3 …… an
a2
an1
1· 2
2 …… n 1 ,∴
∴ an a0 f (2) f (3) …… f (n)
(4)等比型递推公式
an can1 d ( c、d 为常数, c 0,c 1,d 0 )
可转化为等比数列,设 an x c an1 x an can1 c 1 x
令
(c
1)x
d
,∴
x
d ,∴ c 1
an
c
d
1
是首项为
1 ak 1
1 d
1 a1
1 a2
1 a2
1 a3
……
1 an
1 an1
1 1 1
d
a1
an1
[练习]求和:1
1 1
2
1
1 2
3
……
1
2
3
1 ……
n
an
…… ……,Sn
2
1 n 1
(2)错位相减法
若an 为等差数列,bn 为等比数列,求数列 anbn(差比数列)前 n 项和,可由 Sn qSn , 求 Sn ,其中 q 为bn 的公比.
3. 裂项相消法:是将数列的一项拆成两项或多项,使得前后项相抵消,留下 有限项,从而求出数列的前 n 项和。
4. 错位相减法:是一种常用的数列求和方法,应用于等比数列与等差数列相 乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和 式的两边同乘以公比,再与原式错位相减整理后即可以求出前 n 项和。
p q ,则 am·
an
a
·
p
aq
(2)
Sn,S2n
Sn,S3n
S2
……
n
仍为等比数列,公比为
q
n
.
注意:由 Sn 求 an 时应注意什么?
n 1 时, a1 S1 ; n 2 时, an Sn Sn1 . 3.求数列通项公式的常用方法
(1)求差(商)法
如:数列an ,
1 2
a1
1 22
a2
如: Sn 1 2x 3x2 4x3 …… nxn1
①
x· Sn x 2x2 3x3 4x4 …… n 1 xn1 nxn
②
①—② 1 x Sn 1 x x2 …… xn1 nxn
x
1 时,
Sn
1
1
xn
x2
nxn 1 x
,
x
1 时,
Sn
1
2 3 ……
n
nn 1
2
(3)倒序相加法 把数列的各项顺序倒写,再与原来顺序的数列相加.
1 x
2
x2 1 x2
1 1 x2
1
∴原式
f
(1)
f
(2)
f
1 2
f
(3)
f
1 3
f
(4)
f
1 4
1 2
111
3
1 2
求数列的前 n 项和
1. 倒序相加法:如果一个数列{an},与首末项等距的两项之和等于首末两项 之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,
第六讲:等差、等比数列的运用
1. 等差数列的定义与性质
定义: an1 an d ( d 为常数), an a1 n 1 d
等差中项: x,A,y 成等差数列 2A x y
前
n 项和
Sn
a1
an 2
n
na1
nn 1
2
d
性质:an 是等差数列
(1)若 m n p q ,则 am an ap aq;
7. 构造法:是先根据数列的结构及特征进行分析,找出数列的通项的特征, 构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前 n 项 和。)
这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索
其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:
等差数列前 n 项和公式的推导,用的就是“倒序相加法”。
2. 公式法:对等差数列、等比数列,求前 n 项和 Sn 可直接用等差、等比数列 的前 n 项和公式进行求解。运用公式求解的注意事项:首先要注意公式的 应用范围,确定公式适用于这个数列之后,再计算。
3
n
an a1
1 n
又 a1
3 ,∴ an
3 n
.
(3)等差型递推公式
由 an an1 f (n),a1 a0 ,求 an ,用迭加法
a2 a1 f (2)
n 2 时,
a3 a2 f (3) …… ……
两边相加得
an
a1
f
(2)
f
(3) ……
f
(n)
an an1 f (n)
1
a1
1,公差为 1 2
,∴ 1 an
1 n 1·
1 2
1 n 1 ,
2
∴
an
2 n 1
a (附:公式法、利用 n
S1(n1)
Sn Sn1 (n2) 、累加法、累乘法.构造等差或等比 an1 pan q
或 an1 pan f (n) 、待定系数法、对数变换法、迭代法、数学归纳法、换元法)
4. 求数列前 n 项和的常用方法
(1) 裂项法
把数列各项拆成两项或多项之和,使之出现成对互为相反数的项.
如:
an
是公差为
d
的等差数列,求
n k 1
ak
1 ak
1
解:由
1 ak· ak1
ak
1
ak d
1 d
1
ak
1 ak 1
d