人教【数学】数学 反比例函数的专项 培优 易错 难题练习题附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数

(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于

D.

(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;

(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;

(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,

所以一次函数解析式为y= x+ ,

把B(﹣1,2)代入y= 得m=﹣1×2=﹣2;

(3)解:如下图所示:

设P点坐标为(t,t+ ),

∵△PCA和△PDB面积相等,

∴• •(t+4)= •1•(2﹣t﹣),即得t=﹣,

∴P点坐标为(﹣,).

【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到• •(t+4)= •1•(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标.

2.如图,一次函数y=x+4的图象与反比例函数y= (k为常数,且k≠0)的图象交于A (﹣1,a),B(b,1)两点.

(1)求反比例函数的表达式;

(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;

(3)求△PAB的面积.

【答案】(1)解:当x=﹣1时,a=x+4=3,

∴点A的坐标为(﹣1,3).

将点A(﹣1,3)代入y= 中,

3= ,解得:k=﹣3,

∴反比例函数的表达式为y=﹣

(2)解:当y=b+4=1时,b=﹣3,

∴点B的坐标为(﹣3,1).

作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图所示.

∵点B的坐标为(﹣3,1),

∴点D的坐标为(﹣3,﹣1).

设直线AD的函数表达式为y=mx+n,

将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,

,解得:,

∴直线AD的函数表达式为y=2x+5.

当y=2x+5=0时,x=﹣,

∴点P的坐标为(﹣,0)

(3)解:S△PAB=S△ABD﹣S△BDP= ×2×2﹣ ×2× =

【解析】【分析】(1)由一次函数图象上点的坐标特征可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出反比例函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,由点B的坐标可得出点D的坐标,根据点A、D的坐标利用待定系数法,即可求出直线AB的函数表达式,再由一次函数图象上点的坐标特征即可求出点P的坐标;(3)根据三角形的面积公式结合S△PAB=S△ABD﹣S△BDP,即可得出结论.

3.如图,反比例函数y1= 的图象与一次函数y2= x的图象交于点A、B,点B的横坐标

是4,点P(1,m)在反比例函数y1= 的图象上.

(1)求反比例函数的表达式;

(2)观察图象回答:当x为何范围时,y1>y2;

(3)求△PAB的面积.

【答案】(1)解:把x=4代入y2= x,得到点B的坐标为(4,1),把点B(4,1)代入y1= ,得k=4.

反比例函数的表达式为y1=

(2)解:∵点A与点B关于原点对称,∴A的坐标为(﹣4,﹣1),

观察图象得,当x<﹣4或0<x<4时,y1>y2

(3)解:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图,

∵点A与点B关于原点对称,

∴OA=OB,

∴S△AOP=S△BOP,

∴S△PAB=2S△AOP.

y1= 中,当x=1时,y=4,

∴P(1,4).

设直线AP的函数关系式为y=mx+n,

把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,

则,

解得.

故直线AP的函数关系式为y=x+3,

则点C的坐标(0,3),OC=3,

∴S△AOP=S△AOC+S△POC

= OC•AR+ OC•PS

= ×3×4+ ×3×1

= ,

∴S△PAB=2S△AOP=15.

【解析】【分析】(1)把x=4代入y2= x,得到点B的坐标,再把点B的坐标代入y1=

,求出k的值,即可得到反比例函数的表达式;(2)观察图象可知,反比例函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解集;(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,那么S△AOP=S△BOP,S△PAB=2S△AOP.求出P点坐标,利用待定系数法求出直线AP的函数关系式,得到点C的坐标,根据S△AOP=S△AOC+S△POC求出

S△AOP= ,则S△PAB=2S△AOP=15.

4.如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B (0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC= .

(1)求反比例函数y= 和直线y=kx+b的解析式;

(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;

(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.

【答案】(1)解:∵A(5,0),

∴OA=5.

相关文档
最新文档