人教【数学】数学反比例函数的专项培优 易错 难题练习题含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣

x+10,交于C,D两点,并且OC=3BD.

(1)求出双曲线的解析式;

(2)连结CD,求四边形OCDB的面积.

【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,

∴∠AMO=∠CEO=∠DFB=90°,

∵直线OA:y=x和直线AB:y=﹣x+10,

∴∠AOB=∠ABO=45°,

∴△CEO∽△DEB

∴= =3,

设D(10﹣m,m),其中m>0,

∴C(3m,3m),

∵点C、D在双曲线上,

∴9m2=m(10﹣m),

解得:m=1或m=0(舍去)

∴C(3,3),

∴k=9,

∴双曲线y= (x>0)

(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,

∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB

= ×3×3+ ×(1+3)×6+ ×1×1=17,

∴四边形OCDB的面积是17

【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x

和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.

2.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数

(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于

D.

(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;

(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;

(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,

所以一次函数解析式为y= x+ ,

把B(﹣1,2)代入y= 得m=﹣1×2=﹣2;

(3)解:如下图所示:

设P点坐标为(t,t+ ),

∵△PCA和△PDB面积相等,

∴• •(t+4)= •1•(2﹣t﹣),即得t=﹣,

∴P点坐标为(﹣,).

【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到• •(t+4)= •1•(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标.

3.如图,一次函数y=x+4的图象与反比例函数y= (k为常数,且k≠0)的图象交于A (﹣1,a),B(b,1)两点.

(1)求反比例函数的表达式;

(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;

(3)求△PAB的面积.

【答案】(1)解:当x=﹣1时,a=x+4=3,

∴点A的坐标为(﹣1,3).

将点A(﹣1,3)代入y= 中,

3= ,解得:k=﹣3,

∴反比例函数的表达式为y=﹣

(2)解:当y=b+4=1时,b=﹣3,

∴点B的坐标为(﹣3,1).

作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图所示.

∵点B的坐标为(﹣3,1),

∴点D的坐标为(﹣3,﹣1).

设直线AD的函数表达式为y=mx+n,

将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,

,解得:,

∴直线AD的函数表达式为y=2x+5.

当y=2x+5=0时,x=﹣,

∴点P的坐标为(﹣,0)

(3)解:S△PAB=S△ABD﹣S△BDP= ×2×2﹣ ×2× =

【解析】【分析】(1)由一次函数图象上点的坐标特征可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出反比例函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,由点B的坐标可得出点D的坐标,根据点A、D的坐标利用待定系数法,即可求出直线AB的函数表达式,再由一次函数图象上点的坐标特征即可求出点P的坐标;(3)根据三角形的面积公式结合S△PAB=S△ABD﹣S△BDP,即可得出结论.

4.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,

tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.

(1)求一次函数和反比例函数的解析式;

(2)求△ABH面积.

【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,

∴CO=2,即C(0,2),

把C(0,2),D(﹣1,0)代入y=ax+b可得,

,解得,

∴一次函数解析式为y=2x+2,

∵点A的横坐标是1,

∴当x=1时,y=4,即A(1,4),

把A(1,4)代入反比例函数y= ,可得k=4,

∴反比例函数解析式为y=

(2)解:解方程组,可得或,

∴B(﹣2,﹣2),

又∵A(1,4),BH⊥y轴,

∴△ABH面积= ×2×(4+2)=6.

【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.

5.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.

(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;

(2)若y= 的值不大于2,求符合条件的x的范围;

相关文档
最新文档