2017九年级数学分式方程

合集下载

初三第六讲--分式方程的解法及应用题

初三第六讲--分式方程的解法及应用题

分式方程及应用题【知识要点】1.分式方程的概念:分母中含有未知数的方程分式方程的两个主要特征:(1)含分式;(2)分母中含有未知数2.分式方程的解法:把分式方程转化为整式方程,一般步骤是“一乘,二解,三检验”。

一乘是先去分母,方程两边同乘最简公分母,把分式方程转化为整式方程;二解是解这个整式方程;三检验是吧求得的值代入最简公分母中,若等于零,则是增根,若不等于零,则是原方程的解3.分式方程的增根⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根.4.列分式方程解应用题的一般步骤:(1)审题;(2)设未知数;(3)找出相等关系,列分式方程;(4)解 这个分式方程;(5)检验,看方程的解是否满足方程和符合题意;(6)写出答案 【典型例题】 例1、选择题1、用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --=2、分式方程131x x x x +=--的解为( ) A .1 B .-1 C .-2 D .-3 3、分式方程3221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x4、甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是 ( ) A .8 B.7 C .6 D .55、某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 (A )18%)201(400160=++x x (B )18%)201(160400160=+-+x x (C ) 18%20160400160=-+x x (D )18%)201(160400400=+-+xx例2、填空题1、解方程2223321x x x x--=-时,若设21x y x =-,则方程可化为 .2、分式方程11x x1x 2--=+的解为________________. 3、方程2512x x=-的解是 . 4、已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为_____________. 5、在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为 .例3、解下列分式方程 (1)3131=---x x x (2)22111x x =---(3)12111xx x -=--. (4)33122x x x -+=--.例4、应用题1、某服装厂为学校艺术团生产一批演出服,总成本3200元,售价每套40元,服装厂向25名家庭贫困学生免费提供。

分式方程篇(解析版)--中考数学必考考点总结+题型专训

分式方程篇(解析版)--中考数学必考考点总结+题型专训

知识回顾微专题分式方程--中考数学必考考点总结+题型专训考点一:分式方程之分式方程的解与解分式方程1.分式方程的定义:分母中含有未知数的方程叫做分式方程。

2.分式方程的解:使分式方程成立的未知数的值叫做分式方程的解。

3.解分式方程。

具体步骤:①去分母——分式方程的两边同时乘上分母的最简公分母。

把分式方程化成整式方程。

②解整式方程。

③检验——把解出来的未知数的值带入公分母中检验公分母是否为0。

若公分母不为0,则未知数的值即是原分式方程的解。

若公分母为0,则未知数的值是原分式方程的曾根,原分式方程无解。

1.(2022•营口)分式方程3=x 的解是()A .x =2B .x =﹣6C .x =6D .x =﹣2【分析】方程两边都乘x (x ﹣2)得出3(x ﹣2)=2x ,求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘x (x ﹣2),得3(x ﹣2)=2x ,解得:x =6,检验:当x =6时,x (x ﹣2)≠0,所以x =6是原方程的解,即原方程的解是x =6,故选:C .2.(2022•海南)分式方程12-x ﹣1=0的解是()A .x =1B .x =﹣2C .x =3D .x =﹣3【分析】方程两边同时乘以(x ﹣1),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解.【解答】解:去分母得:2﹣(x ﹣1)=0,解得:x =3,当x =3时,x ﹣1≠0,∴x =3是分式方程的根,故选:C .3.(2022•毕节市)小明解分式方程33211+=+x xx ﹣1的过程如下.解:去分母,得3=2x ﹣(3x +3).①去括号,得3=2x ﹣3x +3.②移项、合并同类项,得﹣x =6.③化系数为1,得x =﹣6.④以上步骤中,开始出错的一步是()A .①B .②C .③D .④【分析】按照解分式方程的一般步骤进行检查,即可得出答案.【解答】解:去分母得:3=2x ﹣(3x +3)①,去括号得:3=2x ﹣3x ﹣3②,∴开始出错的一步是②,故选:B .4.(2022•无锡)分式方程xx 132=-的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【分析】将分式方程转化为整式方程,求出x 的值,检验即可得出答案.【解答】解:=,方程两边都乘x (x ﹣3)得:2x =x ﹣3,解得:x =﹣3,检验:当x =﹣3时,x (x ﹣3)≠0,∴x =﹣3是原方程的解.故选:D .5.(2022•济南)代数式23+x 与代数式12-x 的值相等,则x =.【分析】根据题意列方程,再根据解分式方程的步骤和方法进行计算即可.【解答】解:由题意得,=,去分母得,3(x ﹣1)=2(x +2),去括号得,3x ﹣3=2x +4,移项得,3x ﹣2x =4+3,解得x =7,经检验x =7是原方程的解,所以原方程的解为x =7,故答案为:7.6.(2022•绵阳)方程113-+=-x x x x 的解是.【分析】先在方程两边乘最简公分母(x ﹣3)(x ﹣1)去分母,然后解整式方程即可.【解答】解:=,方程两边同乘(x ﹣3)(x ﹣1),得x (x ﹣1)=(x +1)(x ﹣3),解得x =﹣3,检验:当x =﹣3时,(x ﹣3)(x ﹣1)≠0,∴方程的解为x =﹣3.故答案为:x =﹣3.7.(2022•盐城)分式方程121-+x x =1的解为.【分析】先把分式方程转化为整式方程,再求解即可.【解答】解:方程的两边都乘以(2x ﹣1),得x +1=2x ﹣1,解得x =2.经检验,x =2是原方程的解.故答案为:x =2.8.(2022•内江)对于非零实数a ,b ,规定a ⊕b =a 1﹣b1.若(2x ﹣1)⊕2=1,则x 的值为.【分析】利用新规定对计算的式子变形,解分式方程即可求得结论.【解答】解:由题意得:=1,解得:x =.经检验,x =是原方程的根,∴x =.故答案为:.9.(2022•永州)解分式方程112+-x x =0去分母时,方程两边同乘的最简公分母是.【分析】根据最简公分母的定义即可得出答案.【解答】解:去分母时,方程两边同乘的最简公分母是x (x +1).故答案为:x (x +1).10.(2022•常德)方程()xx x x 25212=-+的解为.【分析】方程两边同乘2x (x ﹣2),得到整式方程,解整式方程求出x 的值,检验后得到答案.【解答】解:方程两边同乘2x (x ﹣2),得4x ﹣8+2=5x ﹣10,解得:x =4,检验:当x =4时,2x (x ﹣2)=16≠0,∴x =4是原方程的解,∴原方程的解为x =4.11.(2022•宁波)定义一种新运算:对于任意的非零实数a ,b ,a ⊗b =a 1+b 1.若(x +1)⊗x =xx 12+,则x 的值为.【分析】根据新定义列出分式方程,解方程即可得出答案.【解答】解:根据题意得:+=,化为整式方程得:x +x +1=(2x +1)(x +1),解得:x =﹣,检验:当x =﹣时,x (x +1)≠0,∴原方程的解为:x =﹣.故答案为:﹣.12.(2022•成都)分式方程xx x -+--4143=1的解为.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是分式方程的解,故答案为:x =3.13.(2022•牡丹江)若关于x 的方程11--x mx =3无解,则m 的值为()A .1B .1或3C .1或2D .2或3【分析】先去分母,再根据条件求m .【解答】解:两边同乘以(x ﹣1)得:mx ﹣1=3x ﹣3,∴(m ﹣3)x =﹣2.当m ﹣3=0时,即m =3时,原方程无解,符合题意.当m ﹣3≠0时,x =,∵方程无解,∴x ﹣1=0,∴x =1,∴m ﹣3=﹣2,∴m =1,综上:当m =1或3时,原方程无解.故选:B .14.(2022•通辽)若关于x 的分式方程:2﹣221--x k =x-21的解为正数,则k 的取值范围为()A .k <2B .k <2且k ≠0C .k >﹣1D .k >﹣1且k ≠0【分析】先解分式方程可得x =2﹣k ,再由题意可得2﹣k >0且2﹣k ≠2,从而求出k 的取值范围.【解答】解:2﹣=,2(x ﹣2)﹣(1﹣2k )=﹣1,2x ﹣4﹣1+2k =﹣1,2x =4﹣2k ,x =2﹣k ,∵方程的解为正数,∴2﹣k >0,∴k <2,∵x ≠2,∴2﹣k ≠2,∴k ≠0,∴k <2且k ≠0,故选:B .15.(2022•黑龙江)已知关于x 的分式方程xx m x ----1312=1的解是正数,则m 的取值范围是()A .m >4B .m <4C .m >4且m ≠5D .m <4且m ≠1【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可.【解答】解:方程两边同时乘以x ﹣1得,2x ﹣m +3=x ﹣1,解得x =m ﹣4.∵x 为正数,∴m ﹣4>0,解得m >4,∵x ≠1,∴m ﹣4≠1,即m ≠5,∴m 的取值范围是m >4且m ≠5.故选:C .16.(2022•德阳)如果关于x 的方程12-+x mx =1的解是正数,那么m 的取值范围是()A .m >﹣1B .m >﹣1且m ≠0C .m <﹣1D .m <﹣1且m ≠﹣2【分析】先去分母将分式方程化成整式方程,再求出方程的解x =﹣1﹣m ,利用x >0和x ≠1得出不等式组,解不等式组即可求出m 的范围.【解答】解:两边同时乘(x ﹣1)得,2x +m =x ﹣1,解得:x =﹣1﹣m ,又∵方程的解是正数,且x ≠1,∴,即,解得:,∴m 的取值范围为:m <﹣1且m ≠﹣2.故答案为:D .17.(2022•重庆)关于x 的分式方程x x x a x -++--3133=1的解为正数,且关于y 的不等式组()⎪⎩⎪⎨⎧-+≤+132229a y y y 的解集为y ≥5,则所有满足条件的整数a 的值之和是()A .13B .15C .18D .20【分析】解分式方程得得出x =a ﹣2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出,结合题意得出a <7,进而得出2<a <7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案.【解答】解:解分式方程得:x =a ﹣2,∵x >0且x ≠3,∴a ﹣2>0且a ﹣2≠3,∴a >2且a ≠5,解不等式组得:,∵不等式组的解集为y ≥5,∴<5,∴a <7,∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13,故选:A .18.(2022•重庆)若关于x 的一元一次不等式组⎪⎩⎪⎨⎧--≥-a x x x <153141的解集为x ≤﹣2,且关于y 的分式方程111+=+-y ay y ﹣2的解是负整数,则所有满足条件的整数a 的值之和是()A .﹣26B .﹣24C .﹣15D .﹣13【分析】解不等式组得出,结合题意得出a >﹣11,解分式方程得出y =,结合题意得出a =﹣8或﹣5,进而得出所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x ≤﹣2,∴>﹣2,∴a >﹣11,解分式方程=﹣2得:y=,∵y 是负整数且y ≠﹣1,∴是负整数且≠﹣1,∴a =﹣8或﹣5,∴所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,故选:D .19.(2022•遂宁)若关于x 的方程122+=x mx 无解,则m 的值为()A .0B .4或6C .6D .0或4【分析】解分式方程可得(4﹣m )x =﹣2,根据题意可知,4﹣m =0或2x +1=0,求出m 的值即可.【解答】解:=,2(2x +1)=mx ,4x +2=mx ,(4﹣m )x =﹣2,∵方程无解,∴4﹣m =0或2x +1=0,即4﹣m =0或x =﹣=﹣,∴m =4或m =0,故选:D .20.(2022•黄石)已知关于x 的方程()1111++=++x x ax x x 的解为负数,则a 的取值范围是.【分析】先求整式方程的解,然后再解不等式组即可,需要注意分式方程的分母不为0.【解答】解:去分母得:x +1+x =x +a ,解得:x =a ﹣1,∵分式方程的解为负数,∴a ﹣1<0且a ﹣1≠0且a ﹣1≠﹣1,∴a <1且a ≠0,∴a 的取值范围是a <1且a ≠0,故答案为:a <1且a ≠0.21.(2022•齐齐哈尔)若关于x 的分式方程4222212-+=++-x mx x x 的解大于1,则m 的取值范围是.【解答】解:,给分式方程两边同时乘以最简公分母(x +2)(x ﹣2),得(x +2)+2(x ﹣2)=x +2m ,去括号,得x +2+2x ﹣4=x +2m ,解方程,得x =m +1,检验:当m +1≠2,m +1≠﹣2,即m ≠1且m ≠﹣3时,x =m +1是原分式方程的解,根据题意可得,m +1>1,∴m >0且m ≠1.知识回顾故答案为:m >0且m ≠1.22.(2022•泸州)若方程xx x -=+--23123的解使关于x 的不等式(2﹣a )x ﹣3>0成立,则实数a 的取值范围是.【分析】先解分式方程,再将x 代入不等式中即可求解.【解答】解:+1=,+=,=0,解得:x =1,∵x ﹣2≠0,2﹣x ≠0,∴x =1是分式方程的解,将x =1代入不等式(2﹣a )x ﹣3>0,得:2﹣a ﹣3>0,解得:a <﹣1,∴实数a 的取值范围是a <﹣1,故答案为:a <﹣1.考点二:分式方程之分式方程的应用1.列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。

《分式方程》PPT课件

《分式方程》PPT课件

(来自《典中点》)
知识点 3 分式方程的根(解)
知3-导
使得分式方程等号两端相等的未知数的值 叫做分式方程的解(也叫做分式方程的根).
知3-讲
例3 [中考·遵义]若x=3是分式方程 a 2 1 x x2
=0的根,则a的值是( A )
A.5 B.-5 C.3
D.-3
导引:把x=3代入分式方程,得到关于a的一元一次方
C.m=3
D.m=0或m=3
3
若关于x的分式方程
6
( x 1)( x 1)
m
x 1 有增
根,则它的增根是( )
A.0
B.1 C.-1 D.1和-1
(来自《典中点》)
1.分式方程的定义:分母中含有未知数的方程. 2.列分式方程的步骤:
(1)审清题意; (2)设未知数; (3)找到相等关系; (4)列分式方程.
漏乘.
(来自《点拨》)
1 解方程: (1) x 5 4; 2x 3 3 2x
3
x
(2) x2 9 x 3 1.
知2-练
(来自《点拨》)
知2-练
2
【中考·济宁】解分式方程
2 x1
x2 1 x
3
时,去分母后变形正确的为( )
A.2+(x+2)=3(x-1)
B.2-x+2=3(x-1)
C.2-(x+2)=3
38 2 2 1. 9x x
如果设小红步行的时间为x h,那么她乘公共汽 车的时间为(1-x) h, 根据等量关系(2),可得到方程
38 2 9 2 .
1 x
x
知1-导
讨论: 上面得到的方程与我们已学过的方程有什么 不同?这两个方程有哪些共同特点?

2017年初三数学复习分式方程

2017年初三数学复习分式方程

2017年初三数学复习:分式方程考点分析1.分式方程的有关概念(了解)2.可化为一元一次方程的分式方程解法(灵活运用)3.分式方程的增根(掌握)4.列分式方程解决实际问题(灵活运用)【基础知识回顾】一、分式方程的概念分母中含有的方程叫做分式方程【提醒:分母中是否含有未知数是区分方程和整式方程根本依据】二、分式方程的解法:1、解分式方程的基本思路是把分式方程转化为整式方程:2、增根:在进行分式方程去分母的变形时,有时可产生使原方程分母为的根称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

【提醒:1、分式方程解法中的验根是一个必备的步骤,不被省略2、分式方程的增根与无解并非用一个概念,无解包含产生增根这一情况,也包含原方程去分母后的整式方程无解;增根是去分母后的整式方程的根,也是使分母为0的根。

】三、分式方程的应用:解题步骤同其它方程的应用一样,不同的是列出的方程是分式方程,所以在解分式方程应用题同样必须完要检验是否为原方程的根,又要检验是否符合题意。

【提醒:分式方程应用题常见类型有行程问题、工作问题、销售问题、生产问题等,其中行程问题中又出现逆水、顺水、航行这一类型】【重点考点例析】A.-1.5 B.1 C.-1.5或2 D.-0.5或-1.5的解为负数,那么字母a的取值范围考点二:分式方程的解法考点三:分式方程的增根问题例5岳阳王家河流域综合治理工程已正式启动,其中某项工程,若由甲、乙两建筑队合做,6个月可以完成,若由甲、乙两队独做,甲队比乙队少用5个月的时间完成.(1)甲、乙两队单独完成这项工程各需几个月的时间?(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a个月,乙队做b 个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?1.对于非零的实数a、b,规定a⊕b=﹣.若2⊕(2x﹣1)=1,则x=()A.B.C.D.﹣3、已知方程xx-3=2-3-x有增根,则这个增根一定是()A.2 B.3 C.4 D.54.某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?5.小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.7.冬冬全家周末一起去济南山区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元?8.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?9.小明计划用360元从大型系列科普丛书《什么是什么》(每本价格相同)中选购部分图书.“六一”期间,书店推出优惠政策:该系列丛书8折销售.这样,小明比原计划多买了6本.求每本书的原价和小明实际购买图书的数量.。

【精品】2017年全国中考数学真题《分式与分式方程》分类汇编解析

【精品】2017年全国中考数学真题《分式与分式方程》分类汇编解析

2017年全国中考数学真题《分式与分式方程》分类汇编解析分式与分式方程考点一、分式 (8~10分)1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是( )A .B .C .D .2.(2017·山东省德州市·3分)化简﹣等于( )A .B .C .﹣D .﹣3.(2017·广西百色·3分)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )C.﹣=D.+=304.(2017·广西桂林·3分)当x=6,y=3时,代数式()•的值是()A.2 B.3 C.6 D.95. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=6. (2017·重庆市A卷·4分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣27.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.8.(2017海南3分)解分式方程,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解10. (2017·湖北武汉·3分)若代数式在31-x实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3D.x=312.(2017·四川攀枝花)化简+的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n13.(2017·四川内江)甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地,已知A,C两地间的距离为110千米,B,C两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x千米/时,由题意列出方程,其中正确的是( )A.1102x+=100xB.1100x=1002x+C.1102x-=100xD.1100x=1002x-14.(2017·四川内江)在函数y x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4驶100km,设提速前列车的平均速度为xkm/h,下列方程正确的是()A.=B.=C.=D.=16. (2017·黑龙江龙东·3分)关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m>﹣3 C.m>﹣3 D.m<﹣317.(2017·黑龙江齐齐哈尔·3分)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m 的值为()A.1,2,3 B.1,2 C.1,3 D.2,318.(2017·湖北荆门·3分)化简的结果是()A.B.C.x+1 D.x﹣119.(2017·内蒙古包头·3分)化简()•ab,其结果是()A.B.C.D.20. (2017·山东潍坊·3分)计算:20•2﹣3=()A.﹣B.C.0 D.821. (2017·山东潍坊·3分)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣22. (2017·四川眉山·3分)已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C.D.二、填空题1.(2017·山东省济宁市·3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.2. (云南省昆明市·3分)计算:﹣=.4.(2017·贵州安顺·4分)在函数中,自变量x的取值范围是.5.(2017贵州毕节5分)若a2+5ab﹣b2=0,则的值为.6.(2017·四川南充)计算:=.7.(2017·四川攀枝花)已知关于x的分式方程+=1的解为负数,则k的取值范围是.8.(2017·四川泸州)分式方程﹣=0的根是.9.(2017·四川内江)化简:(2a+93a-)÷3aa+=______.10. (2017·湖北荆州·3分)当a=﹣1时,代数式的值是.三、解答题1.(2017·湖北随州·6分)先化简,再求值:(﹣x+1)÷,其中x=﹣2.2. (2017·湖北随州·6分)某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.3. (2017·吉林·5分)解方程:=.4. (2017·江西·6分)先化简,再求值:(+)÷,其中x=6.5. (2017·辽宁丹东·10分)某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?6.(2017·四川泸州)化简:(a+1﹣)•.7.(2017·四川宜宾)2017年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?8.(2017·四川宜宾)化简:÷(1﹣)9.(2017·黑龙江龙东·6分)先化简,再求值:(1+)÷,其中x=4﹣tan45°.10.(2017·黑龙江齐齐哈尔·5分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.11.(2017·湖北黄石·6分)先化简,再求值:÷•,其中a=2017.12.(2017·湖北荆州·12分)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n =0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.13.(2017·青海西宁·7分)化简:,然后在不等式x≤2的非负整数解中选择一个适14. (2017·陕西)化简:(x﹣5+)÷.15. (2017·四川眉山)先化简,再求值:,其中a=3.16. (2017·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:17.(2017·山东省滨州市·4分)先化简,再求值:÷(﹣),其中a =.18.(2017·山东省东营市·4分)化简,再求值:(a +1-4a -5a -1)÷(1a -1a 2-a ),其中a =2+3.19.(2017·山东省东营市·8分)东营市某学校2015年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?20.(2017·山东省菏泽市·3分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)21. (2017·重庆市A卷·5分)(+x﹣1)÷.22. (2017·重庆市B卷·5分)÷(2x﹣)23. (2017·浙江省绍兴市·4分))解分式方程:+=4.24.(2017·福建龙岩·6分)先化简再求值:,其中x=2+.25.(2017·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同 (1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?26.(2017·贵州安顺·10分)先化简,再求值:1211)1(+-+÷-x x x ),从﹣1,2,3中选择一个适当的数作为x 值代入.27.(2017·黑龙江哈尔滨·7分)先化简,再求代数式(﹣)÷的值,其中a =2sin 60°+tan 45°.28.(2017·黑龙江哈尔滨·10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?29.(2017广西南宁)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?30.(2017河南)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.答案分式与分式方程一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是()A.B.C.D.【考点】最简分式.【专题】计算题;分式.【分析】利用最简分式的定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选A【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.2.(2017·山东省德州市·3分)化简﹣等于( )A .B .C .﹣D .﹣【考点】分式的加减法. 【专题】计算题;分式.【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==,故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.(2017·广西百色·3分)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .﹣=30 B .﹣=C .﹣= D .+=30【考点】由实际问题抽象出分式方程.【分析】设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.【解答】解:设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据题意得,﹣=.故选B .4.(2017·广西桂林·3分)当x =6,y =3时,代数式()•的值是( )A .2B .3C .6D .9 【考点】分式的化简求值.【分析】先对所求的式子化简,然后将x =6,y =3代入化简后的式子即可解答本题.【解答】解:()•==,当x=6,y=3时,原式=,故选C.5. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选C.6. (2017·重庆市A卷·4分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣2【分析】由分式有意义的条件得出不等式,解不等式即可.【解答】解:根据题意得:x+2≠0,解得x≠﹣2.故选:D.【点评】本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.7.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【解答】解:设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据题意,可列方程: =,故选:A .8.(2017海南3分)解分式方程,正确的结果是( )A .x =0B .x =1C .x =2D .无解 【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【解答】解:去分母得:1+x ﹣1=0, 解得:x =0, 故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验. 9.(2017河北3分)下列运算结果为x -1的是( )A .11x-B .211x x x x -∙+ C .111x x x +÷- D .2211x x x +++ 答案:B解析:挨个算就可以了,A 项结果为—— , B 项的结果为x -1,C 项的结果为—— D 项的结果为x +1。

初三分式方程

初三分式方程

初三分式方程篇一:初三分式方程是指含有分式的方程,其中未知数在分式中出现。

解决这类方程需要运用分式的性质和求解方程的技巧。

解决分式方程的关键是消去分母,使方程转化为一个多项式方程。

为了实现这一目标,我们可以采用以下步骤:1. 将方程中的分式化简。

可以通过提取公因式、分解分子、分解分母等方法来化简。

2. 求解化简后的多项式方程。

将化简后的方程转化为一个等式,然后使用求解多项式方程的方法来求解。

考虑一个简单的例子:求解方程 2/x + 3/(x+1) = 1首先,我们可以通过求最小公倍数来消去分母。

x 和 (x+1) 的最小公倍数是x(x+1)。

乘以最小公倍数得到:2(x+1) + 3x = x(x+1)化简得到:2x + 2 + 3x = x^2 + x合并同类项得到:5x + 2 = x^2 + x将方程转化为一个多项式方程:x^2 + x - 5x - 2 = 0合并同类项得到:x^2 - 4x - 2 = 0现在我们可以使用因式分解法、配方法、求根公式或图像法来求解这个多项式方程。

综上所述,初三分式方程是一类涉及分式的方程,解决这类方程需要将分式化简,然后转化为一个等式,最后使用多项式方程的求解方法来求解。

这是初中阶段数学学习中的重要内容,掌握了解决分式方程的方法,可以帮助我们更好地理解和应用数学知识。

篇二:初三分式方程是初中数学中的一个重要内容,它是一种包含有分式的方程。

在解决这类方程时,常需要运用分式的性质和运算法则,以及等式两边的化简和变形,最终求得方程的解。

在初三分式方程的学习中,我们首先需要了解分式的基本概念和运算规则。

分式是指形如$frac{a}{b}$的表达式,其中$a$和$b$都是整数,$b$不等于0。

我们知道,分式可以看作是除法的一种表达方式,分子$a$表示被除数,分母$b$表示除数。

在运算上,我们可以进行分式的加、减、乘、除等运算,遵循相应的规则和性质。

解决初三分式方程的方法主要包括化简、通分和变形。

初三数学总复习--分式方程及应用

初三数学总复习--分式方程及应用

初三数学总复习分式方程及应用一:【课前预习】(一):【知识梳理】1.分式方程:分母中含有 的方程叫做分式方程.2.分式方程的解法:解分式方程的关键是 (即方程两边都乘以最简公分母),将分式方程转化为整式方程;3.分式方程的增根问题:⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根;⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根。

验根的方法是将所求的根代人 或 ,若 的值为零或 的值为零,则该根就是增根。

4.分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.5.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题。

6. 分式方程的解法有 和 。

(二):【课前练习】1. 把分式方程11122x x x--=--的两边同时乘以(x-2), 约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1 C .1-(1-x)=x-2 D .1+(1-x)=x-22. 方程2321x x -=+的根是( ) A.-2 B.12 C.-2,12D.-2,1 3. 当m =_____时,方程212mx m x +=-的根为12 4. 如果25452310A B x x x x x -+=-+--,则 A=____ B =________. 5. 若方程1322a x x x -=---有增根,则增根为_____,a=________.二:【经典考题剖析】1. 解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);(); 2222213(1)1142312211x x x x x x x x x x x x -++⎛⎫⎛⎫+=+=+-+= ⎪ ⎪--++⎝⎭⎝⎭(4);(5);(6) 分析:(1)用去分母法;(2)(3)(4)题用化整法;(5)(6)题用换元法;分别设211x y x +=+,1y x x=+,解后勿忘检验。

九年级数学上人教版《 分式方程的基本思想及解法》课堂笔记

九年级数学上人教版《 分式方程的基本思想及解法》课堂笔记

《分式方程的基本思想及解法》课堂笔记
一、分式方程的定义
分式方程是指分母中含有未知数的方程,其一般形式为ax=b(其中a,b为常数,且a=0)。

二、分式方程的解法
解分式方程的基本思想是将其转化为整式方程,具体步骤如下:
1.去分母:在方程的两边同时乘以最简公分母,将分式方程转化为整式方程。

2.解整式方程:利用整式方程的解法,求出整式方程的解。

3.检验:将整式方程的解代入最简公分母,检验是否为增根。

4.得出结论:如果整式方程的解不是增根,那么这个解就是原分式方程的解;
如果整式方程的解是增根,那么原分式方程无解。

三、注意事项
1.在去分母时,需要注意分母的最简公分母的选择,以及乘以最简公分母后
是否要变号。

2.在解整式方程时,需要注意运算的准确性和规范性。

3.在检验时,需要注意将整式方程的解代入最简公分母的方式和步骤。

4.在得出结论时,需要注意分式方程无解的情况。

四、例题解析
例1:解分式方程x−2x=x4
分析:此题为分式方程的典型例题,可以通过去分母、解整式方程、检验、得出结论等步骤求解。

解答:去分母得x2=4(x−2),解得x=4或x=−2,经检验得x=4是原分式方程的解。

初中数学九年级下册《第7讲 分式方程》知识点归纳

初中数学九年级下册《第7讲 分式方程》知识点归纳

第7讲分式方程
数学选择题解题技巧
1、排除法。

是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。

排除法是解选择题的间接方法,也是选择题的常用方法。

2、特殊值法。

即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

用特殊值法解题要注意所选取的值要符合条件,且易于计算。

此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。

在解决时可将问题提供的条件特殊化。

使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。

利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。

3、通过猜想、测量的方法,直接观察或得出结果。

这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

分式方程ppt课件

分式方程ppt课件
0时,分式方程无实根。
适用于分子、分母均为二次多项式的分 式方程。
因式分解法
将分式方程的分子或分母进行因式分解,从而简化方程。 因式分解法可以方便地找到分式方程的解,特别是当分子或分母含有公因式时。
适用于分子、分母均可因式分解的分式方程。
03
分式方程应用举例
工程问题
工作总量 = 工作时间 × 工作 效率
工作时间 = 工作总量 ÷ 工作 效率
工作效率 = 工作总量 ÷ 工作 时间
举例:一项工程,甲单独做需 要20天完成,乙单独做需要30 天完成。如果两人合作,需要 多少天完成?
行程问题
速度 = 路程 ÷ 时间
举例:甲、乙两地相距360千米,一辆汽车从甲地开 往乙地,每小时行驶60千米。问这辆汽车需要多少小
方程的解。
04
对于第三个练习题,找到公共分母$x^2-1$,两边乘 以公共分母,得到整式方程$(x+1)(x-1)-4=x^2-1$, 解得$x=3$,经检验$x=3$是原方程的解。
THANKS
感谢观看
分式方程ppt课件
目 录
• 分式方程基本概念 • 分式方程解法 • 分式方程应用举例 • 分式方程与实际问题结合 • 分式方程求解技巧与注意事项 • 分式方程练习题与答案解析
01
分式方程基本概念
分式方程定义
分式方程是指分母里含有未知数 的有理方程。
分式方程是方程中的一种,且分 母里含有未知数的(有理)方程
之几?
经济问题
利润 = 售价 - 进价
利润率 = 利润 ÷ 进 价 × 100%
售价 = 进价 × (1 + 利润率)
进价 = 售价 ÷ (1 + 利润率)

初三数学分式方程复习

初三数学分式方程复习

使关于y的不等式组
y3 4
y113 3 12
的解集为y
0,则符合条件的
2( ya)0
所有整数a的积为
.
【预测变形1】
已知关于x的分式方程 x 2 k 的解为正数, x 1 1 x
则k的取值范围为
()
A.-2<k<0
B.k>-2且k 1
C.k 2
D.k<2且k 1
【预测变形2】
已知关于x的分式方程 x 4 k 的解为非正数, x3 3x
则m
.
【预测变形3】
若关于x的分式方程 x 3a 2a无解, x3 3x
则a
.
【预测变形4】
若关于x的分式方程 7 3 mx 无解, x 1 x 1
则实数m
.
类型之三 解与分式方程特殊解有关的问题 P31
例3 若数a使关于x的分式方程 x 2 a 3的解为非负数,且 x 1 1 x
则k的取值范围是
()
A.k -12
B.k 12
C.k 12
D.k< 12
类型之四 分式方程的应用 P32
例4 近年来,我市大力发展城市快速交通,小王开车从家到单 位有两条路线可选择,路线A全程25km的普通道路,路线B包含 快速通道,全程30km,走路线B比走路线A平均速度提高50%,时 间节省6min,求路线B的平均速度.
类型之一 解分式方程 P31
例1 解方程 x 2 2. x 1 1 x
类型之二 解分式方程 P31
例2 若方程 k 3x 0有增根,则k的值为
.
x2 x2
【预测变形1】
若关于x的分式方程 x 2m 2m有增根, x2 2x

中考数学知识点梳理第7讲分式方程

中考数学知识点梳理第7讲分式方程

中考数学知识点梳理第7讲分式方程分式方程是指含有分式(即含有未知数的分数形式)的方程。

解分式方程的关键是化简、消去分母,找到未知数的值。

1.分式方程的定义分式方程是指方程的一种形式,其中包含了未知数的分式,并要求找到满足方程的未知数的值。

2.分式方程的基本形式(1)真分式方程:分子次数小于分母次数的分式方程。

示例:$\dfrac{2x+3}{x-1}=3$(2)假分式方程:分子次数大于或等于分母次数的分式方程。

示例:$\dfrac{x^2+1}{x-1}=3$3.分式方程的解法(1)化简分式方程将分式方程中的分数进行通分、化简,使得方程的表达式更简洁。

示例:$\dfrac{x+2}{x-3}+\dfrac{1}{x-2}=\dfrac{2x+1}{x-3}$,通分后可得到$(x-2)(x-3)+(x-3)=(2x+1)(x-2)$。

(2)消去分母在化简后的方程中,通过乘以适当的数值,消去方程中的分母。

示例:在上述化简后的方程中,可以通过乘以$(x-2)(x-3)$来消去分母,得到$(x-2)(x-3)^2+(x-3)(x-2)=(2x+1)(x-2)(x-3)$。

4.分式方程的解的判断(1)求解方程将已化简且消去分母的方程转化为一元一次方程,并求解得到未知数的值。

示例:在上述方程中,将其展开并整理后,得到$x^3-3x^2-17x+23=0$,解得$x=1,x=2,x=10$。

(2)检验解将求得的解代入原方程中,检验是否满足分式方程。

示例:将$x=1$代入原方程中,有$\dfrac{2\cdot1+3}{1-1}=3$,左右两边相等,所以$x=1$是方程的解。

5.分式方程的注意事项(1)分母不为零分式中的分母不能为零,否则方程无意义。

示例:在$\dfrac{1}{x-1}=3$中,$x=1$是方程无意义。

(2)未知数的范围分式方程的解必须满足未知数的范围限制。

示例:在$\dfrac{x^2+1}{x-1}=3$中,$x=2$是方程无意义。

初三数学下册分式方程的解法

初三数学下册分式方程的解法

初三数学下册分式方程的解法分式方程是指方程中含有分式的方程。

在初三数学下册中,我们将学习如何解决各种类型的分式方程。

本文将详细介绍几种常见的分式方程解法。

一、通分法解分式方程当分式方程的分母不同或难以直接消去时,我们可以利用通分的方法来解决。

示例问题1:求方程 (2/x) + (3/y) = 1 的解。

解:首先,我们需要通过通分将分母相同化,我们可以将方程两边的分子相乘,得到 2y + 3x = xy。

接下来,我们将方程整理成一般的二次方程形式,即 xy - 2y - 3x = 0。

然后,我们尝试将该方程转化为一元一次方程。

可以将方程两边同时除以 x,得到 y - 2/y - 3 = 0。

再进一步,我们将 y - 2/y 看做一个整体,得到 y(y - 2) - 3 = 0。

现在,我们可以将该方程因式分解为 (y - 3)(y - 1) = 0。

因此,我们得到两个可能的解:y = 3 或 y = 1。

将得到的解带入原方程可验证,所以方程的解为 y = 3 或 y = 1。

示例问题2:求方程 (1/x) - (1/y) = 1/4 的解。

解:首先,我们需要通过通分将分母相同化,得到 (y - x)/(xy) = 1/4。

下一步,我们将方程两边同时乘以 4xy,得到 4(y - x) = xy。

现在,我们将方程整理成一般的二次方程形式,即 xy - 4y + 4x = 0。

然后,我们尝试将该方程转化为一元一次方程。

可以将方程两边同时除以 y,得到 x - 4 + 4/y = 0。

进一步,我们将 4 + 4/y 看做一个整体,得到 x(4 + 4/y) - 4 = 0。

现在,我们可以将该方程因式分解为 4(x/y + 1) - 4 = 0。

因此,我们得到一个可能的解:x/y + 1 = 1,即 x/y = 0。

将得到的解带入原方程可验证,所以方程的解为 x/y = 0。

二、代换法解分式方程当分式方程中存在较为复杂的分母时,我们可以利用代换的方法来解决。

2017中考数学知识点总结:分式方程解法与应用

2017中考数学知识点总结:分式方程解法与应用

2017中考数学知识点总结:分式方程解法与应用要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区不就在于分母中是否有未知数(别是普通的字母系数).分母中含有未知数的方程是分式方程,分母中别含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程能够转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化办法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时也许产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时也许产生增根,因此解分式方程时必须验根.解分式方程的普通步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解那个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母别等于0,则那个解是原分式方程的解,若最简公分母等于0,则那个解别是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的缘故方程变形时,也许产生别适合原方程的根,这种根叫做原方程的增根.产生增根的缘故:去分母时,方程两边同乘的最简公分母是含有字母的式子,那个式子有也许为零,关于整式方程来讲,求出的根成立,而关于原分式方程来讲,分式无意义,因此那个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.依照方程的同解原理,方程的两边都乘以(或除以)同一具别为0的数,所得方程是原方程的同解方程.假如方程的两边都乘以的数是0,这么所得方程与原方程别是同解方程,这时求得的根算是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程别同,别是检查解方程过程中是否有错误,而是检验是否浮现增根,它是在解方程的过程中没有错误的前提下举行的.要点四、分式方程的应用分式方程的应用要紧算是列方程解应用题.列分式方程解应用题按下列步骤举行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出可以表示题中全部含义的相等关系,列出分式方程;(4)解那个分式方程;(5)验根,检验是否是增根;(6)写出答案.。

2017九年级数学分式方程

2017九年级数学分式方程

初三代数教课设计第十二章:一元二次方程第 17课时:分式方程(一)教课目的:1、本节课使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.2、使学生掌握运用去分母或换元的方法解可化为一元二次方程的分式方程;使学生理解转变的数学基本思想;3、使学生能够利用最简公分母进行验根.教课要点:可化为一元二次方程的分式方程的解法.教课难点:教课难点:解分式方程,学生不简单理解为何一定进行查验.教课过程:在初二我们已经学过分式方程的观点及可化为一元一次方程的分式方程的解法,知道认识可化为一元一次方程的分式方程的解题步骤以及验根的目的,认识了转变的思想方法的基本运用.今日,我们将在此基础上,来学习可化为一元二次方程的分式方程的解法.“节” 是在学生已经掌握的同种类的方程的解法,直接点出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相类同,及产生增根的原由,以激发学生归纳总结的欲念,使学生理解类比方法在数学解题中的重要性,使学生进一步加深对“转变”这一基本数学思想的理解,抓住学生的注意力,同时能够激起学生探究知识的欲念.为了使学生能进一步加深对“类比”、“转变”的理解,能够经过回想复习可化为一元一次方程的分式方程的解法,探究解可化为一元二次方程的分式方程的解法,同时经过对产生增根的剖析,来达到学生对“类比”的方法及“转变” 的基本数学思想在数学学习中的重要性的理解,进而调换学生能踊跃主动地参加到教课活动中去.一、新课引入:1.什么叫做分式方程解可化为一元一次方程的分化方程的方法与步骤是什么2.解可化为一元一次方程的分式方程为何要查验查验的方法是什么3、产生增根的原由是什么.二、新课解说:经过新课引入,可直接点出本节的内容:可化为一元二次方程的分式方程及其解法,类比地提出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法同样.点出本节内容的办理方法与从前所学的知识完整类同后,让全体学生比较前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参加到教课活动中去,全面提升教课质量.在前面的基础上,为了加深学生对新知识的理解,与学生共同剖析解决例题,以提升学生剖析问题和解决问题的能力.例 1、解方程:4 11 x x 1关于此方程的解法,不是教师解说怎样怎样解,而是让学生对已有知识的回想,同样本来的方法,去经过试的手段来解决,在学生表达过程中,发现问题并实时纠正.解:两边都乘以x(x-1 ),得4( x-1 ) -x=x ( x-1 ).去括号,得4x-4-x=x 2-x .整理,得x2-4x+4=0 .解这个方程,得x1=x2=2.查验:把x=2 代入 x( x-1 )=2x( 2-1 )≠ 0,所以 x=2 是原方程的根.∴原方程的根是x=2.固然,此种种类的方程在初二上学期已学习过,但因为相隔时间比较长,所以有一些学生简单犯的种类错误应加以重申,如在第一步中,需重申方程两边同时乘以最简公分母.此外,在把分式方程转变为整式方程后,所得的一元二次方程有两个相等的实数根,因为是解分式方程,所以在下结论时,应重申取一即可,这一点,教师应给予重申.剖析:解此方程的要点是怎样将分式方程转变为整式方程,而转变为整式方程的要点是正确地确立出方程中各分母的最简公分母,因为此方程中的分母并不是均按x 的降幂摆列,所以将方程的分母作一转变,均为按字母x进行降幂摆列,并对可进行分解的分母进行分解,进而确立出最简公分母.解:原方程就是14x 21x 2 ( x 2)( x 2) 2 x方程两边都乘以(x+2)( x-2 ),约去分母,得(x-2 ) +4x-2 ( x+2) =( x+2)( x-2 ).整理后,得x2-3x+2=0 .解这个方程,得x1=1, x2=2.查验:把x=1 代入( x+2)( x-2 ),它不等于0,所以 x=1 是原方程的根,把 x=2 代入( x+2)( x-2 )它等于0,所以 x=2 是增根.∴原方程的根是x=1.师生共同解决例1、例 2 后,教师指引学生与已学过的知识进行比较.例 3、解方程:2(x 2 1) 6( x 1) x 1 x2 71剖析:本题也可象前面例 1、例 2 同样经过去分母解决,学生能够试,但因为转变后为一元四次方程,解起来难度很大,所以应追求简易经过求出y 后,再求原方程的未知数的值.2 y67 y两边都乘以y,得2y 2-7y+6=0 .解得y1 2, y2 3 2当 y=2 时,x 2 1 2 ,去分母得:x 1x2-2x-1=0 .2x 2+3x-1=0 ,解得: x 3174把代入原方程分母,各分母都不等于0,它们都是原方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三代数教案
第十二章:一元二次方程
第17课时:分式方程(一)
教学目标:
1、本节课使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.
2、使学生掌握运用去分母或换元的方法解可化为一元二次方程的分式方程;使学生理解转化的数学基本思想;
3、使学生能够利用最简公分母进行验根.
教学重点:
可化为一元二次方程的分式方程的解法.
教学难点:
教学难点:解分式方程,学生不容易理解为什么必须进行检验.
教学过程:
在初二我们已经学过分式方程的概念及可化为一元一次方程的分式方程的解法,知道了解可化为一元一次方程的分式方程的解题步骤以及验根的目的,了解了转化的思想方法的基本运用.今天,我们将在此基础上,来学习可化为一元二次方程的分式方程的解法.“节”是在学生已经掌握的同类型的方程的解法,直接点出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相类同,及产生增根的原因,以激发学生归纳总结的欲望,使学生理解类比方法在数学解题中的重要性,使学生进一步加深对“转化”这一基本数学思想的理解,抓住学生的注意力,同时可以激起学生探索知识的欲望.
为了使学生能进一步加深对“类比”、“转化”的理解,可以通过回忆复习可化为一元一次方程的分式方程的解法,探求解可化为一元二次方程的分式方程的解法,同时通过对产生增根的分析,来达到学生对“类比”的方法及“转化”的基本数学思想在数学学习中的重要性的理解,从而调动学生能积极主动地参与到教学活动中去.
一、新课引入:
1.什么叫做分式方程解可化为一元一次方程的分化方程的方法与步骤是什么
2.解可化为一元一次方程的分式方程为什么要检验检验的方法是什么
3、产生增根的原因是什么.
二、新课讲解:
通过新课引入,可直接点出本节的内容:可化为一元二次方程的分式方程及其解法,类比地提出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相同.
点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.
在前面的基础上,为了加深学生对新知识的理解,与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.
例1、解方程: 11
14=--x x 对于此方程的解法,不是教师讲解如何如何解,而是让学生对已有知识的回忆,雷同原来的方法,去通过试的手段来解决,在学生叙述过程中,发现问题并及时纠正.
解:两边都乘以x (x-1),得
4(x-1)-x=x (x-1).
去括号,得
4x-4-x=x 2-x .
整理,得
x 2-4x+4=0.
解这个方程,得
x 1=x 2=2.
检验:把x=2代入x (x-1)=2x (2-1)≠0,所以x=2是原方程的根. ∴ 原方程的根是x=2.
虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学生容易犯的类型错误应加以强调,如在第一步中,需强调方程两边同时乘以最简公分母.另外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调.
分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按x 的降幂排列,所以将方程的分母作一转化,均为按字母x 进行降幂排列,并对可进行分解的分母进行分解,从而确定出最简公分母.
解:原方程就是
122)2)(2(421=-+-+++x
x x x x 方程两边都乘以(x+2)(x-2),约去分母,得 (x-2)+4x-2(x+2)=(x+2)(x-2).
整理后,得 x 2-3x+2=0.
解这个方程,得
x 1=1,x 2=2.
检验:把x=1代入(x+2)(x-2),它不等于0,所以x=1是原方程的根,把x=2代入(x+2)(x-2)它等于0,所以x=2是增根.
∴ 原方程的根是x=1.
师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较. 例3、解方程:
71
)1(61)1(222=+++++x x x x 分析:此题也可象前面例1、例2一样通过去分母解决,学生可以试,但由于转化后为一元四次方程,解起来难度很大,因此应寻求简便
通过求出y 后,再求原方程的未知数的值.
762=+y
y 两边都乘以y ,得
2y 2-7y+6=0.
解得
2
3,221==y y 当y=2时, 21
12=++x x ,去分母得: x 2
-2x-1=0.
2x2+3x-1=0,
解得:
417

=
x
把代入原方程分母,各分母都不等于0,它们都是原方程的解。

∴原方程的根是
此题在解题过程中,经过两次“转化”,所以在检验中,把所得的未知数的值代入原方程中的分母进行检验.
巩固练习:教材中1(2)、2引导学生笔答.
三、课堂小结:
对于小结,教师应引导学生做出.
本节内容的小结应从所学习的知识内容、所学知识采用了什么数学思想及教学方法两方面进行.
本节我们通过类比的方法,在已有的解可化为一元一次方程的分式方程的基础上,学习了可化为一元二次方程的分式方程的解法,在具体方程的解法上,适用了“转化”与“换元”的基本数学思想与基本数学方法.此小结的目的,使学生能利用“类比”的方法,使学过的知识系统化、网络化,形成认知结构,便于学生掌握.
四、作业:
1.教材中 A1、2、3.
2.教材中B1、2.
参考题目:
一、选择题(每题13分,共26分)将下列各题中唯一正确答案的序号填在题后括号内。

1、若方程有增根,则增根是( )
A、-2
B、2
C、±2
D、0
2、若解分式方程产生增根,则m的值是( )
A、-1或-2
B、-1或2
C、1或2
D、1或-2
二、填空题(每题13分,共26分)
1、方程的最简公分母是________________。

2、解方程时,把它化为整式方程为___________。

三、解下列方程(每题24分,共48分)
1、2、
教学后记:。

相关文档
最新文档