新人教版八年级数学竞赛试题
八年级(上)数学竞赛试题及答案(新人教版)
八年级(上)数学竞赛试卷考试时间:100分钟 总分:100分一、精心填一填(本题共10题,每题3分,共30分)1.函数a 的取值范围是_____________、2.如图1,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________. 3.计算:20072-2006×2008=_________图1 图24、写出一个图象经过点(-1,-1),且不经过...第一象限的函数表达式 5.已知点P 1(a-1,5)和P 2(2,b-1)关于x 轴对称,则(a+b )2005的值为 .6.如图2,△ABC 中边AB 的垂直平分线分别交BC 、AB于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是_______7.如图3,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.8、如图4,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有 个。
9.如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有y x y x y x -+=* 则()()31*191211**=10.如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.FEDACB图 5图4 二、相信你一定能选对!(本题共6题,每题3分,共18分) 11.下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d ) 12.已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是( )(A )x >0 (B )x <0 (C )x <1 (D )x >1A B C D12 AEBO F C图3图6 图713.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C 14.某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( ) A 、从图中可以直接看出喜欢各种球类的具体人数; B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系 15.已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ). A .2 B .-4 C .-2或-4 D .2或-416.设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定 三、认真解答,一定要细心哟!(各6分,共18分) 17. 先化简再求值:[]y y x y x y x 4)4()2)(2(2÷+--+,其中x =5,y=2。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
人教版初二数学竞赛试卷
一、选择题(每题5分,共25分)1. 下列各数中,不是有理数的是()A. -2.5B. 3/4C. √16D. √22. 下列各式中,正确的是()A. a + b = b + aB. a - b = b - aC. a × b = b × aD. a ÷ b = b ÷ a3. 若x² - 3x + 2 = 0,则x的值为()A. 1B. 2C. 1或2D. 1和34. 已知等腰三角形底边长为6,腰长为8,则该三角形的面积为()A. 24B. 32C. 36D. 405. 若a、b、c、d为等差数列,且a + b + c + d = 24,则d的值为()A. 6C. 8D. 9二、填空题(每题5分,共25分)6. 已知一元二次方程x² - 5x + 6 = 0,则其因式分解为______。
7. 若等边三角形的一边长为a,则其面积为______。
8. 若x + 1/x = 5,则x² + 1的值为______。
9. 若等差数列的第一项为a₁,公差为d,则第n项为______。
10. 若a、b、c、d为等比数列,且a + b + c + d = 16,则d的值为______。
三、解答题(每题15分,共45分)11. (10分)已知一元二次方程x² - 4x + 3 = 0,求:(1)方程的解;(2)方程的判别式。
12. (15分)已知等腰三角形底边长为8,腰长为10,求:(1)该三角形的周长;(2)该三角形的面积。
13. (15分)已知等差数列的第一项为3,公差为2,求:(1)该数列的前10项和;(2)该数列的第n项。
答案:一、选择题1. D2. A4. B5. D二、填空题6. (x - 3)(x - 1)7. (√3/4)a²8. 269. a₁ + (n - 1)d10. 2三、解答题11. (1)x₁ = 1,x₂ = 3;(2)判别式为Δ = 16 - 4×3×1 = 4。
人教版初二数学竞赛试题及答案
八 年 级 数 学 竞 赛 试 题一、精心选一选,相信你选得准!(每小题5分,共30分)1.三角形的三边长分别为6,1-3a ,10,则a 的取值范围是( )A .-6<a <-3B .5<a <1C .-5<a <-1D .a >-1或a <-52.使分式xx y z x 5201020092010201020092008--+有意义的x 的取值范围是( )A .x ≠0B .x ≠0且x ≠±402C .x ≠0且x ≠402D .x ≠0且x ≠-402 3.如图,将纸片△ABC 沿着DE 折叠压平,且∠1+∠2=72°,则∠A =( )A .72°B .24°C .36°D .18° 4.已知一个梯形的四条边长分别为2、3、4、5,则此梯形的面积为( )A .5B .8C .3310 D .3514 5.如图,E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连CE 、AF ,设CE 、AF相交于G ,则S BEGF 四边形∶S ABCD 四边形等于( )A .41B .92C .61 D .1036.已知x 为实数,且13-x +14-x +15-x +…+117-x 的值是一个确定的常数,则这个常数是( ) A .5 B .10 C .15 D .75二、细心填一填,相信你填得对!(每小题5分,共30分)7.已知实数x 、y 满足x 2—3x +4y =7,则3x +4y 的最大值为__________. 8.如果a 、b 是整数,且x 2+x —1是a x 3+b x +1的因式,则b 的值为__________. 9.如图,E 、F 分别是矩形ABCD 的BC 边和CD 边上的点,且S △ABE =3,S △ECF =8,S △ADF =5,则矩形ABCD 的面积为__________. 10.如图△ABC 中,AD 平分∠BAC ,且AB +BD =AC ,若∠B =62°,则∠C =__________. 11.已知k =acb a bc b a c c b a ++-=+-=-+,且n 2+16+ BDECA 12(第3题图) C(第9题图) (第10题图)ABCDC FB(第5题图)6 m =8n ,则关于x 的一次函数y =-kx +n -m 的图象一定经过第__________象限.12.若a +x 2=2008,b +x 2=2009,c +x 2=2010,且abc =24,则bc a +ac b +abc -a1-b1-c1的值为__________.三、用心做一做,试试你能行!(共40分) 13.(8分)蕲春红人电器行“家电下乡”指定型号的冰箱彩电的进价和售价如右表所示: ⑴按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴;农民蕲大伯到该电器行购买了冰箱一台,彩电两台,可以享受多少元的政府补贴?(2分)⑵为满足农民需求,红人电器行决定用不超过85000元采购冰箱和彩电共40台,且冰箱的数量不少于彩电数量的65.①请你帮助该电器行设计相应的进货方案;(3分)②哪种进货方案电器行获得的利润最大?(利润=售价-进价)最大利润是多少?(3分)14.(8分)如图,已知 :正△OAB 的面积为34,双曲线y =xk经过点B ,点P (m ,n )(m >0)在双曲线y =xk 上,PC ⊥x 轴于点C ,PD ⊥y 轴于点D ,设矩形OCPD 与正△OAB 不重叠部分的面积为S . ⑴求点B 的坐标及k 的值; ⑵求m =1和m =3时,S 的值.15.(8分)已知a 、b 、c 均为正数,且满足如下两个条件:⎪⎩⎪⎨⎧=-++-++-+=++4132ab c b a ac b a c bca cbc b a证明:以a 、b 、c 为三边长可构成一个直角三角形.16.(加油啊!加油!加油!!)(8分)2010年4月14日青海省玉树发生了7.1级大地震,驻军某部(位于距玉树县城结古镇91公里处的上拉秀镇)接到上级命令,须火速前往结古镇救援.已知该部有120名官兵,且步行的速度为每小时10公里,现仅有一辆时速为80公里的卡车,可乘坐40人,请你设计一个乘车兼步行方案,使该部120人能在最短时间内赶往重灾区结古镇救x援.其中中途换车(上、下车)的时间均忽略不计,最快多少时间可以赶到?(可用分数表示)17.(6分)计算:2sin 45°+sin 2α+cos 2α+330cos 2360tan ︒-︒18.(8分)如图,△ABC 的边AB =3,AC =2,Ⅰ、Ⅱ、Ⅲ 分别表示以AB 、AC 、BC 为边的正方形,求图中三个阴影部分的面积之和的最大值是多少?H(第18题图)。
八年级(上)数学竞赛试题及答案(新人教版)
一、精心填一填(本题共 10题,每题3分,共30分) 1. 函数y= JT 万中,字母a 的取值范围是 ______________ 2. 如图1, 3. 计算:4、写出一个图象经过点(-1,-1),且不经过第一象限的函数表达式5. 已知点P 1 (a-1 , 5)和P 2 (2, b-1 )关于x 轴对称,则(a+b ) 2005的值为6. 如图2,A ABC 中边AB 的垂直平分线分别交 BC AB 于点D 、E , AE=3cm △ ADC?勺周长为9cm 则厶ABC 的周长是 ________________7. 如图 3, AE = AF , AB = AC, / A = 60°,/ B = 24°,则/ BOC= ___________ . 8.如图4,在厶ABC 中,AB=AC / A=36°, BD CE 分别为/ ABC 与/ ACB 的角平分线,且相交于点 F ,贝U 图中的等腰三角形有 个。
9 •如果用四则运算的加、减、除法定义一种新的运算,对于任意实数11 12 19*31 =10•如图5所示,圆的周长为 4个单位长度,在圆的4等分点处标上0, 1, 2, 应的数与数轴上的数一1所对应的点重合, 将与圆周上的数字 __________ 重合./戴尊7 *J)八年级(上)数学竞赛试卷考试时间:100分钟总分:100分/仁/ 2,由AAS 判定△ ABD^A ACD 则需添加的条件 20072-2006 X 2008=3 •先让圆周上数字0所对 那么数轴上的数一2007 再让数轴按逆时针方向绕在该圆上, 、相信你一定能选对! 下列各式成立的是( a-b+c=a- a-b-c=a- 已知一次函数 (A ) x > 0 11.A C 12. (b+c ) (b+c ) (本题共 ) B 6题,每题 图 53分,共18分).a+b-c=a- (b-c ) .a-b+c-d= (a+c ) - (b-d ) y=kx+b 的图象(如图6),当y v 0时,x 的取值范围是()(B ) x v 0(C ) x v 1( D ) x > 1图3图6图713.在厶ABC 中,/ B =Z 。
数学竞赛8年级真题试卷【含答案】
数学竞赛8年级真题试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 2x + 1,则f(1)的值为?A. 0B. 1C. 2D. 32. 下列哪个数是无理数?A. √9B. √16C. √3D. √13. 若a > b,则下列哪个选项是正确的?A. a c > b cB. a + c < b + cC. ac < bcD. a/c > b/c (c ≠ 0)4. 下列哪个方程的解集是实数集?A. x² + 1 = 0B. x² 2x + 1 = 0C. x² + x + 1 = 0D. x² x + 1 = 05. 若一组数据的平均数为10,则这组数据的和为?A. 5B. 10C. 20D. 50二、判断题(每题1分,共5分)1. 若a > b,则a² > b²。
()2. 两个负数相乘的结果是正数。
()3. 任何实数的平方都是非负数。
()4. 若a、b、c是等差数列,则a²、b²、c²也是等差数列。
()5. 两个无理数的和一定是无理数。
()三、填空题(每题1分,共5分)1. 若a + b = 5,a b = 3,则a = ______,b = ______。
2. 若x² 5x + 6 = 0,则x = ______或x = ______。
3. 若一组数据的方差为4,则这组数据的平均数为______。
4. 若等差数列{an}的前n项和为Sn = 2n² + 3n,则a1 = ______,d = ______。
5. 若函数f(x) = 2x + 3,则f(2) = ______。
四、简答题(每题2分,共10分)1. 解释什么是无理数。
2. 什么是等差数列?给出一个等差数列的例子。
3. 解释函数的定义。
新人教版八年级下数学竞赛试题
八年级数学竞赛试题 (时间:60分 满分:120分) 一、 填空题(每空3分,共36分) 1、 分式392--x x 当x _________时分式的值为零,当x ________时,分式x x 2121-+有意义 2、 =-0)5( . =-23 . =-1a (a ≠0) 3、利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a (2)() 1422=-+a a 4、写一个反比例函数,使得它所在的象限内函数值y 随着自变量x 的增加而增加,这个函数解析式可以为 .(只写一个即可) 5、计算:=+-+3932a a a __________ 6、反比例函数6y x =-图象上一个点的坐标是 7、斜边长为17cm ,一条直角边长为15cm 的直角三角形的面积为_________8、若正方形的面积为16cm 2,则正方形对角线长为__________cm二、选择题(每小题3分,共24分)9、在代数式23451,,,,23xb x x y x y a π+-+-中,分式有( )A 、 2个B 、3个C 、4 个D 、5个 班别姓名10、对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上 B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D 当0x <时,y 随x 的增大而减小11、若把分式xyy x 2+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍12、 三角形的三边长分别为6,8,10,它的斜边上的高为 ( )A. 6B. 4.8C. 2.4D. 813、 若函数12k y x -=是反比例函数,则k 为( )A 、1B 、0C 、2D 、-214、解分式方程4223=-+-xx x 时,去分母后得( ). A. )2(43-=-x x B. )2(43-=+x xC. 4)2()2(3=-+-x x xD. 43=-x15、化简2293m m m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.mm -3 16、如图中字母A 所代表的正方形的面积为 ( )A 、4B 、8C 、16D 、64 三、解答题(共60分) 17、计算(每小题10分,共20分)(1) 11124x x x ++A 2892253 (16题图)(2)2224369 a aa a a--÷+++18、(12分)解方程1052 2112xx x+=--19、(14分)某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?20、(14分)如图所示,在平面直角坐标系中,第一象限的角平分线OM 与反比例函数的图象相交于点M,已知OM的长是22.(1)求点M的坐标;(2)求此反比例函数的关系式.。
初二数竞赛试题及答案
初二数竞赛试题及答案初二数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 如果一个数的平方等于81,那么这个数是:A. 9B. -9C. 9 或 -9D. 813. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是:A. 5B. 6C. 7D. 84. 一个数列的前三项为2, 4, 6,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断5. 以下哪个是二次方程的解:A. x = 1/2B. x = 2C. x = -3D. x = 0二、填空题(每题2分,共10分)6. 一个数的立方等于-27,这个数是_________。
7. 如果一个数的绝对值是5,那么这个数可以是_________。
8. 一个数的倒数是1/4,那么这个数是_________。
9. 一个数的平方根是4,那么这个数是_________。
10. 一个数的平方根是-4,那么这个数是_________。
三、解答题(每题5分,共20分)11. 解方程:2x + 3 = 11。
12. 证明:如果一个三角形的两边分别为a和b,且a < b,那么这个三角形的周长不可能是偶数。
13. 计算:(2x + 3)(x - 4)。
14. 一个圆的半径是5厘米,求它的面积。
四、证明题(每题5分,共10分)15. 证明:直角三角形的斜边的平方等于两直角边的平方和。
16. 证明:如果一个数的平方是正数,那么这个数本身是正数或负数。
五、综合题(每题10分,共10分)17. 一个班级有40名学生,其中20名男生和20名女生。
如果随机抽取一名学生,求以下概率:A. 抽到男生的概率。
B. 抽到女生的概率。
C. 如果已经知道抽到的是男生,那么这名男生是班长的概率。
答案:一、选择题1. A2. C3. A4. A5. D二、填空题6. -37. ±58. 49. 1610. 无实数解三、解答题11. 解:2x + 3 = 11,2x = 8,x = 4。
人教八年级数学竞赛试题
人教八年级数学竞赛试题一、选择题(每题5分,共40分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333...(无限循环)D. √22. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是什么类型的三角形?A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形3. 已知一个数列的前三项为1, 2, 3,从第四项开始,每一项都是前三项的和。
这个数列的第10项是多少?A. 144B. 145C. 146D. 1474. 一个圆的半径为r,那么它的面积是多少?A. πrB. πr^2C. 2πrD. 4πr^25. 一个长方体的长、宽、高分别为a、b、c,它的体积是多少?A. abcB. a + b + cC. 2(ab + bc + ac)D. 3(a + b + c)6. 一个函数f(x) = 3x^2 - 2x + 1,当x = 2时,f(x)的值是多少?A. 7B. 8C. 9D. 107. 一个正整数n,如果它能够被2整除,但不能被3整除,那么n的最小值是多少?A. 2B. 4C. 6D. 88. 一个数的平方根是它本身,这个数是什么?A. 0B. 1C. -1D. 2二、填空题(每题5分,共30分)9. 如果一个数的立方根等于它本身,那么这个数可以是_________。
10. 一个数的绝对值是它本身,这个数可以是正数或_________。
11. 如果一个分数的分子和分母都乘以同一个数,那么这个分数的值_________。
12. 已知一个数列的前三项为2, 3, 5,从第四项开始,每一项都是前两项的平均值。
这个数列的第5项是_________。
13. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是_________。
14. 如果一个数的相反数是-5,那么这个数是_________。
三、解答题(每题15分,共30分)15. 已知一个二次方程x^2 - 5x + 6 = 0,求它的根。
人教版八年级数学竞赛题
八年级数学竞赛题班级:姓名:一.选择题(共8小题,每题3分,共24分)1.若式子在实数范围内有意义,则x的取值范围是()A.x≥3 B.x≤3 C.x>3 D.x<32.下列式子中,属于最简二次根式的是()A.B.C.D.3.下列运算正确的是()A.5﹣1=B.x2•x3=x6C.(a+b)2=a2+b2D.=4.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为()A.5B.6C.7D.85.下列选项中,不能用来证明勾股定理的是()A.B.C.D.6.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.7.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A甲正确,乙错误 B乙正确,甲错误C甲、乙均正确 D甲、乙均错误8.如图,在矩形纸片ABCD中,AB=8,AD=4,把矩形沿直线AC折叠,点B落在E处,连接DE,其中AE交DC于P.有下面四种说法:①AP=5;②△ APC是等边三角形;③△ APD≌△ CPE;④四边形ACED为等腰梯形,且它的面积为25.6.其中正确的有()个.A.1个B.2个C.3个D.4个A.1个 B 2个 C 3个 D 4个二.填空题(共6小题,每题4分,共24分)9.请写出一个图形经过一、三象限的正比例函数的解析式_________.10.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件_________,使ABCD成为菱形(只需添加一个即可)11.如图,正方形ODBC中,OC=1,OA=OB ,则数轴上点A表示的数是_________.12.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是_________.13.按如图方式作正方形和等腰直角三角形.若第一个正方形的边长AB=1,第一个正方形与第一个等腰直角三角形的面积和为S1,第二个正方形与第二个等腰直角三角形的面积和为S2,…,则第n个正方形与第n个等腰直角三角形的面积和S n=_________.14如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是_________.15.如图,在△ABC中,∠ ABC=90°,BD为AC的中线,过点C作CE⊥BD 于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为_________.三.解答题16.计算:(2﹣)2012•(2+)2013﹣2﹣()0.17.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.18.先化简,再求值:,其中a=,b=19.如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.求CD的长和四边形ABCD的面积.第14题第15题第13题20.已知点(,1)在函数y=(3m﹣1)x的图象上,(1)求m的值,(2)求这个函数的解析式.21.小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:(1)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)22.如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:(1)△ ABF≌△ DEA;(2)DF是∠ EDC的平分线.23.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.参考答案与试题解析一.选择题(共12小题)1.(2013•盐城)若式子在实数范围内有意义,则x的取值范围是()A.x≥3 B.x≤3 C.x>3 D.x<3考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式进行计算即可得解.解答:解:根据题意得,x﹣3≥0,解得x≥3.故选A.点评:本题考查的知识点为:二次根式的被开方数是非负数.2.(2013•上海)下列式子中,属于最简二次根式的是()A.B.C.D.考点:最简二次根式.专题:计算题.分析:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.解答:解:A、=3,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=,不是最简二次根式,故此选项错误;故选:B.点评:本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.3.(2013•钦州)下列运算正确的是()A.5﹣1=B.x2•x3=x6C.(a+b)2=a2+b2D.=考点:二次根式的加减法;同底数幂的乘法;完全平方公式;负整数指数幂.分析:根据负整数指数幂、同底数幂的乘法、同类二次根式的合并及完全平方公式,分别进行各选项的判断即可得出答案.解答:解:A、5﹣1=,原式计算正确,故本选项正确;B、x2•x3=x5,原式计算错误,故本选项错误;C、(a+b)2=a2+2ab+b2,原式计算错误,故本选项错误;D、与不是同类二次根式,不能直接合并,原式计算错误,故本选项错误;故选A.点评:本题考查了二次根式的加减运算、同底数幂的乘法及完全平方公式,掌握各部分的运算法则是关键.4.(2012•梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为()A.5B.6C.7D.8考点:角平分线的性质;勾股定理.分析:由PD⊥OA,OD=8,OP=10,利用勾股定理,即可求得PD的长,然后由角平分线的性质,可得PE=PD.解答:解:∵PD⊥OA,∴∠PDO=90°,∵OD=8,OP=10,∴PD==6,∵∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,∴PE=PD=6.故选B.点评:此题考查了角平分线的性质与勾股定理.此题比较简单,注意角的平分线上的点到角的两边的距离相等.5.下列选项中,不能用来证明勾股定理的是()A .B.C .D.考点:勾股定理的证明.分析:根据图形的面积得出a,b,c的关系,即可证明勾股定理,分别分析得出即可.解答:解:A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理;故A,B,C选项不符合题意;D、不能利用图形面积证明勾股定理,故此选项正确.故选:D.点评:此题主要考查了勾股定理的证明方法,根据图形面积得出是解题关键.6.(2011•广安)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.B.5cm C.D.7cm考点:平面展开-最短路径问题.分析:首先画出圆柱的侧面展开图,根据高BC′=6cm,PC=BC,求出PC ′=×6=4cm,在Rt△AC′P中,根据勾股定理求出AP的长.∴AC′=3cm,∵PC′=BC′,∴PC′=×6=4cm,在Rt△ACP中,AP2=AC′2+CP2,∴AP==5.故选B.点评:此题主要考查了平面展开图,以及勾股定理的应用,做题的关键是画出圆柱的侧面展开图.7.下列说法正确的有()(1)一组对边相等的四边形是矩形;(2)两条对角线相等的四边形是矩形;(3)四条边都相等且对角线互相垂直的四边形是正方形;(4)四条边都相等的四边形是菱形.A.1B.2C.3D.4考点:矩形的判定;菱形的判定;正方形的判定.专题:证明题.分析:两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形.解答:解:(1)两组对边相等的四边形是平行四边形,故(1)错误;(2)两条对角线平分且相等的四边形是矩形,故(2)错误;(3)四条边都相等且对角线相等的四边形是正方形,故(3)错误;(4)四条边都相等的四边形是菱形,故(4)正确,所以正确的有1个,故选A.点评:考查平行四边形、矩形、菱形、正方形的判定方法.8.(2013•资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.80考点:勾股定理;正方形的性质.分析:由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S=S正方形ABCD﹣S△ABE求阴影部分面积.解答:解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD﹣S△ABE=AB2﹣×AE×BE=76.故选C.点评:本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.9.(2013•枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.考点:正方形的性质;勾股定理.专题:压轴题.分析:利用勾股定理求出CM的长,即ME的长,有DE=DG,所以可以求出DE,进而得到DG的长.解答:解:∵四边形ABCD是正方形,M为边DA的中点,∴DM=AD=DC=1,∴CM==,∴ME=MC=,∵ED=EM﹣DM=﹣1,∵四边形EDGF是正方形,∴DG=DE=﹣1.故选D.点评:本题考查了正方形的性质和勾股定理的运用,属于基础题目.10.(2013•玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()。
人教版初二数学竞赛试题
第一学期八年级数学竞赛练习题一、选择题:1.下列四个式子中与(a-3)a-31相等的是( ) A.a -3 B.-a -3 C.-3-a D.3-a2.若a+b=4,a 3+b 3=28,则a 2+b 2的值是( )A.14B.12C.10D.83.在⊿ABC 中,∠C=900,∠A=150,AB=12,则⊿ABC 的面积是( )A.18B.12C.10D.84.已知方程x =ax+1有一个负根,且没有正根,则a 的取值范围是( )A.a >-1B.a=1C.a ≥1D.a >15.⊿ABC 的周长是24,M 是AB 的中点,MC=MA=5,则⊿ABC 的面积是( )A.30B.24C.16D.126.如果一条直线l 经过不同的三点A(a,b),B(b,a),C(a-b,b-a),那么直线l 经过第( )象限.A.二、四B.一、三C.二、三、四D.一、三、四二、填空题:7.已知8=a ,70=b ,则6.5=______________.8.已知x=1-3,则x 5-2x 4-2x 3+x 2-2x+1的值是______________.9. 某人将一本书的页码按1,2,3,…的顺序相加,其中有一个页码被多加了一次,结果得到一个错误的总和2005,则被多加的页码是 。
10. 如图,点C 在线段AB 上,DA ⊥AB ,EB ⊥AB ,FC ⊥AB ,且DA=BC ,EB=AC ,FC=AB ,∠AFB=51°,则∠DFE= .11.一个六边形六个内角都是1200,连续四边的长依次是1、3、3、2,则该六边形的周长是___________.12.已知⊿ABC 的三边长分别为AB=13,BC=5,CA=12,CT 是∠ACB 的内角平分线, ⊿ABC 关于直线CT 的对称图形是⊿A 1B 1C 1,⊿ABC 和⊿A 1B 1C 1,的公共面积是nm ,m,n 是互质的正整数,则m+n=__________.三、解答题:13.已知方程组27234ax y x y -=-⎧⎨+=⎩中的系数a 是不等式组513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩的整数解,求代数式(x-y)(x 2-xy+y 2)的值.14.如图,已知∠ACB=900,AD 平分∠CAB,BC= 4,CD=23,求AC 的长。
湖北省武汉市八年级数学竞赛试题 新人教版
八年级数学竞赛试题一、选择题(每小题4分,共40分)1、计算)21(22x x x -÷-的结果是( )A x B x 1- C x x 2-- D x1 2、下列命题正确的是( ) A 若a >0,则aa 1> B 若a>a 2,则a>1 C 若0a 2 D 若a a =,则0>a 3、已知,81002022=+-+-x x x 则3x 的最大整数值是( )A 0B 1C 2D 34、已知a-b=1,则a 2-b 2-2b 的值是( ) A 0 B 1 C 2 D 45、在平面直角坐标系内,A 、B 、C 三点的坐标分别是(0,0),(4,0),(3,2),以 A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在( )A 第一象限B 第二象限C 第三象限D 第四象限6、已知三角形三边长分别是2、3、4,三边上的高分别是h a , h b , h c则 )111()cb ac b a h h h h h h ++⋅++(的值是( ) A 641 B 538 C 738 D 439 7、 If 0<m <1,then m mut be maer than itA. Ober B invere vaue(英汉词典:invere 倒数;aboute 绝对)8、若,k cb a b ac a c b =+=+=+则直线=-必经过( ) A 第一、二象限 B 第二、三象限 C 第三、四象限 D 第一、四象限9、四个人的年龄分别为a,b,c,d,任取三个人的平均年龄加上余下一人的年龄分别是w,,,,则zy x w d c b a ++++++的值是( ) A 1 B 2 C 21 D 32 10、如图,将△ABC 沿DE 折叠,使点A 与边BC 的中点F 重合,有下面四个结论:①EF ∥AB,且EF=21AB ②AF 平分∠DFE ③S 四边形ADFE =21AF ·DE ④∠BDF ∠FEC=2∠BAC 其中正确的是( )A ①②③B ②③④C ③④D ①②③④二、A 组填空题(每小题4分,共40分)11、若1<x <2022,则2)2014(1-+-x x = 12、若4292=8800,=-100,则2-3=13、若(-4)(n=2-m24,则mn=14、已知一次函数=m-3-2的图象不经过第二象限,一次函数=m-43的图象不 经过第三象限,化简:m m m m 6916822-+-+-=15、关于的分式方程234222+=-+-x x mx x 会产生增根,则m = 16、如果要(-2232=15,则(2-3的值是 。
初二数学竞赛试题及参考答案
初二数学竞赛试题及参考答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 44. 以下哪个表达式等于0?A. 2 + 3B. 2 - 2C. 2 × 3D. 2 ÷ 25. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π二、填空题(每题2分,共10分)6. 一个数的立方根是它本身,这个数可以是______。
7. 一个数的绝对值是它本身,这个数可以是______。
8. 一个数的相反数是它本身,这个数是______。
9. 一个数的倒数是它本身,这个数是______。
10. 如果一个数的平方是16,那么这个数可以是______。
三、简答题(每题5分,共20分)11. 解释什么是勾股定理,并给出一个例子。
12. 解释什么是有理数和无理数,并给出一个例子。
13. 解释什么是因式分解,并给出一个例子。
14. 解释什么是二次方程,并给出一个例子。
四、解答题(每题10分,共30分)15. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求它的体积。
16. 一个等腰三角形的底边长为8厘米,两腰边长为5厘米,求它的面积。
17. 一个二次方程 \( ax^2 + bx + c = 0 \) 的系数 a、b、c 分别为 2、-7 和 3,求它的根。
五、附加题(每题5分,共5分)18. 一个数列的前三项是 1, 1, 2,从第四项开始,每一项都是前三项的和。
求这个数列的前10项。
参考答案一、选择题1. D2. A3. A4. B5. B二、填空题6. 0, 1, -1, 17. 非负数8. 09. ±110. ±4三、简答题11. 勾股定理是指在一个直角三角形中,直角边的平方和等于斜边的平方。
(完整版)新人教版八年级(下)数学竞赛试卷及答案,推荐文档
∴∠BAD=EAD
…………………2 分
由勾股定理得 42+(8-x)2=x2, 解得 x=5,
在△ABD 与△AED 中
BAD EAD
AD AD
ADB ADE
∴AF=5cm.
(2)①显然当 P 点在 AF 上时,Q 点在 CD 上,此时 A、C、P、Q 四点不可能构成平 行四边形; 同理 P 点在 AB 上时,Q 点在 DE 或 CE 上,也不能构成平行四边形.
A、16
B、14
C、12
D、10
若一反比例函数 y k 的图象过点 D,则其解析式为
。
第 16 题图
7、如图,把菱形 ABCD 沿 AH 折叠,使 B 点落在 BC 上的 E 点处,若∠B=700,则
x
3、解答题(共 28 分)
∠EDC我的去大小人为 也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多
2、用两个全等的等边三角形,可以拼成下列哪种图形
x
BO
x
A、矩形
B、菱形
C、正方形
D、等腰梯形
点 B 在 x 轴负半轴上,且 OA=OB,则△AOB 的面积为
3、菱形的面积为 2,其对角线分别为 x、y,则 y 与 x 的图象大致为
A.2
B. 2
C.2 2
D.4
10、如图,在一个由 4×4 个小正方形组成的正方形网格中,
∴△ABD≌△AED
…………………3 分
因此只有当 P 点在 BF 上、Q 点在 ED 上时,才能构成平行四边形, ∴以 A、C、P、Q 四点为顶点的四边形是平行四边形时,PC=QA,
∴BD=ED AE= AB=12 …………………4 分
新初二数学竞赛试题及答案
新初二数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于其本身,这个数可能是:A. 0B. 1C. -1D. 2答案:B3. 一个三角形的三个内角之和是多少度?A. 180度B. 360度C. 90度D. 120度答案:A4. 以下哪个是二次方程的解法?A. 直接开平方法B. 配方法C. 因式分解法D. 所有以上答案:D5. 一个数的绝对值是其本身,这个数是:A. 正数B. 零C. 负数D. 正数或零答案:D6. 以下哪个是不等式的解集?A. 所有实数B. 所有正数C. 所有负数D. 所有非零数答案:A7. 一个圆的周长是其直径的多少倍?A. π倍B. 2倍C. 3倍D. 4倍答案:A8. 以下哪个是整式除法的运算法则?A. 同底数幂相除B. 幂的乘方C. 积的乘方D. 所有以上答案:D9. 以下哪个是几何级数的通项公式?A. \( a_n = a_1 \times r^{(n-1)} \)B. \( a_n = a_1 \times n \)C. \( a_n = a_1 \times (n-1) \)D. \( a_n = a_1 \times r \)答案:A10. 以下哪个是勾股定理的表述?A. 直角三角形的斜边平方等于两直角边平方和B. 直角三角形的两直角边平方和等于斜边平方C. 直角三角形的斜边等于两直角边之和D. 直角三角形的两直角边等于斜边的平方根答案:A二、填空题(每题4分,共20分)11. 如果 \( a \) 和 \( b \) 是两个连续的整数,且 \( a > b \),那么 \( a \) 的值是 \( b \) 加上 ______ 。
答案:112. 一个数的平方根是 \( \sqrt{a} \),那么这个数是 \( \sqrt{a} \) 的 ______ 。
答案:平方13. 如果一个三角形的三边长分别为 \( a \),\( b \) 和 \( c \),且满足 \( a^2 + b^2 = c^2 \),那么这个三角形是 ______ 三角形。
人教版初二数学竞赛练习题
八年级数学竞赛练习题一、选择题1. 当 x 为任意实数时,下列分式一定有意义的是-----------()1111( A ) x22 ; ( B ) x 21 ;(C )| x |; (D )x 2.2. 商品的原售价为 m 元,若按该价的 8 折出售,仍获利 n%,则该商品的进价为( )元.(A)0.8 m ×n% (B)0.8m (1+n%)(C)0.8m (D)0.8m1 n%n%x 8 )3. 如果不等式无解 , 那么 m 的取值范围是 (xmA .m>8B .m ≥8C .m<8D . m ≤ 84. 已知点 P 1(a-1 ,5)和 P 2( 2,b-1 )关于 x 轴对称,则( a+b )2005 的值为( ).A .0B .-1C . 1D .(-3 ) 20055. △ABC 为等腰直角三角形,∠ C=90°, D 为 BC 上一点,且 AD=2CD ,则∠ DAB=( ). A .30° B .45° C .60° D .15°6. 若 m >-1 ,则多项式 m 3 m 2 m 1 的值为( )(A) 正数 (B) 负数 (C) 非负数 (D) 非正数7. 如果 x 1 1 x, 3x 2 3x 2, 那么 x 的取值范围是 ( )A. 1 x2 B. x1 C.x2 D. 2 133x0 ,则分式1138. 若 xyx y( )yxA 、1B、 yxC、1D、- 1xy二、填空题1. 分解因式 :x ( a-b ) 2n +y (b-a )2n+1=_______________________.2. 若1x 3,则x 2 1__________。
xx 4x 23. 如图,Rt △ ABC 中, ACB 90°,直线 EF ∥ BD ,交 AB 于点 E ,交 AC 于点 G ,交AD于点若1 S 四边形,则CF.EBCGF , S △ AEG3AD4.一次函数 y kx 6的图象经过第三象限,且它与两条坐标轴构成的直角三角形面积等于 9 ,则 k。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永川中学片区初2019级桂山杯数学竞赛试题(总分:100分时间:100分钟)考号:班级:姓名:一、选择题(共10小题,每小题4分)1.下列计算中,正确的是()A .B .C .D .2.已知一次函数()22m-1-+=mxy,函数y随着x的增大而减小,且其图象不经过第一象限,则m的取值范围是()A.21>m B.2≤m C.221<<m D.221≤<m3.如图,△ABC中,AD是∠BAC内的一条射线,BE⊥AD,且△CHM可由△BEM旋转而得,延长CH交AD于F,则下列结论错误的是()A.BM=CMB.FM=21EH C.CF⊥AD D. FM⊥BC4.如图所示,两个边长都为2的正方形ABCD和OPQR,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕O点旋转,那么它们重叠部分的面积为()A.4B.2C.1D.215.若关于x的方程22x cx c+=+的解是1x c=,22xc=,则关于x的方程2211x ax a+=+--的解是()A.a,2cB.1a-,21a-C.a,21a-D. a,11aa+-6.△ABC的三边为a、b、c,且满足cbacba5.1225.3222+⨯=++,则△ABC是 ( )A.直角三角形B.等腰三角形C.等边三角形D.以上答案都不对7.如图大正方形中有2个小正方形,如果它们的面积分别是 S1、 S2,那么 S1、 S2的大小关系是()A.S1>S2 B.S1= S2 C. S1< S2D. S1、 S2的大小关系不确定8.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()A.(﹣8,0) B.(0,8) C.(0,8) D.(0,16)9.已知三角形的边长为n,n+1,m(其中m2=2n+1),则此三角形()A.一定是等边三角形B.一定是等腰三角形C.一定是直角三角形D.无法确定10.在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是().A B C D二.填空题(共10小题,每小题4分)11.如图,直线1l:1y x=+与直线2l:y mx n=+相交于点P(a,2),则关于x的不等式1x+≥mx n+的解集为.12.在平面直角坐标系xOy中,点A的坐标为(3,2),若将线段OA绕点O顺时针旋转90°得到线段AO',则点A'的坐标是.13.如图是重叠的两个直角三角形,将其中一个直角三角形沿BC方向平移BE距离就得到此图,已知AB=8cm,BE=4cm,DH=3cm,则图中阴影部分的面积是_____14.如果关于x的不等式3x-m≤0只有三个正整数解,则m的取值范围为_________.15.已知:如图, ABCD中,E,F两点在对角线BD上,BE=DF.当四边形AECF为矩形时,直接写出BD ACBE-= .第3题 4题 7题 8题16.如图,在平面直角坐标系xOy 中,直线与x 轴交于点A ,与y 轴交于点B ,将△AOB 沿过点A 的直线折叠,使点B 落在x 轴负半轴上,记作点C ,折痕与y 轴交点交于点D ,则点D 的坐标为_________ .17.在一次越野赛跑中,当小明跑了1600m 时,小刚跑了1450m ,此后两人分别调整速度,并以各自新的速度匀速跑,又过100s 时小刚追上小明,200s 时小刚到达终点,300s 时小明到达终点.他们赛跑使用时间t (s )及所跑距离如图s (m ),这次越野赛的赛跑全程为 m ?18.如果两个数x 和y 满足385x y x y ++=---,则x+y 的最小值是________, 最大值是19.如图,正方形ABCD 的边长为a ,E 是AB 的中点,CF 平分∠DCE ,交AD 于F ,则AF 的长为 .20.已知非负实数a 、b 、c 满足条件:3a +2b +c=4, 2a +b +3c=5, 设S =5a +4b +7c 的最大值为m ,最小值为n ,则n -m 等于 。
三.解答题(共2小题,每题10分)21、图1为学校运动会终点计时台侧面示意图,已知:AB=1米,DE=5米,BC ⊥DC ,∠ADC=30°,∠BEC=60° (1)求AD 的长度.(2)如图2,为了避免计时台AB 和AD 的位置受到与水平面成45°角的光线照射,计时台上方应放直径是多少米的遮阳伞(即求DG 长度)?22.为了保护环境,某企业决定购买10台污水处理设备,现有A 、B 两种型号的设备,其中每台的价格,月处理污水量及年消耗费用如下表:经预算,该企业购买设备的资金不高于105万元。
(1)求购买设备的资金y 万元与购买A 型x 台的函数关系,并设计该企业有哪几种购买方案? (2)若企业每月产生的污水量为2040吨,为了节约购买资金,利用函数知识说明应选择哪种购买方案?(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与排到污水厂处理相比较,10年共节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)AB CDEF16题 17题 19题一、选择题(40用2B 铅笔将题号右侧正确答案所对应的方框涂黑)二、填空题(40 请用0.5毫米黑色签字笔书写)11.___________ 12.___________ 13.___________ 14.___________ 15.___________ 16.___________ 21.(10分)1 [A] [B] [C] [D] 5 [A] [B] [C] [D] 9 [A] [B] [C] [D]2 [A] [B] [C] [D] 6 [A] [B] [C] [D] 10 [A] [B] [C] [D]3 [A] [B] [C] [D] 7 [A] [B] [C] [D]4 [A] [B] [C] [D] 8 [A] [B] [C] [D] 重庆市红炉初级中学校初2017级期末质量模拟检测数学试题 答题卡请 在 各 题 目 的 答 题 区 域 内 作 答, 超 出 黑 色 矩 形 边 框 限 定 区 域 的 答 案 无 效!22.(10分)参考答案: 一.选择题 1.D2.D(∵y 随着x 的增大而减小∴1-2m<0, ∵图象不经过第一象限 ∴m -2≤0,∴221≤<m ) 3、D 4、D(旋转至OP 、OR 过点A 、B)5、D(∵x -1+2x-1 =a -1+2a-1 ∴x -1=a -1或x -1=2a-1 ∴x=a 或x=2a-1 +1=a+1a-1)6、B(a 2+b 2+134 c 2=2ac+3bc ∴(a 2-2ac+c 2)+(b 2-3bc+94 c 2)=0,即(a -c )2+(b - 32c)2=0)7.A 8.D 9.C 10.D 二.填空题 11. x ≥1 12.(2,-3) 13.26 14.9≤m <12 15.2 16.(0,34) 17.205018.∵│x+y+3│+│5-x -y │=8,而(x+y+3)+(5-x -y )=8,∴x+y+3≥0 且5-x -y ≥0 ∴-3≤x+y ≤5,∴最小值为-3,最大值为5。
19.延长CE 交DA 的延长线于点G ,过F 作FH ⊥CG 于H ,易求得 AG=CB=a ,CG= 5 a,∵CH=CD=a,∴HG=( 5 -1)a,设AF=x,则FH=DF=a -x,FG=a+x,由勾股定理得(a+x )2-(a -x)2=[ 5 -1)a]2,∴4ax=(6-2 5 )a 2,∴AF=x=3-52 a.20.∵3a +2b +c=4, 2a +b +3c=5,∴a=6-5c,b=7c -7,∴S =5a +4b +7c=10c+2, ∵非负实数a 、b 、c ∴a=6-5c ≥0,b=7c -7≥0,∴1≤c ≤65 ,∵S=10c+2,∴当c =65时,S 最大=14,当c =1时,S 最小=12,即m=14,n=12,∴n -m=-2 三.解答题21.解:(1)如图,过点B 作BF ∥AD ,交DC 于点F , 直角梯形ABCD 中,AB ∥DF , ∴四边形ABFD 为平行四边形. ∴∠BFE=∠D=30°,AB=DF=1米, ∴EF=DE-DF=4米,在Rt △BCF 中,设BC=x 米,则BF=2x ,CF=,在Rt △BCE 中,∠BEC=60°,CE=,∴EF=CF-CE=,解得:,∴AD=BF=2x=米.(2)由题意知,∠BGE=45°, 在Rt △BCG 中,BC=CG=米,∴GE=GC-EC=()米,DG=DE-GE=()米,即应放直径是()米的遮阳伞.22.解:(1)∵购买污水处理设备A 型x 台,则购买B 型(10-x )台。
由题意知: 1002)10(1012+=-+=x x x y ∵1051002≤+x ∴解得, ∵x取非负整数,∴x=0,1,2。
即有三种购买方案:(2)由题意得,解得,∵∴5.21≤≤x 且x 为整数, ∴x=1或2, 当x=1时,购买资金:y=2×1+100=102(万元), 当x=2时,购买资金:y=2×2+100=104(万元), ∴为了节约资金,应选购A 型1台,B 型9台; (3)10年企业自己处理污水的总资金为: 102+1×10×10=202(万元), 若将污水排到污水厂处理,10年所需费用为:2040×12×10×10=2448000(元)=244.8(万元) 244.8-202=42.8(万元), ∴能节约资金42.8万元。
A B C D E F G H。