初三数学第一次模拟考试

合集下载

2024年中考数学第一次模拟试卷(无锡卷)(全解全析)

2024年中考数学第一次模拟试卷(无锡卷)(全解全析)

2024年中考第一次模拟考试(无锡卷)数学·全解全析(考试时间:120分钟试卷满分:140分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列各组数中,互为相反数的组是()A .2023-和2023-B .2023和12023C .2023-和2023D .2023-和12023【答案】A【解析】解:A .20232023-=和2023-互为相反数,故A 选项符合题意;B .2023和12023互为倒数,故B 选项不符合题意;C .20232023-=和2023不互为相反数,故C 选项不符合题意;D .2023-和12023不互为相反数,故D 选项不符合题意;故选:A .2.已知114A a =-+,下列结论正确的是()A .当5a =-时,A 的值是0B .当4a >-时,A 的最小值为1C .若A 的值等于1,则4a =-D .若A 的值等于2,则5a =-【答案】D【解析】解:当5a =-时,1111254A =-=+=-+,A 选项错误;当4a >-时,40a +>,104a >+,104a -<+,1114a -<+,即A 的最小值小于1,B 选项错误;当1A =时,1114a =-+,解得4a =-,此时分式无意义,故不合题意,C 选项错误;当2A =时,1214a =-+,解得5a =-,D 选项正确,故选:D .3.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,1122,2∠=︒∠的度数为()A .32︒B .58︒C .68︒D .78︒【答案】B【解析】解:如图,根据题意得:a b ,c d ∥,∴13180∠+∠=︒,32∠=∠,∵1122∠=︒,∴258∠=︒.故选:B .4.下列计算错误的是()A .()21x x x x -=-B .325x x x ×=C .()236x x =D .()2224a a -=-【答案】D【解析】解:A 中()21x x x x -=-,正确,故不符合要求;B 中325x x x ×=,正确,故不符合要求;C 中()236x x =,正确,故不符合要求;D()2222444a a a a -=-+≠-,错误,故符合要求;故选:D .5.若点()()()112233A x y B x y C x y ,、,、,是反比例函数11y x=-图象上的点,且1230x x x <<<,则123y y y 、、的大小关系是()A .123y y y <<B .321y y y <<C .231y y y <<D .312y y y <<【答案】D【解析】解:根据题意画出函数图象得,可知,312y y y <<.故选:D .6.随着城际交通的快速发展,某次动车平均提速60km /h ,动车提速后行驶480km 与提速前行驶360km 所用的时间相同.设动车提速后的平均速度为x km /h ,则下列方程正确的是()A .36048060x x =+B .36048060x x =-C .36048060x x =-D .36048060x x=+【答案】B【解析】解:根据题意,得36048060x x=-.故选:B .7.将抛物线()215y x =-+通过平移后,得到抛物线的解析式为223y x x =++,则平移的方向和距离是()A .向右平移2个单位长度,再向上平移3个单位长度B .向右平移2个单位长度,再向下平移3个单位长度C .向左平移2个单位长度,再向上平移3个单位长度D .向左平移2个单位长度,再向下平移3个单位长度【答案】D【解析】解:抛物线()215y x =-+的顶点坐标为15(,),抛物线()222312y x x x =++=++的顶点坐标为()12-,,而点()15,向左平移2个,再向下平移3个单位可得到()12-,,所以抛物线()215y x =-+向左平移2个,再向下平移3个单位得到抛物线y=x 2+2x+3.故选:D .8.如图,正方形ABCD 和正方形AEFG ,当正方形AEFG 绕点A 逆时针旋转45︒时,如图,连接DG 、BE ,并延长BE 交DG 于点.H 若AE =228AB =,时,则线段BH 的长为()A 16105B 14105C .5210+D .610+【答案】A【解析】解:连结GE 交AD 于点N ,连结DE ,如图,正方形AEFG 绕点A 逆时针旋转45︒,AF ∴与EG 互相垂直平分,且AF 在AD 上,2AE = 22AN GN ∴==,826DN ∴=-=,在Rt DNG 中,DG =22DN GN +2=10;由题意可得:ABE 相当于逆时针旋转90°得到AGD ,2DG BE ∴==10,DEG S = 12GE ND ⋅=12DG HE ⋅,HE ∴=10=6105BH BE HE ∴=+=6101021055+=故选:A .9.如图,AB 是O 的一条弦,点C 是O 上一动点,且ACB θ∠=,点E ,F 分别是,AC BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径是r ,则GE FH +的最大值是()A .()2sin r θ-B .()2sin r θ+C .()2cos r θ-D .()2cos r θ+【答案】A【解析】解:作直径AP ,连接BP ,90ABP ∴∠=︒,,2P C PA r θ∠=∠== ,sin sin AB P APθ∴∠==,2sin AB r θ∴=⋅,∵E ,F 分别是,AC BC 的中点,EF ∴是ABC 的中位线,1sin 2EF AB r θ∴==⋅,GE FH GH EF +=- ,∴当GH 长最大时,GE FH +有最大值,∴当GH 是圆直径时,GH 最大.∴GE FH +最大值是()2sin 2sin r r r θθ-=-.故选:A .10.如图,在矩形ABCD 中,E 为AB 中点,以AE 为边向上作正方形AEFG ,边EF 交CD 于点H ,在边AE 上取点M 使AM AD =,作MN AG ∥交CD 于点L ,交FG 于点N ,记AE a =,EM b =,欧几里得在《几何原本》中利用该图解释了()()22a b a b a b +-=-.现以BM 为直径作半圆O ,恰好经过点H ,交CD 另一点于P ,记HPB △的面积为1S ,DLF △的面积为2S ,若1b =,则12S S -的值为()A .12B .22C .1D 2【答案】A【解析】解:依题意得:四边形AEFG AMLD ,均为为正方形,四边形AMNG MEFN MEHL MBCL EBCH ,,,,均为矩形,∵AE a EM b ==,,点E 为AB 的中点,∴EB AE CH a ===,AD AM DL EH BC a b =====-,DG LN HF ME HL b =====,ML EH BC ==,∴()211•22S DL HF a b b ==-,连接MH ,∵HC ME ∥,∴ MHBP =,∴MH BP =,在Rt MHL △和Rt BPC △中,ML BC MH BP=⎧⎨=⎩,∴()Rt Rt HL MHL BPC ≌△△,∴HL PC b ==,∴HP CH PC a b =-=-,∴()211122S HP BC a b =⨯=-,∵MB 为直径,∴90MHB ∠=︒,即90MHE BHE ∠+∠=︒,∵90MEH HEB ∠=∠=︒,∴90HME MHE ∠+∠=︒,∴HME BHE ∠=∠,∴HME BHE ∽,∴EH EB EM EH =::,∴2EH BE EM =⨯,即:()2a b ab -=,∴()211122S a b ab =-=,∴()212111222S S ab a b b b -=--=,∵1b =,∴1212S S -=.故选:A .二、填空题(本大题共8小题,每小题3分,共24分.)11.化学元素钉()Ru 是除铁()Fe 、钻()Co 和镍()NIi 以外,在室温下具有独特磁性的第四个元素.钉()Ru 的原子半径约0.000 000 000 189m .将0.000 000 000 189用科学记数法表示为.【答案】101.8910-⨯【解析】解:100.000 000 000 189 1.8910-=⨯,故答案为:101.8910-⨯12.若2a +与3b -互为相反数,则22a b =.2【解析】解:∵2a +与3b -互为相反数,∴230a b ++-=,即1a b +=,∴)2222a b a b =+=213.不等式组32122x x x x ≥-⎧⎪⎨+≥⎪⎩的解集是.【答案】113x -≤≤【解析】解:32122x x x x ≥-⎧⎪⎨+≥⎪⎩①②解不等式①得:1x ≥-解不等式②得:13x ≤,∴不等式组的解集为:113x -≤≤,故答案为:113x -≤≤.14.写出一个图象是曲线且过点()1,2的函数的解析式:.【答案】2y x=(答案不唯一)【解析】解:设反比例函数解析式为k y x=,依题意,2k =∴一个图象是曲线且过点()1,2的函数的解析式是:2y x=,故答案为:2y x=(答案不唯一).15.如图,某品牌扫地机器人的形状是“莱洛三角形”,它的三“边”分别是以等边三角形的三个顶点为圆心,边长为半径的三段圆弧.若该等边三角形的边长为3,则这个“莱洛三角形”的周长是.【答案】3π根据正三角形的有关计算求出弧的半径和圆心角,根据弧长的计算公式求解即可.【解析】解:如图:∵ABC 是正三角形,∴60BAC ∠=︒,∴ BC的长为:603180ππ⨯=,∴“莱洛三角形”的周长=33ππ⨯=.故答案为:3π.16.如图,已知平行四边形ABCD 中,E 为BC 边上一点,连接AE DE 、,若AD DE =,AE DC =,4BE =,tan 3B ∠=,则EC 的长为.【答案】6【解析】解:作,AF BE DG AE ⊥⊥,如图所示:∵,AE DC AB DC==∴,AB AE B AEB =∠=∠∵AD BC ∥∴AEB DAE ∠=∠∴B AEB DAE ∠=∠=∠∵4BE =∴2BF EF ==∵tan 3AFB BF∠==∴226,210AF AB AE AF BF ===+=∵AD DE =,DG AE ⊥∴10AG EG ==∵tan tan tan 3DAE AEB B ∠=∠=∠=∴22310,10DG AD DG AG ==+=∴10BC AD ==∵4BE =∴6EC BC BE =-=故答案为:617.我国魏晋时期的数学家刘徽(263年左右)首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率 3.14π≈.刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,⋯,割得越细,正多边形就越接近圆.设圆的半径为R ,圆内接正六边形的周长66P R =,计算632P πR ≈=;圆内接正十二边形的周长1224sin15P R =︒,计算12 3.102PπR≈=;那么分割到圆内接正二十四边形后,通过计算可以得到圆周率π≈.(参考数据:sin150.258︒≈,sin 7.50.130)︒≈【答案】3.12【解析】解:圆内接正二十四边形的周长2448sin 7.5P R =⋅⋅︒,则48sin 7.5480.130 3.1222R R π⋅︒⨯≈≈≈,故答案为3.1218.如图,点A 是双曲线y=8x在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.【答案】y=﹣8x .【解析】解:如图,连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,∵A 点、B 点是正比例函数图象与双曲线y=8x 的交点,∴点A 与点B 关于原点对称,∴OA=OB ,∵△ABC 为等腰直角三角形,∴OC=OA ,OC ⊥OA ,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE ,∵在△COD 和△OAE 中,CDO OEA DCO EOA CO OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△OAE (AAS ),设A 点坐标为(a ,8a ),则OD=AE=8a ,CD=OE=a ,∴C 点坐标为(﹣8a,a ),∵﹣8a a ∙=﹣8,∴点C 在反比例函数y=﹣8x图象上.故答案为:y=﹣8x .三、解答题(本大题共10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:()103127123π2-⎛⎫-+- ⎪⎝⎭;(2)用配方法解方程:24210x x --=.【解析】(1)解:原式()23211=--+23211=+-+52=(2)解:24210x x --=2421x x -=244214x x -+=+()2225x -=25x ∴-=±17x ∴=,23x =-20.计算:(1)()()22a b b a b -+-;(2)21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭【解析】(1)解:()()22a b b a b -+-22222a ab b ab b =-++-2a =;(2)解:21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭()21212(2)x x x x ++=⨯++12x +=21.如图,在ABC 中,过A 点作AD BC ∥,交ABC ∠的平分线于点D ,点E 在BC 上,DE AB ∥.(1)求证:四边形ABED 是菱形;(2)当6BC =,4AB =时,求DF 的长.【解析】(1)证明:∵AD BC ∥,DE AB ∥,∴四边形ABED 是平行四边形,∵AD BC ∥,∴ADB CBD ∠=∠,∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴ADB ABD ∠=∠,∴AD AB =,∴四边形ABED 是菱形;(2)解:∵四边形ABED 是菱形,4AB =,∴4DE BE AD AB ====,AD BC ∥,∴ADF CEF ∠=∠,∵AFD CFE ∠=∠,∴CEF ADF ∽△△,∴ADDFCE EF =,∵6BC =,∴2CE BC BE =-=,∴42DF EF=,∴2DF EF =,∴23DF DE =,∴83DF =.22.现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片A ,B ,C ,卡片除正面图案不同外,其余均相同,(1)若将三类卡片各10张,共30张,正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.(2)现将三类卡片各一张,放入不透明箱子,小明随机抽取一张,看后,放回,再由小充随机抽取一张.请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到相同卡片的概率.【解析】(1)解;∵一共有30张卡片,其中琮琮的卡片有10张,且每张卡片被抽到的概率相同,∴从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是101303=,故答案为:13.(2)解:画树状图如下:由树状图可知,一共有9种等可能性的结果数,其中恰好摸到相同卡片的结果数有3种,∴恰好摸到相同卡片的概率为3193=.23.某校初三物理组为激发学生学习物理的热情,组织初三500名学生进行“水火箭”制作和演示飞行活动.为了解该年级学生自制水火箭的飞行情况,现随机抽取40名学生进行水火箭飞行测试,并将测试成绩(百分制)作为样本数据进行整理、描述和分析,下面给出了部分信息.①将样本数据分成5组:5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<,并制作了如图所示的不完整的频数分布直方图;②在8090x ≤<这一组的成绩分别是:80,81,83,83,84,85,86,86,86,87,8.8,89,根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是____________;(3)如果测试成绩达到80分及以上为优秀,试估计该年级500名学生中水火箭飞行测试为优秀的学生约有多少人?【解析】(1)解:在7080x ≤<这组的人数为:404612108----=(人),补全频数分布直方图如下:(2)中位数应为40个数据由小到大排列中第20,21个数据的平均数,∵数据处于较小的三组中有46818++=(个)数据,∴中位数应是8090x ≤<这一组第2,3个数据的平均数,∴中位数为:8183822+=(分),故答案为:82分;(3)∵样本中优秀的百分比为:1210100%55%40+⨯=,∴可以估计该校500名学生中对安全知识掌握程度为优秀的学生约有:55%500275⨯=(人),答:估计该校500名学生中对安全知识掌握程度为优秀的学生约有275人.24.如图,在四边形ABCD 中,90A C ∠=∠=︒.(1)经过点A 、B 、D 三点作O ;(2)O 是否经过点C ?请说明理由.【解析】(1)解:如图所示,O 即为所求;(2)O 经过点C ,理由如下:连接OC ,∵90BCD ∠=︒,点O 为BD 的中点,∴12CO BC OD OB ===,∴点C 在O 上.25.最佳视点如图1,设墙壁上的展品最高处点P 距底面a 米,最低处的点Q 距底面b 米,站在何处观赏最理想?所谓观赏理想是指看展品的视角最大,问题转化为在水平视线EF 上求使视角最大的点.如图2,当过P Q E ,,三点的圆与过点E 的水平线相切于点E 时,视角PEQ ∠最大,站在此处观赏最理想,小明同学想这是为什么呢?他在过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,…任务一:请按照小明的思路,说明在点E 时视角最大;任务二:若3 1.8a b ==,,观察者的眼睛距地面的距离为1.5米,最大视角为30︒,求观察者应该站在距离多远的地方最理想(结果精确到0.013 1.73≈).【解析】任务一:过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,∵PFQ ∠是QFE ' 的外角,∴PFQ PE Q '∠>∠,又∵PFQ ∠与PEQ ∠都是弧PQ 所对的圆周角,∴PFQ PEQ ∠=∠,∴PEQ PE Q '∠>∠,∴在点E 时视角最大.任务二:∵30PEQ ∠=︒,∴60POQ ∠=︒,又∵OP OQ =,∴OPQ △是等边三角形,OP OQ PQ ==.如图2,连接OE ,∵HE 是O 的切线,∴90OEH ∠=︒,∵90PHE ∠=︒,∴180OEH PHE ∠+∠=︒,∴//PQ OE ,又∵PQ OP OE ==,∴四边形PQOE 是平行四边形,∴30OPE PEQ ∠=∠=︒,∴603030EPH OPQ OPE ∠=∠-∠=︒-︒=︒.由题意得,3 1.5 1.5PH =-=(米),在Rt PHE △中,3•tan 1.50.873HE PH EPH =∠=⨯(米).答:观察者应该站在距离0.87米的地方最理想.26.在2024年元旦即将到来之际,学校准备开展“冬日情暖,喜迎元旦”活动,小星同学对会场进行装饰.如图1所示,他在会场的两墙AB 、CD 之间悬挂一条近似抛物线2435y ax x =-+的彩带,如图2所示,已知墙AB 与CD 等高,且AB 、CD 之间的水平距离BD 为8米.(1)如图2,两墙AB ,CD 的高度是米,抛物线的顶点坐标为;(2)为了使彩带的造型美观,小星把彩带从点M 处用一根细线吊在天花板上,如图3所示,使得点M 到墙AB 距离为3米,使抛物线1F 的最低点距墙AB 的距离为2米,离地面2米,求点M 到地面的距离;(3)为了尽量避免人的头部接触到彩带,小星现将M 到地面的距离提升为3米,通过适当调整M 的位置,使抛物线2F 对应的二次函数的二次项系数始终为15,若设点M 距墙AB 的距离为m 米,抛物线2F 的最低点到地面的距离为n 米,探究n 与m 的关系式,当924n ≤≤时,求m 的取值范围.【解析】(1)解:由题意得,抛物线的对称轴为4x =,则45422b x a a==-=-,解得:0.1a =;∴抛物线的表达式为0.10.83y x x =-+,则点(0,3)A ,即3AB CD ==(米),当4x =时,0.10.83 1.4y x x =-+=,即顶点坐标为(4,1.4),故答案为:3,(4,1.4);(2)解:设抛物线的表达式为2(2)2y a x ='-+,将点A 的坐标代入上式得23(02)2a ='-+,解得14a '=,∴抛物线的表达式为21(2)24y x =-+,当3x =时,21(2)2 2.254y x =-+=(米),∴点M 到地面的距离为2.25米;(3)解:由题意知,点M 、C 纵坐标均为4,则右侧抛物线关于M 、C 对称,∴抛物线的顶点的横坐标为11(8)422m m +=+,则抛物线的表达式为211(4)52y x m n =--+,将点C 的坐标代入上式得2113(84)52m n =--+,整理得21412055n m m =-+-;当2n =时,即214122055m m =-+-,解得85m =-;当9n 4=时,同理可得86m =故m 的取值范围为:8685m ≤≤27.定义:对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的四边形,则这样的四边形称为镶嵌四边形.(1)如图1,将ABC 纸片沿中位线EH 折叠,使点A 落在BC 边上的D 处,再将纸片分别沿EF ,HG 折叠,使点B 和点C 都与点D 重合,得到双层四边形EFGH ,则双层四边形EFGH 为______形.(2)ABCD Y 纸片按图2的方式折叠,折成双层四边形EFGH 为矩形,若5EF =,12EH =,求AD 的长.(3)如图3,四边形ABCD 纸片满足AD BC ∥,AD BC <,AB BC ⊥,8AB =,10CD =.把该纸片折叠,得到双层四边形为正方形.请你画出一种折叠的示意图,并直接写出此时BC 的长.【解析】(1)双层四边形EFGH 为矩形,理由如下:由折叠的性质可得AEH HED ∠=∠,BEF DEF ∠=∠,180AEH HED BEF DEF ∠+∠+∠+∠=︒ ,90HED DEF ∴∠+∠=︒,90HEF ∴∠=︒,同理可得90EHG EFD ∠=∠=︒,∴四边形EFGH 是矩形,故答案为:矩;(2) 四边形EFGH 为矩形,90FEH ∴∠=︒,EH FG =,EH FG ∥,222251213FH EF EH ∴=+=+=,EHM GFN ∠=∠,又ABCD 为平行四边形,A C ∴∠=∠,AD BC =,由折叠得A EMH ∠=∠,C GNF ∠=∠,EMH GNF ∴∠=∠,在EHM 与GFN 中,EH FGEHM GFN EMH GNF=⎧⎪∠=∠⎨⎪∠=∠⎩,(AAS)EHM GFN ∴ ≌,MH NF ∴=,由折叠得AH MH =,CF FN =,AH CF ∴=,又AD BC = ,DH BF FM ∴==,又AD AH DH =+ ,HF MH MF =+,13AD HF ∴==.(3)有以下三种基本折法:折法1中,如图所示:由折叠的性质得:AD BG =,142AE BE AB ===,152CF DF CD ===,GM CM =,90FMC ∠=︒, 四边形EFMB 是叠合正方形,4BM FM ∴==,2225163GM CM CF FM ∴=-=-=,1AD BG BM GM ∴==-=,7BC BM CM =+=;折法2中,如图所示:由折叠的性质得:四边形EMHG 的面积12=梯形ABCD 的面积,142AE BE AB ===,DG NG =,NH CH =,BM FM =,MN MC =,125GH CD ∴==, 四边形EMHG 是叠合正方形,5EM GH ∴==,正方形EMHG 的面积2525==,90B ∠=︒ ,2225163FM BM EM BE ∴=-=-=,设AD x =,则3MN FM FN x =+=+,梯形ABCD 的面积1()82252AD BC =+⨯=⨯,252AD BC ∴+=,252BC x ∴=-,2532MC BC BM x ∴=-=--,MN MC = ,25332x x ∴+=--,解得:134x =,134AD ∴=,251337244BC =-=.折法3中,如图所示,作GM BC ⊥于M ,则E ,G 分别为AB ,CD 的中点,则4AH AE BE BF ====,152CG CD ==,正方形的边长42EF GF ==4GM FM ==,2225163CM CG GM --=,11BC BF FM CM ∴=++=.综上所述:7BC =或11或374.28.如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且1OA =,4OB OC ==.(1)求抛物线的解析式;(2)若连接AC 、BC .动点D 从点A 出发,在线段AB 上以每秒1个单位长度向点B 做匀速运动;同时,动点E 从点B 出发,在线段BC 2个单位长度向点C 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接DE ,设运动时间为t 秒.在D 、E 运动的过程中,当t 为何值时,四边形ADEC 的面积最小,最小值为多少?(3)点M 是抛物线上位于x 轴上方的一点,点N 在x 轴上,是否存在以点M 为直角顶点的等腰直角三角形CMN ?若存在,求出点M 的坐标,若不存在,请说明理由.【解析】(1)解:∵4OB OC ==,1OA =,则()0,4C ,()4,0B ,()0,1A -∴抛物线解析式为2(1)(4)34y x x x x =-+-=-++;(2)解:∵4OB OC ==,∴OBC △是等腰直角三角形,由点的运动可知:2BE t =,过点E 作EF x ⊥轴,垂足为F ,∴22tBE BF t t ==,又∵()0,1A -,则5AB =,∴ADEC ABC BDES S S =- 1145(5)22t t=⨯⨯-⨯-⨯21555(228t =-+,∵当其中一点到达终点时,另一点随之停止运动,∴224442AC =+=5AB =,∴04t ≤≤,当52t =时,四边形ADEC 的面积最小,即为558;(3)解:存在,(15,15)M +或(222,222)M -,当点M 在CN 的右侧时,如图所示,过点M 作y 轴的平行线PQ ,交x 轴于点Q ,过点C 作CP PQ ⊥,∵CMN 是以M 为直角为直角顶点的等腰直角三角形,∴CM MN =,90CMN ∠=︒,∴90PCM PMC NMQ ∠=︒-∠=∠,又90CPM MQN ∠=∠=︒∴CPM MQN ≌,∴CP MQ =,设2(,34)M m m m -++,∴234m m m -++=,解得:51m =或15m =∴(15,15)M ;当点M 在CN 的右侧时,同理可得234m m m -++=-,解得:222m =-22m =(舍去)∴(222,222)M -,综上所述,(15,15)M 或(22,22)M -.。

九年级第一次数学模拟考试试题含答案

九年级第一次数学模拟考试试题含答案

九年级第一次数学模拟考试(考试总分:150 分)一、单选题(本题共计10小题,总分40分)1.(4分)1.抛物线y=x2﹣1的顶点坐标是()A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)2.(4分)2.若,则等于()A.B.C.D.3.(4分)3.下列各组线段(单位:cm)中,是成比例线段的是()A.3,5,7,9B.2,5,6,8C.1,3,4,7D.3,6,9,18 4.(4分)4.线段AB=8,P是AB的黄金分割点,且AP<BP,则BP的长度为()A.4﹣4B.8+8C.8﹣8D.4+45.(4分)5.如图,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为()A.B.C.4D.66.(4分)6.二次函数y=ax2+bx+c的图象如图所示,下列说法错误的是()A.a<0,b>0B.b2﹣4ac>0C.方程ax2+bx+c=0的解是x1=5,x2=﹣1D.不等式ax2+bx+c>0的解集是0<x<57.(4分)7.如图,在Rt△ABC中,∠ACB=90°,D是AB边的中点,AF⊥CD于点E,交BC边于点F,连接DF,则图中与△ACE相似的三角形共有()A.2个B.3个C.4个D.5个8.(4分)8.如图,点A在反比例函数y=−4x(x<0)的图象上,点B在反比例函数的图象上,且AB∥y轴,BC⊥AB于点B,交y轴于点C.若△ABC的面积为3,则k的值为()A.﹣3B.﹣2C.2D.3第8题图第9题图第10题图9.9.(4分)已知反比例函数y=的图象如图所示,则二次函数y=bx2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.10.(4分)10.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本题共计4小题,总分25分)11.(8分)11.线段a=2cm,线段b=8cm,则线段a、b的比例中项是cm.12.(8分)12.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)第12题图13.(5分)13.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC=cm.14.(4分)14.如图,在△ABC中,∠A=90°,∠BCD=∠BCA,BD⊥DC于点D,DC交AB于点E,请完成下列探究.(1)若∠BCD=n°,那么∠EBD=°;(结果用含n的代数式表示)(2)若=m,那么=.(结果用含m的代数式表示)三、解答题(本题共计9小题,总分90分)15.(8分)15.已知==,且x+2y+3z=﹣46,求x,y,z的值.16.(8分)16.如图,已知DE∥BC,FE∥CD,AF=3,AD=5,AE=4.(1)求CE的长;(2)求AB的长.17.(8分)17.在△ABC中,点D、E分别在边AB、AC上,且AD:DB=3:2,AE:EC=1:2,直线ED和CB的延长线交于点F,求:FB:FC.18.(8分)18.如图,已知一次函数y=ax+b与反比例函数的图象相交于点A(1,3)和B(m,1).(1)求反比例函数与一次函数的解析式;(2)当反比例函数的值小于一次函数的值时,请直接写出实数x的取值范围;(3)求△OAB 的面积.19.(10分)19.如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD =60°,2BP =3CD ,BP =1. (1)求证△ABP ∽△PCD ; (2)求△ABC 的边长.20.(10分)20.如图,在四边形ABCD 中,AC ,BD 相交于点E ,点F 在BD 上,且∠BAF =∠DBC ,.(1)求证:△ABC ∽△AFD ; (2)若AD =2,BC =5,求AE BE的值.21.(12分)21.如图,AC 为平行四边形ABCD 的对角线,∠ABE =∠ACB ,BE 交边AD 于点E ,交AC 于点F . (1)求证:AE 2=EF •BE ;(2)若EF =1,E 是边AD 的中点,求边BC 的长.22.(12分)22.攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量y(千克)与该天的售价x(元/千克)之间的数量满足如表所示的一次函数关系.销售量y(千克)…32.53535.538…售价x(元/千克)…27.52524.522…(1)求芒果一天的销售量y与该天售价x之间的一次函数关系式,写出x的取值范围.(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式,并求出最大利润.23.(14分)23.如图,在RT△ABC中,∠C=90°,BC=8,AC=6,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时点P从A点开始在线段AC上以每秒1个单位长度的速度向点C移动.当一点停止运动,另一点也随之停止运动.设点Q,P移动的时间为t秒.(1)设△APQ的面积为S,求S与t的函数关系式;(2)当t为何值时,△APQ与△ABC相似?(3)在P、Q的运动过程中,△APQ能否构成等腰三角形?如能,直接写出t的值,如不能,说明理由.答案一、 单选题 (本题共计10小题,总分40分)1.(4分)B2.(4分)A3.(4分)D4.(4分)A5.(4分)A6.(4分)D7.(4分)B8.(4分)C 9.(4分)C10.(4分)C二、 填空题 (本题共计4小题,总分25分)11.(8分)11. 4,12.(8分)12. 答案不唯一, 略,13.(5分)13. 12,14.(4分) 14.(1)n,(2)2m 三、 解答题 (本题共计9小题,总分90分) 15.(8分)15.X=-4,Y=-6,Z=-10 16.(8分)16.325,38==AB CE 17.(8分)17. 过B 作BM ‖AC ,交DF 于M 因为BM ‖AC 所以BM/AE =BD/AD 因为AD/DB =3/2 所以BM/AE =2/3 因为AE/EC =1/2 所以BD/EC =1/3 所以FB/FC =BM/EC =1/3即FB:FC=1:318.18.(8(2)1<x<3,或x<0(4)419.(10分)19(1)∵△ABC是等边三角形,∴∠DCP=∠PBA=60°.∵∠APC=∠APD+∠DPC=∠BAP+∠ABP,∠APD=60°,∴∠BAP=∠CPD.∴△ABP∽△PCD.(2)设△ABC的边长为x,易得:△ABP∽△PCD;故可得:=;即=,解得△ABC的边长为3.解答:解:设△ABC的边长为x,由(1)得,△ABP∽△PCD.∴=,∴=.∴x=3.即△ABC的边长为3.20.(10分)20(1)∵∠BAF=∠DBC∴∠BAE=∠DBF,△ABC∽△AFD(2)AEBE =5221.(12分)21.(1)可证△ABE ∽△F AE ,AE 2=EF •BE (2)23=BC22. 22.(12分)(1)y=-x+60(15≤x ≤40).(2)m=y(x-10)=(-x+60)(x-10)=-2x +70x-600. 当x=35时,m 取最大值625. 23. 23.(14分)(1)28.0-4t t s = (2)13501130或=t (3)8251760310或或=t。

2024-2025学年初中九年级数学上册第一次月考模拟卷含答案解析

2024-2025学年初中九年级数学上册第一次月考模拟卷含答案解析

重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90°,∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴矩形AMEN为正方形,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∵不等式组有且只有2个整数解,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2=0,移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=0,∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,过E作EF⊥BC于F,如图1,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。

精品解析:2024学年重庆市第八中学校九年级下学期第一次模拟(学月)考试数学模拟试题(解析版)

精品解析:2024学年重庆市第八中学校九年级下学期第一次模拟(学月)考试数学模拟试题(解析版)

重庆八中2023—2024学年(下)九年级第一次模拟(学月)考试数学试题(全卷共三个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号 右侧正确答案所对应的方框涂黑.1. 的绝对值是( )A. 2024B. C. D. 【答案】A【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值是它的相反数,即可得出结果.【详解】解:的绝对值是2024.故选:A .2. 如图是由5个完全相同的小正方体堆成的物体,从正面看它得到的平面图形是( )A.B. C. D.【答案】A【解析】【分析】本题考查了从不同方向看简单组合体.根据从正面看得到的图形判断即可.【详解】解:该几何体从正面看到的平面图形是故选:A .3. 已知点在反比例函数的图象上,则m 的值是( )A. B. C. D. 4【答案】B【解析】2024-2024-1202412024-2024-()3,M m -12y x =6-4-36-【分析】本题考查了反比例函数图象上点的坐标特征,根据反比例函数图象上点的坐标特征进行解答判断即可.【详解】解:∵点在反比例函数的图象上,∴,∴.故选:B .4. 如图,已知与位似,位似中心为点,若的周长与的周长之比为,则是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了图象位似与相似的关系和性质,根据周长比知道相似比,从而得出位似比,掌握位似比和相似比的关系是解题的关键.【详解】解:的周长与的周长之比为故选:C .5. 若要调查下列问题,你认为适合采用全面调查的是( )A. 对全国中学生每天睡眠时长情况的调查B. 对某市中小学生周末手机使用时长的调查C. 对新都区居民知晓“一盔一带”交通法规情况的调查D. 对“神舟十七号”载人飞船发射前各零部件质量情况的调查【答案】D【解析】【分析】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调()3,M m -12y x=312m -=4m =-ABC DEF O ABC DEF 3:2:OA OD 9:43:53:25:2ABC DEF 3:2:3:2AC DF ∴=::3:2OA OD AC DF ∴==查,对于精确度要求高的调查,事关重大的调查往往选用普查.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A .对全国中学生每天睡眠时长情况的调查,适合抽样调查,故A 不符合题意;B .对某市中小学生周末手机使用时长的调查,适合抽样调查,故B 不符合题意;C .对新都区居民知晓“一盔一带”交通法规情况的调查,适宜采用抽样调查,故C 不符合题意;D .对“神舟十七号”载人飞船发射前各零部件质量情况的调查,适合全面调查,故D 符合题意.故选:D .6. “绿色电力.与你同行”,我国新能源汽车销售量逐年增加,据统计,年新能源汽车年销售量为万辆,预计年新能源汽车手销售量将达到万辆,设这两年新能源汽车销售量年平均增长率为x ,则所列方程正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了一元二次方程的应用.根据题意正确的列方程是解题的关键.由题意知,年新能源汽车手销售量将达到万辆,年新能源汽车手销售量将达到万辆,然后依据题意列方程即可.【详解】解:依题意得,,故选:A .7. 有机化学中“烷烧”的分子式如CH 4、C 2H 6、C 3H 8…可分别按下图对应展开,则C 100H m 中m 的值是( )A. 200B. 202C. 302D. 300【答案】B【解析】【分析】本题考查图形变化的规律,能根据所给图形发现字母“”和“”个数变化的规律是解题的关键.202269020241166()269011166x +=()211661690x -=()269069011166x ++=()116612690x -=2023()6901x +2024()26901x +()269011166x +=C H【详解】解:由所给图形可知,第1个图形中字母“”的个数为:1,字母“”的个数为:;第2个图形中字母“”的个数为:2,字母“”的个数为:;第3个图形中字母“”的个数为:3,字母“”的个数为:;,所以第个图形中字母“”的个数为,字母“”的个数为,当时,(个,即中的值是.故选:B .8. 如图,为的直径,C ,D 是上在直径异侧的两点,C 是弧的中点,连接,,交于点P ,若,则的度数为( )A. B. C. D. 【答案】A【解析】【分析】本题考查的是圆周角定理的应用,三角形的外角的性质的应用,先求解,再利用三角形的外角的性质可得答案.【详解】解:如图,连接,∵为直径,C 是弧的中点,∴,C H 4122=⨯+C H 6222=⨯+C H 8322=⨯+⋯n C n H (22)n +100n =2221002202n +=⨯+=)100m C H m 202AB O O AB AB AD CD CD AB 22BAD ∠=︒DPB ∠67︒44︒60︒66︒45D ∠=︒OC AB AB =90AOC ∠︒∴,∵,∴,故选A9. 如图,在正方形中,为对角线的中点,连接,为边上一点,于点,若,,则的长为( )A. B. C. 3 D. 【答案】D【解析】【分析】本题考查了全等三角形的性质与判定,正方形的性质,正切的定义;过点作交于点,证明,进而求得,得出,即可求解.【详解】解:如图所示,过点作交于点,∵为正方形对角线的中点,∴∴∵1245ADC AOC ∠=∠=︒22BAD ∠=︒67BPD BAD D ∠=∠+∠=︒ABCD O BD OC E AB CF DE ⊥F OF =5CF =AE 2O OG OF ⊥DE G ()ASA GOD FOC ≌DC AD ==tan tan ADE DCF ∠=∠AE FD AD DC=O OG OF ⊥DE G O ABCD BD 90,COD CD OD∠=︒=COF DOG∠=∠CF DE⊥∴又∵,∴∴∴,∴又∵∴∴∵∴∴故选:D .10. 对于式子,按照以下规则改变指定项的符号(仅限于正号与负号之间的变换):第一次操作改变偶数项前的符号,其余各项符号不变;第二次操作:在前一次操作的结果上只改变3的倍数项前的符号;第三次操作:在前一次操作的结果上只改变4的倍数项前的符号;第四次操作:在前一次操作的结果上只改变6的倍数项前的符号.下列说法:①第二次操作结束后,一共有51项的符号为正号;②第三次操作结束后,所有10的倍数项之和为;③第四次操作结束后,所有项的和为.其中正确的个数是( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题主要考查数字规律,通过倍数关系找到变量以及变量之间的关系,①通过每次操作后均可得到需要改变符号的项数,结合正负改变得数量关系求解即可;②找到10的倍数每次操作的倍数关系,确定其正负后即可求得和;③第一次操作后所有项的和为,第二次操作后根据改变项相邻两项和为,且最后一个改变项为,即可求得本次改变量以及与上一次操作后的关系,第三次操作后第一改变项为,且改变项项后相邻三项为的倍数,即可求得本次改变量以及与上一次操作后的关系,第四次操作90DCF FDA ADE∠=︒-∠=∠45ADE GDB ∠=︒-∠45FCD OCF∠=︒-∠GDO FCO∠=∠()ASA GOD FOC ≌OG OF ==GD FC =2GF =5CF =523FD GD GF =-=-=DC ===tan tan ADE DCF∠=∠AE FD AD DC=AD FD AE DC ⨯==23499100x x x x x x ++++⋯++170x 825x 50x -3x 99x -4x 12x后可得改变项相邻两项的改变量,即可求得本次改变量,以及与上一次操作后的关系.【详解】解:①第一次操作结束后,所有奇数项的符号为正号,偶数项的符号为负号,此时正负各50个;第二次操作结束后,100项中有33个3的倍数,则33个数要改变符号,且偶数为16个,奇数为17个.此时正号有个不改变符号,负号有个不改变符号,则正号有个不改变符号,负号有个,故①错误;②第三次操作结束后,10的倍数第一次均为负,第二次操作后只有30、60和90为正,第三次操作后为20、40、60、80和100改变符号,则,故②正确;③第一次操作后所有项的和为;第二次操作后33个项要改变符号,所有项的改变量为,此时所有项的和为;第三次操作时有25个数改变符号,所有项的改变量为,此时所有项的和为;第四次操作后16个数要改变符号,所有项的改变量为,此时所有项的和为,故③错误.故选:B .二.填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上11. =___________.【答案】【解析】【分析】本题考查了负指数幂和0指数幂,熟悉相关的知识是解题的关键;根据,即可求解.【详解】解:;故答案为:.12. 已知正n 边形的每一个内角都等于,则n 的值为______.【答案】10【解析】【分析】本题主要考查了多边形的内角和定理.根据多边形的内角和定理:求解即可.6x 501733-=501634-=331649+=341751+=102030405060708090100170x x x x x x x x x x x -+++---+++=50x -()216399102x x ⨯+-=-⎡⎤⎣⎦()50102152x x x -+-=-()24122436485062748698872x x ⨯+++++++++=152872720x x x -+=()26896x x ⨯⨯=72096816x x x +=0223π-+-54()10n n a a a-=≠()010a a =≠0221152311244π-+-=+=+=54144︒()2180n -︒【详解】解:由题意可得:,解得:,故答案为:10.13. 如图,函数和的图象交于点,则关于x 的不等式的解集为___________.【答案】##【解析】【分析】本题主要考查了一次函数与不等式之间的关系,根据函数图象找到函数的图象在函数的图象上方时,自变量的取值范围即可得到答案.【详解】解:由函数图象可知,当函数的图象在函数的图象上方时,自变量的取值范围为,∴关于x 的不等式的解集为,故答案为:.14. 有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是___________.【答案】【解析】【分析】本题考查概率公式,列出全部的情况,利用概率公式计算即可.【详解】解:全部的情况(诚,勤)、(诚,立)、(诚,诚)、(诚,达)、(勤,勤)、(勤,诚)、(勤,立)、(勤,达)、(立,诚)、(立,勤)、(立,立)、(立,达)、(达,诚)、(达,勤)、(达,立)、(达,达)共16种情况,其中第一二次卡片汉字相同的有(诚,诚)、(勤,勤)、(立,立)、(达,达)共4种情况,()2180144n n -︒=⨯︒10n =3y x =-y kx b =+()2A m -,3x kx b ->+<2x -2x->3y x =-y kx b =+3y x =-y kx b =+<2x -3x kx b ->+<2x -<2x -14故所求的概率为.故答案为:.15. 如图,在扇形中,点为半径的中点,以点为圆心,的长为半径作弧交于点.点为弧的中点,连接、.若,则阴影部分的面积为___________.【答案】【解析】【分析】本题考查扇形的面积,四边形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.【详解】解:如图,连接,,,交于.,,,,,,,,,,41164=14AOB 90AOB ∠=︒C OA O OC CD OB D EAB CE DE 4OA=4π-AB CD OE OE CD J OC AC = OD DB =//CD AB ∴ AE BE =OE AB ∴⊥CD OE ∴⊥2OC OD == CJ OJ ∴=90COD ∠=︒ CD ∴===,,故答案为:.16. 如图,中,是的角平分线,,垂足为,过作交于点,过作交于点,连接,已知,,则_____.【解析】【分析】由是的角平分线,得,根据平行线的性质可求,从而有,通过同角或等角的余角相等得出,即可证明,由相似三角形的性质得,再通过勾股定理即可求出的长.【详解】∵是的角平分线,∴,∵,∴,∴,∴,∵,,∴,∴,,∴,∴,∴,∴,∵,,12OCED S CD OE ∴=⋅⋅=四边形21444AOB OCED S S S ππ∴=-=⋅⋅-=-阴扇形四边形4π-ABC AD BAC ∠BD AD ⊥D D ∥D E A C AB E D DF DE ⊥AC F EF 4AB =3BD =EF =AD BAC ∠BAD CAD ∠=∠BAD EDA ∠=∠EA ED =BDE ADF ∠=∠ABD ADF ∽AB BD AD DF=EF AD BAC ∠BAD CAD ∠=∠DE AC ∥EDA CAD ∠=∠BAD EDA ∠=∠EA ED =BD AD ⊥DF DE ⊥90BDA AFD ∠=∠=︒90BAD ABD ∠+∠=︒90EDA EDB ∠+∠=︒EDB ABD ∠=∠EB ED =EB ED EA ==122DE AB ==90BDE ADE ∠+∠=︒90ADE ADF ∠+∠=︒∴,∴,∴∴,∴,∴,在中,由勾股定理得:,,∴在中,由勾股定理得:.【点睛】本题考查了角平分线定义,勾股定理, 平行线的性质,等腰三角形的判定与性质,相似三角形的判定与性质和同角或等角的余角相等,熟练掌握以上知识点的应用是解题的关键.17. 若关于x 的一元一次不等式组有且仅有6个整数解,且使关于y 的分式方程有整数解,则所有满足条件的整数a 的值之和是___________.【答案】20【解析】【分析】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键;不等式组整理后,根据已知解集确定出的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出的值,求出之和即可.【详解】解:原不等式组的解集为:;BDE ADF ∠=∠90FAD ADF ∠+∠=︒90AFD ∠=︒90ADB AFD ︒∠=∠=ABD ADF ∽AB BD AD DF=Rt △ABD AD ===3DF=DF =Rt DEF △EF ===()()211232352x x x a x ⎧+>+⎪⎨⎪+≤-+⎩82222ay y y y ++=--a a 6106x a x >-⎧⎪-⎨≤⎪⎩∵有且仅有6个整数解;∴;即:;∴整数为:;∵关于的分式方程;∴整理得:;∵有整数解且;∴满足条件的整数的值为:;∴所有满足条件的整数的值之和是;故答案为:.18. 对于任意一个四位数,若它的千位数字与百位数字的和比十位数字与个位数字的和大,则称这个四位数根为“差双数”,记为的各个数位上的数字之和.例如:,,是“差双数”, ;,, 不是“差双数”.若与都是“差双数”,且,则“差双数”是_____;已知M ,N 均为“差双数”,其中, ,,,,,,,,,是整数,已知能被整除,且为整数,则满足条件的所有的的值之和为___________.【答案】①. ②. 【解析】【分析】根据“差双数”的定义可得的值为,;根据,可得和的另一个关系,进而求得和的值,即可求得差双数”;判断出和的各个数位上的数字,根据它们都是“差双数”得的各个数位上的数字的关系,得到和并化简,根据能被6106x a x >-⎧⎪-⎨≤⎪⎩10016a -≤<410a <≤a 5,6,7,8,9,10y 82222ay y y y ++=--66y a =-82222ay y y y ++=--626a ≠-a 5,7,8a 2020m 2()F m m 1632m =()16322+-+= 1632∴()1632163212F =+++=6397m =()639772+-+=-≠ 6397∴541k 32st (F 541k )(F =32st )32st 200010010M abcd =+++N 1000300x b =++40(14d a -≤≤03b ≤≤09c ≤≤19d ≤≤19x ≤≤a b c d x )()()2F M F N +-6()()F N F M M 343212740k 21s t -=(F 541k )(F =32st )s t s t “32st M N ()F M ()F N ()()2F M F N +-6整除,且为整数,得到可能的各个数位上的数字,计算得到所有的,相加即可.【详解】解:与都是“差双数”,,即则为:.,均为“差双数”,其中, ,,,,,,,,,是整数,即,能被整除,即是整数,又是整数,,且为整数,是整数,或或.当时,为整数或;()()F N F M M 541k 32st ∴()()5412,321k s t +-+=+-+=∴2k =1s t -=(F 541k )(F =32st )∴54132k s t +++=+++7s t +=∴4,3s t ==32st 3432M N 200010010M a b c d =+++N 1000300x b =++40(14d a -≤≤03b ≤≤09c ≤≤19d ≤≤19x ≤≤a b c d x )∴()()22,33102a b c d x b d ⎡⎤+-+=+-+-=⎣⎦22,315a b c d x b d +--=++=()222F M c d ∴=++()282.F N d =- ()()2F M F N +-2153102c d c d d d =+++++-++--228c =+62282463c c ++=+()()282142221F N d d F M c d c d --==++++09c ≤≤ c 2282463c c ++=+1c ∴=4c =7c =1c =()()141412F N d d F M c d d--==+++2d ∴=6d =当时,为整数,不存在;当时,为整数,不存在;①,.,.,,,或,.或.②,.,.,,,..满足条件的所有的的值之和为:.故答案为:,.三、解答题:(本大题共8个小题,19题8分,20-26题每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1);(2).【答案】(1)(2)【解析】【分析】(1)先利用完全平方公式,单项式乘以多项式计算,然后合并同类项即可;(2)先通分,利用完全平方公式,平方差公式计算,然后进行除法运算即可.4c =()()141415F N d d F M c d d --==+++d 7c =()()141418F N d d F M c d d --==+++d 1c =2d =22a b c d +=++ 25a b ∴+=14a ≤≤ 03b ≤≤1a ∴=3b =2a =1b =2000100102312M a b c d ∴=+++=4112M =1c =6d =22a b c d +=++ 29a b ∴+=14a ≤≤ 03b ≤≤3a ∴=3b =2000100106316M a b c d ∴=+++=∴M 23124112631612740++=343212740()()22x y y y x ---219422a a a a -⎛⎫++÷ ⎪++⎝⎭2x 33a a +-【小问1详解】解:;【小问2详解】解:.【点睛】本题考查了完全平方公式,平方差公式,单项式乘以多项式,分式的化简.熟练掌握完全平方公式,平方差公式,单项式乘以多项式,分式的化简是解题的关键.20. 如图,在中,, 平分,F 是的中点,连接, 是的一个外角.(1)用尺规完成以下基本作图:作的角平分线,交的延长线于点G ,连接.(保留作图痕迹,不写作法)(2)在(1)问所作的图形中,求证:四边形是矩形.证明:∵平分,平分∴ , ① .∴∵是等腰三角形顶角的角平分线∴(“三线合一”)∴ ②.()()22x y y y x ---22222x xy y y xy=-+-+2x =219422a a a a -⎛⎫++÷ ⎪++⎝⎭()()()()4213322a a a a a a ++++-=÷++()()()232233a a a a a ++=⋅++-33a a +=-ABC AC BC =CE BCA ∠AC EF ACD ∠ABC ACD ∠CG EF AG AECG CE ACB ∠CG ACD∠12ACE ACB ∠=∠()1902ECG ACE ACG ACB ACD ∠=∠+∠=∠+∠︒=CE 90AEC ∠=︒∴∴ ③ .∴在和中∴∴ ④ .∴四边形是平行四边形(有一组对边平行且相等的四边形是平行四边形)∴∴四边形是矩形( ⑤ )【答案】(1)见详解;(2);;;;有一个角是直角的平行四边形是矩形【解析】【分析】本题考查作图-基本作图,平行四边形的判定和性质,矩形的判定,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题;(1)根据题意作图即可;(2)先证明四边形是平行四边形,再根据有一个角是直角的平行四边形是矩形即可.【小问1详解】解:如图即为所求:【小问2详解】证明:∵平分,平分;∴ ,;∴;∵是等腰三角形顶角的角平分线;∴(“三线合一”);AE CG∥AFE △CFG △AFE CFG AF CFEAF GCF ∠=∠⎧⎪=⎨⎪∠=∠⎩()AFE CFG ASA ≌AECG 90ECG ∠=︒AECG 12ACG ACD ∠∠=180AEC ECG ∠+∠=︒EAF GCF ∠=∠AE CG =AECG CE ACB ∠CG ACD ∠12ACE ACB ∠=∠12ACG ACD ∠=∠()1902ECG ACE ACG ACB ACD ∠=∠+∠=∠+∠=︒CE 90AEC ∠=︒∴;∴;∴;∴在和中;;∴;∴;∴四边形是平行四边形(有一组对边平行且相等的四边形是平行四边形);∴;∴四边形是矩形(有一个角是直角的平行四边形是矩形);故答案为:;;;;有一个角是直角的平行四边形是矩形.21. 为了提高学生课外海量阅读,某中学开展了一系列课外阅读活动,组织七,八两个年级全体学生进行课外阅读知识竞赛,学校从七,八两个年级中各随机抽取a 名同学的竞赛成绩,并对他们的竞赛成绩进行收集、整理、分析,过程如下:(调查数据用x 表示,共分为四个等级:A 等:,B 等,C 等:,D 等:,其中A 等级为优秀,单位:分)收集数据:七年级抽取的C 等学生人数是A 等学生人数的3倍;八年级抽取的B 等学生成绩为:81,83,88,85,82,89,88,86,88抽取七,八年级学生竞赛成绩的平均数、中位数、众数、优秀人数如下表所示:七年级八年级平均数8585中位数86b 众数8688优秀人c 5180AEC ECG ∠+∠= AE CG ∥EAF GCF ∠=∠AFE △CFG △AFE CFG AF CFEAF GCF ∠=∠⎧⎪=⎨⎪∠=∠⎩()AFE CFG ASA ≌AE CG =AECG 90ECG ∠=︒AECG 12ACG ACD ∠∠=180AEC ECG ∠∠+= EAF GCF ∠=∠AE CG =90100x ≤≤8090x ≤<7080x ≤<6070x ≤<数(1)根据以上信息,解答下列问题:以上数据中: _______, _______, _______,并补全条形统计图:(2)根据以上数据,你认为该校七,八年级中哪个年级学生竞赛成绩更好?并说明理由(说明一条理由即可);(3)若该校七,八年级共有1600人,估计两个年级学生的竞赛成绩被评为优秀的总人数是多少?【答案】(1)20;87;2(2)八年级;理由:七年级学生知识竞赛成绩的中位数86小于八年级学生知识竞赛成绩的中位数87 (3)280人【解析】【分析】(1)用八年级的的人数除以它对应的所占的百分比,求出的值,再将数值排序,运用中位数的定义,得出的值,运用七年级的总人数减去的人数,再结合七年级抽取的C 等学生人数是A 等学生人数的3倍,列方程计算即可作答.(2)在平均数相同的基础上,比较中位数,易得七年级学生知识竞赛成绩的中位数86小于八年级学生知识竞赛成绩的中位数87,即可作答.(3)用1600乘以优秀占比,即可作答.【小问1详解】解:依题意,(人)结合扇形图,八年级各个等级的占比情况,得A 等级人数为,B 等级的人数为9人∴中位数在B 等级内,且排序后为81,82,83,85,86,88, 88,88,89,则;∵七年级抽取的C 等学生人数是A 等学生人数的3倍;设A 等学生人数为,则C等学生人数为=a b =c =B a b B D ,945%20a =÷=90205360︒⨯=︒()8688287b =+÷=x 3x则解得∴补全条形统计图如下:【小问2详解】解:八年级;理由:平均数都相等,但七年级学生知识竞赛成绩的中位数86小于八年级学生知识竞赛成绩的中位数87;【小问3详解】解:(人)【点睛】本题考查了条形统计图与扇形统计图的综合,画条形统计图,样本估计总体、中位数,运用中位数作决策等内容,难度适中,是常考题,正确掌握中位数的定义是解题的关键.22. 大地回春,春暖花开,正是植树好时节,市政决定完成鹿山公园的植树计划.市政有甲、乙两个植树工程队,原计划甲工程队每天比乙工程队多植树10棵,且甲工程队植树600棵和乙工程队植树360棵所用的天数相等.(1)求甲、乙两工程队原计划每天各植树多少棵?(2)风和日丽,甲、乙两个工程队工作效率也得到提升,甲工程队实际每天比原计划多植树20%,乙工程队每天比原计划多植树40%.因其他公园有不少树木需要补植,甲工程队需要中途离开去执行补植任务.已知在鹿山公园的植树任务中,乙工程队植树天数刚好是甲工程队植树天数的2倍,且鹿山公园的植树任务不少于1080棵,则甲工程队至少在鹿山公园植树多少天可以完成任务?【答案】(1)甲工程队原计划每天植树25棵,乙工程队原计划每天植树15棵(2)15天【解析】【分析】本题考查了解分式方程的应用,一元一次不等式的应用,找到数量关系列出方程与不等式是关83420x x +++=2x =2c =52716001600280202040+⨯=⨯=+键.(1)设乙工程队每天植树棵,则甲工程队每天植树棵,根据时间相等列出分式方程,求解即可,注意检验;(2)设甲工程队植树天可以完成任务,则乙工程队天,根据:植树任务不少于棵,列出不等式并解之即可.【小问1详解】解:设乙工程队每天植树棵,则甲工程队每天植树棵;由题意可得:;解得:;经检验,是原方程的解,且符合题意;则;答:甲工程队原计划每天植树棵,乙工程队原计划每天植树棵;【小问2详解】设甲工程队植树天可以完成任务,则乙工程队天;由题意得:;解得:;答:甲工程队至少在鹿山公园植树天可以完成任务.23. 如图,在中,,, ,点为的中点,于点,点从点出发沿折线运动(含、两点),当动点在上运动时,速度为每秒个单位,当动点在上运动时,速度变为每秒个单位,到达点停止运动,设点的运动时间为秒,线段的长度记为(1)请直接写出关于的函数表达式,并注明自变量的取值范围;x ()10x +m 2m 1080x ()10x +60036010x x=+15x =15x =1025x +=2515m 2m ()()120251401521080m m +⨯++⨯⨯≥%%15m ≥15ABC 6AB =10AC =90ABC ∠=︒D AC PM AB ⊥M P A A D B →→A B P AD 54P DB 58B P x PM 1y 1y x x(2)若函数,在给定的平面直角坐标系中分别画出函数和的图象,并写出该函数的一条性质;(3)结合函数图象,请直接估计时的取值范围.(保留一位小数,误差不超过)【答案】(1) (2)详见解析性质:当时,随的增大而增大(3)或【解析】【分析】本题考查了勾股定理,动点函数图象,利用图象法求函数自变量取值范围.利用分类讨论思想解决问题是解题的关键.(1)分两种情况,即在上还是上,利用勾股定理求得的长,即可解答;(2)根据描点法画出图象即可,再根据图象写出的一条性质;(3)根据图象得到的解析式,根据题意列方程即可解答.【小问1详解】解:当在上运动时,,,,,在中,,,即,当在上运动时,,,,,()260y x x=>1y 2y 1y 12y y <x 0.2()()104164122x x y x x ⎧≤≤⎪=⎨-+<≤⎪⎩04x ≤≤y x 0 2.5x <<11.012x <≤AD DB PM P AD 54AP x =152AD AC ==5054x ∴≤≤04x ∴≤≤Rt ABC 8BC ==8sin 10BC MP A AC AP ∴===MP x ∴=()104y x x =≤≤P BD ()548PD x =-()515554828PB x x =--=-()50458x <-≤ 412x ∴<≤,,,即,;【小问2详解】如图,性质:当时,随的增大而增大【小问3详解】,的函数图像在图像的下面,则根据图像即可得到或.24. 如图,车站A 在车站B 的正西方向,它们之间的距离为100千米,修理厂C 在车站B 的正东方向.现有一辆客车从车站B 出发,沿北偏东方向行驶到达D 处,已知D 在A 的北偏东方向,D 在C 的北偏西方向.(1)求车站B 到目的地D 的距离(结果保留根号)(2)客车在D 处准备返回时发生了故障,司机在D 处拨打了救援电话并在原地等待,一辆救援车从修理厂C 出发以35千米每小时的速度沿方向前往救援,同时一辆应急车从车站A 以60千米每小时的速度沿方向前往接送滞留乘客,请通过计算说明救援车能否在应急车到达之前赶到D 处.(参考数据:MBP A ∠∠ =sin MP BC MBP BP AC ∴∠==162MP x ∴-=()1164122y x x =-<≤()()104164122x x y x x ⎧≤≤⎪∴=⎨-+<≤⎪⎩04x ≤≤y x 12y y < 1y ∴2y 0 2.5x <<11.012x <≤45︒60︒30︒CD AD)【答案】(1)千米(2)能【解析】【分析】本题考查了解直角三角形的应用-方向角问题:(1)过点D 作于点E ,得出,,设千米,则千米,在中,千米,根据列方程求出,从而可求出;(2)分别求出的长,再求出应急车和救援车从出发地到目的地行驶时间,再进行比较即可得出答案【小问1详解】解:过点D 作于点E ,如图,则由题意知,∴是等腰直角三角形,∴设千米,则千米,在中,,∴,∵,∴,解得:,2.45≈≈≈+DE AC ⊥BE DE=BD =BE DE x ==BD =Rt ADE△AE =AE AB BE =+50x =+BD ,AD CD DE AC ⊥90,DEB ∠=︒60,ADE Ð=°904545,DBE ∠=︒-︒=︒DBE,,DE BE BD ==BE DE x ==BD =Rt ADE△tan tan 60AE ADE DE ∠==︒=AE ==AB BE AE +=100+x=50x =∴千米,即车站B 到目的地D 的距离为千米;【小问2详解】解:根据题意得,又∴千米,又∵∴千米,救援车所用时间为:(时);应急车所用时间为:(时)∵,∴救援车能在应急车到达之前赶到D 处.25. 如图1,二次函数的图象与轴相交于、两点,其中点的坐标为,与轴交于点,对称轴为直线.(1)求该二次函数的解析式;(2)是该二次函数图象上位于第一象限上的一动点,连接交于点,连接,,.若和的面积分别为、,请求出的最大值及取得最大值时点的坐标;)(50BD ==+=+30,CDE Ð=°cosDE EDC CD ∠==()50100CD ⎛==+= ⎝30,DAE ∠=︒()()2250100AD DE ==⨯+=+10035 4.5⎛÷≈ ⎝()10060 4.55÷≈4.5 4.55<()20y ax bx c a =++≠x A B B ()6,0y ()0,4C 2x =P PA BC E BP CP AC PBC PAC △1S 2S 12S S +P(3)如图2,将抛物线沿射线,为新抛物线上一点,作直线,当点到直线的距离是点到直线的距离的倍时,直接写出点的横坐标.【答案】(1) (2); (3【解析】【分析】本题考查二次函数的综合应用,涉及待定系数法,二次函数图像上点坐标的特征,相似三角形等知识,解题的关键是用含字母的式子表示相关点坐标和相关线段的长度.(1)直接将点坐标带入即可求解;(2)过作轴平行线交直线于,过作轴平行线交直线于,设出点坐标,进而求出、长度,用其表达,即可求解;(3)利用相似三角形性质即可求解.【小问1详解】解:抛物线过点,,对称轴,,解得,抛物线的解析式为;【小问2详解】由(1)知,,,,设直线为,,y BC y 'Q y 'BQ C BQ A BQ 3Q 214433y x x =-++50375,3P ⎛⎫ ⎪⎝⎭P y BC N P x AC M P PN PM 12S S + ()20y ax bx c a =++≠()6,0B ()0,4C 2x =3660422a b c c b a ⎧⎪++=⎪∴=⎨⎪⎪-=⎩13434a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩∴214433y x x =-++214433y x x =-++()2,0A -()6,0B ()0,4C AC 11y k x b =+111204k b b -+=⎧∴⎨=⎩,,设直线为,,,,设,如图1,过作轴平行线交直线于,过作轴平行线交直线于,,,,,,,,1124k b =⎧∴⎨=⎩24y x ∴=+BC 22y k x b =+222604k b b +=⎧∴⎨=⎩22234k b ⎧=-⎪∴⎨⎪=⎩243y x ∴=-+214,40633P n n n n ⎛⎫-++<< ⎪⎝⎭P y BC N P x AC M 2,43N n n ⎛⎫∴-+ ⎪⎝⎭221214,46333M n n n n ⎛⎫-+-++ ⎪⎝⎭2212116363PM n n n n n ⎛⎫∴=--+=+ ⎪⎝⎭2214214423333PN n n n n n -+++--+==()2122PAC PAM PCM C A S S S PM y y PM S ∴=-=⨯-== ()1132PBC cpn PNB B C S S S PN x x PN S ∴=+=⨯-== 22121223633S S PM PN n n n n ∴+++-+==,当时有最大值,此时,;【小问3详解】设平移到点,则轴于,如图2则,,,,即将抛物线向左平移个单位,向上平移个单位,又,则新抛物线顶点为,新抛物线为,如图3作于,于,直线交直线于,()2250533n =--+∴5n =12S S +503214252074433333n n -++-++==75,3P ⎛⎫∴ ⎪⎝⎭B B 'BB '=B K x '⊥K //CO B K 'BB K BCO '∴ ∽BB BK B K BC BO CO ''∴==64BK B K '==3BK ∴=2B K '=32()()222141116444233333y x x x x x =-++=--+=--+221,3⎛⎫- ⎪⎝⎭()2122133y x =-++AM BQ ⊥M CN BQ ⊥N BQ AC G,,,分类讨论:当在线段上,过点作轴于点,,,,,,,,,设直线为,,解得,,联立,,,,//AM CN ∴AMG CNG ∴ ∽3CG CN AC AN∴==G AC G GL x ⊥L //GL CO ∴AGL ACD ∴ ∽CG GL AL AC OC AO ∴==144GL AL OA∴==1GT ∴=12AL =13222OL ∴-==3,12G ⎛⎫∴- ⎪⎝⎭BG 33y k x b =+333331260k b k b ⎧-+=⎪∴⎨⎪+=⎩3321545k b ⎧=-⎪⎪⎨⎪=⎪⎩24155y x ∴-+=212733y x x --+=21224033155x x +--7+=258930x x +-=64186019240∆+>==当在线段的延长线上时,如图4过点作轴于,,,,,,,,,,设直线为,,解得,,联立,,,,,G CA G GL x ⊥L //GL OC ∴AGL ACO ∴ ∽AG GL AL AC OC AO∴==13AG GC =12GA AC ∴=12GL AL OC AO ∴==2GL ∴=1AL =()3,2G ∴--BQ 44y k x b =+44446032k b k b +=⎧∴⎨-+=-⎩442943k b ⎧=⎪⎪⎨⎪=-⎪⎩2493y x ∴-=212733y x x --+=21242703339x x x ∴+--+=236631220x x x +--+=238750x x +-=6447539640∆+⨯⨯>==综上.26. 已知是等腰直角三角形,,为平面内一点.(1)如图1,当点在的中点时,连接,将绕点逆时针旋转,得到,若,求的周长;(2)如图2,当点在外部时,、分别是、的中点,连接、、,将绕点逆时针旋转得到,连接、、,若,请探究、、之间的数量关系并给出证明;(3)如图3,当在内部时,连接,将绕点逆时针旋转,得到,若经过中点,连接、,为的中点,连接并延长交于点,当最大时,请直接写出的值.【答案】(1)(2)(3【解析】【分析】本题是几何变换综合题,考查了旋转性质,全等三角形的判定与性质,相似三角形的性质与判定,等腰直角三角形的性质,勾股定理,三角形的中位线的性质与判定,熟练掌握等腰直角三角形的性质及旋转的性质是解题的关键.(1)作中点,连接,是的中位线,可得,得到,由旋转的性质可得,,进而得到,,最后由勾股定理得即可求解;Q ABC AB AC =D D AB CD CD D 90︒ED 4AB =ADE V D ABC E F AB BC EF DE DF DE E 90︒EG CG DG FG FDG FGE ∠∠=FD FG CG D ABC AD AD D 90︒ED ED BC F AE CE G CE GF AB H AG ΔΔACG AHGS S 2++FD CG =+BC M DM DM ABC DM AB ⊥BD AD DM ==EDA CDM ≌2AD BD DM ===4AC =。

九年级第一次模拟考试数学试卷

九年级第一次模拟考试数学试卷

九年级第一次模拟考试数学试卷第Ⅰ卷 (选择题共36分)一、选择题 (以下各题的四个选项中,只有一项切合题意,每题3分,共 36分。

)1.计算 (- 1)3的结果是 ( )A.- 1 B . 1 C.- 3 D. 32.以下各式计算正确的选项是( )A.a2 a 2 a4 B.(3x)2 6x2C.(x2)3 x6 D.( x y)2 x2 y23.今年“五一”黄金周,我省实现社会花费的零售总数约为94亿元。

若用科学记数法表示,则 94亿可写为 ()A. 0. 94× 109 B .9. 4× 109C. 9.4× 107D. 9. 4×108 4.以下检查方式,适合的是()A.要认识一批灯泡的使用寿命,采纳普查方式B.要认识济宁电视台“直播民生”栏目的收视率,采纳普查方式C.要保证“嫦娥一号”月球卫星成功发射,对重要零零件的检查采纳抽查方式D.要认识人们对环境的保护意识,采纳抽查方式5.对角线相互垂直均分的四边形是()A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形6.袋中有 3个红球, 2个白球,若从袋中随意摸出1个球,则摸出白球的概率是()A.1B .2 2 1 5C.3D.5 37.对于x 的不等式2x a 1 1 a ()的解集,如图所示,则的取值是A.0B.-3C.-2D.-18.在图 2中, EB 为半圆 O的直径,点 A在 EB的延伸线上, AD 切半圆 O于点 D, BC ⊥ AD 于点C, AB=2 ,半圆 O的半径为 2,则 BC 的长为 ()A. 2 B .1 C.1. 5 D.0.59.假如一次函数y kx b 的图象经过第一象限,且与y 轴负半轴订交,那么( ) A. k>0, b>0 B.k>0, b<0 C.k<0 , b>0 D . k<0, b<010.已知点A( - 1,1),B(2 ,3),若要在x 轴上找一点P,使PA+PB 最小,则点 P的坐标是( )A.(-1 ,0)B .(1, 0) C. (3, 0) D. (0, 0) 4 2 211.小明拿一个等边三角形木框在阳光下玩,是等边三角形木框在地面上形成的投影不行能...()12.察看表 1,找寻规律.表2是从表 1中截取的一部分,此中 a ,b,c的值分别为()A. 20, 25, 24 B .25, 20,24 C. 18,25, 24 D . 20, 30, 25第Ⅱ卷(非选择题共84分 )二、填空题:(每题 3分,共18分。

初三第一次模考数学试卷

初三第一次模考数学试卷

一、选择题(每题5分,共30分)1. 下列各数中,是整数的是()A. -3.5B. 2.3C. -1/2D. 22. 下列各式中,正确的是()A. a^2 = aB. (a + b)^2 = a^2 + b^2C. (a - b)^2 = a^2 - b^2D. (a - b)^2 = a^2 + 2ab - b^23. 已知a、b、c是等差数列,且a + b + c = 12,则b的值为()A. 4B. 6C. 8D. 104. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = 2x5. 在△ABC中,∠A = 30°,∠B = 45°,则∠C的度数为()A. 75°B. 105°C. 135°D. 150°二、填空题(每题5分,共25分)6. 0.001的分数形式是__________。

7. (-3/4)的相反数是__________。

8. 已知a + b = 7,a - b = 3,则a = ________,b = ________。

9. 若一个等差数列的前三项分别为1,4,7,则该数列的公差为__________。

10. 若二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(-2,3),则a的值为__________。

三、解答题(每题10分,共40分)11. (1)已知x^2 - 5x + 6 = 0,求x的值。

(2)若a、b是方程2x^2 - 3x - 2 = 0的两根,求a^2 + b^2的值。

12. (1)已知数列{an}的通项公式为an = 2n - 1,求该数列的前10项和。

(2)已知数列{bn}是等比数列,且b1 = 2,b3 = 16,求该数列的公比。

13. (1)已知函数y = kx + b的图象经过点(2,3),且与y轴的交点坐标为(0,1),求k和b的值。

九年级数学中考第一次模拟考卷

九年级数学中考第一次模拟考卷

九年级数学中考第一次模拟考卷一、选择题(每题4分,共40分)1. 下列选项中,既是奇数又是合数的是()A. 21B. 39C. 51D. 632. 已知a、b为实数,且a≠b,则下列等式中成立的是()A. (a+b)² = a² + b²B. (ab)² = a² b²C. (a+b)² = a² + 2ab + b²D. (ab)² = a² 2ab b²3. 下列函数中,是正比例函数的是()A. y = 2x²B. y = 3x 1C. y = x + 3D. y = 5/x4. 在三角形ABC中,a=8,b=10,cosA=3/5,则三角形ABC的面积是()A. 24B. 30C. 36D. 405. 下列关于x的不等式中,有解的是()A. x² < 0B. x² = 1C. x² > 0D. x² = 06. 已知一组数据的方差是9,那么这组数据每个数都加5后,方差是()A. 4B. 9C. 14D. 187. 下列关于圆的说法,正确的是()A. 圆的半径相等,则圆心距相等B. 圆心角相等,则弧长相等C. 弧长相等,则圆心角相等D. 圆的半径相等,则面积相等8. 下列关于概率的说法,错误的是()A. 概率的取值范围是0到1B. 必然事件的概率是1C. 不可能事件的概率是0D. 随机事件的概率大于19. 已知平行四边形ABCD的对角线交于点E,若BE=4,CE=6,则平行四边形ABCD的面积是()A. 24B. 36C. 48D. 6010. 下列关于二次函数的说法,正确的是()A. 二次函数的图像一定经过原点B. 二次函数的图像一定有最小值C. 二次函数的图像一定有最大值D. 二次函数的图像一定是一条直线二、填空题(每题4分,共40分)11. 已知等差数列的前5项和为35,第5项为15,则首项为______。

九年级数学第一次模拟考试(word,无答案)

九年级数学第一次模拟考试(word,无答案)

九年级第一次模拟考试数学试题时间:120分钟 满分:150分一.选择题(每题3分,共24分) 1. -5的绝对值是( )A. -5B.51C. 5D. -512. 如图是由5个完全相同的小正方体组成的几何体,其左视图是( )3. 下列运算正确的是( )A. a 3+a 3=a 6B. a 4·a 2=a 6C. (-3ab 2)2=6a 2b 4D. (a 3)2=a 54. 某种植物花粉的直径约为45000纳米,用科学记数法表示该种花粉的直径为( )米 A.4105.4⨯ B. 4105.4-⨯ C. 5105.4-⨯ D. 9105.4-⨯ 5. 下列调查中适宜抽样调查的是( )A. 了解某班同学的身高情况B. 对市场上冰淇淋质量的调查C. 为保证地铁新增列车的安全运行,对各新增列车进行检查D. 旅客上飞机前的安检6. 在学校组织了植树活动中,活动结束后,调查统计了某班6个小组的植树情况,统计数据如下表所示:6个小组植树棵数的众数和平均数分别是( )A. 11,10B. 10,11C. 11,11D. 10,107. 如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB 、AC 于E 、F 两点;再分别以E 、F 为圆心,大于21EF 长为半径作圆弧,两条圆弧交于点G ,作射线AG 交CD 于点H.若∠C =140°,则∠AHC 的大小是( )A. 20°B. 25C. 30D. 40°8.如图,在平面直角坐标系中,直线y=﹣3x+3与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD 沿x 轴负方向平移a 个单位长度后,点C 恰好落在双曲线上则a 的值是( )A .1B .2C .3D .4二.填空题(每题3分,共24分)9. 因式分解:m 2n -6mn +9n =__________10. 从数-2,-12,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则y =kx 的图象经过第一、三象限的概率是__________ 11. 不等式组⎩⎪⎨⎪⎧x +5<5x +1x -m >1的解集是x >1,则m 的取值范围是__________12. 如图,直线a ∥b ,直线c 与直线a 、b 分别交于A 、B 两点,AC ⊥直线b 于点C ,若∠1=43°,则∠2=__________13. 随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止至2017年底某市汽车拥有量为16.9万辆.已知2015年底该市汽车拥有量为10万辆.设2015年底至2017年底该市汽车拥有量的年平均增长率为x .根据题意列方程得__________14. 如图,在△ACB 中,∠BAC =50°,AC =2,AB =3,现将△ACB 绕点A 逆时针旋转50°,得到△AC 1B 1,则阴影部分面积为__________15. 甲、乙、丙三名学生的五次数学考试成绩的平均数均为140分(满分150分),若甲成绩的方差为10.2,乙成绩的方差为33.6,丙成绩的方差为21.2,则这三人成绩比较稳定的是________(填“甲”、“乙” 或“丙”).16. 如图,正方形ABCB 1中,AB =1,AB 与直线l 的夹角为30°,延长CB 1交直线l 于点A 1,作正方形A 1B 1C 1B 2,延长C 1B 2交直线l 于点A 2,作正方形A 2B 2C 2B 3,延长C 2B 3交直线l 于点A 3,作正方形A 3B 3C 3B 4,…,依此规律,则A 2017A 2018=__________ 三.解答题(共102分)17.(8分)先化简,再求值:(x 2+1x 2-x -2x -1)÷x +1x ,请在-1,0,1,2中选择一个适当的数作为x 的值代入求值18.(8分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(2,2),B(4,0),C(4,-4).(1) 请画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2) 以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在y 轴右侧画出△A 2B 2C 2,并写出∠A 2C 2B 2的正弦值.19.(10分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益.我校为了了解七年级学生的早锻炼情况,在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x (分钟)进行了调查.现把调查结果分成A 、B 、C 、D 四组,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题: (1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在________组内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)20.(10分)为完善城市交通系统,根据市政建设的需要,需在当月的前20天内完成部分区域的铺路工程.现有甲、乙两个工程队有意承包这项工程,经调查,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的1.5倍,若甲、乙两工程队合作只需6天完成.甲、乙两个工程队单独完成此项工程各需多少天?21.(10分)小明同学对物理课上关于小灯泡的电路实验很感兴趣,他画出了如图所示的关于红灯(Lr)和黄灯(Ly)的电路图,已知闭合每个开关的可能性相同.(1)如图①,随机闭合一个开关时,请直接写出红灯亮的概率;(2)如图②,若1、2、3为一组,4、5、6为一组,每组随机闭合一个开关,请用列表法或画树状图法求黄灯亮的概率.22.(10分))如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的⊙O 与AD 、AC 分别交于点E 、F ,且∠ACB =∠DCE.(1)判断直线CE 与⊙O 的位置关系,并证明你的结论; (2)若tan ∠ACB =22,BC =2,求⊙O 的半径.23.(10分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD =2米),背水坡DE 的坡度i =1∶1,如图所示.已知AE =4米,∠EAC =130°,求水坝原来的高度BC .(参考数据:sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.2)24.(10分)某水果经销商到水果种植基地采购一种水果,经销商一次性采购水果的采购单价y (元/千克)与采购量x (千克)之间的函数关系图象如图中折线AB -BC -CD 所示(不包括端点A ).(1)当100<x <200时,直接写出y 与x 之间的函数关系式:________; (2)水果的种植成本为2元/千克,某经销商一次性采购水果的采购量不超过200千克,当采购量是多少时,水果种植基地获利最大,最大利润是多少元?(3)在(2)的条件下,求经销商一次性采购的水果是多少千克时,水果种植基地能获得418元的利润?25.(12分)已知△ABC 和△ADE 是等腰直角三角形,∠ACB=∠ADE=90°,点F 为BE 中点,连接DF 、CF. (1)如图1,当点D 在AB 上,点E 在AC 上,请直接写出此时线段DF 、CF 的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A 顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE 绕点A 顺时针旋转90°时,若AD=1,AC=22,求此时线段CF 的长(直接写出结果).26.(14分)如图,平面直角坐标系中,直线2+=x y 与x 轴交于点A, 与y 轴交于点D ,B 为AO 的中点, DC ⊥DB 交x 轴于点C ,E 在y 轴上,且OC =OE ,经过B 、E 、C 三点的抛物线与直线AD 交于F 、G 两点,与其对称轴交于M 点, (1)求经过B 、E 、C 三点的抛物线的解析式; (2)P 为线段FG 上一个动点(与F 、G 不重合),PQ ∥y 轴与抛物线交于点Q .若以P、Q、M为顶点的三角形与△AOD 相似,求出满足条件的点P 的坐标;(3)N 是抛物线上一动点,在抛物线的对称轴上是否存在点H ,使以C ,D ,N ,H 为顶点的四边形为平行四边形.若存在,直接写出满足条件的点H的坐标;若不存在,请说明理由;图1EA ABC。

2024年中考数学第一次模拟试卷(湖南长沙卷)(全解全析)

2024年中考数学第一次模拟试卷(湖南长沙卷)(全解全析)

2024年中考第一次模拟考试(湖南长沙卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列四个实数中,最小的是()A.2-B.4C.1D.5-【答案】D【分析】此题主要考查了实数大小比较的方法.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.>,【详解】解:∵54∴52>,∴52-<-,∴5214-<-<<,∴最小的数是5-,故选:D.2.在以下回收、绿色食品、节能、节水四个标志中,是中心对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称图形的概念:一个图形沿某个点旋转180度后能与原图完全重合的;由此问题可求解.【详解】解:选项A、B、D不能找到一个点绕其旋转180度后能与原图完全重合,所以都不是中心对称图形,而C选项可以找到一个点绕其旋转180度后能与原图完全重合,所以是中心对称图形;故选C.【点睛】本题主要考查中心对称图形,熟练掌握中心对称图形的概念是解题的关键.3.下列计算中,正确的是()A .()326x x -=-B .()2211x x =++C .632x x x=D .235+=【答案】A 【分析】根据积的乘方,完全平方公式,同底数幂的除法,二次根式的加法对各选项进行判断即可.【详解】解:由题意知,()326x x -=-,正确,故A 符合要求;()2221211x x x x +=++≠+,错误,故B 不符合要求;6432x x x x=≠,错误,故C 不符合要求;235+≠,错误,故D 不符合要求;故选:A .【点睛】本题考查了积的乘方,完全平方公式,同底数幂的除法,二次根式的加法.熟练掌握积的乘方,完全平方公式,同底数幂的除法,二次根式的加法是解题的关键.4.据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团员7358万.数据7358万用科学记数法表示为()A .7.358×107B .7.358×103C .7.358×104D .7.358×106【答案】A【分析】本题主要考查了科学记数法,表示较大的数,利用科学记数法的法则解答即可.【详解】解:7358万77.3581735800000=⨯=,故选:A .5.如图,把一个含有45︒角的直角三角板放在两条平行线m ,n 上,若123α∠=︒,则∠β的度数是()A .48︒B .88︒C .78︒D .75︒【答案】C 【分析】可求1123α∠=∠=︒,178ACB B ∠=∠-∠=︒,即可求解.【详解】解:如图:m n ∥,1123α∴∠=∠=︒,1∠ 是ABC 的一个外角,45B ∠=︒,178ACB B ∴∠=∠-∠=︒,78ACB β∴∠=∠=︒,故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质,掌握性质是解题的关键.6.如图,AB 是O 的直径,42D ∠=︒,则CAB ∠=()A .52︒B .58︒C .48︒D .42︒【答案】C 【分析】本题考查圆周角的性质.由AB 是O 的直径可得90ACB ∠=︒,又由“同弧或等弧所对圆周角相等”可得42B D ∠=∠=︒,从而可求得CAB ∠.【详解】∵AB 是O 的直径,∴90ACB ∠=︒,∵ AC AC=∴42B D ∠=∠=︒,∴90904248CAB B ∠=︒-∠=︒-︒=︒.故选:C7.一元一次方程不等式组11112x x +≥-⎧⎪⎨<⎪⎩的解在数轴上表示正确的是()A .B .C .D .【答案】D 【分析】本题考查的是一元一次不等式组的解法及在数轴上表示解集,在数轴上表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.熟练掌握不等式组的解法是解题的关键.先分别解出两个不等式,然后找出解集,表示在数轴上即可.【详解】解:11112x x +≥-⎧⎪⎨<⎪⎩①②,由①得,x ≥−2,由②得,2x <,故原不等式组的解集为:22x -≤<.在数轴上表示为:故答案为:D .8.如图,在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法错误的是()A .众数是90分B .方差是10C .平均数是91分D .中位数是90分【答案】B 【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】解:A 、∵90出现了5次,出现的次数最多,∴众数是90;故此选项不符合题意;B 、方差是:()()()()2222128591295915909110091191010⎡⎤⨯⨯-+⨯-+-+-=≠⎣⎦;故此选项符合题意;C 、平均数是(85×2+100×1+90×5+95×2)÷10=91;故此选项不符合题意;D 、∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故此选项不符合题意.故选:B .【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,能从统计图中获得有关数据,求出众数、中位数、平均数、方差是解题的关键.9.在同一平面直角坐标系中,函数y ax =和()0y x a a =+≠的图象可能是()A .B .C .D .【答案】D【分析】本题主要考查正比例函数的系数和一次函数常数项决定图象所过象限的知识点.【详解】解:A .由函数y ax =得0a >,与()0y x a a =+≠图象的a<0矛盾,故本选项不符合题意;B .函数()0y x a a =+≠所过象限错误,故本选项不符合题意;C .函数()0y x a a =+≠所过象限错误,故本选项不符合题意;D .由函数y ax =得a<0,与()0y x a a =+≠图象的a<0一致,故本选项符合题意.故选:D .10.“千门万户瞳瞳日,总把新桃换旧符”.春节是中华民族的传统节日,古人常用写“桃符”的方式来祈福避祸,而现在,人们常用贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿.某商家在春节期间开展商品促销活动,顾客凡购物金额满100元,就可以从“福”字、春联、灯笼这三类礼品中免费领取一件.礼品领取规则:顾客每次从装有大小、形状、质地都相同的三张卡片(分别写有“福”字、春联、灯笼)的不透明袋子中,随机摸出一张卡片,然后领取一件与卡片上文字所对应的礼品.现有2名顾客都只领取了一件礼品,那么他们恰好领取同一类礼品的概率是()A .19B .16C .13D .12【答案】C【分析】分别用,,A B C 表示写有“福”字、春联、灯笼的三张卡片,利用列表法求出概率即可.【详解】解:分别用A ,B ,C 表示写有“福”字、春联、灯笼的三张卡片,列表如下:AB C AA ,A A ,B A ,C BB ,A B ,B B ,C C C ,A C ,B C ,C共有9中等可能的结果,其中他们恰好领取同一类礼品有3种等可能的结果,∴3193P ==;故选C .【点睛】本题考查列表法求概率,解题的关键是正确的列出表格.第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.若22x -在实数范围内有意义,则x 的取值范围是.【答案】2x ≥【分析】此题主要考查了二次根式有意义的条件,正确掌握相关定义是解题关键.直接利用二次根式有意义则被开方数大于或等于零即可得出答案.【详解】解:22x -在实数范围内有意义,故20x -≥,解得:2x ≥.故答案为:2x ≥.12.分式方程422x x =-的解是.【答案】2x =-【分析】先去分母,再解出整式方程,然后检验,即可求解.【详解】解:去分母得:()224x x -=,解得:2x =-,检验:当2x =-时,()20x x -≠,∴原方程的解为2x =-.故答案为:2x =-【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验.13.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,实数m 的取值范围是.【答案】1m </1m>【分析】利用方程有两个不相等的实数根时,0∆>,建立关于m 的不等式,求出m 的取值范围.【详解】解: 关于x 的一元二次方程220x x m -+=有两个不相等的实数根,∴()2240m ∆=-->,即440m ->,解得:1m <,故答案为:1m <.【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键.14.如图,扇形OAB 的半径为1,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧相交于点P ,35BOP ∠=︒,则 AB 的长l =(结果保留π).【答案】718π/718π【分析】先求解223570AOB BOP ∠=∠=⨯︒=︒,再利用弧长公式计算即可.【详解】解:由作图知:OP 垂直平分AB ,∵OA OB =,∴223570AOB BOP ∠=∠=⨯︒=︒,∵扇形的半径是1,∴ AB 的长70π17π18018⨯==.故答案为:7π18.【点睛】本题考查的是线段的垂直平分线的作图,等腰三角形的性质,弧长的计算,熟记弧长公式是解本题的关键.15.如图,反比例函数k y x=的图象经过ABCD Y 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD Y 的面积为16,则k =.【答案】8-【分析】由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.【详解】解:如图,过点P 做PE y ⊥轴于点E .四边形ABCD 为平行四边形,AB CD ∴=,又BD x ⊥Q 轴,ABDO ∴为矩形,AB DO ∴=,16ABCD ABDO S S ∴== 矩形,P 为对角线交点,PE y ⊥轴,∴四边形PDOE 为矩形面积为8,即8DO EO ⋅=,∴设P 点坐标为(,)x y ,8k xy ==-.故答案为:8-.【点睛】本题考查了反比例函数k 的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.16.《九章算术》是中国古代的数学专著,书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt ABC △的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为.【答案】6017/9317【分析】先设正方形的边长为x ,再表示出DE ,AD ,然后说明ADE V ∽ACB △,并根据对应边成比例得出答案.【详解】根据题意可知=5AC ,=12BC .设正方形的边长为x ,则=DE CD x =,5AD x =-.∵四边形CDEF 是正方形,∴==90C ADE ∠∠︒.∵A A ∠=∠,∴ADE V ∽ACB △,∴AD DE AC BC =,即5512x x -=,解得6017x =.所以正方形的边长为6017.故答案为:6017.【点睛】本题主要考查了正方形的性质,相似三角形的性质和判定,相似三角形的对应边成比例是求线段长的常用方法.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每题9分,第24、25每题10分,共72分)17.计算:()2012sin60π2133-⎛⎫︒--++- ⎪⎝⎭【答案】237+【分析】本题考查实数的混合运算,先计算特殊角三角函数值,零次幂,负整数次幂,绝对值,再进行加减运算即可,正确计算是解题的关键.【详解】解:()2012sin60π2133-⎛⎫︒--++- ⎪⎝⎭2312131213=⨯-++-⎛⎫ ⎪⎝⎭31931=-++-237=+18.先化简,再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中3a =.【答案】21-a a ,336+【分析】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】解:原式22212111a a a a a ---+=÷-+()()()21112a a a a a a -+=⋅+--21a a =-当3a =时,原式133633+==-.19.如图,从水平面看一山坡上的通讯铁塔PC ,在点A 处用测角仪测得塔顶端点P 的仰角是45︒,向前走9米到达B 点,用测角仪测得塔顶端点P 和塔底端点C 的仰角分别是60︒和30︒.(1)求BPC ∠的度数;(2)求该铁塔PC 的高度.(结果精确到0.1米;参考数据:3 1.73≈,2 1.41≈)【答案】(1)30︒(2)14.3米【分析】本题考查了仰角的定义、解直角三角形、三角函数;(1)延长PC 交直线AB 于点F ,根据直角三角形两锐角互余求得即可;(2)设PC x =米,根据AF PF =,构建方程求出x 即可.【详解】(1)延长PC 交直线AB 于点F ,则AF PF ⊥,依题意得:45PAF ∠=︒,60PBF ∠=︒,∴906030BPC ∠=-=︒︒︒.(2)设PC x =米,∵60PBF ∠=︒,30CBF ∠=︒,∴30PBC ∠=︒,∴PBC BPC ∠=∠,∴PC CB x ==米,在Rt CBF △中,3cos302BF CB x =︒=,1sin 302CF CB x =︒=,在Rt PAF △中,45PAF APF ∠=∠=︒,∴PF AF =,∴3139222x x x x +=+=,∴933x =+,∴93393 1.7314.3PC =+≈+⨯≈(米),即该铁塔PC 的高度约为14.3米.20.为了进一步加强中小学国防教育,教育部研究制定了《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织七、八年级全体学生参加了国防知识竞赛(百分制),并规定90分及以上为优秀,8089~分为良好,6079~分为及格,59分及以下为不及格.该学校七、八两个年级各有学生300人,现随机抽取了七、八年级各20名学生的成绩进行了整理与分析,下面给出了部分信息.a .抽取七年级20名学生的成绩如下:65875796796789977710083698994589769788188b .抽取七年级20名学生成绩的频数分布直方图如图1所示(数据分成5组:5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100)x ≤≤)c .抽取八年级20名学生成绩的扇形统计图如图2所示.d .七年级、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表:年级平均数中位数方差七年级81m 167.9八年级8279.5108.3请根据以上信息,回答下列问题:(1)补全七年级20名学生成绩的频数分布直方图,写出表中m 的值;(2)估计七、八两个年级此次竞赛成绩达到优秀的学生共有多少人;(3)若本次竞赛成绩达到81分及以上的同学可以获得参加挑战赛的机会,请根据样本数据估计,七、八两个年级中哪个年级获得参加挑战赛的机会的学生人数更多?并说明理由.【答案】(1)补全条形统计图见解析;82m =(2)七、八两个年级此次竞赛成绩达到优秀的学生共有165人(3)七年级获得参加挑战赛的机会的学生人数更多;理由见解析【分析】(1)根据题意可得七年级成绩位于6070x ≤<的有4人;七年级成绩位于第10位和第11位的是81和83,即可求解;(2)先求出八年级成绩优秀的所占的百分比,再分别用300乘以各自的百分比,即可求解;(3)分别求出七、八两个年级获得参加挑战赛的机会的学生人数,然后进行比较即可.【详解】(1)解:根据题意得:七年级成绩位于6070x ≤<的有4人,补全图形如下:七年级成绩位于第10位和第11位的是81和83,∴七年级成绩的中位数8183822m +==;(2)解:根据题意得:八年级成绩良好的所占的百分比为72100%20%360︒⨯=︒∴八年级成绩优秀的所占的百分比为120%45%5%30%---=,∴八年级成绩达到优秀的学生有30030%90⨯=(人),七年级成绩达到优秀的学生有53007520⨯=人,9075165+=(人),答:七、八两个年级此次竞赛成绩达到优秀的学生共有165人.(3)解:八年级获得参加挑战赛的机会的学生人数约为:()30020%30%150⨯+=(人),七年级获得参加挑战赛的机会的学生人数约为:1130016520⨯=(人),∵150165<,∴七年级获得参加挑战赛的机会的学生人数更多.【点睛】本题主要考查了条形统计图和扇形统计图,求中位数,用样本估计总体,明确题意,准确从统计图中获取信息是解题的关键.21.如图,在Rt ABC 中,32AC BC ==,点D 在AB 边上,连接CD ,将CD 绕点C 逆时针旋转90︒得到CE ,连接BE ,DE .(1)求证:CAD CBE ≌;(2)若2AD =时,求CE 的长;(3)点D 在AB 上运动时,试探究22AD BD +的值是否存在最小值,如果存在,求出这个最小值;如果不存在,请说明理由.【答案】(1)见解析(2)10(3)存在,18【分析】(1)由S AS 即可证明CAD CBE ≌;(2)证明CAD CBE ≌(SAS ),勾股定理得到DE ,在Rt CDE 中,勾股定理即可求解;(3)证明2222AD BD CD +=,即可求解.【详解】(1)解:由题意,可知90ACB DCE ∠=∠=︒,CA CB =,CD CE =.ACB DCB DCE DCB ∴∠-∠=∠-∠.即ACD BCE ∠=∠.()SAS CAD CBE ∴ ≌.(2) 在Rt ABC 中,32AC BC ==,45,26CAB CBA AB AC ∴∠=∠=︒==.624BD AB AD ∴=-=-=.CAD CBE ≌,2BE AD ∴==,45CBE CAD ∠=∠=︒.90ABE ABC CBE ∴∠=∠+∠=︒.2225DE BD BE ∴=+=.∴在Rt CDE △中,102DE CE CD ===.(3)由(2)可知,2222222AD BD BE BD DE CD ===++.∴当CD 最小时,有22AD BD +的值最小,此时CD AB ⊥.ABC 为等腰直角三角形,116322CD AB ∴==⨯=.∴222222318AD BD CD =≥⨯=+.即22AD BD +的最小值为18.【点睛】本题主要考查了图形的几何变换,涉及到等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,熟练掌握以上知识是解题的关键.22.某服装店老板到厂家选购A 、B 两种型号的服装,若购进A 种型号服装9件与B 种型号服装10件共需要1810元;若购进A 种型号服装12件与B 种型号服装8件共需要1880元.(1)A 、B 两种型号的服装每件分别为多少元?(2)若销售1件A 型服装可获利18元,销售1件B 型服装可获利30元,根据市场需求,服装店老板决定购进A 型服装的数量要比购进B 型服装的数量的2倍还多4件,这样服装全部售出后可使总的获利不少于732元,问至少购进B 型服装多少件?【答案】(1)A 种型号服装每件90元,B 种型号服装每件100元.(2)至少购进B 型服装10件.【分析】本题考查了一元一次不等式的应用、一元一次方程的应用,准确地找到等量关系并用方程组表示出来是解题的关键.(1)根据题意可知,本题中的相等关系是“A 种型号服装9件,B 种型号服装10件,需要1810元”和“A 种型号服装12件,B 种型号服装8件,需要1880元”,列方程组求解即可.(2)利用两个不等关系列不等式,结合实际意义求解.【详解】(1)设A 种型号服装每件x 元,B 种型号服装每件y 元.依题意可得:91018101281880x y x y +=⎧⎨+=⎩,解得:90100x y =⎧⎨=⎩,答:A 种型号服装每件90元,B 种型号服装每件100元.(2)设B 型服装购进m 件,则A 型服装购进()24m +件.根据题意得:()182430732m m ++≥,解不等式得10m ≥,答:至少购进B 型服装10件.23.如图,四边形ABCD 为矩形,点E 在边AD 上,AE CD =,连接CE ,过点E 作EF CE ⊥交AB 于点F ,分别过点C 、F 作CG EF ∥、FG CE ∥且CG 、GF 相交于点G .(1)求证:EF CE =;(2)连接GE ,若4CD =,点F 是AB 的中点,求GE 的长.【答案】(1)见解析;(2)210.【分析】(1)根据CE EF ⊥即余角的性质得到,可得∠=∠AFE CED ,根据矩形的性质可得90A D ∠=∠=︒,可证明(AAS)AEF DCE ≌ ,由此即可求证FE CE =;(2)根据题意可证四边形EFGC 是正方形,在Rt AEF 中由勾股定理求出的长,且EFG 是等腰直角三角形,根据其性质得到.【详解】(1)证明:∵CE EF ⊥,∴90CEF ∠=︒,∵四边形ABCD 是矩形,∴90A D ∠=∠=︒,AB CD =,∴90AEF AFE AEF CED ∠+∠=∠+∠=︒,∴∠=∠AFE CED ,∵AE CD =,∴(AAS)AEF DCE ≌ ,∴EF CE =.(2)解:如图所示,连接GE ,∵CG EF ∥,FG CE ∥,∴四边形CEFG 是平行四边形,∵90CEF ∠=︒,∴四边形CEFG 是矩形,∵EF CE =,∴四边形CEFG 是正方形,∵4AB CD ==,点F 是AB 的中点,∴122AF AB ==,∵4AE CD ==,在Rt AEF 中,90A ∠=︒,∴2225EF AF AE =+=,∵四边形CEFG 是正方形,∴EFG 是等腰直角三角形,∴2210EG EF ==.【点睛】此题考查了全等三角形的判定和性质,矩形的性质,正方形的性质,勾股定理,解题的关键是证明(AAS)AEF DCE ≌ ,由勾股定理求出FE 的长,由等腰直角三角形的性质即可得到2EG EF =.24.如图,A ,B ,C 是O 上的三点,且AB AC =,8BC =,点D 为优弧BDC 上的动点,且4cos 5ABC ∠=.(1)如图1,若BCD ACB ∠=∠,延长DC 到F ,使得CF CA =,连接AF ,求证:AF 是O 的切线;(2)如图2,若BCD ∠的角平分线与AD 相交于E ,求O 的半径与AE 的长;(3)如图3,将ABC 的BC 边所在的直线1l 绕点A 旋转得到2l ,直线2l 与O 相交于M ,N ,连接AM AN ,.2l 在运动的过程中,AM AN ⋅的值是否发生变化?若不变,求出其值;若变化,说明变化规律.【答案】(1)见解析(2)O 的半径为256,5AE =(3)2l 在运动的过程中,AM AN ⋅的值不发生变化,其值为25【分析】(1)连接AO ,先证BCD ABC ∠=∠,推出AB DF ∥,得到四边形ABCF 是平行四边形,AF BC ∥,再得到OA AF ⊥,即可证得结论;(2)连接AO 交BC 于H ,连接OB ,由垂径定理得142BH CH BC ===,根据4cos 5BH ABC AB ∠==,求出5AB =,设O 的半径为x ,则OA OB x ==,3OH x =-,在Rt BOH 中,由勾股定理求出256x =,O 的半径为256,根据角平分线定义及同弧所对圆周角相等得到AEC ACB BCE ACE ∠=∠+∠=∠,由此得到5AE AC AB ===;(3)连接AO ,并延长AO 交O 于Q ,连接NQ ,过点A 作2AP l ⊥于P ,证明AQM ANP △∽△,得到AM AN AP AQ ⋅=⋅,由(2)可知,点A 到直线1l 的距离为3,直线1l 绕点A 旋转得到2l ,A 到直线2l 的距离始终等于3,不会发生改变,由此得到253253AM AN AP AQ ⋅=⋅=⨯=.【详解】(1)证明:连接AO ,如图1所示:∵AB AC =,∴A ABC CB =∠∠,∵BCD ACB ∠=∠,∴BCD ABC ∠=∠,∴AB DF ∥,∵CF CA =,∴CF AB =,∴四边形ABCF 是平行四边形,∴AF BC ∥,∵AB AC =,∴»»AB AC =,∴OA BC ⊥,∴OA AF ⊥,∵OA 是O 的半径,∴AF 是O 的切线;图1(2)解:连接AO 交BC 于H ,连接OB ,如图2所示:∵OA BC ⊥,∴142BH CH BC ===,∵4cos 5BH ABC AB ∠==,∴554544AB BH ==⨯=,在Rt AHB 中,由勾股定理得:2222543AH AB BH =-=-=,设O 的半径为x ,则OA OB x ==,3OH x =-,在Rt BOH 中,由勾股定理得:()22234x x =-+,解得:256x =,∴O 的半径为256,∵CE 平分BCD ∠,∴BCE DCE ∠=∠,∵ABC ADC ∠=∠,∴AEC ADC DCE ABC DCE ACB BCE ACE ∠=∠+∠=∠+∠=∠+∠=∠,∴5AE AC AB ===;图2(3)解:连接AO ,并延长AO 交O 于Q ,连接NQ ,过点A 作2AP l ⊥于P ,如图3所示:则AQ 是O 的直径,∴90AMQ ∠=︒,∵2AP l ⊥,∴90APN ∠=︒,∴AMQ APN ∠=∠,∵AQM ANP ∠=∠,∴AQM ANP △∽△,∴AM AQ AP AN=,∴AM AN AP AQ ⋅=⋅,由(2)可知,点A 到直线1l 的距离为3,直线1l 绕点A 旋转得到2l ,∴点A 到直线2l 的距离始终等于3,不会发生改变,∴3AP =,∵25252263AQ OA ==⨯=,∴253253AM AN AP AQ ⋅=⋅=⨯=,∴2l 在运动的过程中,AM AN ⋅的值不发生变化,其值为25.图3【点睛】此题考查锐角三角函数,证明直线是圆的切线,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,垂径定理,等知识,熟练掌握各知识点并综合应用是解题的关键.25.定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线称为这条抛物线的极限分割线.【特例感知】(1)抛物线221y x x =++的极限分割线与这条抛物线的交点坐标为______.【深入探究】(2)经过点()2,0A -和(),0(2)B x x >-的抛物线21142y x mx n =-++与y 轴交于点C ,它的极限分割线与该抛物线另一个交点为D ,请用含m 的代数式表示点D 的坐标.【拓展运用】(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②若直线EF 与直线MN 关于极限分割线对称,是否存在使点P 到直线MN 的距离与点B 到直线EF 的距离相等的m 的值?若存在,直接写出m 的值;若不存在,请说明理由.【答案】(1)()0,1和()2,1-(2)点D 的坐标为()2,1m m +(3)①顶点为91,4P ⎛⎫ ⎪⎝⎭或顶点为125,336P ⎛⎫- ⎪⎝⎭;②存在,0m =或222m =+或222m =-【分析】(1)根据定义,确定c 值,再建立方程组求解即可.(2)把点()2,0A -代入解析式,确定1n m =+,根据定义建立方程求解即可.(3)①根据等腰直角三角形的性质,得到等线段,再利用字母表示等线段建立绝对值等式计算即可.②设MN 与对称轴的交点为H ,用含m 的式子表示出点P 的坐标,分别写出极限分割线CD 、直线EF 及直线MN 的解析式,用含m 的式子分别表示出点B 到直线EF 的距离和点P 到直线MN 的距离,根据点P 到直线MN 的距离与点B 到直线EF 的距离相等,得出关于m 的绝对值方程,解方程即可.【详解】(1)∵抛物线221y x x =++的对称轴为直线=1x -,极限分割线为1y =,∴极限分割线与这条抛物线的一个交点坐标为()0,1,则另一个交点坐标为()2,1-.故答案为:()0,1和()2,1-.(2)抛物线经过点()2,0A -,∴()()21102242m n =-⨯-+⨯⨯-+∴1n m =+∴2111142x mx m m -+++=+,解得120,2x x m==∴点D 的坐标为()2,1m m +.(3)①设CD 与对称轴交于点G ,若45CDF ∠=︒,则DG GF =.∵点C 的坐标为()0,1m +,点D 的坐标为()2,1m m +..∴1,2OC m CD m =+=,∴11,22DG CD GF OC ==,∴112m m =+,解得1211,3m m ==-.∵抛物线21142y x mx n =-++的顶点为P ,∴抛物线()2211144y x m m m =--+++的顶点为21,14m m m P ⎛⎫++ ⎪⎝⎭,∴当1m =时,219144m m ++=,故顶点为91,4P ⎛⎫ ⎪⎝⎭;∴当13m =-时,21111251112511144933649336m m ++=⨯-+=⨯-+=,故顶点为125,336P ⎛⎫- ⎪⎝⎭;∴顶点为91,4P ⎛⎫ ⎪⎝⎭或顶点为125,336P ⎛⎫- ⎪⎝⎭.②存在,0m =或222m =+或222m =-.如图,设MN 与对称轴的交点为H .由()2知,1n m =+,抛物线()2211144y x m m m =--+++的顶点为21,14m m m P ⎛⎫++ ⎪⎝⎭,∴抛物线21142y x mx n =-++的极限分割线CD :1y m =+, 直线EF 垂直平分OC ,∴直线EF :12m y +=,∴点B 到直线EF 的距离为12m +; 直线EF 与直线MN 关于极限分割线CD 对称,∴直线MN :()312m y +=,∵21,14m m m P ⎛⎫++ ⎪⎝⎭,∴点P 到直线MN 的距离为()()()2213111114242m m m m m ++-+=-+,点P 到直线MN 的距离与点B 到直线EF 的距离相等,∴()()211111422m m m -+=+,∴()()211111422m m m -+=+或()()211111422m m m -+=-+,解得0m =或222m =+或222m =-,故0m =或222m =+或222m =-.【点睛】.查了抛物线与坐标轴的交点坐标和直线与抛物线的交点坐标等知识点,明确题中的定义、熟练掌握二次函数的图像与性质及绝对值方程是解题的关键.。

九年级第一次中考数学模拟考试试题(含参考答案及评分标准)

九年级第一次中考数学模拟考试试题(含参考答案及评分标准)

B. a6 a a 5
2
D. 3 2 7
5.已知方程 kx+b=0 的解是 x=3,则函数 y=kx+b 的图象可能是(

A .
B.
C.
D.
6.如果式子 2x 6 有意义,那么 x 的取值范围在数轴上表示出来,正确的
是(

A
B
C
D
7. 如图 1,一个正方体切去一个三棱锥后所得几何体的俯视图是(

A
B. 2 个
C.3 个
D. 4 个
图4
16.如图 7,在平面直角坐标系中, 已知点 A( 1,0),B( 1﹣ a,0),C( 1+a,
0)(a> 0),点 P 在以 D( 4,4)为圆心, 1 为半径的圆上运动,且始终
满足∠ BPC =90°,则 a 的最大值是(

A. 3 B. 4 C. 5
y PD
1
C.
3
1
D.
2
10.某学校为绿化环境, 计划种植 600 棵树, 实际劳动中每小时植树的数量比
原计划多 20%,结果提前 2 小时完成任务 .设原计划每小时植树 x 棵,则列
出的方程为(

A. 600
600
2
x (1 20%) x
C. 600 600 2 x 20% x
11.如图 3,阴影部分是两个半径为
B
A
F
CE
D
图1
B
A
C
D
备用图
26.(本题 12 分) 如图 13,直线 l :y=﹣ 3x+3 与 x 轴、 y 轴分别相交于 A、B 两点,抛物线
y=ax2﹣ 2ax+a+4( a<0)经过点 B. ( 1)求 a 的值,并写出抛物线的表达式; ( 2)已知点 M 是抛物线上的一个动点, 并且点 M 在第一象限内, 连接 AM 、

2024年中考数学第一次模拟试卷(徐州卷)(全解全析)

2024年中考数学第一次模拟试卷(徐州卷)(全解全析)

2024年中考第一次模拟考试(徐州卷)数学·全解全析第Ⅰ卷一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)118)A .32B .23C .9D .6【答案】A 189232==故选:A .2.在下列运算中,正确的是()A .835x x x ÷=B .()2236x x =C .326x x x ⋅=D .()235x x =【答案】A【解析】解:A 、835x x x ÷=,故A 符合题意.B 、22(3)9x x =,故B 不符合题意.C 、325x x x ×=,故C 不符合题意.D 、326()x x =,故D 不符合题意.故选:A .3.如图是由4个相同的小正方体组成的几何体,从上面看这个几何体得到的平面图形是()A .B .C .D .【答案】B【解析】解:从上面看,得到的图形是两行,其中(上往下)第一行为2个小正方形,第二行是一个小正方形,选项B 中的图形符合题意,故选:B .4.某轮滑队所有队员的年龄只有12,13,14,15,16(岁)五种情况,其中部分数据如图所示,若队员年龄的唯一的众数与中位数相等,则这个轮滑队队员人数最少是()A .10B .11C .12D .13【答案】C 【解析】解:由题图中数据可知:小于14的人有4人,大于14的人也有4人,∴这组数据的中位数为:14,队员年龄的唯一的众数与中位数相等,∴众数是14,即年龄为14的人最多,∴14岁的队员最少有4人,故选:C .5.如图所示,在正五边形ABCDE 中,过点B ,A 作平行线BG ,AF ,46ABG ∠=︒,则FAE ∠的度数是()A .26︒B .44︒C .46︒D .72︒【答案】A 【解析】解:∵五边形ABCDE 为正五边形,∴()521801085EAB -⨯︒∠==︒.∵AF BG ∥,46ABG ∠=︒,∴1801804610826FAE ABG EAB ︒︒︒︒︒∠=-∠-∠=--=.故选:A .6.二次函数2y ax bx c =++中,y 与x 的部分对应值如下:则一元二次方程20ax bx c ++=的一个解x 满足条件()x1.1 1.2 1.3 1.4 1.5 1.6y 1.59- 1.16-0.71-0.24-0.250.76A .1.2 1.3x <<B .1.3 1.4x <<C .1.4 1.5x <<D .1.5 1.6x <<【答案】C【解析】解:由表格可知: 1.4x =时,0.240y =-<, 1.5x =时,0.250y =>,∴当1.4 1.5x <<,存在一个x 的值,使20y ax bx c =++=,∴一元二次方程20ax bx c ++=的一个解x 满足条件为1.4 1.5x <<;故选:C .7.如图,在平面直角坐标系xOy 中,菱形AOBC 的一个顶点O 在坐标原点,一边OB 在x 轴的正半轴上,4sin 5AOB ∠=,反比例函数48y x =在第一象限内的图象经过点A ,与BC 交于点F ,则AOF 的面积等于()A .30B .40C .60D .80【答案】B 【解析】解:过点A 作AM x ⊥轴于点M ,如图所示.设OA a =,在Rt OAM △中,90AMO ∠=︒,OA a =,4sin 5AOB ∠=,4sin 5AM OA AOB a ∴=⋅∠=,2235OM OA AM a =-=,∴点A 的坐标为3455a a ⎛⎫ ⎪⎝⎭,. 点A 在反比例函数48y x=的图象上,∴23412485525a a a ⋅==,解得:10a =,或10a =-(舍去).8AM ∴=,6OM =,∴10OA =.四边形OACB 是菱形,点F 在边BC 上,∴10OB OA ==,114022AOF OBCA S S OB AM ∴==⋅=菱形△.故选:B .8.如图,在ABC 中,点D 、E 在AC BC 、边上,连接DE 并延长交AB 延长线于点G .过D 作DF AG ⊥于F .若2ADF G ∠=∠,:2:1CE BE =,210AD =2AF =,4GE =,则BA 的长度为()A 2103B .4103C .9D .12【答案】C【解析】解:设ADF α∠=,则2G α∠=,∵DF AG ⊥,∴90AFD ∠=︒,∴90A α∠=︒-,∴18090ADG A G A α∠=︒-∠-∠=︒-=∠,∴GAD 为等腰三角形.由勾股定理得,226DF AD AF =-=,设GD x =,2GF x =-,由勾股定理得,222GF DF GD +=,即()22236x x -+=,解得10x =,∴6DE =,∵:2:1CE BE =,∴:2:3CE BC =,如图,过B 作BQ DG ∥交AC 于Q ,∴BQC EDC ∽,∴CEDEBC BQ =,即263BQ =,解得,9BQ =,∵BQ DG ∥,∴BQA DGA A ∠=∠=∠,∴9BA BQ ==,故选:C .第Ⅱ卷二、填空题(本大题共10个小题,每小题3分,共30分)9.实数5的平方根是.【答案】5±【解析】解:实数5的平方根是5故答案为:510.分解因式:22mx my -=.【答案】()()m x y x y -+/()()m x y x y +-【解析】解:()()()2222mx my m x y m x y x y -=-=-+;故答案为:()()m x y x y -+.11.作为锦州市非物质文化遗产,锦州烧烤已经成为我市的一张饮食文化名片,并于2022年入选国家《地标美食名录》.上网搜索“锦州烧烤”,网页显示找到相关结果约为5140000个,数据5140000用科学记数法可表示为.【答案】65.1410⨯【解析】65140000 5.1410=⨯.故答案为:65.1410⨯.12.圆锥的底面半径为2cm ,母线长为3cm ,则圆锥的侧面积为2cm .【答案】6π【解析】圆锥的侧面积为:()12236cm 2ππ⨯⨯⨯=.故答案为:6π13.如图,O 的直径12cm CD =,AB 是O 的弦,AB CD ⊥于点E ,13OE OC =::,则AB 的长为.【答案】82先求出OE 再利用勾股定理即可得得出AE ,最后用垂径定理即可得出AB .【解析】解:如图,连接OA ,O 的直径12cm CD =,6OD OA OC ∴===,13OE OC = ::,2OE ∴=,AB CD ⊥ ,290AB AE OEA ∴=∠=︒,,在Rt OAE △中,223642AE OA OE =--282cm AB AE ∴==.故答案为:8214.列方程组解题:“今有马二、牛一,直金七两;马三、牛二,直金十二两.马、牛各直金几何?”其大意是:2匹马,1头牛,一共价值7两;3匹马,2头牛,一共价值12两,问每匹马、每头牛各价值多少两?设每匹马x 两,每头牛y 两.根据题意,可列方程组为.【答案】273212x y x y +=⎧⎨+=⎩【解析】解:由题意得:273212x y x y +=⎧⎨+=⎩,故答案为:273212x y x y +=⎧⎨+=⎩.15.如图,在ABC 中,90ABC ∠=︒,60A ∠=︒,直尺的一边与BC 重合,另一边分别交AB ,AC 于点D ,E .点B ,C ,D ,E 处的读数分别为15,12,0,1,则直尺宽BD 的长为.233233【解析】解:由题意得,1DE =,3BC =,在Rt ABC △中,60A ∠=︒,则33tan 3BC AB A ==∵DE BC ∥,ADE ABC ∴△△∽,DE AD BC AB ∴=,即1333=解得:233BD =,23316.在古代的两河流域,人们用粘土制成泥版,在泥版上进行书写.古巴比伦时期的泥版BM15285(如图1)记录着祭司学校的数学几何练习题,该图片由完美的等圆组成.受泥版上的图案启发,某设计师设计出形似雨伞的图案用作平面镶嵌(如图2),若图案中伞顶与伞柄的最长距离为2,则一块伞形图案的面积为.【答案】2【解析】解:观察图形,一块伞形图案的面积为:矩形面积-下半圆面积+上半圆面积=矩形面积,∴一块伞形图案的面积为:2×1=2.故答案为:2.17.如图,曲线l 是由函数k y x=在第一象限内的图象绕坐标原点O 逆时针旋转45︒得到的,过点(42,2A -,(22,2B 的直线与曲线l 相交于点M ,N ,若OMN 的面积是46,则k 的值为.【答案】5【解析】解:连接OA ,OB ,过A 作AE y ⊥轴于E ,过B 作BF y ⊥轴于F ,如图所示:点(2,2A -,(2,2B ,42OE ∴=42AE =228OA OE AE ∴=+=,45EAO AOE ∠=∠=︒,同理得:4OB =,45BOF ∠=︒,90AOB ∠=︒∴,OA OB ∴⊥,函数(0)k y k x=>在第一象限内的图象绕坐标原点O 逆时针旋转45︒,∴建立新的坐标系:OB 为x '轴,OA 为y '轴,则旋转后的函数解析式为:k y x '=',在新的坐标系中,()0,8A ,()4,0B ,设直线AB 的解析式为:y mx n '='+,则840n m n =⎧⎨+=⎩,解得28m n =-⎧⎨=⎩,∴直线AB 的解析式为:28y x ''=-+,设()11,28M x x -+,()22,28N x x -+,由28k x x '-+='得:2280x x k ''-+=,124x x ∴+=,122k x x =,()121118484286222OMN AOB AOM BON S S S S x x =--=⨯⨯-⨯⨯-⨯⨯-+= 整理得126x x -=-()2126x x ∴-=,∴22112226x x x x +-=,()2121246x x x x ∴+-=,24462k ∴-⨯=,5k ∴=;故答案为:5.18.如图,等腰ABC 中,4AB AC BC m ===,,点D 是边AB 的中点,点P 是边BC 上的动点,且不与B C 、重合,DPQ B ∠=∠,射线PQ 交AC 于点Q .当点Q 总在边AC 上时,m 的最大值是.【答案】42【解析】解:设BP x =,则,PC m x =-AB AC = ,,B C ∴∠=∠,DPQ B ∠=∠Q ,C DPQ ∴∠=∠180,180PQC QPC C BPD ∠=︒-∠-∠∠=︒-∠Q ,DPQ QPC -∠,PQC BPD ∴∠=∠,BPD CQP ∴V V ∽,BD PBCP CQ ∴=即2,xm x CQ =-2111(),222CQ x m x mx ∴=-=-+当12x m =时,CQ 取最大值,最大值为218m ,要使Q 永远在AC 上,则CQ AC ≤,即4CQ ≤,214,8m ∴≤232,m ∴≤042,m ∴<≤∴m 的最大值为42故答案为:42三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)19.(1()10131330 3.142tan π-⎛⎫-︒+-+- ⎪⎝⎭;(2)解方程:24810x x ++=.【解析】(1)原式()3313123131223=--+-=--=-(2)解:2124x x +=-212114x x ++=-+,()2314x +=312x +=±∴1312x =-+,2312x =--.20.(1)化简24()44-÷+--a a a a (2)解不等式组:2132(1)4x x x x <+⎧⎨--≤⎩【解析】解:(1)原式224444a a a a a --+=÷--224444a a a a a --=⨯--+2244(2)a a a a --=⨯--12a =-;(2)()213214x x x x <+⎧⎪⎨--≤⎪⎩①②解不等式①,得1x >-,解不等式②,得2x ≤,故原不等式组的解集是12x -<≤.21.2023年9月,为了更好地落实“双减”政策,增强课后服务的时效性,某中学定于每周二、周四下午进行兴趣社团课“走班制”,开设了5类兴趣社团课(每位学生均只选其一):A .音乐;B .体育;C .美术;D .信息技术;E .演讲.为了了解该校学生的参与情况,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查的学生人数为________人,并补全条形统计图;(2)求“C”类兴趣社团课所对应扇形的圆心角的度数;(3)该校现有学生1800人,请你估算该校参加“D”类兴趣社团课的学生有多少人?【解析】(1)解:1230%40÷=(人)参加“D”类兴趣社团课的学生有:40612859----=(人)补全条形统计图(2)“C”类兴趣社团课所对应扇形的圆心角的度数为:8 3607240︒⨯=︒(3)该校参加“D”类兴趣社团课的学生有:4061285 180040540----⨯=(人)22.元旦假期全国客流持续回暖,某景区入口检票处有A、B、C、D四个闸机,如图所示,游客领取门票后可随机选择一个闸口通过.(1)一名游客通过该景点闸口时,选择A闸口通过的概率为______.(2)当两名游客通过该景点闸口时,请用树状图或列表法求两名游客选择不同闸口通过的概率.【解析】(1)解:由题意可得:选择A闸口通过的概率为14,故答案为14;(2)解:设这两名游客为甲和乙,由题意可得如下表格:甲/乙A B C DA(),A A(),A B(),A C(),A DB(),B A(),B B(),B C(),B DC(),C A(),C B(),C C(),C DD(),D A(),D B(),D C(),D D由表格可知两名游客选择闸口通过的可能性有16种,其中选择不同闸口通过的情况有12种,∴两名游客选择不同闸口通过的概率为123164 P==.23.如图,矩形ABCD中,点E,F分别在AB,CD边上,连接CE、AF,∠DCE=∠BAF.试判断四边形AECF的形状并加以证明.【解析】解:四边形AECF是平行四边形.∵四边形ABCD是矩形,∴//DC AB,∴∠DFA=∠BAF,又∵∠DCE=∠BAF,∴∠DCE=∠DFA∴//FA CE,∴四边形AECF是平行四边形.24.今年春节期间第二十四届冬奥会在我国成功举办,吉祥物“冰墩墩”以其呆萌可爱、英姿飒爽形象,深受大家喜爱.某商店第一次用3000元购进一批“冰墩墩”玩具,很快售完;该商店第二次购进该“冰墩墩”玩具时,进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次购进的“冰墩墩”玩具每件的进价;(2)若两次购进的“冰墩墩”玩具每件售价均为70元,且全部售完,求两次的总利润.【解析】(1)解:设第一次购进的“冰墩墩”玩具每件的进价为x 元,则第二次每件的进价为(120%)x +元,依题意得:3000300010(120%)x x -=+,解得:50x =,经检验:50x =是方程的解,且符合题意,答:第一次购进的“冰墩墩”玩具每件的进价为50元.(2)解:由题意可得30003000703000217005050 1.2⎛⎫⨯+-⨯= ⎪⨯⎝⎭(元),答:两次的总利润为1700元.25.已知BC 是O 的直径,点D 是BC 延长线上一点,AB AD =,AE 是O 的弦,30AEC ∠=︒.(1)求证:直线AD 是O 的切线;(2)若AE BC ⊥,垂足为M ,O 的半径为10,求AE 的长.【解析】(1)如图,连结OA ,∵30AEC ∠=︒, AC AC =,∴30260B AEC AOC AEC ∠=∠=︒∠=∠=︒,,∵AB AD =,∴30D B ∠=∠=︒,∴18090OAD AOC D ∠=︒-∠-∠=︒,∵OA 是O 的半径,且AD OA ⊥,∴直线AD 是O 的切线.(2)∵BC 是O 的直径,且AE BC ⊥于点M ,∴AM EM =,∵9060AMO AOM ∠=︒∠=︒,,∴30OAM ∠=︒,∴1110522OM OA ==⨯=,∴22221053AM OA OM =--∴2233AE AM ==⨯.26.如图1是一种折叠椅示意图,忽略其支架等器件的宽度,支架与座板均用线段表示,得到它的侧面的简化结构图,如图2所示.若座板CD 平行于地面,前支架AB 与后支架OF 分别与CD 交于点E ,D ,量得20cm ED =,40cm DF =,58AED ∠=︒,76ODC ∠=︒.(1)求椅子座板CD 距离地面BF 的高度;(2)求两支架着地点B ,F 之间的距离.(精确到0.1cm )(参考数据:sin 580.85︒≈,cos 580.53︒≈,tan 58 1.60︒≈,sin 760.97︒≈,cos760.24︒≈,tan 76 4.00︒≈)【解析】(1)解:过点E ,D 分别作EH BF ⊥于H ,作DG BF ⊥于G ,90EHB DGF ∴∠=∠=︒,∵ED BF ∥,58OED OBF ∴∠=∠=︒,76ODE DFG ∠=∠=︒,在Rt DGF △中,40DF =,sin sin 760.97DG DFG DF∠=︒=≈ ,()0.974038.8cm DG ∴=⨯=,∴椅子座板CD 距离地面BF 的高度是38.8cm ;(2)解:在Rt DGF △中,40DF =,cos cos760.24FG DFG FD∴∠=︒=,()0.24409.6FG cm ∴=⨯=,∵ED BF ∥,EH BF ⊥,DG BF ⊥,∴四边形EDHG 是矩形,38.8cm EH DG ∴==,20cm ED HG ==,在Rt EBH △中,38.8EH =,tan tan 58 1.60EH EBH BH∠=︒=≈ ,()24.25cm BH ∴≈,()24.25209.653.9cm BF BH HG GF ∴=++=++≈,∴两支架着地点BF 之间的距离约为53.9cm .27.如图1,已知在平面直角坐标系xOy 中,抛物线31y a x x =+-()()与x 轴交于点A 和点B ,与y 轴交于点C ,且3OC =.点P 是抛物线上的一个动点,连接AP 和BP .(1)求a 的值和ACO ∠的度数;(2)当点P 运动到抛物线顶点时,求AOC 与APB △的面积之比;(3)如图2,当点P 在抛物线上运动,且满足APB ACO ∠∠=时,求点P 的坐标.【解析】(1)3OC = ,(0,3)C ∴,代入31y a x x =+-()(),得:33a -=,解得1a =-;令0y =,有(3)(1)0x x -+-=,解得3x =-或1x =,(3,0)A ∴-,(1,0)B ,OC OA ∴=,45ACO ∴∠=︒.(2)1a =- ,(3,0)A -,(1,0)B 2(3)(1)(1)4y x x x ∴=-+-=-++,1(3)4=--=AB ,∴顶点P 坐标为(1,4)-, 193322AOC S =⨯⨯=△,14482APB S ∆=⨯⨯=,∴992816AOCAPB S S ==⨯ .(3)如图,这样的点P 有两个.过点B 作1BD BP ⊥交1AP 于点D过点D 作DE x ⊥轴于点E ,过点1P 作1PF x ⊥轴于点F .145APB ∠=︒ ,1BDP ∴ 是等腰直角三角形.1BDE PBF ∴ ≌,DE BF ∴=,1BE PF =.设BF m =,则DE m =,21(1,4)P m m m +--,所以,214BE PF m m ==+.244AE AB BE m m ∴=-=--,4AF m =+.1ADE APF ∽,∴1DE AE PF AF =,∴224444m m m m m m--=++,化简得,243m m +=,即2(2)7m +=,解得27m =-±,取27m =-∴1(17,3)P --,根据对称性可知,2(17,3)P --.综上所述P 的坐标为1(17,3)P --,2(17,3)P--.28.(1)【方法尝试】如图1,矩形ABFC 是矩形ADGE 以点A 为旋转中心,按逆时针方向旋转90︒所得的图形,CB ED 、分别是它们的对角线.则CB 与ED 数量关系_______,位置关系________;(2)【类比迁移】如图2,在Rt ABC △和Rt ADE △中,909632BAC DAE AC AB AE AD ∠∠=︒=====,,,,.将DAE 绕点A 在平面内逆时针旋转,设旋转角BAE ∠为α(0360α︒≤<︒),连接CE BD ,.请判断线段CE 和BD 的数量关系和位置关系,并说明理由;(3)【拓展延伸】如图3,在Rt ABC △中,906ACB AB ∠=︒=,,过点A 作AP BC ∥,在射线AP 上取一点D ,连接CD ,使得3tan 4ACD ∠=,请求线段BD 的最大值和最小值.【解析】解:(1)如图,延长CB 交DE 于点H .由旋转的性质可得:CB ED =,ACB BEH ∠=∠.又∵ABC HBE ∠=∠,∴90CAB BHE ∠=∠=︒,即CB ED ⊥.故答案为:CB ED =,CB ED ⊥;(2)32CE BD =,CE BD ⊥,理由如下,延长CE 交BD 于点Q ,交AB 于点O ,如图2.∵90BAC DAE ∠=∠=︒,∴CAE BAD ∠=∠.∵9632AC AB AE AD ====,,,,∴32ACAEAB AD ==,∴CAE BAD ∽,∴32CE ACBD AB ==,ACE ABD ∠=∠.∵AOC BOQ ∠=∠,∴90OQB OAC ∠=∠=︒,∴32CE BD =,CE BD ⊥;(3)如图,过点A 作AE AB ⊥,使得483AE AB ==,取AB 的中点R ,连接CR ER CE ,,.∵AP BC ∥,∴90DAC ACB EAB ∠=∠=∠=︒.∴CAE DAB ∠=∠.∵3tan 4ADACD AC ∠==,∴34ADABAC AE ==,∴DAB CAE ∽△△,∴34BD ADEC AC ==,∴34BD EC =.∵点R 为AB 中点,90ACB ∠=︒,∴3CR AR BR ===.∵908EAB AE ∠=︒=,,∴2273ER AE AR =+=∵ER CR EC CR ER -≤≤+,733373EC ≤≤∵34BD EC =,37399373BD -+≤∴BD 94373+37394-.。

初三数学第一次摸拟考试+参考答案

初三数学第一次摸拟考试+参考答案

初三数学第一次摸拟考试一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............) 1.-5的相反数是…………………………………………………………………………………( ▲ )A .5B .±5C .-5D . 52.下列运算正确的是………………………………………………………………………………( ▲ )A .743)(x x =B .532)(x x x =⋅-C .34)(x x x -=÷-D .23x x x += 3.若式子a -3在实数范围内有意义,则a 的取值范围是……………………………………( ▲ )A .a >3B .a ≥3C .a <3D .a ≤34.下列多边形中,不能够单独铺满地面的是……………………………………………………( ▲ )A .正三角形B .正方形C .正五边形D .正六边形5.下列事件是确定事件的是………………………………………………………………………( ▲ )A .阴天一定会下雨B .黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C .打开电视机,任选一个频道,屏幕上正在播放新闻联播D .在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书6.某厂1月份生产原料a 吨,以后每个月比前一个月增产x %,3月份生产原料的吨数是( ▲ )A .a (1+x )2B .a (1+x %)2C .a +a ²x %D .a +a ²(x %)27.如图,△ABC 的三个顶点都在正方形网格的格点上,则tan ∠A =( ▲ )A .6 5 B . 5 6 C . 210 3 D . 310 208.已知圆锥的侧面积是20πcm 2,母线长为5cm ,则圆锥的底面半径为( ▲ ) A .2cm B .3cm C .4cm D .6cm9.已知点A (-4,0),B (2,0).若点C 在一次函数122y x =+的图象上,且△ABC 是直角三角形,则点C 的个数是………………………( ▲ ) A .1 B .2 C .3 D .410.如图,Rt △ABC 中,∠C =90°,AC =12,BC =5.分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABDE 、ACFG 、BCIH ,四块阴影部分的 面积分别为S 1、S 2、S 3、S 4. 则S 1+S 2+S 3+S 4等于( ▲ ) A .90 B .60 C .169 D .144二、填空题 (本大题共8小题,每空2分,共计16分)11.分解因式:a 2-9= ▲ .(第16题)12.据统计今年全国高校毕业生将达约7270000人,将数据7270000用科学计数法表示▲ .13.命题“对顶角相等.”的逆命题是 ▲ 命题(填“真”或“假”). 14.数据5,6,7,4,3的方差是 ▲ . .15.如图,在△ABC 中,DE ∥BC ,AD =1,AB =3,DE =2,则BC = ▲ .16.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 ▲ cm 2.(结果可保留根号).错误!未指定书签。

初三模拟试卷数学第一次

初三模拟试卷数学第一次

一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,有理数是()A. √-1B. √4C. πD. 无理数2. 若a、b、c是等差数列,且a=1,b=3,则c的值为()A. 5B. 7C. 9D. 113. 下列函数中,是奇函数的是()A. y = x²B. y = |x|C. y = x³D. y = 1/x4. 在直角坐标系中,点A(-2,3)关于原点对称的点的坐标是()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)5. 若等腰三角形的底边长为6,腰长为8,则该三角形的面积为()A. 24B. 32C. 36D. 486. 下列命题中,正确的是()A. 两个等腰三角形一定是相似的B. 两个等边三角形一定是相似的C. 两个等腰三角形一定是全等的D. 两个等边三角形一定是全等的7. 在等差数列{an}中,若a1=3,公差d=2,则第10项an的值为()A. 19B. 21C. 23D. 258. 下列方程中,无解的是()A. x + 2 = 0B. x² - 4 = 0C. x² + 4 = 0D. x² - 1 = 09. 若函数f(x) = 2x - 3,则f(-1)的值为()A. -5B. -4C. -3D. -210. 在直角坐标系中,直线y = 2x + 1与y轴的交点坐标是()A. (0,1)B. (1,0)C. (0,-1)D. (-1,0)二、填空题(本大题共10小题,每小题3分,共30分)11. 已知等差数列{an}的第一项a1=2,公差d=3,则第10项an的值为______。

12. 函数f(x) = -x² + 4x + 3的对称轴方程是______。

13. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为______。

14. 若等腰三角形的底边长为8,腰长为10,则该三角形的周长为______。

2024届蛟川书院初三第一次模拟数学试卷

2024届蛟川书院初三第一次模拟数学试卷

蛟川书院初三第一次模拟数学试卷一. 选择题(本题有10小题,每小题4分,共40分)1. 若二次根式12-x 有意义,则x 的取值范围是( ) A. 21<x B. 21≥x C.21≤x D.21≠x 2. 已知一组数据2,1,x ,7,3,5,3,2的众数是2,则这组数据的中位数是( )A.2B.2.5C.3D.53. 若24333=+x ,则83x 的值为( ) A. 89 B. 41 C.98 D.434. 一次函数)0(≠+=a b ax y ,当x <3时,y 都大于0,则下列各点可能在一次函数)0(≠+=a b ax y 图像上的是( )A.(2,0) B(-1,-3) C.(1,2) D.(2,-3)5. 如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE||BC ,BE 与CD 相交于点F,则下列结论一定正确的是( )A. BC DE BD =ADB. AC EC =AB ADC.AC E A FC DF =D.CF EF BF DF =6. {a }表示小于a 的最大整数,[b ]表示不小于b 的最小整数,若整数x,y 满足4{x }-[y ]=9,3{x }+[y ]=5,则3x +2y 的平方根为( )A. 5±B. 1±C.2±D.7±7. 新定义:若一个点的横纵坐标之和为6,则称这个点为“和谐点”,若二次函数(c 为常数)在-1<x<3的图像上存在两个“和谐点”,则c 的取值范围是( )A.7425<<c B.4254<<c C. 11<<-c D.4250<<c8. 如图,等边△ABC 内接于O ,D 劣弧AC 上一点,连接CD 并延长交BA 延长线于点E ,连接BD ,若57CD BD =,AB=7,则AE 的长为( )A.513 B.3 C. 514 D.4119. 如图,在⊙O 中,直径AB 弦CD 于点M ,点E 是半径OC 上一点,连接AE 并延长交⊙O 于点F ,连接DF 交BC 于点G ,若AB=10,OM=1,若OE=23,则BG 的长为( ) A. 3102 B. 5103 C. 453 D.554 10.如图,在△ABC 中,过点A 作AE△BC 交BC 于点E ,点D 为AB 上一点,G 为BC 上一点,且BD=BG ,过点D 作DF△DG 交AC 于点F ,交AE 于点H ,△ABC+2△BAC=180°,AD=2BD=26,45DH DG =,则三角形△BDG 的面积为( ) A.5 B.223 C.6 D.233二. 填空题(本题有8小题,每小题5分,共40分)11.因式分解:y xy y x 8822+-=___________.12.已知二次函数4)3(2-+=x y 的图像有两点),(A 11y x ,),(B 22y x ,21x x <且217x x -=+,则y 1与y 2的大小关系是________.13.一个圆锥的底面半径为8cm ,其侧面展开图的圆心角为240°,则此圆锥的侧面积为______cm 214.已知关于a ,b 的方程组1532576{=-=+mb a nb a 的解为5.63.1{==a b ,则关于x ,y 的方程组)1(311245)1(6{-+==-+y m x y n x 的解为______ 15.代数222941264cb a bc ac ab ++++的最大值为______ 16.如图,点A 在反比例函数)0(1>=x x k y 上一点,连接AO 并延长交反比例函数)0(2<=x xk y 于点B ,且k 2=9k 1,点C 在y 轴正半轴上,连接CA 并延长交x 轴于点E ,连接BC 交x 轴于点F ,若4AE AC =,10S COE =∆,则△COF 的面积为_________17.如图,将矩形ABCD 的边AD 翻折到AE ,使点D 的对应点E 在边BC 上,再将边AD 翻折至DF ,且点A 的对应点F 为△ABE 的内心,则AEFDE ∆∆S S A =________18.如图,AB 、CD 是⊙O 中的两条弦,相交于点E ,且ABCD ,AE=DE,点H 为劣弧AD 上一动点,G 为HE 中点,若CE=1,DE=7,连接AG ,则AG 的最小值为________三. 解答题19.(1)计算:2sin45°+tan60°-2cos30°tan30°+0)3(-π (2) 已知11=-aa ,求4114416]22)52([22+-+--÷----a a a a a a a a 的值.20.如图,图,图均是5×5的正方形网格,每个小正方形的顶点称为格点,线段AB 的端点均在格点上,只用无刻度的直尺,在给定的风格中画图,要求:(1)如图1,在AB 边上找点E ,使得21BE AE =; (2)如图2,在风格中找格点E(一个即可),画出∠ABE ,使得tan ∠ABE=21; (3)如图3,C 为格点,在AC 边上找点E ,使tan ∠ABE=53.21.某款旅游纪念品很受游客喜爱,每个纪念品进价40元,规定销售单价不低于44元,且不高于52元,某商户在销售期间发现,当销售单价为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个,现商家决定提价销售,设每天销售量为y 个,销售单价为x 元(1)求y 关于x 的函数关系式;(2)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w 最大?最大利润是多少元?(3)该商户从每天的利润中捐出200元做慈善,为了保证扣款后每天剩余利润不低于2200元,求销售单价x 的范围.22.若二次函数11211c x b x a y ++=与11211c x b x a y ++=的图像关于点P(1,0)成中心对称图形,我们称y 1与互y 2为“中心对称”函数.(1)求二次函数362++=x x y 的中心对称函数的解析式;(2)若二次函数)0(22>++=a c ax ax y 的顶点在它的中心对称函数图像上,且当ac a x a a c 42-≤≤+时,最大值为2,求此二次函数的解析式;(3)二次函数)0(21<++=a c bx ax y 的图像顶点为M ,与x 轴负半轴的交点为A 、B ,它的中心对称函数的顶点为N ,与x 轴的交点为C 、D ,从左往右依次是A 、B 、C 、D ,若AB=2BP ,且四边形AMDN 为矩形,求ac b 42-的值.23.在矩形ABCD 中,M 、N 分别在边BC 、CD 上,且AM△MN ,以MN 为直径作O ,连接AN 交O 于点H ,连接CH 交MN 于点P ,AB=8,AD=12(1)求证:△MAD=△MHC ;(2)若AM 平分△BAN ,求MP 的长;(3)若△CMH 为等腰三角形,直接写出BM 的长.24.如图1,O 为Rt △ABC 的外接圆,∠C=90°,点D 为圆上一点,连接AD 并延长与ACB 的角平分线交于点E ,连接BE ,AB 2=AD ·AE ,设y ACCE x ==,AC BC , (1)求y 关于x 的函数表达式;(2)如图2,连接CD ,若x =3,AC=1,求CD 的长.。

九年级第一次模拟考试(数学)试卷含答案

九年级第一次模拟考试(数学)试卷含答案

九年级第一次模拟考试(数学)(考试总分:120 分)一、单选题(本题共计7小题,总分21分)1.(3分)如如,如如如如如如如如如如如如如( )A.-1B.-1.5C.-4.2D.-32.(3分)如如如如“如如如如”如如如如如如如如如如如如如( )A.B.C.D.3.(3分)如如如如如如如x5如如( )A.x10÷x2B.(x2)3C.x2⋅x3D.x6−x4.(3分)如图,在Rt△ABC中,∠ACB=90∘,AB=5,AC=3,把Rt△ABC沿直线BC如如如如3如如如如如如如△A′B′C′,则四边形ABC′A′如如如如( )A.15B.18C.20D.225.(3分)如如如如如如如如如如如如如如如如如如如如如如如如,如如如如如如如如如如5如如如如如,如如如如如如如如8如如如如如,如如如如如如如如11如如如如如,…,如如如如如如如如,如如如如如如如如如如如如如如( )A.96B.92C.90D.936.(3分)如图,四边形ABCD 内接于⊙O,AB ^=AD ^,连接BD ,若∠DCE =50∘,则∠ABD 如如如如( )A.50∘B.60∘C.65∘D.70∘7.(3分)已知二次函数y =(x −m)(x −1)(1≤m ≤2),若函数图象过(a,b)和(a +6,b)两点,则a 如如如如如如( )A.−2≤a≤−32B.−2≤a≤−1C.−3≤a≤−32D.0≤a≤2二、解答题(本题共计13小题,总分81分)8.(3分)已知正比例函数y=(2m−6)x如如如如如如(x0,y0),如x0y0<0,则m如如如如如如( )A.m>3B.m>13C.m<13D.m<39.(5分)如如:(√6+√23)×√3+(−8)0−|√2−2|.10.(5分)如如如如如:{4(x−1)≥x+2 2x+13>x−1.11.(5分)如如如(mm+3−2mm−3)÷mm2−9,如如如-3,0,1,3如如如如如如如如如如如如.12.(5分)如图,点P为∠AOB内一定点,过点P作PD⊥OA于点D,请用尺规作图法在OB上求作一点Q,使得∠AOB与∠DPQ如如.(如如如如如如,如如如如)13.(6分)如图,在▱ABCD中,E、F为对角线AC上两点,且BE//DF,如如如如如如如如如如如如如,如如如.14.(6分)如如如如如如如如如如100如如,如如如如如如如如如如,如如如如如如如如如如,如如如如如如如如如“如如如如如如如如如如”如如如如如如如如如如,如如如如如如如如如如,如如如如如如如如如如如如如如“如如如如”如如如如如:如如如如如如如如如如如如如,如如如如如如如如如如20如如如如5如如如如如如如,如如如如:如如如如:90 91 89 89 90 98 90 97 95 9898 97 95 88 90 97 95 90 95 88(1)如如如如如如,如如如如如如如如如.如如如如如如如:如如如如:如如如如如如如如如如如如如如如如如如(如如如如如如如如如:(2)如如如如如如,如如如如如如如如如如如如如如如30%如如如“如如如如”如如如如,如如如如如如如如如如如如如如如,如如如如如.15.(6分)如如如如如如如如如“如如如如如”(如如),如如如如如如如如如如如如,如如如如如如如如如如,如如如如如如如如如如如如如“如如如如如”如如如如如如如,如如如如如如如如如如如如如如如,如如如如如如如如如如如如如如,如如如如如如:(1)如如如如如如如如如如如,如_____小组的数据无法算出“天下第一灯”的高度AB;(2)如如如如如如如如如如如如如如如如如,如如“如如如如如”如如如AB.(如如如如:sin⁡37∘≈0.60,cos⁡37∘≈0.80,tan⁡37∘≈0.75)16.(6分)如如如如如如如如如如如如如“如如如如”,如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如,如如如如如如如如如如如如如如如如如如如如如如如如,如如如如如如如如如如,如如如如如如如如如如如如如如如如如如如如如如如如如如如如,如如如如如如如如如如如如如如如如如如如如如如,如如如如:如如如,如如如如如如如如如如如如如如如如如如如如如如如如(如如如如如如如如如如如),如如如如如如如如如如如如如如如如(如如如),如如如如如如如如如如如如如如如如如如如如如如如如如如.(1)"如如如如如如如如如”如如如如如__________如如;(如“如如”如“如如如”如"如如”)(2)如如如如如如如如如,如如如如如如如如如如如如如如如如“如如如如”如如如.17.(7分)小王计划从某批发市场批量购买A,B两种仿古秦兵马俑工艺品摆件,已知A种摆件的批发价比B种摆件的批发价每个少5元,且用400元购买的A种摆件数量与用500元购买的B如如如如如如如.(1)求A,B如如如如如如如如如如如?(2)如如如如如如如如如如如如如如如如如如8如如如,如如如如如如50如,如如如如如如如如如如如如按需购买100个仿古秦兵马俑工艺品摆件,共用了y元,设A种摆件购买了x个,请求出y与x之间的函数关系式.若小王共用了1930元,则他购买A,B如如如如如如如如?18.(8分)如图,在△ABC中,∠ACB=90∘,边AB与⊙O相切于点D,CD是⊙O的直径,AC交⊙O于E,连接BE交CD于P,交⊙O于F,连接DF.(1)求证:∠ABC=∠EFD;(2)若AD=2,CD=√6,求BD如如.19.(9分)如图,在平面直角坐标系中,抛物线L:y=−x2+bx+c的图象与x轴的一个交点为A(−3,0),顶点B如如如如如-1.(1)求抛物线L如如如如如如;(2)点P为坐标轴上一点,将抛物线L绕点P如如180∘如如如如如如L′,且A,B的对应点分别为C,D,当以A,B,C,D为顶点的四边形是矩形时,请求出符合条件的点P如如.20.(10分)如如如如1.如图如,在△ABC中,AB=AC=2,∠A=120∘如如SΔABC=__________;2.如图如,在△ABC中AB的垂直平分线交BC于D,交AB于点M,AC的垂直平分线交BC于E,交AC于N,N,∠DAE=20∘,BC=6,求∠BAC的度数及△ADE如如如;如如如如3.如图如,某农场主欲规划出一个如图所示的矩形田地ABCD其中BC=0.4km,点P在边AD 上,E,F为BC边上两点(包括端点),在△PEF如如如如如如如如如,如如如如如如如如如如如,如如△PEF的三边铺设围栏,围栏总长为0.6km(即△PEF的周长为0.6km),围栏PE与PF如如如如60∘(即∠EPF=60∘),为了尽可能多的种植农作物,要求矩形ABCD的面积尽可能的大请问能否设计出一个面积尽可能大又满足要求的矩形ABCD田地?若能,求出矩形ABCD如如如如如如,如如如,如如如如如.三、填空题(本题共计6小题,总分18分)21.(3分)如如如如如如如如如5,如如如如如如_____.22.(3分)因式分解:mx2−2mx+m=__________.23.(3分)如图,EC,BD是正五边形ABCDE如如如如,如∠1如如如如_____.24.(3分)如如2021如3如如如如如如如如如如如如1如如如,5如如如如如如如如如如如如1.21如如如,如3如如如5如如,如如如如如如如如如如如如如如如如如如如如如_____.的图象交于A(1,m),B(−2,n)两点,点C(2,t) 25.(3分)直线y=2x+b与反比例函数y=kx也在该反比例函数的图象上,则m,n,t如如如如如如__________.(如“ < "如如)26.(3分)如图,已知正方形ABCD中,AB=6,点E是边AD的中点,点P是边CD上的动点,点Q 是正方形内一动点,且满足∠BQC=90∘,则PE+PQ如如如如如__________.答案一、单选题(本题共计7小题,总分21分)1.(3分)如如如如A2.(3分)如如如如C3.(3分)如如如如D4.(3分)如如如如C5.(3分)如如如如D6.(3分)如如如如B7.(3分)如如如如C二、解答题(本题共计13小题,总分81分)8.(3分)如如如如A9.(5分)如如如如5√2−1如如如如如如=3√2+√2+1−(2−√2)=4√2+1−2+√2=5√2−1 10.(5分)【答案】2≤x<4【解析】解不等式4(x−1)≥x+2,得x≥2,如如如如2x+13>x−1,得x<4,则不等式组的解集为2≤x<4.·11.(5分)如如如如-10如如如如如如=[m(m−3)(m+3)(m−3)−2m(m+3)(m+3)(m−3)]⋅(m+3)(m−3)m=m[(m−3)−2(m+3)](m+3)(m−3)⋅(m+3)(m−3)m=(m−3)−2(m+3)=m−3−2m−6=−m−9,当m=−3,0,3如,如如如如如如,如如;当m=1如,如如=-1-9=-10.12.(5分)【答案】解:点Q如如如如:如:如如如如如如如如如如如如如如如如;如如如如如如如如如如如13.(6分)【答案】解:一对全等三角形为:△ADF≌△CBE(或△ADC≌△CBA,△DFC≌△BEA);证明:如四边形ABCD如如如如如如,如AD=BC,∠DAC=∠BCA,如BE//DF,如∠DFC=∠BEA,如∠AFD=∠BEC,如△ADF≌△CBE(AAS).如:如如如如如如如如如如如如如如如如如如如.·14.(6分)(1)5如3; 93如93如(2)如如如如如如如如如如如如如如如97如;如如如如:如20×30%=6如如如如如如如如如如如如如如如如如97如.15.(6分)未找到试题答案16.(6分)(1)如如;(2)如如如如:如如20如如如如如如如,如如如如如如如如如如如如如如如“如如如如”如如如如8如,如P(如如如如如如如如如如如如如如如“如如如如”)=820=25,如:如如2如如如如如如如如如如,如如如如如如如如如如如如3如;如如如如如如,如如如如如如如如如如如如如如如如如如如如如;如如2如如如如如如如如如如如如20如如如如如如,如如如如如如,如如如.17.(7分)(1)20;25;【解析】设A种摆件的单价为a元/个,则种摆件的单价为(a+5)如/如,如如如如,如如400a =500a+5,解得a=20,如a+5=25,如A,B如如如如如如如如如如20如/如如25如/如.(2)30;70.【解析】根据题意,可得y=50+0.8×[20x+25(100−x)]=50+0.8×[2500−5x] =−4x+2050,可得1930=−4x+2050,解得x=30,如小王购买A,B如如如如如如如30如如70如.18.(8分)(1)证明:∵AB与⊙O相切,CD是⊙O如如如,如CD⊥AB,如∠CDB=90∘,即∠ABC+∠BCD=90∘,如∠ACB=90∘,如∠ECD+∠BCD=90∘,如∠ABC=∠ECD,如∠ECD=∠EFD,如∠ABC=∠EFD.(2)由1知∠ACD=∠ABC,又如∠ADC=∠BDC=90∘,如△ACD∽△CBD,如CD AD =BDCD,如√62=√6如如BD=3.19.(9分)(1)y=−x2−2x+3;如如如如如−b2a=−1,如b=2a=−2,将A(−3,0),代入y=−x2−2x+c得:0=−9+6+c如解得:c=3如如抛物线L的函数表达式为:y=−x2−2x+3如(2)(0,1),(2,0) .【解析】由y=−x2−2x+3=−(x+1)2+4得点B如如如(−1,4)如由抛物线L如L′关于坐标轴上一点P对称,可得PA=PC,PB=PD如如以A,B,C,D如如如如如如如如如如如如如,由矩形的中心对称性知:PB=PA时,四边形ABCD如如如.如当点P在y轴上时,令点P坐标为(0,y)如如PB2=(−1)2+(4−y)2,PA2=(−3)2+y2如∴(−1)2+(4−y)2=(−3)2+y2如如y=1如如P1(0,1),如当点P在x轴上时,令点P坐标为(x,0)如如PB2=(−1)2+(4−y)2,PA2=(−3)2+y2,如(−1)2+(4−y)2=(−3)2+y 2,∴x =2,如P 2(2,0),综上所述满足题意的P 如如如如(0,1),(2,0).20.(10分)如如如如1.√32.∵DM 如如如AB如如如如如如,如DA =DB ,如∠B =∠DAB ,同理AE =CE,∠C =∠EAC ,如∠B +∠DAB +∠C +∠EAC +∠DAE =180∘,如∠DAB +∠EAC =80∘,如∠BAC =100∘,∵DA =DB,AE =CE ,如△ADE 如如如=AD +DE +AE =BD +DE +EC =BC =6;3.如图,延长FE 至M,使得EM =PE ,延长EF 至N ,使得FN =PF ,则MN 的长等于ΔPEF 的周长,即MN =0.6,则∠BMN +∠PNM =180∘−∠EPF 2=180∘−60∘2=60∘,如∠MPN =180∘−(∠PMN +∠PNM)=120∘,连接PM,PN ,作△PMN 的外接圆⊙O 过点O 作OG ⊥MN 于G,延长OG 交⊙O 如P ′,如P 作PH ⊥MN 于H ,分别连接OP,OM,ON ,则∠MON =2(180∘−∠MPN)=120∘,如OG ⊥BC ,如∠NOG =12∠MON =60∘,CN =12MN =0.3, 在RtΔOGN 中,ON =GN sin⁡∠NOG =0.3sin⁡60∘=√35,OG =√310, 如OG +PH ≤OP,∴√310+PH ≤√35, 解得PH ≤√310,如当点P 如如P ′重合时,PH 如如如如如√310, ∵PH =AB,∴PH 取得最大值时矩形ABCD 如如如如如,S 矩形ABCD 最大=BC ⋅PH 最大=0.4×√310=√325,如矩形ABCD 如如如如如如如如,如如如如√325km 2. 三、 填空题 (本题共计6小题,总分18分)21.(3分)如如如如±√522.(3分)【答案】m(x −1)223.(3分)如如如如7224.(3分)如如如如 10%25.(3分)【答案】n<t<m26.(3分)如如如如6√2−3。

九年级数学第一次模拟考试试题

九年级数学第一次模拟考试试题

九年级数学第一次模拟考试试题各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢九年级数学第一次模拟考试试题九年级第一次模拟试题一、选择题(每小题2分,共12分)1.下列各数中最大的是()A.-2C.D.2.如图,是由6个相同的小立方体搭成的几何体,那么这个几何体的俯视图是()3.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D 过A、B、O三点,点C为优弧ABO上的一点(不与O、A两点重合),则cosC 的值为()A.B.C.D.4.某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线(单位:米)的一部分,则水喷出的最大高度是()米米米米5.如图,在梯形ABCD中,AB‖CD,对角线AC,BD相交于点O,若AD=1,BC=3,则S△AOD:S△BOC等于()A.B.C.D.6.如图,梯形ABCD中,AB‖DC,AB⊥BC,AB=2㎝,CD=4㎝.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是()二、填空题(每小题3分,共24分)7.=1是方程的一个解,则方程的另一个解是.8.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是.9.某人沿着坡度为1:的山坡前进了1000m,则这个人所在的位置升高了m.10.如图,在△ABC中,∠ACB=90°,量角器的直径与斜边AB相等,点D对应56°,则∠ACD=.11如图,在平面直角坐标系O 中,已知点A(3,3)和点B(7,0),则sin ∠ABO的值等于.12.抛物线开口向下,且经过原点,则=.13.如图所示,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转到△A′B′C′的位置,使CC′‖AB,则∠BAB′=.14.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则阴影部分的面积是平方单位(结果保留).三、解答题(每小题5分,共20分)15.计算:.16.某玩具店购进一种儿童玩具,计划每个售价36元,能盈利80%,在销售中出现了滞销,于是先后两次降价,仍能盈利25%.(1)求这种玩具的进价;(2)求平均每次降价的百分率(精确到%).17.如图,BC是⊙O的直径,AD⊥CD,垂足为D,AC平分∠BCD,AC=3,CD=1,求⊙O的半径.18.如图,是一副扑克牌中的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,作画树形图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是奇数的概率.四、解答题(每小题7分,共28分)19.某科技馆坐落在山坡M处,从山脚A处到科技馆的路线如图所示,已知A处在水平面上,斜坡AB的坡角为30°,AB=40m,斜坡BM的坡角为18°,BM=60m,那么科技馆M处的海拔高度是多少m?(精确到)(参考数据:sin18°≈,cos18°≈,tan18°≈)20.已知A、B、C是半径为2的圆O 上的三个点,其中点A是弧BC的中点,连接AB、AC,点D、E分别在弦AB、AC上,且满足AD=CE(1)求证:OD=OE;(2)连接BC,当BC=2 时,求∠DOE的度数.21.如图,抛物线过A(0,2)、B (1,3)两点,CB⊥轴于C,四边形CDEF为正方形,点D在线段BC上,点E在此抛物线上,且在直线BC的左侧.(1)求此抛物线的函数关系式;(2)求正方形CDEF的边长.22.每个小方格是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图所示.(1)以O点为位似中心,在第一象限内将菱形OABC放大为原来的2倍得到菱形OA1B1C1,请画出菱形OA1B1C1,并直接写出点B1的坐标;(2)将菱形OABC绕原点O顺时针旋转90°,得到菱形OA2B2C2,请画出菱形OA2B2C2,并求出点B旋转到B2的路径长.五、解答题(每小题8分,共16分)23.如图,在平面直角坐标系中,直线与轴交于点A,与轴交于点B,与抛物线交于点C、D.已知点C的坐标为(1,7),点D的横坐标为5.(1)求直线与抛物线的解析式;(2)将此抛物线沿对称轴向下平移几个单位,抛物线与直线AB只有一个交点.24.已知点C、A、D在同一条直线上,∠ABC=∠ADE= ,线段BD、CE 交于点M.(1)如图1,若AB=AC,AD=AE.①问线段BD与CE有怎样的数量关系?并说明理由;②求∠BMC的大小(用表示);(2)如图2,若AB=BC= AC,AD=ED= AE,则线段BD与CE又有怎样的数量关系?并说明理由;∠BMC=(用表示).六、解答题(每小题10分,共20分)25.如图,已知抛物线与轴负半轴交于点A,与轴正半轴交于点B,且OA=OB.(1)求+ 的值;(2)若点C在抛物线上,且四边形OABC是平行四边形,求抛物线的解析式;(3)在(2)条件下,点P(不与A、C重合)是抛物线上的一点,点M是轴上一点,当△BPM是等腰直角三角形时,求点M的坐标.26.如图,在梯形ABCD中,BC‖AD,∠A+∠D=90°,tanA=2,过点B作BH ⊥AD于H,BC=BH=2,动点F从点D 出发,以每秒1个单位的速度沿DH运动到点H停止,在运动过程中,过点F 作EF⊥AD交折线DCB于点E,将纸片沿直线EF折叠,点C、D的对应点分别是点C1、D1,设运动时间是秒(>0).(1)当点E和点C重合时,求运动时间的值;(2)当为何值时,△BCD1是等腰三角形;(3)在整个运动过程中,设△FED1或四边形EFD1C1与梯形ABCD重叠部分的面积为S,求S与的函数关系式.各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。

初三第一次模考试卷数学

初三第一次模考试卷数学

考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列数中,是质数的是()A. 15B. 21C. 29D. 252. 下列代数式中,完全平方式是()A. (x + 2)^2B. (x - 3)^2C. (x + 1)(x - 1)D. (x - 2)^33. 在直角坐标系中,点P(-2,3)关于y轴的对称点是()A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)4. 若sinθ = 0.8,则cosθ的值是()A. 0.6B. 0.9C. 0.7D. 0.55. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2xC. y = 3/xD. y = 3x + 26. 一个长方形的长是8cm,宽是4cm,则它的对角线长是()A. 6cmB. 10cmC. 12cmD. 14cm7. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 1C. 5x + 2 = 3D. 2x + 1 = 08. 下列命题中,正确的是()A. 对顶角相等B. 平行四边形的对角线相等C. 等腰三角形的底角相等D. 直角三角形的两条直角边相等9. 若a、b是实数,且a^2 + b^2 = 25,则|a| + |b|的最大值是()A. 5B. 10C. 15D. 2010. 下列数列中,第10项是12的是()A. 1, 3, 5, 7, ...B. 2, 4, 6, 8, ...C. 1, 4, 9, 16, ...D. 3, 6, 9, 12, ...二、填空题(每题3分,共30分)11. 已知sinα = 0.6,则cosα的值是______。

12. 二元一次方程2x - 3y = 6的解为______。

13. 一个等腰三角形的底边长是8cm,腰长是10cm,则它的周长是______cm。

14. 已知直角三角形的两个锐角分别是30°和60°,则它的斜边长是______。

九年级第一次模拟考试(数学)试题含答案

九年级第一次模拟考试(数学)试题含答案

九年级第一次模拟考试(数学)(考试总分:80 分)一、单选题(本题共计7小题,总分35分)1.(5分)已知线段a,b,c,d满足ab=cd,则把它改写成比例式正确的是A.a∶d=c∶bB.a∶b=c∶dC.c∶a=d∶bD.b∶c=a∶d2.(5分)如图,在△ABC中,DE∥AB,且CDBD =32,则CECA的值为A.23B.35C.45D.323.(5分)下列关于相似三角形的说法,正确的是A.等腰三角形都相似B.直角三角形都相似C.两边对应成比例,且其中一组对应角相等的两个三角形相似D.一条直角边和斜边对应成比例的两个直角三角形相似4.(5分)如图,CD是Rt△ABC的斜边AB上的中线,过点C作CE⊥CD交AB的延长线于点E.添加下列条件仍不能判定△CEB与△CAD相似的是A.∠CBA=2∠AB. B是DE的中点C.CE·CD=CA·CBD.CECA =BEAD5.(5分)如图,在▱ABCD中,E是DC上的点,DE∶EC=3∶2,连接AE交BD于点F,则△DEF与△DAF的面积之比为A.2∶5B.3∶5C.4∶25D.9∶256.(5分)如图,在△ABC中,点D,E分别在边AB和AC上,DE∥BC,M为BC边上的一点(不与点B,C重合),连接AM交DE于点N,则A.ADAN =ANAEB.BDMN=MNCEC.DNBM=NEMCD.DNMC=NEBM7.(5分)如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD,CE.若AC∶BC=3∶4,则BD∶CE值为A.5∶3B.4∶3C.√5∶2D.2∶√3二、填空题(本题共计3小题,总分15分)8.(5分)若a3=b4=c5(a≠0),则a+b+cc=.9.(5分)如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1∶√3,点A的坐标为(0,√3),则点E的坐标是.10.(5分)如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为12,则四边形DBCE的面积为.三、解答题(本题共计3小题,总分30分)11.(8分)已知线段a=1cm,b=4cm,c=5cm.(1)求c,b的比例中项;(2)求c,b,a的第四比例项.12.(10分)已知△ABC与△DEF相似,相似比为1∶3.若它们面积的和为40cm2,求这两个三角形的面积.13.(12分)在△ABC中,E,F分别为线段AB,AC上的点(不与点A,B,C重合).(1)如图1,若EF∥BC,求证:S△AEFS△ABC =AEAB·AFAC.(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由.答案一、单选题(本题共计7小题,总分35分)1.(5分)【答案】A2.(5分)【答案】B3.(5分)【答案】D4.(5分)【答案】D5.(5分)【答案】B6.(5分)【答案】C7.(5分)【答案】A二、填空题(本题共计3小题,总分15分)8.(5分)【答案】1259.(5分)【答案】(3,3)10.(5分)【答案】32三、解答题(本题共计3小题,总分30分)11.(8分)【答案】解:(1)c,b的比例中项为2√5cm.(2)c,b,a的第四比例项为45cm.12.(10分)【答案】解:设△ABC的面积为x cm2,△DEF的面积为y cm2.由题意得x∶y=1∶9,即y=9x,又∵x+y=40,∴可解得x=4,y=36,∴△ABC的面积为4cm2,△DEF的面积为36cm2.13.(12分)【答案】解:(1)∵EF∥BC,∴△AEF∽△ABC,∴AEAB =AFAC,∴S△AEFS△ABC=(AEAB)2=AEAB·AFAC.(2)EF不与BC平行时,(1)中的结论仍然成立.理由:作CM⊥AB于点M,FN⊥AB于点N,则CM∥FN,∴△ANF∽△AMC,∴FNCM =AFAC,∴S△AEFS△ABC =12AE·FN12AB·CM=AEAB·AFAC.。

中考数学第一次模拟考试题(附答案)

中考数学第一次模拟考试题(附答案)

中考数学第一次模拟考试题(附答案)以下是查字典数学网为您引荐的中考数学第一次模拟考试题(附答案),希望本篇文章对您学习有所协助。

中考数学第一次模拟考试题(附答案)一、选择题(本大题共12个小题;每题2分,共24分.在每题给出的四个选项中,只要一项为哪一项契合标题要求的,请将答案涂在答题卡上)1. 的相对值是( )A.4B.C.D.2.以下运算中正确的选项是( )A. B.C. D.3.如图,把一块含有45角的直角三角板的两个顶点放在直尺的对边上.假定1=20,那么3的度数是()A.25B.30C.60D.654.不等式3x+12x的解集在数轴上表示为( )5.四边形中,,假设添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A. B. C. D.6.如图,⊙O的直径AB弦CD于点E.以下结论一定正确的选项是( )A.AE=OEB.CE=DEC.OE=12 CED.AOC =607.某人沿着有一定坡度的坡面走了10米,此时他与水平空中的垂直距离为6米,那么他水平行进的距离为()米.A.5B.6C.8D.108. 种饮料比种饮料单价少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花了13元,假设设种饮料单价为元/瓶,那么下面所列方程正确的选项是( )A. B.C. D.9.如图,是一种现代计时器漏壶的表示图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们依据壶中水面的位置计算时间.假定用表示时间,表示壶底到水面的高度,下面的图象适宜表示一小段时间内与的函数关系的是(不思索水质变化对压力的影响)( )A B C D10.如下图,半圆AB平移到半圆CD的位置时所扫过的面积为( )A. 3B.3+C. 6D.6+11.抛物线的启齿向下,顶点坐标为(2,-3),那么该抛物线有( )A. 最小值-3B. 最大值-3C. 最小值2D. 最大值212.在平面直角坐标系中,关于平面内任一点(m,n),规则以下两种变换:① ,如;② ,如 .依照以上变换有:,那么等于( )A.(3,2)B.(3,-2)C.(-3,2)D.(-3,-2)卷II(非选择题,共96分)请把答案写在答题纸上二、填空题(本大题共6个小题;每题3分,共18分)13.计算: = ;14.如图,假定A是实数a在数轴上对应的点,那么关于a,-a,1的大小关系是 .15.学校布置三辆车,组织九年级先生团员去敬老院慰劳老人,其中小王与小菲都可以从这三辆车中任选一辆搭乘,那么小王与小菲同车的概率为__________.16.假设,那么代数式的值是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学第一次模拟考试
一、选择题(共36分)
1.下列计算不正确的是( ).
A.31222-+=-
B.2
11
39
⎛⎫-= ⎪⎝⎭ C.33-= D.1223=
2.下列汽车标志中既是轴对称又是中心对称图形的是( ).
大众 本田 欧宝 奥迪
A .
B .
C .
D . 3、下列运算中,正确的是( )
A .2222+=
B .6
3
2
x x x ÷= C .1
2
2-=- D. a 3×(-a 2)=-a 5
4.据《沈阳日报》报道,今年前四个月辽宁省进出口贸易总值达165亿美元.164亿美元用科学记数法可以表示为(保留2个有效数字)( )
A .16.5×109亿美元
B .1.65×1010亿美元
C .1.7×109亿美元
D .1.7×1010亿美元 5.下列函数中,自变量x 的取值范围是3x ≥的是( ) A .1
3
y x =
- B .1
3
y x =- C .3y x =- D .3y x =- 6.一次函数y =ax +1
2的图象过一、二、四象限,点A (x 1,-2)、B (x 2,4)、C (x 3,5)为反比例函数y =
a -1
x
图象上的三点,则下列结论正确的是( ). A .x 1>x 2>x 3 B .x 1>x 3>x 2 C .x 3>x 1>x 2 D .x 2>x 3>x 1 7. 如图,已知P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径, 若∠P =40°,则∠C 度数是( )
A .40°
B .50°
C .60°
D .70°
8.有四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将
这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张,则抽取的两张卡片上的算式都正确的概率是( ).
A .1
2 B .1
4 C .1
6 D .1
8

15
题图
第11题图
第18题图
9.如图⑴是一个小正方体的表面展开图,小正方体从图⑵所示位置依次翻转到第1格、第2格、第3格,这时小正方体朝上一面的字是( )。

A. 腾
B. 飞
C. 燕
D. 山
10、如图5,一块三角板与圆片重合,直角边AB=AC=2,使AB 与圆片直径重合,则阴影部分的面积为( )
A .1+4π
B 、2-4
π
C .2
D .1
11.如图,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物 项端A 的仰角为45°,则建筑物AB 的高度等于( ).
A .6(3+1)m
B .6(3-1)m
C .12(3+1)m
D .12(3-1)m
12、如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( ) A .2 B .3
C .22
D .23
二:填空题(共18分)
13.分解因式:4a 2
-b 2
+6a -3b =______________________________. 14.分式方程
21
3
2=+-x x 的根是_________________. 15.如图,已知菱形ABCD 的一个内角∠BAD =80º,对角线AC 、BD 相交于点
O ,点E 在AB 上,且BE =BO ,则∠EOA =_______. 16.已知一元二次方程0562=--x x 的两根为a 、b ,则b
a 1
1+的值是____________.
17.方程组 的解 ____________. 18.如图,直线y =
3
3
x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2;再
过点A 2作x 轴的垂线交直线于点B 2,以原点O
为圆心,OB 2长为半径
⎩⎨⎧=-=-7
4143y x y x
图1 图
2 画弧交x 轴于点A 3,……,按此做法进行下去,点A 4的坐标为(_____,____);点A n (_______,_____).
19.(本题满分10分)
甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成
如图1、图2的统计图.
(1)在图2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况;
(2)已知甲队五场比赛成绩的平均分甲x =90分,请你计算乙队五场比赛成绩的平均分乙x ; (3)就这五场比赛,分别计算两队成绩中位数、极差;
(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计情况,试从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?
20.(本题满分10分)
如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD )急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:沿背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF 的坡比i =1∶ 3. (1)求加固后坝底增加的宽度AF ;
(2)求完成这项工程需要土石多少立方米?(结果保留根号)
21.(本题11分)如图,矩形ABCD 中,AB =3,BC =4,M 为CD 中点,点E 在线段MC 上运动,FG 垂直平分AE ,垂足为O ,分别交AD 、BC 于F 、G . (1)求
FG
AE
的值; (2)设x CE ,四边形AGEF 的面积为y .
①求y 关于x 的函数关系式;
②当y 取最大值时,判断四边形AGEF 的形状,并说明理由.
22、(本题11分)某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉410克,核桃粉520克.计划利用这两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13克,需核桃粉4克;加工一块益智核桃巧克力需可可粉5克,需核桃粉14克.加工一块原味核桃巧克力的成本是1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味核桃巧克力x 块.
(1)求该工厂加工这两种口味的巧克力有哪几种方案?
(2)设加工两种巧克力的总成本为y 元,求y 与x 的函数关系式,并说明哪种加工方案使总成本最低?总成本最低是多少元?
D
A
B
C
E M F
G O
O N B P
C
A M
·
23(本题满分12分)
如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC =PC ,∠COB =2∠PCB .
(1)求证:PC 是⊙O 的切线; (2)求证:BC = 1
2 AB ;
(3)点M 是 AB ⌒
的中点,CM 交AB 于点N ,若AB =4,求MN ·MC 的值.
24.(本题满分12分) 已知二次函数213
42
y x x =-
+的图象如图. (1)求它的对称轴与x 轴交点D 的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB =90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直
线CM 与⊙D 的位置关系,并说明理由.。

相关文档
最新文档