人教版数学高二学案复数的几何意义(2)

合集下载

复数的几何意义 高中数学人教A版2019必修第二册

复数的几何意义 高中数学人教A版2019必修第二册
在象限的问题
(几何问题)
(代数问题)
一种重要的数学思想:数形结合思想
变式训练1:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内
所对应的点在直线x-2y+4=0上,求实数m的值.
解:∵复数z=(m2+m-6)+(m2+m-2)i在复平面内
所对应的点是(m2+m-6,m2+m-2),
∴(m2+m-6)-2(m2+m-2)+4=0,
∴m=1或m=-2.
变式训练2:已知复数z=(m2+m-6)+(m2+m-2)i,证明:对一切
m,此复数所对应的点不可能位于第四象限.
证明:若复数所对应的点位于第四象限,
m 2 m 6 0, m 3或m 2,
则 2

m m 2 0, 2 m 1.
例 4、已知复数 z= -3i 的共轭复数为,则复数的模是(
A.5
B.8 C.6
D.
解析:(3)||=|z|= (
) + (-) =
.故选 D.
)
所以不等式解集为空集,
所以复数所对应的点不可能位于第四象限.
复数的几何意义(二)
复数z=a+bi
一一对应
直角坐标系中的点Z(a,b)
一一对应
一一对应
平面向量 OZ
y
z=a+bi
b
Z(a,b)
a
o
x
复数的绝对值 (复数的模) 的几何意义:
对应平面向量 OZ 的模| OZ |,即复数 z=a+bi在复
个复数叫做互为共轭复数.虚部不等于0的两个共轭复数也叫做

高中数学 必修2(人教版)7.1.2复数的几何意义

高中数学 必修2(人教版)7.1.2复数的几何意义

题型二 复数的模的计算——自主完成 例3 (1)已知复数z=3+4i(i为虚数单位),则| z |=________.
解析:(方法一)因为复数z=3+4i,所以 z =3-4i,故| z |= 32+-42=5.
(方法二):| z |=|z|= 32+42=5. 答案:5
(2)已知i为虚数单位,(1+i)x=2+yi,其中x,y∈R,则|x+yi| =( )
方法归纳
(1)根据复数与平面向量的对应关系,可知当平面向量的起点 在原点时,向量的终点对应的复数即为向量对应的复数.反之复 数对应的点确定后,从原引出的指向该点的有向线段,即为复 数对应的向量.
(2)解决复数与平面向量一一对应的问题时,一般以复数与复 平面内的点一一对应为工具,实现复数、复平面内的点、向量之 间的转化.
跟踪训练1 (1)已知a为实数,若复数z=a2-3a-4+(a-4)i 为纯虚数,则复数a-ai在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
解析:∵复数z=a2-3a-4+(a-4)i为纯虚数 ∴aa2--43≠a-0 4=0 ∴aa= ≠44或a=-1 ∴a=-1 ∴z=a-ai=-1+i在复平面内对应的点的坐标为(-1,1),位 于第二象限. 答案:B
4.设复数z=1+2i(i是虚数单位),则|z|=________.
解析:由z=1+2i得|z|= 12+22= 5. 答案: 5
题型一 复数的几何意义——微点探究
微点1 复数与复平面内点的位置关系
例1
(1)当
2 3
<m<1时,复数z=(3m-2)+(m-1)i在复平面内对
应的点所在象限为( )
7.1.2 复数的几何意义

人教版数学高二-(人教版)高二数学选修2-2学案 3-1 复数的几何意义

人教版数学高二-(人教版)高二数学选修2-2学案 3-1 复数的几何意义

§3.1.2 复数的几何意义学习目标学习过程一、学情调查,情景导入(预习教材P 52~ P 53,找出疑惑之处)复习1:复数(4)(3)z x y i =++-,当,x y 取何值时z 为实数、虚数、纯虚数?复习2:若(4)(3)2x y i i ++-=-,试求,x y 的值,((4)(3)2x y i ++-≥呢?)二、问题展示,合作探究探究任务一:复平面问题:我们知道,实数与数轴上的点一一对应,因此,实数可用数轴上的点来表示.类比实数的几何意义,复数的几何意义是什么呢?分析复数的代数形式,因为它是由实部a 和虚部b 同时确定,即有顺序的两实数,不难想到有序实数对或点的坐标.结论:复数与平面内的点或有序实数一一对应新知:1.复平面:以x 轴为实轴, y 轴为虚轴建立直角坐标系,得到的平面叫复平面.复数与复平面内的点一一对应.显然,实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数.2复数的几何意义:复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b ;复数z a bi =+←−−−→一一对应平面向量OZ ;复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ .注意:人们常将复数z a bi =+说成点Z 或向量OZ ,规定相等的向量表示同一复数3复数的模向量OZ 的模叫做复数z a bi =+的模,记作||z 或||a bi +.如果0b =,那么z a bi =+是一个实数a ,它的模等于||a (就是a 的绝对值),由模的定义知:22||||(0,)z a bi r a b r r R =+==+≥∈试试:复平面内的原点(0,0)表示 ,实轴上的点(2,0)表示 ,虚轴上的点(0,1)-表示 ,点(2,3)-表示复数反思:复数集C 和复平面内所有的点所成的集合是一一对应的.例1在复平面内描出复数23i +,84i -,83i +,6,i ,29i --,7i ,0分别对应的点.变式:若复数22(34)(56)z m m m m i =--+--表示的点(1)在虚轴上,求实数m 的取值;(2)在右半平面呢?三、达标训练,巩固提升1. 下列命题(1)复平面内,纵坐标轴上的单位是i (2)任何两个复数都不能比较大小(3)任何数的平方都不小于0(4)虚轴上的点表示的都是纯虚数(5)实数是复数(6)虚数是复数(7)实轴上的点表示的数都是实数.其中正确的个数是( )A .3B .4C .5D .62. 对于实数,a b ,下列结论正确的是( )A .a bi +是实数B .a bi +是虚数C .a bi +是复数D .0a bi +≠3. 复平面上有点A ,B 其对应的复数分别为3i -+和13i --,O 为原点,那么是AOB ∆是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形4. 若1z =+,则||z =5. 如果P 是复平面内表示复数(,)a bi a b R +∈的点,分别指出下列条件下点P 的位置:(1)0,0a b >> (2)0,0a b <>(3)0,0a b =≤ (4)0b >四、知识梳理,归纳总结1. 复平面的定义;2. 复数的几何意义; 3.复数的模.五、预习指导,新课链接1.实数取什么值时,复平面内表示复数22(815)(514)z m m m m i =-++--的点(1)位于第四象限?(2)位于第一、三象限?(3)位于直线y x =上?。

人教版数学高二选修1-2教案复数的几何意义

人教版数学高二选修1-2教案复数的几何意义
1. 说出下列复数的实部和虚部,哪些是实数,哪些是虚数。
2.复数 ,当 取何值时为实数、虚数、纯虚数?
3. 若 ,试求 的值,( 呢?)
二、讲授新课:
1. 复数的几何意义:
① 讨论:实数可以与数轴上的点一一对应,类比实数,复数能与什么一一对应呢?
(分析复数的代数形式,因为它是由实部 和虚部同时确定,即有顺序的两实数,不难想到有序实数对或点的坐标)结论:复数与平面内的点或序实数一一对应。
项目
内容
课题
3.1.2复数的几与复平面内的点、平面向量是一一对应的
2、能根据复数的代数形式描出其对应的点及向量。
教学重、
难点
重点:理解复数的几何意义,根据复数的代数形式描出其对应的点及向量。
难点:根据复数的代数形式描出其对应的点及向量。
教学准备
直尺、粉笔
教学过程
一、复习准备:
②复平面:以 轴为实轴, 轴为虚轴建立直角坐标系,得到的平面叫复平面。
复数与复平面内的点一一对应。
③例1:在复平面内描出复数 分别对应的点。
(先建立直角坐标系,标注点时注意纵坐标是 而不是 )
观察例1中我们所描出的点,从中我们可以得出什么结论?
④实数都落在实轴上,纯虚数落在虚轴上,除原点外,虚轴表示纯虚数。
1.分别写出下列各复数所对应的点的坐标。
2.
3.若复数 表示的点在虚轴上,求实数 的取值。
变式:若 表示的点在复平面的左(右)半平面,试求实数 的取值。
3、作业:
板书设计
教学反思
课后反思
思考:我们所学过的知识当中,与平面内的点一一对应的东西还有哪些?
⑤ , ,
注意:人们常将复数 说成点 或向量 ,规定相等的向量表示同一复数。

人教版高中数学教案-复数的几何意义

人教版高中数学教案-复数的几何意义

3. 1.2複數的幾何意義 課前預習學案課前預習:1、複數與複平面的點之間的對應關係1、 複數模的計算2、 共軛複數的概念及性質4、 提出疑惑: 通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中 疑惑點 疑惑內容課內探究學案學習目標:1. 理解複數與複平面的點之間的一一對應關係2.理解複數的幾何意義 並掌握複數模的計算方法3、理解共軛複數的概念,瞭解共軛複數的簡單性質 學習過程一、自主學習閱讀 課本相關內容,並完成下面題目1、複數z =a +bi (a 、b ∈R )與有序實數對(a ,b )是 的2、 叫做複平面, x 軸叫做 ,y 軸叫做虛軸上的點除原點外,虛軸上的點都表示3、複數集C 和複平面內所有的點所成的集合是一一對應關係,即複數 ←−−−→一一对应複平面內的點 ←−−−→一一对应平面向量4、共軛複數5、複數z =a +bi (a 、b ∈R )的模二、探究以下問題1、實數與數軸上點有什麼關係?類比實數,複數是否也可以用點來表示嗎?2、複數與從原點出發的向量的是如何對應的?3、複數的幾何意義你是怎樣理解的?4、複數的模與向量的模有什麼聯繫?5、你能從幾何的角度得出共軛複數的性質嗎?三、精講點撥、有效訓練見教案反思總結1、你對複數的幾何意義的理解2、複數的模的運算及含義3共軛複數及其性質當堂檢測1、 判斷正誤(1) 實軸上的點都表示實數,虛軸上的點都表示純虛數(2) 若|z 1|=|z 2|,則z 1=z 2(3) 若|z 1|= z 1,則z 1>02、()12m z i =当<时,复数+m-1在复平面上对应的点位于( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、已知a ,判斷z=i a a a a )22()42(22+--+-所對應的點在第幾象限 4、設Z 為純虛數,且|z+2|=|4-3 i |,求複數Z3.1.2複數的幾何意義【教學目標】1. 理解複數與複平面的點之間的一一對應關係2.理解複數的幾何意義 並掌握複數模的計算方法3、理解共軛複數的概念,瞭解共軛複數的簡單性質【教學重難點】複數與從原點出發的向量的對應關係【教學過程】一、複習回顧(1)複數集是實數集與虛數集的(2)實數集與純虛數集的交集是(3)純虛數集是虛數集的(4)設複數集C 為全集,那麼實數集的補集是(5)a ,b .c .d ∈R ,a+bi=c+di ⇔(6)a=0是z=a+bi(a ,b ∈R)為純虛數的 條件二、學生活動1、閱讀 課本相關內容,並完成下面題目(1)、複數z =a +bi (a 、b ∈R )與有序實數對(a ,b )是 的(2)、 叫做複平面, x 軸叫做 ,y 軸叫做虛軸上的點除原點外,虛軸上的點都表示(3)、複數集C 和複平面內所有的點所成的集合是一一對應關係,即複數 ←−−−→一一对应複平面內的點 ←−−−→一一对应平面向量 (4)、共軛複數(5)、複數z =a +bi (a 、b ∈R )的模2、學生分組討論(1)複數與從原點出發的向量的是如何對應的?(2)複數的幾何意義你是怎樣理解的?(3)複數的模與向量的模有什麼聯繫?(4)你能從幾何的角度得出共軛複數的性質嗎?3、練習(1)、在複平面內,分別用點和向量表示下列複數:4,3+i ,-1+4i ,-3-2i ,-i(2)、已知複數1Z =3-4i ,2Z =i 2321+,試比較它們模的大小。

高二数学复数的几何意义2

高二数学复数的几何意义2

一一对应
一一对应
平面向量 OZ
y
z=a+bi
Z(a,b)
b
a
o
x
复数的模的几何意义
对应平面向量 OZ 的模|OZ |,即复数
z=a+bi在复平面上对应的点Z(a,b)到原点的
距离。
|z|=
y z=a+bi
Z (a,b)
| z || z | a2 b2
O
x
在同一时间谈论,上面有表示时间、度数等的刻度或数字。 【边门】biānmén名旁门。【梐】bì[梐枑](bìhù)名古代官署前拦住行人的东西,③
新课讲解 1.复数加法运算的几何意义?
符合向量加法 的平行四边形
法则.
Z1+ Z2=OZ1 +OZ2 = OZ
y
Z(a+c,b+d)
Z2(c,d)
Байду номын сангаас
Z1(a,b)
o
x
2.复数减法运算的几何意义?
符合向量减 法的三角形
法则.
复数z1-z2
y
Z2(c,d)
向量Z2Z1
Z1(a,b)
o
x
表示复平面上两点Z1 ,Z2的距离
以点(2, -3)为圆心, 1为半径的圆上
3、复数加减法的几何意义
(1) |z1|= |z2| 平行四边形OABC是 菱形
(2) | z1+ z2|= | z1- z2|
平行四边形OABC是 矩形 o
C
z2 z2-z1
z1 A
(3) |z1|= |z2|,| z1+ z2|= | z1- z2| 平行四边形OABC是 正方形

人教版数学高二人教 复数的几何意义 精品学案

人教版数学高二人教 复数的几何意义  精品学案

3.1.2复数的几何意义课前预习学案课前预习:1、复数与复平面的点之间的对应关系1、复数模的计算2、共轭复数的概念及性质4、 提出疑惑:课内探究学案学习目标:1. 理解复数与复平面的点之间的一一对应关系2.理解复数的几何意义 并掌握复数模的计算方法 3、理解共轭复数的概念,了解共轭复数的简单性质学习过程一、自主学习阅读 课本相关内容,并完成下面题目1、复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是 的2、 叫做复平面, x 轴叫做 ,y轴叫做实轴上的点都表示 虚轴上的点除原点外,虚轴上的点都表示3、复数集C 和复平面内所有的点所成的集合是一一对应关系,即复数 ←−−−→一一对应复平面内的点 ←−−−→一一对应平面向量 4、共轭复数5、复数z =a +bi (a 、b ∈R )的模二、探究以下问题1、实数与数轴上点有什么关系?类比实数,复数是否也可以用点来表示吗?2、复数与从原点出发的向量的是如何对应的?3、复数的几何意义你是怎样理解的?4、复数的模与向量的模有什么联系?5、你能从几何的角度得出共轭复数的性质吗?三、精讲点拨、有效训练见教案反思总结1、你对复数的几何意义的理解2、复数的模的运算及含义3共轭复数及其性质当堂检测1、判断正误(1) 实轴上的点都表示实数,虚轴上的点都表示纯虚数(2) 若|z 1|=|z 2|,则z 1=z 2(3) 若|z 1|= z 1,则z 1>02、()12m z i =当<时,复数+m-1在复平面上对应的点位于( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、已知a ,判断z=i a a a a )22()42(22+--+-所对应的点在第几象限4、设Z 为纯虚数,且|z+2|=|4-3 i |,求复数Z。

人教A版数学高二选修1-2学案复数的几何意义

人教A版数学高二选修1-2学案复数的几何意义

3.1.2 复数的几何意义预习课本P52~53,思考并完成下列问题 (1)复平面是如何定义的,复数的模如何求出?(2)复数与复平面内的点及向量的关系如何?复数的模是实数还是复数?[新知初探]1.复平面2.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b )(2)复数z =a +b i(a ,b ∈R) ――――→一一对应平面向量OZ ――→.3.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R). [点睛] 实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)在复平面内,对应于实数的点都在实轴上.()(2)在复平面内,虚轴上的点所对应的复数都是纯虚数.()(3)复数的模一定是正实数.()答案:(1)√(2)×(3)×2.已知复数z=i,复平面内对应点Z的坐标为()A.(0,1)B.(1,0)C.(0,0)D.(1,1)答案:A3.向量a=(1,-2)所对应的复数是()A.z=1+2i B.z=1-2iC.z=-1+2i D.z=-2+i答案:B4.已知复数z的实部为-1,虚部为2,则|z|=________.答案: 5复数与点的对应关系[典例]求实数a分别取何值时,复数z=aa+3+(a2-2a-15)i(a∈R)对应的点Z 满足下列条件:(1)在复平面的第二象限内.(2)在复平面内的x轴上方.[解](1)点Z在复平面的第二象限内,则⎩⎪⎨⎪⎧a2-a-6a+3<0,a2-2a-15>0,解得a<-3.(2)点Z在x轴上方,则⎩⎪⎨⎪⎧a2-2a-15>0,a+3≠0,即(a+3)(a-5)>0,解得a>5或a<-3.[一题多变]1.[变设问]本例中题设条件不变,求复数z表示的点在x轴上时,实数a的值.解:点Z 在x 轴上,所以a 2-2a -15=0且a +3≠0, 所以a =5.故a =5时,点Z 在x 轴上.2.[变设问]本例中条件不变,如果点Z 在直线x +y +7=0上,求实数a 的值. 解:因为点Z 在直线x +y +7=0上, 所以a 2-a -6a +3+a 2-2a -15+7=0,即a 3+2a 2-15a -30=0,所以(a +2)(a 2-15)=0,故a =-2或a =±15.所以a =-2或a =±15时,点Z 在直线x +y +7=0上.利用复数与点的对应解题的步骤(1)找对应关系:复数的几何表示法即复数z =a +b i(a ,b ∈R)可以用复平面内的点Z (a ,b )来表示,是解决此类问题的根据.(2)列出方程:此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.复数的模[典例] (1)若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i(2)设复数z 1=a +2i ,z 2=-2+i ,且|z 1|<|z 2|,则实数a 的取值范围是( ) A .(-∞,-1)∪(1,+∞) B .(-1,1) C .(1,+∞)D .(0,+∞)[解析] (1)依题意可设复数z =a +2a i(a ∈R), 由|z |=5得a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i. (2)因为|z 1|=a 2+4,|z 2|=4+1=5,所以a 2+4<5,即a 2+4<5,所以a 2<1, 即-1<a <1. [答案] (1)D (2)B复数模的计算(1)计算复数的模时,应先确定复数的实部和虚部,再利用模长公式计算.虽然两个虚数不能比较大小,但它们的模可以比较大小.(2)设出复数的代数形式,利用模的定义转化为实数问题求解. [活学活用]1.如果复数z =1+a i 满足条件|z |<2,那么实数a 的取值范围是( ) A .(-22,22) B .(-2,2) C .(-1,1)D .(-3,3)解析:选D 因为|z |<2,所以1+a 2<2,则1+a 2<4,a 2<3,解得-3<a < 3. 2.求复数z 1=6+8i 与z 2=-12-2i 的模,并比较它们的模的大小.解:∵z 1=6+8i ,z 2=-12-2i ,∴|z 1|=62+82=10, |z 2|=⎝⎛⎭⎫-122+(-2)2=32. ∵10>32,∴|z 1|>|z 2|.复数与复平面内向量的关系[典例] 向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,则OZ 1――→+OZ 2――→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i[解析] 因为向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,所以OZ 1――→=(-5, 4), OZ 2――→=(5, -4),所以OZ 2――→=(5,-4)+(-5,4)=(0,0),所以OZ 1――→+OZ 2――→对应的复数是0.[答案] C(1)以原点为起点的向量表示的复数等于它的终点对应的复数;向量平移后,此向量表示的复数不变,但平移前后起点、终点对应的复数要改变.(2)复数的模从几何意义上来讲,表示复数对应的点到原点的距离,类比向量的模,可以进一步引申|z -z 1|表示点Z 到点Z 1之间的距离.如|z -i|=1表示点Z 到点(0,1)之间的距离为1.[活学活用]在复平面内画出下列复数对应的向量,并求出各复数的模. z 1=1-i ;z 2=-12+32i ;z 3=-2;z 4=2+2i.解:在复平面内分别画出点Z 1(1,-1),Z 2-12,32,Z 3(-2,0),Z 4(2,2),则向量OZ 1――→,OZ 2――→, OZ 3――→,OZ 4――→分别为复数z 1,z 2,z 3,z 4对应的向量,如图所示.各复数的模分别为:|z 1|=12+(-1)2=2; |z 2|=⎝⎛⎭⎫-122+⎝⎛⎭⎫322=1; |z 3|=(-2)2=2;|z 4|=22+22=2 2.层级一 学业水平达标1.与x 轴同方向的单位向量e 1与y 轴同方向的单位向量e 2,它们对应的复数分别是( )A .e 1对应实数1,e 2对应虚数iB .e 1对应虚数i ,e 2对应虚数iC .e 1对应实数1,e 2对应虚数-iD .e 1对应实数1或-1,e 2对应虚数i 或-i 解析:选A e 1=(1,0),e 2=(0,1).2.当23<m <1时,复数z =(3m -2)+(m -1)i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D ∵23<m <1,∴3m -2>0,m -1<0,∴点(3m -2,m -1)在第四象限.3.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( )A .(1,3)B .(1,5)C .(1,3)D .(1,5)解析:选B |z |=a 2+1,∵0<a <2,∴1<a 2+1<5,∴|z |∈(1,5).5.复数z =1+cos α+isin α(π<α<2π)的模为( ) A .2cos α2B .-2cos α2C .2sin α2D .-2sin α2解析:选B |z |=(1+cos α)2+sin 2α=2+2cos α=4cos 2α2=2|cos α2|.∵π<α<2π,∴π2<α2<π,cos α2<0,于是|z |=-2cos α2. 6.复数3-5i,1-i 和-2+a i 在复平面上对应的点在同一条直线上,则实数a 的值为________.解析:由点(3,-5),(1,-1),(-2,a )共线可知a =5. 答案:57.过原点和3-i 对应点的直线的倾斜角是________. 解析:∵3-i 在复平面上的对应点是(3,-1), ∴tan α=-1-03-0=-33(0≤α<π),∴α=5π6.答案:5π69.设z 为纯虚数,且|z -1|=|-1+i|,求复数z . 解:∵z 为纯虚数,∴设z =a i(a ∈R 且a ≠0),又|-1+i|=2,由|z -1|=|-1+i|, 得a 2+1=2,解得a =±1,∴z =±i.10.已知复数z =m (m -1)+(m 2+2m -3)i(m ∈R). (1)若z 是实数,求m 的值; (2)若z 是纯虚数,求m 的值;(3)若在复平面内,z 所对应的点在第四象限,求m 的取值范围. 解:(1)∵z 为实数,∴m 2+2m -3=0, 解得m =-3或m =1. (2)∵z 为纯虚数,∴⎩⎪⎨⎪⎧ m (m -1)=0,m 2+2m -3≠0. 解得m =0. (3)∵z 所对应的点在第四象限,∴⎩⎪⎨⎪⎧m (m -1)>0,m 2+2m -3<0. 解得-3<m <0. 故m 的取值范围为(-3,0).层级二 应试能力达标1.已知复数z 1=2-a i(a ∈R)对应的点在直线x -3y +4=0上,则复数z 2=a +2i 对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 复数z 1=2-a i 对应的点为(2,-a ),它在直线x -3y +4=0上,故2+3a +4=0,解得a =-2,于是复数z 2=-2+2i ,它对应点的点在第二象限,故选B.2.复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,则( ) A .a ≠2或a ≠1 B .a ≠2且a ≠1 C .a =0D .a =2或a =0解析:选D ∵z 在复平面内对应的点在虚轴上, ∴a 2-2a =0,解得a =2或a =0.3.若x ,y ∈R ,i 为虚数单位,且x +y +(x -y )i =3-i ,则复数x +y i 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A ∵x +y +(x -y )i =3-i ,∴⎩⎪⎨⎪⎧x +y =3,x -y =-1,解得⎩⎪⎨⎪⎧x =1,y =2,∴复数1+2i 所对应的点在第一象限.4.在复平面内,复数z 1,z 2对应点分别为A ,B .已知A (1,2),|AB |=25,|z 2|=41,则z 2=( )A .4+5iB .5+4iC .3+4iD .5+4i 或15+325i解析:选D 设z 2=x +y i(x ,y ∈R),由条件得,⎩⎪⎨⎪⎧ (x -1)2+(y -2)2=20,x 2+y 2=41. ∴⎩⎪⎨⎪⎧x =5,y =4或⎩⎨⎧x =15,y =325.故选D.5.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=________.解析:由条件知⎩⎪⎨⎪⎧m 2+2m -3≠0,m 2-9=0,∴m =3,∴z =12i ,∴|z |=12.答案:126.已知复数z =x -2+y i 的模是22,则点(x ,y )的轨迹方程是________. 解析:由模的计算公式得 (x -2)2+y 2=22,∴(x -2)2+y 2=8. 答案:(x -2)2+y 2=87.已知复数z 0=a +b i(a ,b ∈R),z =(a +3)+(b -2)i ,若|z 0|=2,求复数z 对应点的轨迹.解:设z =x +y i(x ,y ∈R),则复数z 的对应点为P (x ,y ),由题意知⎩⎪⎨⎪⎧x =a +3,y =b -2,∴⎩⎪⎨⎪⎧a =x -3,b =y +2. ① ∵z 0=a +b i ,|z 0|=2,∴a 2+b 2=4. 将①代入得(x -3)2+(y +2)2=4.∴点P 的轨迹是以(3,-2)为圆心,2为半径的圆.8.已知复数z 1=3+i ,z 2=-12+32i.(1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形? 解:(1)|z 1|= (3)2+12=2,|z 2|=⎝⎛⎭⎫-122+322=1,∴|z 1|>|z 2|. (2)由|z 2|≤|z |≤|z 1|及(1)知1≤|z |≤2.因为|z |的几何意义就是复数z 对应的点到原点的距离,所以|z |≥1表示|z |=1所表示的圆外部所有点组成的集合,|z |≤2表示|z |=2所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周),如图所示.。

人教版高中数学选修2-2 学案:3.1.2复数的几何意义

人教版高中数学选修2-2 学案:3.1.2复数的几何意义

3.1.2复数的几何意义【学习目标】1.理解复数与复平面内的点、平面向量是一一对应的.2.能根据复数的代数形式描出其对应的点及向量.【新知自学】 知识回顾:1.复数的定义:形如a +b i (a ,b ∈R )的数叫复数,a 叫复数的_______,b 叫复数的_______.全体复数所成的集合叫做复数集,用字母C 表示.2.复数a +b i (a ,b ∈R )在满足什么条件下,分别是实数,虚数,纯虚数?3.如果a ,b ,c ,d ∈R ,那么a +b i =c +d i⇔___________________. 新知梳理:1.实数可以与数轴上的点一一对应,类比实数,复数与平面内的点或有序实数对________.2.复数的几何意义是:(1)复平面:以x 轴为___轴,y 轴为____轴,建立直角坐标系,得到的平面叫复平面;(2)实数都落在____轴上,纯虚数落在____轴上,除原点外,虚轴上的点都表示_______;(3)每一个复数,有复平面内_______的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应,所以,复数集C 与复平面内的点所成的集合是一一对应的,即Z a bi =+↔一一对应复数复平面内的点Z(a,b)(4)复平面内每一个点又唯一对应到复平面内的一个向量,即:↔一一对应复平面内的点Z(a,b)平面向量OZ结合归纳知:复数集C 与复平面内的向量所成的集合也是一一对应的,即:Z a bi =+↔一一对应复数平面向量OZ ,特别地:实数0与_______对应;(5)复数),(R b a bi a z ∈+=的模:向量oz 的模r 叫做复数),(R b a bi a z ∈+=的模,记作z 或a bi +,且|z|=r=____________________________.说明:常把复数z a bi =+说成点Z 或是向量oz ,规定:相等的向量表示同一个复数对点练习:1.在复平面内,描出表示下列各复数的点:(1)i 52+ ; (2)i 23+- ;(3)i 42- ; (4)i --3;(5)5 ; (6)i 3- .2.已知复数i +2,i 42+-,i 2-,4,i 423-,在复平面内画出这些复数对应的向量.y x :a bi+3.求下列复数的模:(1)3-4i ;(2)-4;(3)-5i ;(4)i 23-21.4.能说3+4i>2+i 吗?|3+4i|>|2+i|呢?【合作探究】 典例精析:例1.(1)若复数22(34)(56)Z m m m m i =--+--表示的点在虚轴上,求实数m 的取值.变式练习:例1中,若z 表示的点在复平面的左半平面,试求实数m 的取值范围.例2.在复平面内,O 是原点,向量对应的复数是i 2,如果点A 关于实轴的对称点为点B ,求向量OB 对应的复数.变式练习:如果例2中点B关于虚轴的对称点为点C,求点C对应的复数.例3.已知复数z的虚部为3,在复平面内复数z对应的向量的模为2,求复数z.变式练习:z=3+ai ,且|z|<4,求实数a 的取值范围.【课堂小结】【当堂达标】1.已知20<<a ,复数i a z +=(i 是虚数单位),则z 的取值范围是( )A.()5,1 B.()3,1 C.()5,1 D.()3,12设z =(2t 2+5t -3)+(t 2+2t +2)i ,t ∈R ,则以下结论中正确的是( )A .z 对应的点在第一象限B .z 一定不是纯虚数C .z 对应的点在实轴上方D .z 一定是实数3.如果P 是复平面内表示复数),(R b a bi a z ∈+=的点,分别指出在下列条件下点P 的位置:(1)0,0>>b a ; (2)0,0><b a ;(3)0,0≤=b a ; (4)0<b4.实数m 取什么值时,复平面内表示复数z =2m +(4-m 2)i 的点(1)位于虚轴上;(2)位于一、三象限;(3)位于以原点为圆心,以4为半径的圆上.【课时作业】1.如果复数a +b i(a ,b ∈R)在复平面内的对应点在第二象限,则( )A .a >0,b <0B .a >0,b >0C .a <0,b <0D .a <0,b >02.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i3.当23<m <1时,复数z =(3m -2)+(m -1)i 在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.下列命题中假命题是( )A .复数的模是非负实数B .复数等于零的充要条件是它的模等于零C .两个复数模相等是这两个复数相等的必要条件D .复数z 1>z 2的充要条件是|z 1|>|z 2|5.已知复数z =(x -1)+(2x -1)i 的模小于10,则实数x 的取值范围是 ( )A .-45<x <2 B .x <2 C .x >-45 D .x =-45或x =2 6.在平面内指出与复数123412,2z i z z z i =+==-+对应的点1234,,,Z Z Z Z ,试判断这4个点是否在同一个圆上?7.设C z ∈,且满足下列条件,在复平面内复数z 对应的点Z 的集合是什么图形?(1)1<z <2; (2)1=-i z。

数学:3.1.2《复数的几何意义》教案(新人教A版选修2-2)

数学:3.1.2《复数的几何意义》教案(新人教A版选修2-2)

3.1. 2复数的几何意义教学目标:知识与技能:理解复数与从原点出发的向量的对应关系 过程与方法:了解复数的几何意义情感、态度与价值观:画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用教学重点:复数与从原点出发的向量的对应关系.教学难点:复数的几何意义。

教具准备:多媒体、实物投影仪。

教学设想:复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定.教学过程:学生探究过程: 1.若(,)A x y ,(0,0)O ,则(),OA x y =2. 若),(11y x a =,),(22y x b =,则b a + = ,b a - =两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3. 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标即 AB =OB -OA =讲授新课:复平面、实轴、虚轴: 复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定,如z =3+2i 可以由有序实数对(3,2)确定,又如z =-2+i 可以由有序实数对(-2,1)来确定;又因为有序实数对(a ,b )与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A ,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数-i ,虚轴上的点(0,5)表示纯虚数5i非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i ,z =-5-3i 对应的点(-5,-3)在第三象限等等.复数集C 和复平面内所有的点所成的集合是一一对应关系,即b Z(a ,b)a o y x复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法. 1.复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ 2. 复数z a bi =+←−−−→一一对应平面向量OZ 例1.(2007年辽宁卷)若35ππ44θ⎛⎫∈ ⎪⎝⎭,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限.例2.已知复数z 1=cos θ-i ,z 2=sin θ+i ,求| z 1·z 2|的最大值和最小值.例3.满足条件||||z i i -=+34的复数z 在复平面上对应点的轨迹是( )A. 一条直线B. 两条直线C. 圆D. 椭圆巩固练习:课堂小结:教学反思:复数集C 和复平面内所有的点所成的集合是一一对应关系,即复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.。

【整合】人教a版高二数学选修2-2第三章第一节312复数的几何意义(同步教案).doc

【整合】人教a版高二数学选修2-2第三章第一节312复数的几何意义(同步教案).doc

§3.1.2复数的几何意义教学目标:1 •知识与技能:理解复数与从原点出发的向量的对应关系2.过程与方法:了解复数的儿何意义3•情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部)理解并掌握复数相等的有关概念教学重点:复数与从原点出发的向量的对应关系;教学难点:虚数单位/的引进及复数的概念.教学过程设计(一入情景引入,激发兴趣。

【教师引入】:我们知道实数可以用数轴上的点來表示。

对应A数轴上的点(形)实数的几何摸型:那么,类比实数的表示,可以用什么來表示复数?一个复数由什么确定?(二八探究新知,揭示概念1.若A(兀,y), 0(0,0),则OA = (x,y)2.若d = b = (x2.y2),则a^b = (x x +x2,y} +y2),a-b = (x{ _兀2』1 _)‘2)两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3.若B(x2,y2),则AB = (兀2-兀i?2 - X)-个向量的能标等于表示此向量的有向线段的终点出标减去始点的地标即AB = OB-OA = ( x2, y2) 一(x b yi)= (xz- x b yz- yi)复平面、实轴、虚轴: 可以由一个有序实数对H惟一确定,如沪3+2,可以由有序实数对(3, 2)确定,又如沪一2+,可以由有序实数对(-2, 1)来确定;又因为有序实数对(&,方)与平面直角坐标系中的点是一一对应的,如有序实数对(3, 2)它与平面直角坐标系屮的点弭,横坐标为3,纵坐标为2,建立了一一对应的关系由此可知,复数集与平而直角坐标系中的点集Z间可以建立一一对应的关系.点Z 的横坐标是日,纵坐标是力,复数沪Mbi (a 、Z?WR )iJ 用点Z (日,力)表示,这个建立了直角坐标系 來表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0, 0),它所确定的复数是沪0+0U0表 示是实数•故除了原点外,虚轴上的点都表示纯虚数(三)、分析归纳,抽象概括在复平面内的原点(0, 0)表示实数0,实轴上的点(2, 0)表示实数2,虚轴上的点(0, —1)表示纯虚数 —i,虚轴上的点(0, 5)表示纯虚数5/非纯虚数对应的点在四个象限,例如点(一2, 3)表示的复数是一2+3/, z —5-3/对应的点(一5, -3) 在第三象限等等.复数集C 和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的 一个复数和它对应.这就是复数的一种几何意义•也就是复数的另一种表示方法,即几何表示方法.1 .复平面内的点Z (d,b )〈 対应〉平面向量蒂2.复数z = a + bi < —妙》平而向量旋(四)、知识应用,深化理解例1下列命题为假命题的是:A 在复平面内,对应于实数的点都在实轴上;B 在复平面内,对应于纯虚数的点都在虚轴上;C 在复平面内,实轴上的点所对应的复数都是实数;D 在复平血内,虚轴上的点所对应的复数都是纯虚数;例2在复平ifij 内,若复数z=(龙一2) + (龙一3/〃+2) i 对应的点⑴在虚轴上;(2)在第二彖限;(3)在直线分别求实数刃的取值范围.复数沪臼+/力(臼、方ER )与有序实数対(臼,力)是—对 y因为对于任何一个复数卡bid 、方ER ),由复数相等的 bZ(a, b) 应关系这是 定义可知,解复数z= (/»—/»—2) + (异一3/〃+2) i的实部为/;—/〃一2,虚部为卅一3m+2.⑴由题意得刃一2 = 0.解得7/7=2 或m= — \.(2)由题意得力一刃一2〈0骄一3/〃+2>0—1〈〃K2刃>2或〃K1・・・一1加1.(3)由已知得龙一/〃一2=〃/—3/〃+2,故加=2.例3求下列复数的模:(1) Zi=-5i (2) z2=-3+4i (3) z3=5-5i (4) Z4=l+mi (m^R) (5) z5=4a-3ai (a<0)(五)、归纳小结、布置作业(愼數的几何意义(简称复平面)X 轴——实轴y 轴——虚轴|赠:小学五年级数学竞赛题1.把自然数1.2.3.4…… 的前几项顺次写下得到一个多位数1234567891011 .................. 已知这个 多位数至少有十位,并且是9和11的倍数.那么它至少有几位?2.在做两个数的乘法时,甲把被剩数的个位数字看错了,得结果是255,乙把被剩数的十位 数字看错了,得结果是365,那么正确的乘积是多少?3. 将23分成三个不同的奇数之和,共有几种不同的分法?4、把自然数1、2、3、4 ........... 的前几项顺次写下得到一个多位数12345678910111213…… 已 知这个多位数至少有十位,并且是9的倍数,那么它最少有几位数?5、恰有两位数字相同的三位数共有儿个?6、有一群小孩,他们中任意5个孩子的年龄之和比50少,所有孩子的年龄之和是202,这群孩子至(数) (形)建立了平面直角 坐标系来表示复数的z=a+bi少有儿人?7、甲乙两同学按先后顺序摆多米诺骨牌,要求摆成正方形,由于每人手里一次只能拿10块,故每次每人摆10块。

高二数学复数的几何意义2

高二数学复数的几何意义2
复数的几何意义(一)
复数z=a+bi (数)
一一对应
直角坐标系中的点Z(a,b) (形) 建立了平面直角 坐标系来表示复数的 平面 ------复数平面 (简称复平面)
x
y
z=a+bi Z(a,b)
a b
o
x轴------实轴 y轴------虚轴
复数的几何意义(二)
复数z=a+bi
一一对应 一一对应
1.复数加法运算的几何意义?
z1+ z2=OZ1 +OZ2 = OZ 符合 向量 加法 的平 行四 边形 法则.
y
Z2(c,d)
Z(a+c,b+d)
Z1(a,b)
o
x
2.复数减法运算的几何意义?
复数z2-z1
y
向量Z1Z2
符合 向量 减法 的三 角形 法则.
Z2(c,d)
Z1(a,b)
o
|z1-z2|表示什么?
练习1:
设z1,z2∈C, |z1|= |z2|=1
|z2+z1|=
2,
求|z2-z1|
2
练习2:复数z1,z2分别对应复
平面内的点M1,M2,,且| z2+ z1|=
| z2- z1|,线段M1M2,的中点M对应
的复数为4+3i,求|z1|2+ |z2|2
泰国试管婴儿 / 泰国试管婴儿
5
3
–3
O
5
3
5
设z=x+yi(x,y∈R)
x
3 x y 5
2 2
9 x y 25
2 2
–3
–5
图形: 以原点为圆心, 半径3至5的圆环内

人教版数学高二A版选修2-2学案 复数的几何意义

人教版数学高二A版选修2-2学案 复数的几何意义

3.1.2 复数的几何意义1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.2.掌握实轴、虚轴、模等概念.3.掌握用向量的模来表示复数的模的方法.1.复平面的概念建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴W.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.2.复数的两种几何意义(1)复数z =a +b i (a ,b ∈R )←――→一一对应复平面内的点Z (a ,b ).(2)复数z =a +b i (a ,b ∈R )←――→一一对应平面向量OZ →.3.复数的模复数z =a +b i (a ,b ∈R )对应的向量为OZ →,则OZ →的模叫做复数z 的模,记作|z |,且|z |= a 2+b 2.1.复平面、实轴、虚轴与复数的对应(1)复平面内点的坐标与复数实部虚部的对应:点Z 的横坐标是a ,纵坐标是b ,复数z =a +b i (a ,b ∈R )可用点Z (a ,b )表示.(2)实轴与复数的对应:实轴上的点都表示实数.(3)虚轴与复数的对应:除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.(4)复数与向量的对应:复数z =a +b i (a ,b ∈R )的对应向量是以原点O 为起点的,否则就谈不上一一对应,因为复平面上与OZ →相等的向量有无数个.2.对复数模的两点说明(1)数的角度理解:复数a +b i (a ,b ∈R )的模|a +b i|=a 2+b 2,两个虚数不能比较大小,但它们的模表示实数,可以比较大小.(2)几何角度理解:表示复数的点Z 到原点的距离.|z 1-z 2|表示复数z 1,z 2对应的点之间的距离.判断正误(正确的打“√”,错误的打“×”)(1)原点是实轴和虚轴的交点.( )(2)实轴上的点表示实数,虚轴上的点表示纯虚数.( )(3)若|z 1|=|z 2|,则z 1=z 2.( )答案:(1)√ (2)× (3)×复数z =-12+2i 对应的点位于( ) A.第一象限 B.第二象限C.第三象限D.第四象限答案:B复数z =1+3i 的模等于( )A.2B.4C.10D.2 2答案:C向量AB →=(2,-3)对应的复数z = W.答案:2-3i探究点1 复数与复平面内的点已知复数z =(a 2-1)+(2a -1)i ,其中a ∈R .当复数z 在复平面内对应的点Z 满足下列条件时,求a 的值(或取值范围).(1)在实轴上;(2)在第三象限.【解】 (1)若对应的点在实轴上,则有2a -1=0,解得a =12. (2)若z 对应的点在第三象限,则有⎩⎪⎨⎪⎧a 2-1<0,2a -1<0.解得-1<a <12. 故a 的取值范围是⎝⎛⎭⎫-1,12. 本例中复数z 不变,若点Z 在抛物线y 2=4x 上,求a 的值.解:若z 对应的点(a 2-1,2a -1)在抛物线y 2=4x 上,则有(2a -1)2=4(a 2-1),即4a 2-4a +1=4a 2-4,解得a =54.利用复数与点的对应解题的步骤(1)找对应关系:复数的几何表示法即复数z =a +b i (a ,b ∈R )可以用复平面内的点Z (a ,b )来表示,是解决此类问题的根据.(2)列出方程:此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.1.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)解析:选A.由题意知⎩⎪⎨⎪⎧m +3>0,m -1<0,即-3<m <1.故实数m 的取值范围为(-3,1). 2.在复平面内,复数3-4i ,-1+2i 对应的点分别是A ,B ,则线段AB 的中点C 对应的复数为( )A.-2+2iB.2-2iC.-1+iD.1-i解析:选D.因为复数3-4i ,-1+2i 对应的点分别为A (3,-4),B (-1,2).所以线段AB 的中点C 的坐标为(1,-1),则线段AB 的中点C 对应的复数为1-i.3.求实数a 取什么值时,复平面内表示复数z =a 2+a -2+(a 2-3a +2)i 的点(1)位于第二象限;(2)位于直线y =x 上.解:根据复数的几何意义可知,复平面内表示复数z =a 2+a -2+(a 2-3a +2)i 的点就是点Z (a 2+a -2,a 2-3a +2).(1)由点Z 位于第二象限,得⎩⎪⎨⎪⎧a 2+a -2<0,a 2-3a +2>0,解得-2<a <1.故满足条件的实数a 的取值范围为(-2,1).(2)由点Z 位于直线y =x 上,得a 2+a -2=a 2-3a +2,解得a =1.故满足条件的实数a 的值为1.探究点2 复数与复平面内的向量(1)已知M (1,3),N (4,-1),P (0,2),Q (-4,0),O 为复平面的原点,试写出OM →,ON →,OP →,OQ →所表示的复数;(2)已知复数1,-1+2i ,-3i ,6-7i ,在复平面内画出这些复数对应的向量;(3)在复平面内的长方形ABCD 的四个顶点中,点A ,B ,C 对应的复数分别是2+3i ,3+2i ,-2-3i ,求点D 对应的复数.【解】 (1)OM →表示的复数为1+3i ;ON →表示的复数为4-i ;OP →表示的复数为2i ;OQ →表示的复数为-4.(2)复数1对应的向量为OA →,其中A (1,0);复数-1+2i 对应的向量为OB →,其中B (-1,2);复数-3i 对应的向量为OC →,其中C (0,-3);复数6-7i 对应的向量为OD →,其中D (6,-7).如图所示.(3)记O 为复平面的原点,由题意得OA →=(2,3),OB →=(3,2),OC →=(-2,-3).设OD →=(x ,y ),则AD →=(x -2,y -3),BC →=(-5,-5).由题知,AD →=BC →,所以⎩⎪⎨⎪⎧x -2=-5,y -3=-5,即⎩⎪⎨⎪⎧x =-3,y =-2,故点D 对应的复数为-3-2i.(1)根据复数与平面向量的对应关系,可知当平面向量的起点为原点时,向量的终点对应的复数即为向量对应的复数.反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的题目时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.1.已知平面直角坐标系中O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA →对应的复数是( )A.-5+5iB.5-5iC.5+5iD.-5-5i解析:选B.向量OA →,OB →对应的复数分别记作z 1=2-3i ,z 2=-3+2i ,根据复数与复平面内的点一一对应,可得向量OA →=(2,-3),OB →=(-3,2).由向量减法的坐标运算可得向量BA →=OA →-OB →=(2+3,-3-2)=(5,-5),根据复数与复平面内的点一一对应,可得向量BA →对应的复数是5-5i.2.在复平面内,把复数3-3i 对应的向量按顺时针方向旋转π3,所得向量对应的复数是 _____________.解析:3-3i 对应向量为(3,-3),与x 轴正半轴夹角为30°,顺时针旋转60°后所得向量终点在y 轴负半轴上,且模为2 3.故所得向量对应的复数是-23i.答案:-23i探究点3 复数的模(1)设(1+i )x =1+y i ,其中x ,y 是实数,则|x +y i|=( )A.1B. 2C. 3D.2(2)已知复数z 满足z +|z |=2+8i ,求复数z .【解】 (1)选B.因为x +x i =1+y i ,所以x =y =1,所以|x +y i|=|1+i|=12+12= 2. (2)法一:设z =a +b i (a ,b ∈R ), 则|z |=a 2+b 2,代入原方程得a +b i +a 2+b 2=2+8i , 根据复数相等的充要条件,得⎩⎪⎨⎪⎧a +a 2+b 2=2,b =8,解得⎩⎪⎨⎪⎧a =-15,b =8.所以z =-15+8i.法二:由原方程得z =2-|z |+8i (*).因为|z |∈R ,所以2-|z |为z 的实部,故|z |=(2-|z |)2+82,即|z |2=4-4|z |+|z |2+64,得|z |=17.将|z |=17代入(*)式得z =-15+8i.复数的模的求解思路解决复数的模的求解问题,应先把复数表示成标准的代数形式,再根据复数的模的定义求解.1.已知z 1=5+3i ,z 2=5+4i ,下列选项中正确的是( )A.z 1>z 2B.z 1<z 2C.|z 1|>|z 2|D.|z 1|<|z 2|解析:选D.|z 1|=|5+3i|=52+32=34, |z 2|=|5+4i|=52+42=41. 因为34<41,所以|z 1|<|z 2|.2.已知复数z =3+a i (a ∈R ),且|z |<4,求实数a 的取值范围.解:法一:因为z =3+a i (a ∈R ),所以|z |=32+a 2,由已知得32+a 2<42,所以a 2<7,所以a ∈(-7,7).法二:由|z |<4知z 在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),由z =3+a i 知z 对应的点在直线x =3上,所以线段AB (除去端点)为动点Z (3,a )的集合,由图可知-7<a <7.——————————————————————————————————————1.复数z =-1-2i (i 为虚数单位)在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限解析:选C.由题意得复数z 的实部为-1,虚部为-2,因此在复平面内对应的点为(-1,-2),位于第三象限.2.设复数z 1=a +2i ,z 2=-2+i ,且|z 1|<|z 2|,则实数a 的取值范围是( )A.a <-1或a >1B.-1<a <1C.a >1D.a >0解析:选B.因为|z 1|=a 2+4,|z 2|=4+1=5, 所以a 2+4<5,即a 2+4<5,所以a 2<1,即-1<a <1.3.已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是 W. 解析:依题意,可知z =a +i (a ∈R ),则|z |2=a 2+1.因为0<a <2,所以a 2+1∈(1,5),即|z |∈(1,5).答案:(1,5)4.在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i (m ∈R )的对应点在虚轴上和实轴负半轴上,分别求复数z .解:若复数z 的对应点在虚轴上,则m 2-m -2=0,所以m =-1或m =2,所以z =6i 或z =0.若复数z 的对应点在实轴负半轴上,则⎩⎪⎨⎪⎧m 2-m -2<0,m 2-3m +2=0, 所以m =1,所以z =-2.知识结构深化拓展1.根据复数与复平面内的点一一对应,复数与平面向量一一对应,可知复数z=a+b i、复平面内的点Z(a,b)和平面向量OZ→之间的关系可用图表示.2.复数z在复平面内对应的点为Z,r表示一个大于0的常数,则满足条件|z|=r的点Z的轨迹为以原点为圆心,r为半径的圆,|z|<r表示圆的内部,|z|>r表示圆的外部.[A基础达标]1.已知复数z=a+a2i(a<0),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限解析:选B.因为a<0,所以复数z=a+a2i对应的点(a,a2)位于第二象限.2.已知复数z1=2+i,z2=-i,则|z1||z2|=()A.55 B.15 C.5 D.5解析:选C.依题意|z1|=22+12=5,|z2|=(-1)2=1,所以|z1||z2|=5,选C.3.已知i是虚数单位,在复平面内,复数-2+i和1-3i对应的点之间的距离是()A. 5B.10C.5D.25解析:选C.由于复数-2+i和1-3i对应的点分别为(-2,1),(1,-3),因此由两点间的距离公式,得这两点间的距离为(-2-1)2+[1-(-3)]2=5,故选C.4.设z=(2m2+2m-1)+(m2-2m+2)i(m∈R),则下列结论中正确的是()A.z在复平面内对应的点在第一象限B.z一定不是纯虚数C.z在复平面内对应的点在实轴上方D.z一定是实数解析:选C.2m2+2m-1=2(m+12)2-32,m2-2m+2=(m-1)2+1>0,则z在复平面内对应的点一定在实轴上方,故选C.5.已知复数z满足|z|2-3|z|+2=0,则复数z对应点的轨迹是()A.一个圆B.两个圆C.两点D.线段解析:选B.由|z|2-3|z|+2=0,得(|z|-1)·(|z|-2)=0,所以|z|=1或|z|=2.由复数模的几何意义知,z 对应点的轨迹是两个圆.6.已知复数z =1-2m i (m ∈R ),且|z |≤2,则实数m 的取值范围是 W.解析:|z |=1+4m 2≤2,解得-32≤m ≤32. 答案:⎣⎡⎦⎤-32,32 7.若复数z 对应的点在直线y =2x 上,且|z |=5,则复数.解析:依题意可设复数z =a +2a i (a ∈R ),由|z |=5a =±1,故z =1+2i 或z =-1-2i.答案:1+2i 或-1-2i8.若复数z 1=3-5i ,z 2=1-i ,z 3=-2+a i 在复平面内所对应的点在同一条直线上,则实数a = W.解析:设复数z 1,z 2,z 3分别对应点P 1(3,-5),P 2(1,-1),P 3(-2,a ),由已知可得-5+13-1=a +1-2-1,从而可得a =5. 答案:59.已知3-4i =x +y i (x ,y ∈R ),判断|1-5i|,|x -y i|,|y +2i|的大小关系.解:由3-4i =x +y i (x ,y ∈R ),得x =3,y =-4.而|1-5i|=1+(-5)2=26,|x -y i|=|3+4i|=32+42=5,|y +2i|=|-4+2i|=(-4)2+22=20, 因为20<5<26,所以|y +2i|<|x -y i|<|1-5i|.10.在复平面内,O 是原点,向量OA →对应的复数为2+i.(1)如果点A 关于实轴的对称点为点B ,求向量OB →对应的复数;(2)如果(1)中的点B 关于虚轴的对称点为点C ,求点C 对应的复数.解:(1)设向量OB →对应的复数为z 1=x 1+y 1i (x 1,y 1∈R ),则点B 的坐标为(x 1,y 1),由题意可知,点A 的坐标为(2,1).根据对称性可知:x 1=2,y 1=-1,故z 1=2-i.(2)设点C 对应的复数为z 2=x 2+y 2i (x 2,y 2∈R ),则点C 的坐标为(x 2,y 2),由对称性可知:x 2=-2,y 2=-1,故z 2=-2-i.[B 能力提升]11.已知复数z 满足|z |= 2,则|z +3-4i|的最小值是( )A.5B.2C.7D.3解析:选D.|z |=2表示复数z 在以原点为圆心,以2为半径的圆上,而|z +3-4i|表示圆上的点到(-3,4)这一点的距离,故|z +3-4i|的最小值为(-3)2+42-2=5-2=3.12.在复平面内,O 为原点,向量OA →对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为点B ,则向量OB →对应的复数为 .解析:因为复数-1+2i 对应的点为A (-1,2),点A 关于直线y =-x 的对称点为点B (-2,1),所以OB →对应的复数为-2+i.答案:-2+i13.已知O 为坐标原点,OZ 1→对应的复数为-3+4i ,OZ 2→对应的复数为2a +i (a ∈R ).若OZ 1→与OZ 2→共线,求a 的值.解:因为OZ 1→对应的复数为-3+4i ,OZ 2→对应的复数为2a +i ,所以OZ 1→=(-3,4),OZ 2→=(2a ,1).因为OZ 1→与OZ 2→共线,所以存在实数k 使OZ 2→=kOZ 1→,即(2a ,1)=k (-3,4)=(-3k ,4k ),所以⎩⎪⎨⎪⎧2a =-3k 1=4k ,所以⎩⎨⎧k =14,a =-38.即a 的值为-38. 14.(选做题)设z ∈C ,则满足下列条件的点Z 的集合是什么图形?①|z |=2;②|z |≤3. 解:设z =x +y i (x ,y ∈R ),①|z |=2,所以x 2+y 2=2,所以点Z 的集合是以原点为圆心,以2为半径的圆.②|z |≤3,所以x 2+y 2≤9.所以点Z 的集合是以原点为圆心,以3为半径的圆及其内部.。

人教新课标版数学高二-人教选修1-2学案设计复数的几何意义

人教新课标版数学高二-人教选修1-2学案设计复数的几何意义

3.1.2 复数的几何意义问题导学一、复平面内的点与复数的关系活动与探究11.在复平面内,点A,B对应的复数分别是-3+2i,1-4i,则线段AB的中点对应的复数是().A.-2-2i B.4-6i C.-1-i D.2-3i2.当实数m为何值时,复数z=(m2-8m+15)+(m2+3m-28)i在复平面内的对应点(1)位于第四象限;(2)位于x轴负半轴上;(3)在上半平面(含实轴).迁移与应用1.复数z=-2i-1,则复数z在复平面内对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限2.复数z=m-2-(4-m2)i,且复数z在复平面内的点位于虚轴上,则m的值为().A.0 B.2C.-2 D.±2确定复数对应的点在复平面内的位置时,关键是理解好复数与该点的对应关系,复数的实部就是该点的横坐标,复数的虚部就是该点的纵坐标,据此可建立复数的实部与虚部应满足的条件,通过解方程或不等式求解.二、复平面内复数与向量的对应关系活动与探究2已知平面直角坐标系中,O是原点,向量OA,OB对应的复数分别为2-3i,-3+2i,那么向量BA对应的复数是().A.-5+5i B.5-5iC.5+5i D.-5-5i迁移与应用在复平面内,复数i,1,4+2i对应的点分别为A,B,C.求平行四边形ABCD的D点所对应的复数.根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数.反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.三、复数的模活动与探究3已知复数z=a+b i(a,b∈R),复数z的虚部为3,且|z|=2.若复数z在复平面内对应的点在第二象限,则复数z=__________.迁移与应用已知复数z=a+i(0<a<2),则|z|的取值范围是__________.复数z=a+b i(a,b∈R)的模为22+=.z a b答案:课前·预习导学【预习导引】1.实轴虚轴纯虚数2.Z(a,b)OZ预习交流1(1)提示:不是.实轴上的点都是实数,但虚轴上的点不全是纯虚数,因为原点O也在虚轴上,其为实数0,不是纯虚数.(2)提示:①在复平面中,复数z=a+b i(a,b R)对应的点应该是Z(a,b),而不是(a,b i).②复数z=a+b i的对应向量OZ是以原点O为起点,否则就谈不上一一对应.③我们常把复数z=a+b i(a,b R)说成点Z或说成向量OZ,并且规定,相等的向量表示相等的复数.(3)四3.|z||a+b i|a2+b2预习交流2 B课堂·合作探究【问题导学】活动与探究 1.思路分析:根据复数z =a +b i(a ,b R )在复平面内的对应点为(a ,b ),求出A ,B 点坐标,再求A ,B 中点.C 解析:由已知A (-3,2),B (1,-4),∴AB 的中点为(-1,-1),∴AB 中点对应复数为-1-i .2.思路分析:根据复数与复平面内点的一一对应关系,依题设要求列出不等式求解即可.解:(1)要使点位于第四象限,需⎩⎪⎨⎪⎧ m 2-8m +15>0,m 2+3m -28<0,∴⎩⎪⎨⎪⎧m <3或m >5,-7<m <4, ∴-7<m <3.(2)要使点位于x 轴负半轴上,需⎩⎪⎨⎪⎧ m 2-8m +15<0,m 2+3m -28=0,∴⎩⎪⎨⎪⎧3<m <5,m =-7或m =4, ∴m =4.(3)要使点位于上半平面(含实轴),而m 2+3m -28≥0,解得m ≥4或m ≤-7.迁移与应用 1.C 解析:复数z 在复平面内的对应点为(-1,-2),该点位于第三象限.2.B 解析:当点在虚轴上时,实部m -2=0,∴m =2.活动与探究2 思路分析:根据复数与平面向量,复数与复平面内的点一一对应,得到向量OA ,OB 的坐标,计算出向量BA 的坐标,再确定对应的复数.B 解析:由已知OA =(2,-3),OB =(-3,2),BA =OA -OB =(5,-5), ∴BA 对应的复数为5-5i .迁移与应用 解:方法1:由已知A (0,1),B (1,0),C (4,2),则AC 的中点坐标为E ⎝⎛⎭⎫2,32.由平行四边形的性质可知,E 也是BD 的中点.设D (x ,y ),则⎩⎪⎨⎪⎧ x +12=2,y +02=32,∴⎩⎪⎨⎪⎧x =3,y =3.即D (3,3). ∴D 点对应的复数为3+3i .方法2:由已知可得:OA =(0,1),OB =(1,0),OC =(4,2),∴BA =(-1,1),BC =(3,2),∴BD =BA +BC =(2,3),∴OD =OB +BD =(3,3),∴点D 对应的复数为3+3i .活动与探究3 思路分析:由|z |=2,虚部为3,可解出a ,再利用点在第二象限,确定a 为负值,从而求出z . -1+3i 解析:由已知得⎩⎪⎨⎪⎧ b =3,a 2+b 2=4, ∴⎩⎪⎨⎪⎧ a =±1,b = 3. 又∵复数z 对应的点在第二象限,∴a =-1,则z =-1+3i .迁移与应用 (1,5) 解析:|z |=a 2+1,∵0<a <2,∴1<a 2+1<5,∴1<|z |<5.当堂检测1.在复平面内,复数i(2-i)对应的点位于( ).A.第一象限B.第二象限C.第三象限D.第四象限答案:A解析:i(2-i)=1+2i,其在复平面上的对应点为(1,2),该点位于第一象限,故选A.2.复平面内下列哪个点对应的复数是纯虚数().A.(1,2) B.(-3,0)C.(0,0) D.(0,-2)答案:D解析:复平面内点(0,-2)对应的复数是-2i,是纯虚数.3.已知复数z满足|z|2-2|z|-3=0,则复数z对应点的轨迹为().A.一个圆B.线段C.两点D.两个圆答案:A解析:∵|z|2-2|z|-3=0,∴(|z|-3)(|z|+1)=0.∴|z|=3.∴复数z对应点的轨迹是一个圆.4.在复平面内表示复数z=(m-3)+的点在直线y=x上,则实数m的值为__________.答案:9解析:与复数z对应的点为(m-3,,由已知得m-3=m =9.5.已知复平面内,AB对应的复数为-1+2i,AC对应的复数为-2-3i,则BC对应的复数为__________.答案:-1-5i解析:由已知AB=(-1,2),AC=(-2,-3),∴BC=AC-AB=(-1,-5).∴BC对应的复数为-1-5i.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.2复数的几何意义
学习目标 1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.2.掌握实轴、虚轴、模等概念.3.掌握用向量的模来表示复数的模的方法.
知识点一复平面
思考1实数可用数轴上的点来表示,类比一下,复数怎样来表示呢?
思考2判断下列命题的真假:
①在复平面内,对应于实数的点都在实轴上;
②在复平面内,对应于纯虚数的点都在虚轴上;
③在复平面内,实轴上的点所对应的复数都是实数;
④在复平面内,虚轴上的点所对应的复数都是纯虚数;
⑤在复平面内,对应于非纯虚数的点都分布在四个象限.
梳理建立了直角坐标系来表示复数的平面叫做__________,x轴叫做________,y轴叫做________.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.
知识点二复数的几何意义
知识点三复数的模
复数z =a +b i(a ,b ∈R ),对应的向量为OZ →,则向量OZ →的模r 叫做复数z =a +b i 的模,记作
______或________.由模的定义可知:|z |=|a +b i|=r =______(r ≥0,r ∈R ).
类型一 复数与复平面内的点的关系
例1 实数x 分别取什么值时,复数z =(x 2+x -6)+(x 2-2x -15)i 对应的点Z 在:
(1)第三象限;
(2)直线x -y -3=0上.
引申探究
若例1中的条件不变,其对应的点在:
(1)虚轴上;
(2)第四象限.
反思与感悟 按照复数和复平面内所有点所成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值.
跟踪训练1 实数m 取什么值时,复数z =(m 2+5m +6)+(m 2-2m -15)i
(1)对应的点在x 轴上方;
(2)对应的点在直线x +y +4=0上.
类型二 复数与复平面内的向量的关系
例2 (1)向量OZ 1→对应的复数是5-4i ,向量OZ 2→对应的复数是-5+4i ,则OZ 1→+OZ 2→对应的复
数是( )
A .-10+8i
B .10-8i
C .0
D .10+8i
(2)设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA →对应的复数是
( )
A .-5+5i
B .-5-5i
C .5+5i
D .5-5i
反思与感悟 (1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数.反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.
(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.
跟踪训练2 (1)在复平面内,O 是原点,向量OA →对应的复数为2+i ,若点A 关于实轴的对称
点为点B ,则向量OB →对应的复数为________.
(2)复数z =3+4i 对应的向量OZ →所在直线的斜率为______________.
类型三 复数的模的计算
例3 若复数z =1+a i(i 是虚数单位)的模不大于2,则实数a 的取值范围是__________. 反思与感悟 利用模的定义将复数模的条件转化为其实部、虚部满足的条件,是一种复数问题实数化思想.
跟踪训练3 已知0<a <3,复数z =a +i(i 是虚数单位),则|z |的取值范围是( )
A .(1,10)
B .(1,3)
C .(1,3)
D .(1,10)
1.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.若OZ →=(0,-3),则OZ →对应的复数为( )
A .0
B .-3
C .-3i
D .3
3.在复平面内表示复数z =(m -3)+2m i 的点在直线y =x 上,则实数m 的值为________.
4.已知3-4i =x +y i(x ,y ∈R ),则|1-5i|,|x -y i|,|y +2i|的大小关系为________________.
1.复数的几何意义
这种对应关系架起了复数与解析几何之间的桥梁,使得复数问题可以用几何方法解决,而几何问题也可以用复数方法解决(即数形结合法),增加了解决复数问题的途径.
(1)复数z =a +b i(a ,b ∈R )的对应点的坐标为(a ,b )而不是(a ,b i);
(2)复数z =a +b i(a ,b ∈R )的对应向量OZ →是以原点O 为起点的,否则就谈不上一一对应,因
为复平面上与OZ →相等的向量有无数个.
2.复数的模
(1)复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2;
(2)从几何意义上理解,表示点Z 和原点间的距离,类比向量的模可进一步引申:|z 1-z 2|表示点Z 1和点Z 2之间的距离.
答案精析
问题导学
知识点一
思考1 任何一个复数z =a +b i ,都和一个有序实数对(a ,b )一一对应,因此,复数集与平面直角坐标系中的点集之间可以建立一一对应.
思考2 ①②③正确,④⑤错误.因为原点在虚轴上,而其表示实数,所以④错.因为非纯虚数包括实数,而实数对应的点在实轴上,故⑤错.
知识点二
Z (a ,b )
梳理 复平面 实轴 虚轴
知识点三
|z | |a +b i|
a 2+
b 2 题型探究
例1 解 因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数.
(1)当实数x 满足⎩⎪⎨⎪⎧
x 2+x -6<0,
x 2-2x -15<0, 即当-3<x <2时,点Z 在第三象限.
(2)z =x 2+x -6+(x 2-2x -15)i 对应的点Z (x 2+x -6,x 2-2x -15),
当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,
即当x =-2时,点Z 在直线x -y -3=0上.
引申探究
解 (1)当实数x 满足x 2+x -6=0,
即当x =-3或2时,点Z 在虚轴上.
(2)当实数x 满足⎩⎪⎨⎪⎧
x 2+x -6>0,
x 2-2x -15<0, 即当2<x <5时,点Z 在第四象限.
跟踪训练1 解 (1)由m 2-2m -15>0,得m <-3或m >5,
所以当m <-3或m >5时,复数z 对应的点在x 轴上方.
(2)由(m 2+5m +6)+(m 2-2m -15)+4=0,
得m =1或m =-52
, 所以当m =1或m =-52
时, 复数z 对应的点在直线x +y +4=0上.
例2 (1)C
(2)D
跟踪训练2 (1)2-i (2)43
解析 (1)复数2+i 表示的点A (2,1)关于实轴对称的点为B (2,-1),∴OB →对应的复数为2-
i.
(2)∵复数z 对应点Z (3,4),
∴向量OZ →所在的直线的斜率为43
. 例3
解析 复数z =1+a i(i 是虚数单位)的模不大于2,
即1+a 2≤4,即a 2≤3,
可得a ∈.
跟踪训练3 A
当堂训练
1.C 2.C 3.9
4.|1-5i|>|x -y i|>|y +2i|。

相关文档
最新文档