压缩感知理论综述(原创)

合集下载

压缩感知简介

压缩感知简介

2011.No31 03.2 熟悉结构施工图结构施工图是关于承重构件的布置,使用的材料、形状、大小及内部构造的工程图样,是承重构件以及其他受力构件施工的依据。

看结构施工图最难的就是钢筋,要把结施图看懂就要知道钢筋的分布情况,现在都是在使用平法来标示钢筋,所以也要把平法弄懂才行。

在识读与熟悉结施图的过程中应该充分结合钢筋平法表示的系列图集,搞清楚:a 各结构构件的钢筋的品种,规格,以及受力钢筋在各构件的布置情况。

b 箍筋与纵向受力钢筋的位置关系。

c 各个构件纵向钢筋以及箍筋弯钩的角度及其长度。

d 熟悉各构件节点的钢筋的锚固长度。

e 熟悉各个构件钢筋的连接方式。

f 熟悉在钢筋的搭接区域内,钢筋的搭接长度。

g 核算钢筋的间距是否满足施工要求,尤其是各个构件节点处的钢筋间距。

h 弯起钢筋的弯折角度以及离连接点的距离。

除此以外,对于钢筋混凝土构件,还应该熟悉各个构件的砼保护层厚度,各个构件的尺寸大小、布置位置等。

特别注意的是对于结施图的阅读应充分结合建施图进行。

4 结束语在熟悉施工图纸的过程中,施工技术人员对于施工图纸中的疑问,和比较好的建议应该做好记录,为后续工作(图纸自审和会审)做好准备。

参考文献[1]《建筑识图》周坚主编 中国电力出版社 2007年;[2]《建筑工程项目管理》银花主编 机械工业出版社 2010年;摘 要 压缩感知(Compressive Sensing, CS)理论是一个充分利用信号稀疏性或可压缩性的全新信号采集、编解码理论。

本文系一文献综述,主要介绍了压缩感知的三部分即信号的稀疏表示、测量矩阵的设计、信号恢复算法的设计。

关键词 压缩感知 稀疏表示 测量矩阵 信号恢复算法1 引言1928年由美国电信工程师H.奈奎斯特(Nyquist)首先提出,1948年信息论的创始人C.E.香农(Shannon)又对其加以明确说明并正式作为定理引用的奈奎斯特采样定理,是采样带限信号过程所遵循的规律。

压缩感知综述_尹宏鹏

压缩感知综述_尹宏鹏

第28卷第10期V ol.28No.10控制与决策Control and Decision2013年10月Oct.2013压缩感知综述文章编号:1001-0920(2013)10-1441-05尹宏鹏a,刘兆栋a,柴毅a,b,焦绪国a(重庆大学a.自动化学院,b.输配电装备及系统安全与新技术国家重点实验室,重庆400044)摘要:压缩感知理论的诞生使得采样速率与信号的结构和内容相关,并以低于奈奎斯特采样定理要求的频率采样、编码和重构.在实际应用中,为解决数据冗余和资源浪费的瓶颈问题开拓了一条新道路,也为其他学科发展提供了新的契机.从发展历史和研究现状等方面入手,对稀疏表示、测量矩阵的构造、稀疏重构算法和主要应用方面进行了详细的梳理和研究.对当前研究的热点、难点作了分析和探讨,并指出了未来的发展方向和应用前景.关键词:压缩感知;稀疏表示;测量矩阵;稀疏重构算法中图分类号:TP13文献标志码:ASurvey of compressed sensingYIN Hong-peng a,LIU Zhao-dong a,CHAI Yi a,b,JIAO Xu-guo a(a.College of Automation,b.State Key Laboratory of Power Transmission Equipment and System Security and New Technology,Chongqing University,Chongqing400044,China.Correspondent:YIN Hong-peng,E-mail: yinhongpeng@)Abstract:The presence of compressed sensing theory makes the sample rate relate to the signal structure and content.The sample rate of compressed sensing for the signal sample,coding and reconstruction is less than the Nyquist theorem methods. Therefore,a method is proposed to solve the bottleneck problem of data redundancy and resource-wasting.Moreover,it offers new developing chances for other researchfields.The development and current situation of compressed sensing theory are involved.A detailed carding and research on the sparse representation,measurement matrix design,reconstruction algorithm and application aspects is discussed.Therefore,the current hot spots and difficulties are analyzed and discussed.Finally,the direction of future development and application prospect are discussed.Key words:compressed sensing;sparse representation;measurement matrix;reconstruction algorithm0引言信号处理中基本的原理依据是奈奎斯特采样定理,在信号采样时,只有满足大于信号最高频率两倍的频率进行信号采样,才能精确地重构原始信号.信号采样过程中产生大量的冗余数据,最终只有部分重要的信息被应用,造成了大量资源的浪费和在特殊环境中数据使用的限制.由此学者们提出,可否利用被采样数据精确地重构原始信号或图像,这部分重要数据是可以直接采集到的.最初,Mistretta等[1]提出:能否利用有限的采样数据使得原始信号或图像被精确或近似精确地重构,以缩减核磁共振成像的时间.Mistretta等依据此观念进行模拟实验,实验采用经典的图像重构算法.实验结构证明重构的图像边缘模糊,且分辨率低.之后, Candes等[2]利用有限的采样数据精确地重构了原始信号,但采用的是惩罚思想,实验结果证明,在图像的稀疏表示中,随机选取的稀疏系数只有不少于2K个(K是非零稀疏系数的个数),原始信号或图像才能被精确地重构,且具有惟一性的特点,由此诞生了压缩传感理论.针对可稀疏压缩信号,Donoho等[3-6]在稀疏分解和信号恢复等思想的基础上提出压缩感知(CS)理论框架,随后该理论迅速发展,为解决瓶颈问题提供了理论基础.在此基础上,Donoho[3]正式提出了“压缩传感”这一术语,此后文献[2-3,6-7]针对稀疏表示的稀疏性和不相干性、稳健的压缩采样、随机测量等方收稿日期:2012-10-16;修回日期:2013-01-25.基金项目:国家自然科学基金项目(61203321);中国博士后基金项目(2012M521676);中央高校基金科研业务费项目(106112013CD-JZR170005).作者简介:尹宏鹏(1981−),男,副教授,博士,从事压缩感知、计算机视觉等研究;刘兆栋(1985−),男,硕士生,从事压缩感知、计算机视觉的研究.DOI:10.13195/j.kzyjc.2013.10.0131442控制与决策第28卷面进行了许多研究,并将压缩感知作为测量技术应用于天文学、核磁共振、模式识别等领域,取得了良好的发展.压缩感知引起了国外众多学者和组织机构的关注,被美国科技评为2007年度十大科技进展之一,如Waheed等[8]提出了网络数据的压缩传感;西雅图Intel、贝尔实验室、Google等知名公司也开始研究压缩感知;莱斯大学提出了一种利用光域压缩的新颖的压缩图像照相机框架和新的数字图像/视频照相机以直接获取随机映射,并建立CS专业网站,涵盖了理论和应用的各个方面[9].在国内,近几年对CS理论和实际应用的研究也成为热门的研究方向.以压缩感知为检索主题词在国家自然科学基金网络信息系统(ISIS)[10]中查询近3年的项目资助情况,其资助力度呈逐年递增趋势(2010年资助39项,合计1627万元; 2011年资助54项,合计2691万元;2012年资助77项,合计4135万元).以上结果显示,对压缩感知的研究已经受到国家层面的大力重视,也吸引了越来越多的优秀学者参与.国内众多学者对压缩感知进行了深入研究,其中具有代表性的有:文献[11]针对压缩感知稀疏重建算法进行了研究;文献[12]详细探讨了压缩传感的理论框架及其关键技术问题;文献[13]深入研究了压缩感知的理论框架和基本思想,并讨论了未来的应用前景;文献[14]探索了在探地雷达三维成像中压缩感知理论的应用;文献[15]将压缩感知理论应用于无线传感网,并在分布式压缩传感理论基础上提出了一种数据抽样压缩和重构的方法;文献[16]将可压缩传感理论运用于实际传感器网络数据恢复问题.在各个领域,压缩传感虽然已经取得了显著的成果,但是国内外学者认为仍存在很多问题需要研究[12]:1)对于越来越完善的重构算法,如何使构造的确定性测量矩阵是最好的;2)如何探索稳定的重构算法,使得原始可压缩信号或图像被精确地重构,且所构造的重构算法要求计算复杂度低、对观测次数限制少;3)如何在冗余字典或非正交分解下找到一种快速有效的稀疏分解算法;4)如何运用压缩感知理论设计有效的软硬件解决大量的实际问题;5)针对p-范数的最优化求解问题,如何深入研究;6)如何在含噪信号的重构或采样过程中收入噪声后寻求最优的信号重构算法.此外,将压缩感知理论应用于其他领域,如医学信号检测、特征提取、故障诊断、图像融合等,也是众多学者研究的难点和热点.压缩感知理论是新颖的理论,是对经典信号处理领域的补充和完善,其研究成果显著影响了图像处理、数据融合等其他领域,然而专家学者认为还有许多问题有待研究.1压缩感知研究方向在信号处理过程中,抽样的目的是运用最少的抽样点数获得有效的信息.在设计抽样系统时,完整恢复信号所需的最少抽样点数是必须考虑的问题,经典奈奎斯特定理给出了关于带限信号的答案,而在经典理论的基础上提出的压缩传感理论,由于低于奈奎斯特采样定理要求的频率采样、编码和重构,适用于更广泛的信号类型.CS理论主要涉及信号的稀疏表示、稀疏测量和重构3个基本核心问题.1.1稀疏表示稀疏表示的基本思想是假设自然信号可以被压缩表示,从数学角度而言,是对多维数据进行线性分解的一种表示方法.稀疏表示具有两个特征:过完备性和稀疏性.字典的过完备性表示字典的行数大于列数,即信号的维数小于原子的个数.相比于正交变换基,构造的过完备字典含有的原子数目更多,能提供更稳定的稀疏表示.因此,稀疏表示(即构造具有稀疏表示能力的基或者设计过完备字典Ψ)的目的是希望信号非零元个数足够少,即令Ψ足够稀疏以确保信号或图像“少采样”.目前较流行的信号稀疏表示方法多数基于稀疏变换,对信号的Fourier变换、小波变换、Gabor变换等都具有一定的稀疏性.多尺度几何分析为一些特殊形态提供了最稀疏的表示,如Curvelet变换、Bandelet变换、Contourlet变换等.部分学者研究了在混合基下的信号稀疏表示,如文献[17]将其应用于形态成分分析,文献[11]应用于图像CS重构,文献[18]应用于MRI(magnetic resonance imaging)重构等,均取得了比单一稀疏表示下更好的效果.传统的信号分解方法都是将信号分解到一组完备的正交基上,有较大的局限性.在表达任意信号时,当选用某个特定函数作为基时,基函数便决定了信号的展开形式.伴随着信息技术不断发展,信号或图像处理的理论也日新月异,更有效的非正交分解方法也因此产生.非正交分解日益引起专家学者们的重视,给信号的稀疏分解指明了一个新方向.信号在冗余字典下的稀疏分解是稀疏表示的研究热点,而构造稀疏字典的研究热点是过完备字典.冗余字典设计或学习必须遵循的基本准则是:对于信号本身的各种固有特征,在构造字典的过程中各元素应尽可能匹配.在稀疏基或字典的构造过程中,选择合适的稀疏字典能够确保信号的表示系数足够稀疏,进而确保直接与非零系数相关的压缩测量数目足够少,同时能够高概率地重构信号或图像.第10期尹宏鹏等:压缩感知综述1443经过对国内外众多优秀学者的研究和理论进行梳理,常用的稀疏表示算法主要包括基追踪算法(BP)[19]、贪婪匹配追踪算法(MP)[20]、正交匹配追踪算法(OMP)[21]等.在稀疏分解算法研究中,大多数只从原子库构造或分解算法角度出发,然后对稀疏分解算法进行各种改进.未来利用原子库自身结构特性的稀疏分解算法是压缩感知理论研究的热点之一.从现有的文献来看,众多学者对稀疏表示的研究重点主要集中在两个方面:如何找到信号的最佳稀疏基和如何从这些基或字典中找到最佳的K项组合来逼近源信号;针对已有算法如何实现冗余字典的快速计算或者设计新的低复杂度的稀疏分解算法.1.2稀疏测量为了保证精确地重构原始信号,对信号的线性投影采用一个与稀疏变换矩阵不相关的测量矩阵,从而得到感知测量值,即所谓的稀疏测量.因此,稀疏测量主要集中在两个方面:如何构造随机测量矩阵使得测量值的数目尽可能的少和如何使构造的测量矩阵与系统不相关.从原理角度看,测量矩阵的选择需要满足非相干性和限制等容性(RIP)两个基本原则.文献[22]给出并证明了测量矩阵必须满足RIP条件;文献[23]给出了测量矩阵的一个等价条件是测量矩阵与稀疏基之间不相关,即若运用与稀疏变换基不相关的测量矩阵对信号压缩测量,则原始信号可以经过某种变换后稀疏表示.构造一个与稀疏矩阵不相关的M×N(M≪N)测量矩阵Φ对信号进行线性投影,获取感知测量值y=Φf,y是M×1矩阵,使测量对象从N维降为M维[22-23].稀疏测量过程是非自适应的,即测量矩阵Φ的选择不依赖于信号f.构造的测量矩阵要求信号从f转换为y的过程中获取的K个测量值能够保留原始信号的全部信息,以保证信号的精确重构.在测量矩阵的设计过程中,有y=Φf=ΦΨα=Aα,其中A需满足有限等距性质[22-23],即对于任意K值的稀疏信号f和常数δk∈(0,1),有1−δk⩽∥Af∥22∥f∥22⩽1+δk,(1)由此K个系数可根据M个感知测量值准确重构.依据测量矩阵的限制性条件,专家学者提出的随机性测量矩阵有随机高斯测量矩阵[2-4,7]、随机贝努力矩阵[2-4]、部分正交矩阵[2]、稀疏随机矩阵[24].当前,随机性测量矩阵的劣势是存在一定的不确定性,若要消除压缩测量的不确定性,则必须进行后续处理.此外,利用实际硬件生成随机测量矩阵也较为困难.针对随机测量矩阵的不确定性和不易用硬件实现两大缺点,学者展开了对确定性测量矩阵的研究.确定性测量矩阵有利于降低内存、设计快速的恢复算法,主要分为托普利兹和循环矩[25-29]、轮换矩阵[30-31]、哈达玛矩阵[4]、改进的轮换矩阵的构造[32]等.目前,一些学者提出了通过QR分解、正交变换改进的随机测量矩阵和改进非线性相关性的确定性测量矩阵的方法.通常,压缩测量过程中存在难以在硬件上实现和采样过程中数据多等难题,测量矩阵的构造还不够完善,因此,将压缩传感理论推向实际应用的关键是构造高效且在硬件上易于实现的测量矩阵.1.3信号重构信号重构算法是指运用压缩测量的低维数据精确地重构高维的原始信号或图像,即利用M维测量值重建N(M≪N)维信号的过程.重构是压缩感知研究中最为重要且关键的部分,在信号重构方面,最初研究的是对最小化l2范数约束求解的优化问题,获取的解通常是不稀疏的,于是转而对最小化l0范数和l1范数约束求解.目前,重构算法主要分为3类:1)基于l1范数的凸优化算法;2)基于l0范数的贪婪算法;3)组合算法.对于大规模的数据问题,重构速度有时候会很快,但是原始信号的采样要支持快速分组测试重建.凸松弛算法有基追踪算法[25]、梯度投影法[30]、凸集交替投影算法[5-6]和内点迭代法[31]等;贪婪算法有匹配追踪算法[20]、正交匹配追踪算法[33]、分段式正交匹配追踪算法[34]和一些改进算法等;组合算法有链式追踪算法[35]、HHS(heavy hitter on steroids)追踪算法[36]和I-wen算法[37]等.凸优化方法是基于l1范数最小进行求解的方法,相比于其他算法,重建效果较好.因其计算量大、时间复杂度高,在大规模信号处理中不便广泛应用.然而,近些年来,一些凸优化方法在重建稀疏信号方面获得了较快的重构速度,例如交替方向算法等[38].该算法不同于其他算法将凸优化问题视为一般的极小化问题而忽略了其可分离结构,在求解凸优化问题时将各变量分离求解,极大地提高了算法的速度.相对基于l1范数最小的凸优化算法模型而言,贪婪追踪算法计算速度很快,但精度稍差,然而也能满足实际应用的一般要求.因此,基于l0范数最小的贪婪追踪算法很实用,应用广泛.此类算法针对l0范数最小化问题求解,但是改进系列算法允许在重建过程中存在一定的误差.此外,迭代阈值法也得到了广泛的应用,此类算法也较易实现,计算量适中,在贪婪算法和凸优化算法中都有应用.但是,迭代阈值法对于迭代初值和阈值的选取均较为敏感,且不能保证求出的解是稀疏的.1444控制与决策第28卷Gilbert等[35-36]提出链追踪、HHS追踪等组合优化算法,采用结构式采样矩阵线性投影,利用群测试实现精确重构.此类算法运算速度高,但采样测量矩阵复杂,现实中难以推广应用.目前,重构算法可以精确地重构原始信号或图像,但这些稀疏重构算法都存在一些无法改善的缺点.此外,现有的算法对含有噪声信号或采样过程中收入噪声信号的重构效果较差,鲁棒性也较差,如何改善有待进一步研究.2压缩感知理论的应用压缩感知理论可以高效地采集稀疏信号的信息,通过非相关性感知测量值,此特性使得压缩传感广泛地应用于现实生活中.CS理论解决了信息采集和处理技术目前遇到的瓶颈,带来了革命性的突破,受到各国学者的广泛关注,从医学成像和信号编码到天文学和地球物理学均有所应用.其中代表性的有“单像素”压缩数码照相机[9]、MRI RF脉冲设备[39]、超谱成像仪[40]、DNA微阵列传感器[41]、MPST(multi-pixel but single time)相机[42]等.此外,压缩感知表现出强大的生命力,已发展形成了分布式CS理论、贝叶斯CS理论、无限维CS理论等,并得到广泛应用,如文献[43]利用分布式CS理论实现视频的压缩和联合重构;文献[44]利用贝叶斯CS理论改善了分布式认知网络中频谱感知的精度.目前,压缩感知理论在数据压缩、信道编码、数据获取等方面获得了广泛应用,然而其自身理论还不够完善,在应用方面也是新兴学科,未来的研究中尚有许多难点问题需要解决和突破.3结论压缩感知理论的应用已经引起众多学者的高度重视,其采样速率与信号的结构和内容相关,以低于奈奎斯特采样定理要求的频率采样、编码和重构.压缩感知理论在压缩成像系统、医学成像、信息转换、雷达成像、天文和通讯等[45]领域均获得了较好的应用.通过对国内外众多学者文献的梳理和研究,总结了压缩感知理论进一步的研究方向:1)算法层面.在非正交分解或适合某一类冗余字典中,探索更有效更快速的稀疏分解算法;在多信息、多误差、多故障融合的情况下,研究新的复杂度低、精确率高的重构算法,并在测量次数、重建误差和重建速度上达到最优的平衡.2)理论层面.在随机测量矩阵方面,提高列向量之间的非线性相关性和类似噪声的独立随机性,构造一个平稳观测矩阵寻求占用存储空间小、测量数和信号长度最优的确定性测量矩阵,并给出相应的理论条件验证方法.3)应用层面.针对现实生活中噪声等实际问题,探索基于压缩感知的软硬件设计;结合现有的贝叶斯、分布式等压缩感知理论的优点,进一步探讨压缩感知与其他领域的融合.参考文献(References)[1]Marple S L.Digital spectral analysis with applications[M].Englewood Cliffs:Prentice-Hall,1987:35-101.[2]Candès E J,Romberg J,Tao T.Robust uncertaintyprinciples:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans on Information Theory,2006,52(2):489-509.[3]Donoho D pressed sensing[J].IEEE Trans onInformation Theory,2006,52(4):1289-1306.[4]Donoho D L,Tsaig Y.Extensions of compressedsensing[J].Signal Processing,2006,86(3):533-548. [5]Candès pressive sampling[C].Proc of the IntCongress of Mathematicians.Madrid,2006,3:1433-1452.[6]Candès E,Romberg J.Quantitative robust uncertaintyprinciples and optimally sparse decompositions[J].Foundations of Computational Mathematics,2006,6(2): 227-254.[7]Candès E,Romberg J,Tao T.Stable signal recovery fromincomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006, 59(8):1207-1223.[8]Waheed Bajwa,Jarvis Haupt,Akbar pressivewireless sensing[C].Proc of the5th Int Conf on Information Processing in Sensor Networks.New York: Nashville,2006:134-142.[9]Duarte M F,Davenport M A,Takhar D,et al.Single-pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):83-91.[10]国家自然科学基金网络信息系统(ISIS)[EB/OL].[2012-12-27]./portal/Proj-List.asp. [11]王艳,练秋生,李凯.基于联合正则化及压缩传感的MRI图像重构[J].光学技术,2010,36(3):350-355.(Wang Y,Lian Q S,Li K.Based on joint regularization and compressed sensing MRI image reconstruction[J].Beijing: Optical Technology,2010,36(3):350-355.)[12]石光明,刘丹华,高大化,等.压缩感知理论及其研究发展[J].电子学报,2009,37(5):1070-1081.(Shi G M,Liu D H,Gao D pressive sensing theory and its research and development[J].Beijing:Acta Electronica Sinica,2009,37(5):1070-1081.)[13]戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3)425-434.(Dai Q H,Fu C J,Ji X pressive sensing research[J].Chinese J of Computers,2011,34(3):425-434.)第10期尹宏鹏等:压缩感知综述1445[14]余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报,2010,1(32):12-16.(Yu H M,Fang G Y.The application of compressive sensing in the ground penetrating radar three dimensional imaging[J].J of Electronics and Information Technology, 2010,1(32):12-16.)[15]Du Bing,Liu Liang,Zhang Jun.Multisensor informationcompression and reconstruction[C].Proc of Society of Photo Optical Instrumentation Engineers,Multisensor, Multisource Information Fusion:Architectures, Algorithms and Applications.Orlando,2009,7345:1-11.[16]Guo Di,Qu Xiao-bo,Xiao parativeanalysis on transform and reconstruction of compressed sensing in sensor networks[C].World Resources Institute International Conf.Kunming,2009,1:441-445.[17]Starck J L,Elad M,Donoho D.Redundant multiscaletransforms and their application for morphological component analysis[J].Advances in Imaging and Electron Physics,2004,132(82):287-348.[18]Qu Xiao-bo,Guo Di,Ning Ben-de.Undersampled MRIreconstruction with the patch-based directional wavelets[J].Magnetic Resonance Imaging,2012,30(7):964-977. [19]Chen S S,Donoho D L,Saunders M A.Atomicdecomposition by basis pursuit[J].Society for Industrial and Applied Mathematics J of Scientific Computing,1999, 20(1):33-61.[20]Mallat S,Zhang Z.Matching pursuits with time frequencydictionaries[J].IEEE Trans on Signal Process,1993, 41(12):3397-3415.[21]Pati Y,Rezaiifar R,Krishnaprasad P.Orthogonal matchingpursuit:Recursive function approximation with applications to wavelet decomposition[C].IEEE Proc of the27th Annual Asilomar Conf on Signals,Systems and Computers.Los Alamitos,1993,1(11):40-44.[22]Candès E.The restricted isometry property and itsimplications for compressed sensing[J].Computers Rendus Mathematique,2008,346(9/10):589-592.[23]Richard Baraniuk,Mark Davenport,Ronald DeV ore,et al.A simple proof of the restricted isometry property forrandom matrices[J].Constructive Approximation,2008, 28(3):253-263.[24]方红,章权兵,韦穗.基于非常稀疏随机投影的图像重构方法[J].计算机工程与应用,2007,43(22):25-27.(Fang H,Zhang B Q,Wei S.Image reconstruction methods based on the very sparse random projection[J].Beijing: Computer Engineering and Applications,2007,43(22):25-27.)[25]Yin W T,Morgan S P,Yang J F,et al.Practicalcompressive sensing with toeplitz and circulant matrices[C].Proc of Visual Communications and Image Processing.Huangshan,2010,7744:1-10.[26]Bajwa W,Haupt J,Raz G,et al.Toeplitz structuredcompressed sensing matrices[C].Proc of the IEEE Workshop on Statistical Signal Processing.Washington, 2007:294-298.[27]Sebert F,Zou Y M,Ying L.Toeplitz block matrices incompressed sensing and their Applications in imaging[C].Proc of Int Conf on Technology and Applications in Biomedicine.Washington,2008:47-50.[28]Holger Rauhut.Circulant and toeplitz matrices incompressed sensing[C].Proc of Signal Processing with Adaptive Sparse Structured Representations.Saint Malo, 2009:1-6.[29]Berinde R,Piotr Indyk.Sparse recovery using sparserandom matrices[R].Cambridge:MIT’s Computer Science and Artificial Intelligence Laboratory,2008.[30]Lorne Applebaum,Stephen Howard,Stephen Searle,et al.Chirp sensing codes:Deterministic compressed sensing measurements for fast recovery[J].Applied and Computational Harmonic Analysis,2009,26(2):283-290.[31]Romberg pressive sensing by randomconvolution[J].Society for Industrial and Applied Mathematics(SIAM)J on Imaging Sciences,2009,2(4): 1098-1128.[32]付强,李琼.压缩感知中构造测量矩阵的研究[J].电脑与电信,2011,7(1):39-41.(Fu Q,Li Q.The research of constructing the measurement matrix in compressive sensing[J].Computer and Telecommunication,2011,7(1):39-41.)[33]Trop J A,Gilbert A C.Signal recovery from randommeasurements via orthogonal matching pursuit[J].IEEE Trans on Information Theory,2007,53(12):4655-4666.[34]Donoho D L,Tsaig Y,Drori I,et al.Sparse solution ofunderdetermined linear equations by stagewise orthogonal matching pursuit[R].Standford,2006.[35]Gilbert A,Strauss M,Tropp J,et al.Algorithmic lineardimension reduction in the norm for sparse vectors[C].Proc of the44th Annual Allerton Conf on Communication.Allerton,2006:9.[36]Gilbert A,Strauss M,Tropp J,et al.One sketch for all:Fast algorithms for compressed sensing[C].Proc of39th Association for Computing Machinery(ACM)Symposium: Theory of Computing.San Diego,2007,7:237-246.(下转第1453页)第10期简惠云等:“报童问题”中风险偏好下的条件风险值及其优化1453for“company+farmer”contract-farming with CVaR criterion[J].Systems Engineering-Theory&Practice, 2011,31(3):450-460.)[8]马利军,李四杰,严厚民.具有风险厌恶零售商的供应链合作博弈分析[J].运筹与管理,2010,19(2):12-21.(Ma L J,Li S J,Yan H M.Channel bargaining with risk-averse retailer[J].Operations Research and Management Science,2010,19(2):12-21.)[9]Gan Xiang-hua,Suresh P Sethi,Yan Hou-min.Channelcoordination with a risk-neutral supplier and a downside-risk-averse retailer[J].Production and Operations Management,2005,14(1):80-89.[10]许明辉,于刚,张汉勤.带有缺货惩罚的报童模型中的CVaR研究[J].系统工程理论与实践,2006,26(10):1-8.(Xu M H,Yu G,Zhang H Q.CVaR in a newsvendor model with lost sale penalty cost[J].Systems Engineering -Theory&Practice,2006,26(10):1-8.)[11]Gotoh Jun-ya,Takano Yui-chi.Newsvendor solutions viaconditional value-at-risk minimization[J].European J ofOperational Research,2007,179(1):80-96.[12]Hsieh Chung-chi,Lu Yu-ting.Manufacturer’s returnpolicy in a two-stage supply chain with two risk-averse retailers and random demand[J].European J of Operational Research,2010,207(1):514-523.[13]Worner Jammernegg,Peter Kischka.Risk-arerse andrisk-taking newsvendor:A conditional expected value approach[J].Review of Managerial Science,2007,1(4): 93-110.[14]邱若臻,黄小原.基于条件风险值准则的供应链回购契约协调策略[J].运筹与管理,2011,20(4):10-16.(Qiu R Z,Huang X Y.The supply chain buyback contract coordination strategy based on conditional value-at-risk criterion[J].Operations Research and Management Science,2011,20(4):10-16.)[15]Tyrrell Rockafellar R,Stanislav Uryasev.Optimization ofconditional value-at-risk[J].J of risk,2000,2(3):21-42. [16]Tyrrell Rockafellar R,Stanislav Uryasev.Conditionalvalue-at-risk for general loss distributions[J].J of Banking &Finance,2002,26(7):1443-1471.(上接第1445页)[37]Iwen Mark.A deterministic sublinear time sparseforier algorithm via non-adaptive compressed seining methods[C].Proc of ACM-SIAM Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics.Philadelphia,2008:20-29.[38]Yang J F,Zhang Y.Alternating direction algorithmsfor l1−problems in compressive sensing[J].Society for Industrial and Applied Mathematics(SIAM)J on Scientific Computing,2011,33(1):250-278.[39]Zelinski A C,Wald L L,Setsompop K.Sparsity-enforcedslice-selective MRI RF excitation pulse design[J].IEEE Trans on Medical Imaging,2008,27(9):1213-1229. [40]Willett R M,Gehm M E,Brady D J.Multiscalereconstruction for computational spectral imaging[C].Proc of Society of Photo-Optical Instrumentation Engineers (SPIE)and Electronic Imaging-computational Imaging.Bellingham,2007,6498:64980L.[41]Dai W,Sheikh M,Milenkovic O,et pressivesensing DNA microbarrays[J].EURASIP J on Bioinformatics and Systems Biology,2009,162824:12.[42]Zhang Y,Mei S,Chen Q,et al.A novel image/videocoding method based on compressed sensing theory[C].IEEE Int Conf on Acoustics,Speech and Signal Processing(ICASSP).Las Vegas,2008:1361-1364. [43]Prades-Nebot J,Ma Y,Htlang T.Distributed video codingusing compressive sampling[C].Proc of the27th Conf on Picture Coding SymPosium.Chicago,2009:165-168. [44]汪振兴,杨涛,胡波.基于互信息的分布式贝叶斯压缩感知[J].中国科学技术大学学报,2009,39(10):1045-1051.(Wang Z X,Yang T,Hu B.Bayesian compressive sensing based on mutual information[J].J of University of Science and Technology of China,2009,39(10):1045-1051.) [45]朱丰,张群.一种新的基于遗传算法的压缩感知重构方法及其在SAR高分辨距离像重构中的应用[J].控制与决策,2012,27(11):1669-1675.(Zhu F,Zhang Q.A novel compressive sensing reconstruction method based on genetic algorithm and its application in high resolution range of SAR image reconstruction[J].Control and Decision,2012,27(11): 1669-1675.)。

压缩感知简介

压缩感知简介

压缩感知简介 压缩感知(也称为压缩感知、压缩采样或稀疏采样)是⼀种信号处理技术,通过寻找⽋定线性系统的解决⽅案来有效地获取和重构信号。

这是基于这样的原理,即通过优化,可以利⽤信号的稀疏性从⽐Nyquist-Shannon 采样定理所需的样本少得多的样本中恢复它。

有两种情况可以恢复。

第⼀个是稀疏的,这要求信号在某些域中是稀疏的。

第⼆个是不相⼲性,它通过等距属性应⽤,这对于稀疏信号来说已经⾜够了。

概述 信号处理⼯程领域的⼀个共同⽬标是从⼀系列采样测量中重建信号。

⼀般来说,这项任务是不可能的,因为在未测量信号的时间内⽆法重建信号。

然⽽,通过对信号的先验知识或假设,可以从⼀系列测量中完美地重建信号(获取这⼀系列测量称为采样)。

随着时间的推移,⼯程师们对哪些假设是实⽤的以及如何推⼴它们的理解有所提⾼。

信号处理的早期突破是奈奎斯特-⾹农采样定理。

它指出,如果真实信号的最⾼频率⼩于采样率的⼀半,则可以通过sinc 插值完美地重构信号。

主要思想是,利⽤关于信号频率约束的先验知识,重构信号所需的样本更少。

⼤约在 2004 年,Emmanuel Candès、Justin Romberg、Terence Tao和David Donoho证明,在了解信号稀疏性的情况下,可以使⽤⽐采样定理所需更少的样本来重建信号。

这个想法是压缩感知的基础。

历史 压缩传感依赖于其他⼏个科学领域在历史上使⽤过的技术。

在统计学中,最⼩⼆乘法由L1-norm,由Laplace引⼊。

随着线性规划和Dantzig单纯形算法的介绍,L1-norm ⽤于计算统计。

在统计理论中,L1-norm 被George W. Brown和后来的作者⽤于中值⽆偏估计量。

它被Peter J. Huber 和其他从事稳健统计⼯作的⼈使⽤。

L1-norm 也⽤于信号处理,例如,在 1970 年代,地震学家根据似乎不满⾜Nyquist-Shannon 标准的数据构建了地球内反射层的图像。

压缩感知磁共振成像技术综述

压缩感知磁共振成像技术综述

压缩感知磁共振成像技术综述王水花,张煜东南京师范大学计算机科学与技术学院,江苏南京210023【摘要】目的:综述近年来压缩感知磁共振成像技术的研究进展。

方法:磁共振成像是目前临床医学影像中最重要的非侵入式检查方法之一,然而其成像速度较低,限制其发展。

压缩感知是一种新的信号采集与获取理论,它利用信号在特定域上的稀疏性或可压缩性,可通过少量测量重建整个原始信号。

压缩感知磁共振成像技术将压缩感知应用到磁共振成像中,可在相同的扫描时间内获得更精细的空间组织结构,也可在相同的空间分辨率下加速成像。

结果:本文概述了压缩感知磁共振成像的理论基础,分别从稀疏变换、不相干欠采样、非线性重建三个方面具体阐述,最后讨论了其研究展望与应用现状。

结论:压缩感知磁共振成像具有较好的发展潜力,有逐渐增长的医用与商用价值。

【关键词】磁共振成像;压缩感知;稀疏变换;不相干欠采样;非线性重建【DOI 编码】doi:10.3969/j.issn.1005-202X.2015.02.002【中图分类号】R312;R445.2【文献标识码】A【文章编号】1005-202X (2015)02-0158-05Survey on Compressed Sensing Magnetic Resonance Imaging TechniqueWANG Shui-hua,ZHANG Yu-dongSchool of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,ChinaAbstract:Objective This paper focuses on the survey of compressed sensing in magnetic resonance imaging (CSMRI ).Meth -ods Magnetic resonance imaging is one of the most crucial non-invasive diagnostic implements in routine clinical examination.However,it is often limited by long scan pressed sensing is a novel theory of signal acquisition and processing.It capitalizes on the signal's sparseness or compressibility in specific domain,allowing the entire original signal to be reconstruct-ed from relatively few measurements.CSMRI is proposed by integrating compressed sensing into MRI,providing more precise spatial tissue structure than normal technique in the same scan time,and accelerating imaging in the same spatial resolution.Results In this study we discussed in depth three components as sparse transform,incoherent subsampling,and nonlinear re-construction.We conclude the paper by discussing the research prospects and applications of CSMRI.Conclusion CSMRI has good development potential,and has increasing values for medical and commercial applications.Key words:magnetic resonance imaging;compressed sensing;sparse transform;incoherent subsampling;nonlinear recon-struction1971年,纽约州立大学的Paul uterbur 教授提出磁共振成像(MRI),并于2003年获得诺贝尔生理医学奖。

压缩感知理论综述(原创)

压缩感知理论综述(原创)

压缩感知理论综述摘要:信号采样是模拟的物理世界通向数字的信息世界之必备手段。

多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理,但其产生的大量数据造成了存储空间的浪费。

压缩感知(Compressed Sensing)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。

本文详述了压缩感知的基本理论,着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,并介绍了压缩感知的应用及仿真,举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。

关键词:压缩感知;稀疏表示;观测矩阵;编码;解码一、引言Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。

可见,带宽是Nyquist采样定理对采样的本质要求。

然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。

解决这些压力常见的方案是信号压缩。

但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。

从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。

于是很自然地引出一个问题:能否利用其它变换空间描述信号,建立新的信号描述和处理的理论框架,使得在保证信息不损失的情况下,用远低于Nyquist 采样定理要求的速率采样信号,同时又可以完全恢复信号。

与信号带宽相比,稀疏性能够直观地而且相对本质地表达信号的信息。

事实上,稀疏性在现代信号处理领域起着至关重要的作用。

近年来基于信号稀疏性提出一种称为压缩感知或压缩采样的新兴采样理论,成功实现了信号的同时采样与压缩。

简单地说,压缩感知理论指出:只要信号是可压缩的或在某个变换域是稀疏的,那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量的投影中以高概率重构出原信号,可以证明这样的投影包含了重构信号的足够信息。

分布式压缩感知理论研究综述及应用

分布式压缩感知理论研究综述及应用

分布式压缩感知理论研究综述及应用【摘要】分布式压缩感知是一种新兴的信号采样和重构技术,能够显著减少传感器网络中的数据通信量。

本文首先对分布式压缩感知理论进行概述,然后探讨了在图像处理、视频传输和无线传感器网络中的应用案例。

接着介绍了分布式压缩感知理论研究的最新进展,包括算法优化和理论探索。

在分析了分布式压缩感知理论的潜在应用,同时总结了当前研究的局限性和未来发展方向。

通过本文的研究,我们可以更好地了解分布式压缩感知技术在不同领域的应用前景,为相关领域的研究和应用提供重要参考。

【关键词】分布式压缩感知、理论研究、应用、图像处理、视频传输、无线传感器网络、进展、潜在应用、总结、展望1. 引言1.1 研究背景随着大数据和物联网技术的快速发展,传感器网络、图像处理和视频传输等领域数据的处理和传输需求不断增加。

传统的数据处理和传输方法往往会消耗大量的时间和资源,限制了数据的高效处理和传输。

分布式压缩感知理论应运而生,它能够较少地采样原始数据,同时具有较高的重建精度,可以有效地减少数据的处理和传输开销。

分布式压缩感知理论结合了信号处理和信息理论的相关理论,致力于在分布式系统中利用稀疏性和压缩感知技术来实现高效的数据处理和传输。

通过对信号进行低维度测量,再基于这些测量的信息来重建信号,从而实现数据的高效压缩和传输。

分布式压缩感知理论的提出极大地推动了数据处理和传输的效率,为大数据时代的数据处理和传输提供了新的解决方案。

在不同领域的应用中,分布式压缩感知理论都展现出了其独特的优势和潜力。

1.2 研究意义分布式压缩感知理论的研究意义在于为解决传统压缩技术在大数据处理中面临的困难和挑战提供了新的思路和方法。

传统压缩技术在处理大规模数据时存在计算复杂度高、通信开销大、存储需求大等问题,而分布式压缩感知理论正是针对这些问题提出的一种新型数据压缩方法。

通过在数据采集端对数据进行压缩处理,可以有效减少数据传输过程中的数据量,降低通信成本和存储需求,同时保持数据的重要信息,实现对数据的高效压缩和传输。

分布式压缩感知理论研究综述及应用

分布式压缩感知理论研究综述及应用

分布式压缩感知理论研究综述及应用【摘要】本文从分布式压缩感知理论的概述入手,探讨了其在图像处理、视频传输和无线传感网中的应用。

同时分析了分布式压缩感知面临的挑战,指出了未来发展方向。

研究发现,分布式压缩感知在信号处理领域有着广阔的应用前景,但仍需解决一些技术难题。

本文总结了分布式压缩感知的优势和局限性,为未来研究和应用提供了参考。

通过对分布式压缩感知的探讨,可以更好地理解其在各个领域的潜在应用,推动相关技术在实际环境中的应用和发展。

【关键词】分布式压缩感知、理论研究、综述、应用、背景和意义、研究目的、概述、图像处理、视频传输、无线传感网、挑战、未来发展方向、结论总结1. 引言1.1 背景和意义分布式压缩感知是一种新兴的信号处理技术,在信息论和压缩感知的基础上发展而来。

它通过利用信号的稀疏性和多样性,在传感器节点上对信号进行压缩感知和处理,然后将处理后的信息通过网络传输至中心节点进行重构和分析。

分布式压缩感知技术的提出为传感器网络和物联网等领域的数据传输和处理带来了新的思路和方法。

在传统的分布式传感网络中,节点之间需要传输大量的原始数据,造成了能量消耗和网络拥堵等问题。

而分布式压缩感知技术可以有效地减少数据传输量,降低能量消耗,提高网络的利用率和性能。

研究分布式压缩感知理论对于智能传感器网络和大规模物联网具有重要的理论和应用价值。

随着物联网和传感器网络的快速发展,分布式压缩感知技术将在未来得到更广泛的应用和推广,成为推动物联网和传感器网络发展的重要技术手段之一。

1.2 研究目的研究目的是为了深入探讨分布式压缩感知理论在各个领域的应用以及面临的挑战,从而为现有研究提供新的思路和方法。

通过对分布式压缩感知在图像处理、视频传输和无线传感网等领域的具体应用进行总结和分析,可以更好地了解其优势和局限性,为未来的研究提供指导。

研究目的也在于展望分布式压缩感知的未来发展方向,探讨如何进一步完善该理论,提高其在实际应用中的性能表现,推动相关技术的发展和应用。

压缩感知理论

压缩感知理论

压缩感知理论一、压缩感知理论简介压缩感知,又称压缩采样,压缩传感。

它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。

压缩感知理论一经提出,就引起学术界和工业界的广泛关注。

它在信息论、图像处理、地球科学、光学、微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。

二、压缩感知产生背景信号采样是模拟的物理世界通向数字的信息世界之必备手段。

多年来,指导信号采样的理论基础一直是著名的Nyquist 采样定理。

定理指出,只有当采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。

可见,带宽是Nyquist 采样定理对采样的本质要求。

但是,对于超宽带通信和信号处理、核磁共振成像、雷达遥感成像、传感器网络等实际应用,信号的带宽变得越来越大,人们对信号的采样速率、传输速度和存储空间的要求也变得越来越高。

为了缓解对信号传输速度和存储空间的压力,当前常见的解决方案是信号压缩但是,信号压缩实际上是一种严重的资源浪费,因为大量采样数据在压缩过程中被丢弃了,它们对于信号来说是不重要的或者只是冗余信息。

故而就有人研究如何很好地利用采集到的信号,压缩感知是由 E. J. Candes 、J. Romberg 、T. T ao 和D. L. Donoho 等科学家于2004 年提出,压缩感知方法抛弃了当前信号采样中的冗余信息。

它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。

这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。

三、压缩感知理论压缩感知理论主要涉及到三个方面,即信号的稀疏表示、测量矩阵的设计和重构算法的构造。

稀疏信号广义上可理解为信号中只有少数元素是非零的,或者信号在某一变换域内少数元素是非零的。

压缩感知理论简介

压缩感知理论简介

万方数据 万方数据为稀疏基,得到稀疏个数K=30。

在基于CS理论的编解码框架中,编码端采用高斯测量矩阵,解码端采用OMP法进行恢复重构。

仿真实验首先观察CS理论下测量值数量对信号重建效果的影响。

由图3可知。

当测量值的样本数图3一维稀疏信号恢复成功概率数量M增加时,信号成功恢复的概率同步增加。

而且当样本数目达到膨=llO时.信号已经能够准确恢复。

此时由图4可以看出信号得到了准确的解码重构。

銎毒0.5圈壁堕豳2广—■———————T——]墨。

卜●■)_—严_TLL——+-f-—剥Oj粤馨.0b菇焉。

篡蔷赢.《零妻§蕊,赢球薅热j盛》德0蛾Z一碰潼舔.《}糟哿,学一氛77≯叩’6哆滞可刘(c)CS解码重构后信号。

长度N=256图4源信号、解码重构稀疏系数、解码重构信号图6.2二维图像情况下的实验仿真源图像为256x256的boat图,选小波基为稀疏基。

基于CS理论的编解码框架中,测量编码端采用分块(块大小为32x32)Hadamard测量矩阵.解码端基于Tv最小化的梯度投影法进行恢复重构。

图像的测量样本数胜25000,其重构结果如图5a所示。

在传统的编解码理论下,对图像小波变换后保留其中的25000个大系数进行编码,后进行解码、反变换重建,其结果如图5b所示。

仿真结果表明。

在编码端的测量值个数相同的情况下,CS理论下的恢复图像PSNR达到27.9dB,远远高于传统编图5CS与传统编解码boat图恢复效果比较181塑丝查正面磊i西函再孬丽孺面解码的15.49dB。

7小结笔者主要阐述了CS理论框架,以及基于CS理论的编解码模型。

通过对一维信号、二维图像进行编解码的仿真实验说明了CS理论是一种能够使用少量测量值实现信号准确恢复的数据采集、编解码理论。

由于CS理论对处理大规模稀疏或可压缩数据具有十分重要的意义。

所以该理论提出后在许多研究领域得到了关注。

目前,国外研究人员已开始将CS理论用于压缩成像、医学图像、模数转换、雷达成像、天文学、通信等领域。

压缩感知理论(Compressive)

压缩感知理论(Compressive)

• 设 Φ = ΦΨ ,为了保证少量非相干的投 影包含精确重构信号的足够信息,矩阵 必 Φ ' 须满足受限等距特性(RIP)准则: Φ' • “对于任意具有严格T稀疏的矢量v,矩阵 都能保证如下不等式成立: ' 2 Φv • 2
'
1− ε ≤
v
2 2
≤ 1+ ε
• 式中 ε > 0 ,为限制等容常量”。 • RIP准则的等价情况是CS观测矩阵 Φ和稀 疏基矩阵 Ψ 满足非相干性的要求。相干系 数的定义为:



通过最小化l1范数将信号稀疏表示问题定义成一 类有约束的极值问题,进一步转化为线性规划 问题进行求解 。 (2)贪婪匹配追踪(MP)算法 :从字典中一 个一个挑选向量,每一步都使得信号的逼近更 为优化。 (3)正交匹配追踪(OMP)算法:此算法选取 最佳原子所用的方法和MP算法一样,都是从冗 余字典找出与待分解信号和信号残余最为匹配 的原子。
X = ∑θψ i = ΨΘ i
i =1 N
• {ψ 1 ,ψ 2,...,ψ N } 是变换系数。 Θ 向量中只有k个 非零值,我们就称信号X在稀疏基 Ψ 下是 k-稀疏的。那么,怎样找到或构造适合一类 信号的正交基,以求得信号的最稀疏表示, 这是一个有待进一步研究的问题。 • 常用的稀疏基有:正(余)弦基、小波基、 chirplct基以及curvelet基等。 •
CS理论框图
可压缩信号
稀疏变换
观测得到M维Βιβλιοθήκη 向量重构信号第一:信号的稀疏表示
• 首先,信号X∈RN具有稀疏性或者可压缩性, 所以信号的稀疏表示就成为一个至关重要 的关键问题,直接关系到信号的重构精度。 • 设N时间信号x=[x(1),x(2),…,x(N)]T ∈RN通过 一组基 的线性组合表示: N {ψ i }i=1 •

压缩感知

压缩感知

压缩感知理论概述蔡冬摘要:传统的香农/奈奎斯特定理告诉我们要对信号进行无损的恢复,那么采样的频率至少是信号带宽的两倍。

在现今的许多方面的应用中,由于受奈奎斯特定理的限制,需进行大量的信号采集,这些采样的信号对后续的传输和存储造成很大压力。

近年新兴的压缩感知理论(Compressed Sensing, CS)突破了传统的奈奎斯特理论限制,从一个崭新的角度考虑信号采样的方法,为信号采集处理开创出一个全新的领域,展现出巨大的应用前景。

本文将回顾压缩感知的发展背景,之后介绍CS理论框架以及关键的技术问题,最后展示压缩感知在图像处理方面的简单仿真应用。

关键词:信号采样,压缩感知,图像处理Abstract:The classical Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. Nowadays in many applications, because of the restriction of the Nyquist rate, we end up with too many samples and it becomes a great challenge for further transmission and storage. In recent years, an emerging theory of signal acquirement, compressed sensing(CS), is a ground-breaking idea compared with the conventional framework of Nyquist sampling theorem. It considers the sampling in an novel way, and open up a brand new field for signal sampling process. It also reveals a promising future of application. In this paper, we review the background of compressed sensing development. We introduce the framework of CS and the key technique and illustrate some naïve application on image process.Key words:information sampling; compressed sensing; compressed measurement; optimization recovery.0.引言信息技术的飞速发展使得人们对信息的需求量剧增。

压缩感知基本理论

压缩感知基本理论

(四)压缩感知理论的应用 运用压缩感知理论,莱斯大学一种单像素的相机, 实现用单像素来完成高分辨率的成像,耶鲁大学研制的 超谱成像仪,麻省理工学院研制的MRI RF脉冲设备,伊 利诺伊州立大学研制的DNA微阵列传感器等等。
(四)压缩感知理论的应用 压缩感知的提出给信号采样方法带来了一次新革 命,研究者已将这一理论引入到模拟-信息采样、合成 孔径雷达成像、遥感成像、核磁共振成像、深空探测成 像、无线传感器网络、信源编码、人脸识别、语音识别、 探地雷达成像等诸多领域。
二、几种重要算法的介绍 迭代阀值算法流程
二、几种重要算法的介绍 组合算法 组合算法的基本思想是针对信号进行高度的结构 化采样,由群测试来获得快速信号支撑,要求信号的采 样支持通过分组测试来重建。主要算法包括有:傅立叶 采样算法、链式追踪(CP)算法、 HHS追踪算法等。 统计优化算法 主要分为两类:一类为基于训练集合的学习统计 优化方法,类似于主成分或独立成分分析,利用典型信 号的训练集通过学习的方法,找出最优的线性投影集合; 另一类为基于贝叶斯统计框架下的稀疏重构算法,适用 于含有噪声的观测信号,具有更好的鲁棒性,而且对于 时间相关度高的信号,也能更好的处理欠定问题。
2.传输速度要求太高;
3.信号压缩严重浪费存储资源; 4.信号处理系统设计要求和成本太高。
(一)压缩感知理论的提出 考虑到这些缺点,能否利用其 它变换空间来描述信号,建立新的信 号描述和处理的理论框架,使得在保 证信息不损失的情况下,用远低于传 统采样定理要求的速率采样信号,同 时又可以完全恢复信号? 事实上与信号带宽相比,信号的稀疏性能够直观 地而且相对本质地表达信号的信息,因此我们可以利 用信号这一特性来重构信号。
(三)压缩感知的核心问题 核心问题之二:测量矩阵的设计 压缩感知的另一个重要前提是正交基Ψ 与测量矩 阵不相关。信号x在某个变换域的投影系数向量s是K稀疏的,不是直接对这 个系数直接采取编码的,而是 将该系数向量投影到另一个与变换基Ψ 不相关的测量矩 阵的 个行向量上,得到观测 y s, ( j 1, 2,...M ) 对任意K稀疏信号x和常数 k (0,1) ,若测量矩阵 值: 。 满足约束等距性 2 2 (1 k ) || x ||2 x 2 (1 k )。 x ||2 || 质: 2

压缩感知理论简介

压缩感知理论简介

2008年第32卷第12期(总第322期)电视技术图2基于CS 理论的编解码框图编码端X 测量编码稀疏信号Y 解码端接收数据Y 解码重构恢复信号X赞文章编号:1002-8692(2008)12-0016-03压缩感知理论简介*喻玲娟1,谢晓春2,3(1.华南理工大学电子与信息学院,广东广州510640;2.赣南师范学院物理与电子信息学院,江西赣州341000;3.中国科学院空间科学与应用研究中心,北京100190)【摘要】压缩感知(CS )理论是在已知信号具有稀疏性或可压缩性的条件下,对信号数据进行采集、编解码的新理论。

主要阐述了CS 理论框架以及信号稀疏表示、CS 编解码模型,并举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。

【关键词】压缩感知;稀疏表示;编码;解码;受限等距特性【中图分类号】TN919.81【文献标识码】ABrief Introduction of Compressed Sensing TheoryYU Ling-juan 1,XIE Xiao-chun 2,3(1.School of Electronic and Information Engineering,South China University of Teconology,Guangzhou 510640,China ;2.School of Physics and Electronic Information,Gannan Normal University,Jiangxi Ganzhou 341000,China ;3.Center for Space Science and Applied Research,Chinese Academy of Sciences,Beijing 100190,China )【Abstract 】Compressed Sensing(CS)theory is a novel data collection and coding theory under the condition that signal is sparseor compressible.In this paper,the CS framework,CS coding model are introduced,after which the application of CS theory in one-dimensional signal and two-dimension image are illustrated.【Key words 】compressed sensing;sparse presentation;encoding;decoding;restricted isometry property·综述·1引言过去的几十年间,传感系统获取数据的能力不断地得到增强,需要处理的数据量也不断增多,而传统的Nyquist 采样定理要求信号的采样率不得低于信号带宽的2倍,这无疑给信号处理的能力提出了更高的要求,也给相应的硬件设备带来了极大的挑战。

压缩感知理论简介

压缩感知理论简介
表示基不相关
一般用随机高斯矩阵作为观测矩阵。
21
2.5 重构算法
重构是基于如下严格的数学最优化(Optimization)问题:
信号重构过程一般转换为一个最小L0 范数的优化问题 求解方法主要有最小L1 范数法、匹配2
三、应用展望
2019/9/28
• 在美国、英国、德国、法国、瑞士、以色列等许 多国家的知名大学(如麻省理工学院、斯坦福大学、 普林斯顿大学、莱斯大学、杜克大学、慕尼黑工 业大学、爱丁堡大学等等)成立了专门的课题组对 CS进行研究。
• 莱斯大学还建立了专门的CompressiveSensing 网站,及时报道和更新该方向的最新研究成果。
• 研究现状: 1.多种变换域分析方法为稀疏表示提供了可
能。 2.许多信号,诸如自然图像,本身就存在着
变换域稀疏性。 3.信号在冗余字典下的稀疏表示
19
2.4 测量矩阵
20
2.4 测量矩阵
观测基的意义: 保证能够从观测值准确重构信号,其需要满足一定
的限制: 1、观测基矩阵与稀疏基矩阵的乘积满足RIP性质 (有限等距性质)这个性质保证了观测矩阵不会把 两个不同的K稀疏信号映射到同一个集合中。 2、约束等距性条件的等价条件是测量矩阵和稀疏
13
2.2压缩感知基本步骤
找到某个正 交基Ψ ,信 号在该基上
稀疏
• 研究内容:
稀疏基 测量矩阵 重构算法
找到一个与 Ψ 不相关, 且满足一定 条件的观测
基Φ
以Φ观测真 实信号,得 到观测值Y
对Y采用最 优化重构, Ψ Φ均是其
约束。
14
2.3 稀疏表示
• 如果一个信号中只有少数元素是非零的,
10

(完整word版)压缩感知原理

(完整word版)压缩感知原理

压缩感知原理(附程序)1压缩感知引论传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图 2.1 o> 重构信号图2.1传统的信号压缩过程在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。

由于带宽的限制,许多信号只包含少量的重要频率的信息。

所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Can des和Donoho等人于2004年提出了压缩感知理论。

该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。

即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。

压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。

核心概念在于试图从原理上降低对一个信号进行测量的成本。

压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。

2压缩感知原理压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。

或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。

压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。

CS理论利用到了许多自然信号在特定的基上具有紧凑的表示。

即这些信号是“稀疏”的或“可压缩”的。

由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。

对于一个实值的有限长一维离散时间信号X ,可以看作为一个R N空间N X 1的维的列向量,元素为n , n ,=1 , 2,…N。

R N空间的任何信号都可以用N X1维N的基向量i「的线性组合表示。

压缩感知理论研究简述

压缩感知理论研究简述

压缩感知理论研究简述1 引⾔传统⽅式下的信号处理,依照Shannon/Nyquist采样理论采样会产⽣⼤量的采样数据,需要先获取整个信号再进⾏压缩[20],即采样后⼤部分采样数据将会被抛弃,这就极⼤地增加了存储和传输的代价。

由于带宽的限制,许多信号只包含少量的重要频率的信息,所以⼤部分信号是稀疏的或可压缩的,对于这种类型的信号,我们知道,传统⽅式采样后的多数数据都会被抛弃,那么,为什么还要获取全部数据呢?难道不能直接获取已压缩数据⽽不需要抛弃任何数据?由Candes和Donoho 等⼈于2004 年提出压缩感知(Compressive Sensing或Co mp r e ssed S e n si n g、Co m p r es sed Sampling, CS)理论[1-6]。

该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源浪费。

即,在采样信号的同时就对数据进⾏适当的压缩,相当于在采样过程中寻找最少的系数来表⽰信号,并能⽤适当的重构算法从压缩数据中恢复出原始信号。

压缩感知的主要⽬标是从少量的⾮适应线性测量中精确有效地重建信号。

核⼼概念在于试图从原理上降低对⼀个信号进⾏测量的成本。

压缩感知包含了许多重要的数学理论,具有⼴泛的应⽤前景,最近⼏年引起⼴泛关注,得到了蓬勃的发展。

2 CS理论模型及主要算法压缩感知(CS),也被称为压缩传感或压缩采样,是⼀种利⽤稀疏的或可压缩的信号进⾏信号重建的技术。

或者可以说是信号在采样的同时被压缩,从⽽在很⼤程度上降低了采样率。

压缩感知跳过了采集N个样本这⼀步骤,直接获得压缩的信号的表⽰[2][4]。

CS理论利⽤到了许多⾃然信号在特定的基Ψ上具有紧凑的表⽰,即这些信号是“稀疏”的或“可压缩”的。

CS理论主要包括三部分:⼀是信号的稀疏表⽰,⼆是设计测量矩阵,要在降低维数的同时保证原始信号x 的信息损失最⼩;三是设计信号恢复算法,利⽤M个观测值⽆失真地恢复出长度为N的原始信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压缩感知理论综述摘要:信号采样是模拟的物理世界通向数字的信息世界之必备手段。

多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理,但其产生的大量数据造成了存储空间的浪费。

压缩感知(Compressed Sensing)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。

本文详述了压缩感知的基本理论,着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,并介绍了压缩感知的应用及仿真,举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。

一、引言Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。

可见,带宽是Nyquist采样定理对采样的本质要求。

然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。

解决这些压力常见的方案是信号压缩。

但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。

从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist 采样机制是冗余的或者说是非信息的。

于是很自然地引出一个问题:能否利用其它变换空间描述信号,建立新的信号描述和处理的理论框架,使得在保证信息不损失的情况下,用远低于Nyquist采样定理要求的速率采样信号,同时又可以完全恢复信号。

与信号带宽相比,稀疏性能够直观地而且相对本质地表达信号的信息。

事实上,稀疏性在现代信号处理领域起着至关重要的作用。

近年来基于信号稀疏性提出一种称为压缩感知或压缩采样的新兴采样理论,成功实现了信号的同时采样与压缩。

简单地说,压缩感知理论指出:只要信号是可压缩的或在某个变换域是稀疏的,那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量的投影中以高概率重构出原信号,可以证明这样的投影包含了重构信号的足够信息。

在该理论框架下,采样速率不再取决于信号的带宽,而在很大程度上取决于两个基本准则:稀疏性和非相干性,或者稀疏性和等距约束性。

事实上,压缩感知理论的某些抽象结论源于Kashin创立的范函分析和逼近论,最近由Candes,Romberg,Tao和Donoho等人构造了具体的算法并且通过研究表明了这一理论的巨大应用前景。

目前国内已经有科研单位的学者对其展开研究。

如西安电子科技大学课题组基于该理论提出采用超低速率采样检测超宽带回波信号。

显然,在压缩感知理论中,图像/信号的采样和压缩同时以低速率进行,使传感器的采样和计算成本大大降低,而信号的恢复过程是一个优化计算的过程.因此,该理论指出了将模拟信号直接采样压缩为数字形式的有效途径。

从理论上讲任何信号都具有可压缩性,只要能找到其相应的稀疏表示空间,就可以有效地进行压缩采样。

当前,压缩感知理论主要涉及三个核心问题:(1) 具有稀疏表示能力的过完备字典设计;(2) 满足非相干性或等距约束性准则的测量矩阵设计;(3) 快速鲁棒的信号重建算法设计。

压缩感知理论必将给信号采样方法带来一次新的革命。

这一理论的引人之处还在于它对应用科学的许多领域具有重要的影响,如统计学、信息论、编码等。

目前,学者们已经在模拟-信息采样、合成孔径雷达成像、遥感成像、核磁共振成像、深空探测成像、无线传感器网络、信源编码、人脸识别、语音识别、探地雷达成像等诸多领域对压缩感知展开了广泛的应用研究。

Rice大学已经成功设计出了一种基于压缩感知的新型单像素相机,在实践中为取代传统相机迈出了实质性的一步。

本文围绕稀疏字典设计、测量矩阵设计、重建算法设计三个核心问题,综述了压缩感知理论以及与之相关的信号稀疏变换、观测矩阵设计、重构算法等一系列最新理论成果和应用研究,描述了国内外的研究进展。

本文结构安排如下:第2 部分阐述了压缩感知的理论框架;第3 部分系统介绍了压缩感知的三个核心问题,即信号的稀疏表示、信号的观测矩阵、信号重构算法;第4 部分指出压缩感知有待解决的若干关键问题;第5 部分介绍了压缩感知的应用及仿真;第6部分对全文作了总结。

二、压缩感知理论框架传统的信号采集、编解码过程如图l所示:编码端先对信号进行采样,再对所有采样值进行变换,并将其中重要系数的幅度和位置进行编码,最后将编码值进行存储或传输:信号的解码过程仅仅是编码的逆过程,接收的信号经解压缩、反变换后得到恢复信号。

采用这种传统的编解码方法,由于信号的采样速率不得低于信号带宽的2倍,使得硬件系统面临着很大的采样速率的压力。

此外在压缩编码过程中,大量变换计算得到的小系数被丢弃,造成了数据计算和内存资源的浪费。

图1 传统编解码理论的框图压缩感知理论对信号的采样、压缩编码发生在同一个步骤,利用信号的稀疏性,以远低于Nyquist采样率的速率对信号进行非自适应的测量编码。

测量值并非信号本身,而是从高维到低维的投影值,从数学角度看,每个测量值是传统理论下的每个样本信号的组合函数,即一个测量值已经包含了所有样本信号的少量信息。

解码过程不是编码的简单逆过程,而是在盲源分离中的求逆思想下。

利用信号稀疏分解中已有的重构方法在概率意义上实现信号的精确重构或者一定误差下的近似重构。

解码所需测量值的数目远小于传统理论下的样本数。

图2 压缩感知理论的编解码框图三、压缩感知的基本理论及核心问题假设有一信号)(NRff∈,长度为N,基向量为),...,2,1(Nii=ψ,对信号进行变换:αψψ==∑=fafiNii或1显然f是信号在时域的表示,α是信号在ψ域的表示。

信号是否具有稀疏性或者近似稀疏性是运用压缩感知理论的关键问题,若(1)式中的α只有K个是非零值)(KN>>者仅经排序后按指数级衰减并趋近于零,可认为信号是稀疏的。

信号的可稀疏表示是压缩感知的先验条件。

在已知信号是可压缩的前提下,压缩感知过程可分为两步:(1)设计一个与变换基不相关的)(NMNM<<⨯维测量矩阵对信号进行观测,得到M维的测量向量。

(2)由M维的测量向量重构信号。

3.1信号的稀疏表示文献给出稀疏的数学定义:信号X 在正交基ψ下的变换系数向量为X T ψ=Θ,假如对于20<<p 和0>R ,这些系数满足:R p p i i p ≤≡Θ∑/1)||(||||θ 则说明系数向量Θ在某种意义下是稀疏的.文献[1]给出另一种定义:如果变换系数>ψ=<i i X ,θ的支撑域}0;{≠i i θ的势小于等于K ,则可以说信号X 是K 项稀疏。

如何找到信号最佳的稀疏域?这是压缩感知理论应用的基础和前提,只有选择合适的基表示信号才能保证信号的稀疏度,从而保证信号的恢复精度。

在研究信号的稀疏表示时,可以通过变换系数衰减速度来衡量变换基的稀疏表示能力。

Candes 和Tao 研究表明,满足具有幂次(power-law)速度衰减的信号,可利用压缩感知理论得到恢复。

最近几年,对稀疏表示研究的另一个热点是信号在冗余字典下的稀疏分解.这是一种全新的信号表示理论:用超完备的冗余函数库取代基函数,称之为冗余字典,字典中的元素被称为原子.字典的选择应尽可能好地符合被逼近信号的结构,其构成可以没有任何限制.从冗余字典中找到具有最佳线性组合的K 项原子来表示一个信号,称作信号的稀疏逼近或高度非线性逼近。

目前信号在冗余字典下的稀疏表示的研究集中在两个方面:(1)如何构造一个适合某一类信号的冗余字典;(2)如何设计快速有效的稀疏分解算法.这两个问题也一直是该领域研究的热点,学者们对此已做了一些探索,其中以非相干字典为基础的一系列理论证明得到了进一步改进.西安电子科技大学的石光明教授也对稀疏表示问题进行了认真研究,并基于多组正交基级联而成的冗余字典提出一种新的稀疏分解方法。

3.2信号的观测矩阵用一个与变换矩阵不相关的)(N M N M <<⨯测量矩阵φ对信号进行线性投影,得到线性测量值y : f y φ=测量值y 是一个M 维向量,这样使测量对象从N 维降为M 维。

观测过程是非自适应的,即测量矩阵的选择不依赖于信号f 。

测量矩阵的设计要求信号从f 转换为y 的过程中,所测量到的K 个测量值不会破坏原始信号的信息,保证信号的精确重构。

由于信号f 是是可稀疏表示的,上式可以表示为下式:ααφΘ=ψΦ==f y其中Θ是一个N M ⨯矩阵。

上式中,方程的个数远小于未知数的个数,方程无确定解,无法重构信号。

但是,由于信号是K 稀疏,若上式中的Θ满足有限等距性质(Restricted Isometry Property ,简称RIP),即对于任意K 稀疏信号f 和常数)1,0(∈k δ,矩阵Θ满足:k k f f δδ+≤Θ≤-1||||||||12222 则K 个系数能够从M 个测量值准确重构。

RIP 性质的等价条件是测量矩阵φ和稀疏基ψ不相关。

目前,用于压缩感知的测量矩阵主要有以下几种:高斯随机矩阵,二值随机矩阵(伯努力矩阵),傅立叶随机矩阵,哈达玛矩阵,一致球矩阵等。

3.3信号的重构算法当矩阵Θ满足RIP 准则时。

压缩感知理论能够通过对上式的逆问题先求解稀疏系数x T ψ=α,然后将稀疏度为K 的信号x 从M 维的测量投影值y 中正确地恢复出来。

解码的最直接方法是通过0l 范数下求解的最优化问题: αααΦψ=y t s l .||||0min从而得到稀疏系数的估计。

由于上式的求解是个NP —HARD 问题。

而该最优化问题与信号的稀疏分解十分类似,所以有学者从信号稀疏分解的相关理论中寻找更有效的求解途径。

文献表明,1l 最小范数下在一定条件下和0l 最小范数具有等价性,可得到相同的解。

那么上式转化为1l 最小范数下的最优化问题:αααΦψ=y t s l .||||1min 1l 最小范数下最优化问题又称为基追踪(BP),其常用实现算法有:内点法和梯度投影法。

内点法速度慢,但得到的结果十分准确:而梯度投影法速度快,但没有内点法得到的结果准确。

二维图像的重构中,为充分利用图像的梯度结构。

可修正为整体部分(Total Variation ,TV)最小化法。

由于1l最小范数下的算法速度慢,新的快速贪婪法被逐渐采用,如匹配追踪法(MP)和正交匹配追踪法(OMP)。

此外,有效的算法还有迭代阈值法以及各种改进算法。

四、有待研究的几个关键问题压缩感知经过近年来的迅猛发展,已基本形成了自己的理论框架,包括基础理论、实现方法和实际应用。

但是,压缩感知理论还有很多亟待解决的问题,为此本文列出了压缩感知有待解决的几个关键问题.4.1 基础理论层面(1)基于非正交稀疏字典的压缩感知信号重建理论。

相关文档
最新文档