备战中考数学专题题库∶一元二次方程的综合题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一元二次方程真题与模拟题分类汇编(难题易错题)
1.阅读下列材料
计算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t,则:
原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣+t2=
在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:
(1)计算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+)
(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4
(3)解方程:(x2+4x+1)(x2+4x+3)=3
【答案】(1);(2)(a2﹣5a+5)2;(3)x1=0,x2=﹣4,x3=x4=﹣2
【解析】
【分析】
(1)仿照材料内容,令+=t代入原式计算.
(2)观察式子找相同部分进行换元,令a2﹣5a=t代入原式进行因式分解,最后要记得把t换为a.
(3)观察式子找相同部分进行换元,令x2+4x=t代入原方程,即得到关于t的一元二次方程,得到t的两个解后要代回去求出4个x的解.
【详解】
(1)令+=t,则:
原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+=
(2)令a2﹣5a=t,则:
原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2
(3)令x2+4x=t,则原方程转化为:
(t+1)(t+3)=3
t2+4t+3=3
t(t+4)=0
∴t1=0,t2=﹣4
当x2+4x=0时,
x(x+4)=0
解得:x1=0,x2=﹣4
当x2+4x=﹣4时,
x2+4x+4=0
(x+2)2=0
解得:x3=x4=﹣2
【点睛】
本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算.
2.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.
(1)求a的取值范围;
(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.
【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.
【解析】
【分析】
(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)
根据根与系数的关系可得x1+x2=﹣
2
6
a
a+
,x1x2=
6
a
a+
,由(x1+1)(x2+1)=x1x2+x1+x2+1=
﹣
6
6
a-
是是负整数,即可得
6
6
a-
是正整数.根据a是整数,即可求得a的值2.
【详解】
(1)∵原方程有两实数根,
∴,
∴a≥0且a≠6.
(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,
∴x1+x2=﹣,x1x2=,
∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.
∵(x1+1)(x2+1)是负整数,
∴﹣是负整数,即是正整数.
∵a是整数,
∴a﹣6的值为1、2、3或6,
∴a的值为7、8、9或12.
【点睛】
本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.
3.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF
的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)请回答李晨的问题:若CD=10,则AD= ;
(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:
①∠FCD的最大度数为;
②当FC∥AB时,AD= ;
③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;
④△FCD的面积s的取值范围是 .
【答案】(1)2;(2)① 60°;②;③;④.
【解析】
试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.
(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.
②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.
③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.
④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.
∵CD=10,∴AD=2.
(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.
∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."
② 如图,过点F作FH⊥AC于点H,
∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.
∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.
∵AC=12,∴AD=.