数字图像处理及MATLAB实现第八章彩色图像处理及MATLAB实现 (2)
数字图像处理_实验报告书(八)彩色图像处理
rgb=cat(3,rgb_R,rgb_G,rgb_B);figure,imshow(rgb),title('RGB彩色图像');截图:(2)编写MATLAB程序,将一彩色图像从RGB空间转换为HIS空间,并观察其效果。
如例9.2所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);g=rgb1(:,:,2);b=rgb1(:,:,3);I=(r+g+b)/3figure,imshow(I);tmp1=min(min(r,g),b);tmp2=r+g+b;tmp2(tmp2==0)=eps;S=1-3.*tmp1./tmp2;figure,imshow(S);tmp1=0.5*((r-g)+(r-b));tmp2=sqrt((r-g).^2+(r-b).*(g-b));theta=acos(tmp1./(tmp2+eps));H=theta;H(b>g)=2*pi-H(b>g);H=H/(2*pi);H(S==0)=0;figure,imshow(H);截图:(3)编写MATLAB程序,将一彩色图像在RGB空间进行彩色分割,并观察其效果。
如例9.11所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);figure,imshow(r);g=rgb1(:,:,2);figure,imshow(g);b=rgb1(:,:,3);figure,imshow(b);r1=r;r1_u=mean(mean(r1(:)));[m,n]=size(r1);sd1=0.0;for i=1:mfor j=1:nsd1= sd1+(r1(i,j)-r1_u)*(r1(i,j)-r1_u);endendr1_d=sqrt(sd1/(m*n));r2=zeros(size(rgb1,1),size(rgb1,2));ind=find((r>r1_u-1.25*r1_d)&(r<r1_u+1.25*r1_d));r2(ind)=1;figure,imshow(r2);截图:(4)编写MATLAB程序,将一彩色图像在向量空间进行边缘检测,并观察其效果。
数字图像处理实验八
数字图像处理实验实验八:彩色图像处理学院:信息工程学院姓名:学号:专业及班级:指导教师:一、实验目的使用MatLab 软件对图像进行彩色处理。
使学生通过实验熟悉使用MatLab软件进行图像彩色处理的有关方法,并体会到图像彩色处理技术以及对图像处理的效果。
二、实验内容要求学生能够完成彩色图像的分析,能正确讨论彩色图像的亮度、色调等性质;会对彩色图像进行直方图均衡,并能正确解释均衡处理后的结果;能够对单色图像进行伪彩色处理、利用多波长图像进行假彩色合成、进行单色图像的彩色变换。
利用MATLAB软件实现彩色图像处理的程序:rgb_image=imread('flower1.tif'); %读取图像flower1.tiffR=rgb_image(:,:,1); %获取图像的红色分量fG=rgb_image(:,:,2); %获取图像的绿色分量fB=rgb_image(:,:,3); %获取图像的蓝色分量figure(1),imshow(fR) %分别显示图像figure(2),imshow(fG)figure(3),imshow(fB)%实现rgb图像转化为NTSC彩色空间的图像yiq_image=rgb2ntsc(rgb_image);fY=yiq_image(:,:,1); %图像flower1.tif的亮度fI=yiq_image(:,:,2); %图像flower1.tif的色调fQ=yiq_image(:,:,3); %图像flower1.tif的饱和度figure(4),imshow(fY)figure(5),imshow(fI)figure(6),imshow(fQ)fR=histeq(fR,256); %对彩色图像的分量进行直方图均衡化fG=histeq(fG,256);fB=histeq(fB,256);RGB_image=cat(3,fR,fG,fB); %将直方图均衡化后的彩色图像合并figure,imshow(RGB_image) %观察处理后的彩色图色度,亮度参照前面f1=imread('v1_red.jpg');f2=imread('v1_green.jpg');f3=imread('v1_blue.jpg');f4=imread('infer_near.jpg');ture_color=cat(3,f1,f2,f3);figure,imshow(ture_color) %显示由红、绿、蓝三幅图合成的彩色图false_color=cat(3,f4,f2,f3); %用近红外图像代替R分量figure,imshow(false_color) %显示由近红外、绿、蓝三幅图合成的假彩色图f=imread('head.jpg');cut_1=imadjust(f,[0.0925 0.5],[0.0925 0.5]);%提取灰度在16-128之间的像素cut_2=imadjust(f,[0.5 1],[0.5 1]); %提取灰度在128-256之间的像素figure,imshow(cut_1),colormap(hot) %显示图像cut_1,并使用hot模型彩色化figure,imshow(cut_2),colormap(cool) %显示图像cut_2,并使用cool模型彩色化三、实验具体实现(1) 彩色图像的分析调入并显示彩色图像flower1.tif ;拆分这幅图像,并分别显示其R,G,B分量;根据各个分量图像的情况讨论该彩色图像的亮度、色调等性质。
利用MATLAB对图像进行处理
光电图像处理2021年 4月(一)彩色图像的增强1.研究目的及意义人类传递的信息有70%是视觉信息.图像信息是传递信息的重要媒体和手段。
但是在生活中,常常由于光线不充足,在获得图像后会发现图像亮度不够,导致景物无法看清楚。
为了研究和分析图像,需对图像进行必要的处理。
对于数字图像常用的处理方法就是用图像增强技术来改善图像的像质。
图像增强是指按特定的需要突出一幅图像的某些信息,同时,削弱或去除某些不需要的信息的处理方法。
其主要目的是使处理后的图像对某种特定的应用来说,比原始图像更适用。
处理的结果使图像更适合于人的视觉特性或机器的识别系统。
图像增强技术主要是针对灰度图来作用。
其手段是修改直方图。
在图像处理中色彩的运用是很重要的,原因有两个:第一,在自动图像分析中色彩是一个有力的描述工具,它通常可使从一个场景中识别和抽取日标的处理得到简化;第二,人们对图像进行分析时,人眼区别的灰度层次大约只有二十几种,但却能够识别成千上万的色彩。
彩色图像中含有较大的信息量;而且人眼对色彩的识别和区分能力可以达到灰度辨别能力的百倍以上,所以彩色图像的增强对从图像中获得更多的信息有着非常重要的作用。
2.理论基础图像增强根据图像的模糊情况采用各种特殊的技术突出图像中的某些信息,削弱或消除无关信息达到强调图像的整体或局部特征的目的。
常用的图像增强技术有直方图修改、图像平滑滤波、图像锐化等。
图像增强技术主要分为两类:频域增强法和空域增强法。
频域增强法主要是利用各种频域滤波器进行图像平滑或锐化处理,然后进行变换域反变換来增强图像;空域增强法是直接针对图像中的像素,对图像的灰度进行处理。
空域法属于直接增强的方法,它包括扩展对比度的灰度变换和直方图变换.清除噪声的平滑法和增强边缘的锐化法。
图像增强原理:设原始图像在(x,y)处的灰度为f(x,y),而增强后的灰度为g(x,y),则图像的增强可表示为将在(x,y)处的灰度f(x,y)映射为g(x,y),可表示为g(x,y)=T[f(x,y)],针对灰度图像。
数字图像处理及matlab实现
THANKS
05 数字图像处理的应用案例
医学影像处理
1 2 3
医学影像诊断
数字图像处理技术可以用于医学影像的预处理、 增强、分割和识别,帮助医生更准确地诊断疾病。
医学图像重建
通过数字图像处理技术,可以从低质量的医学图 像中重建出高质量的图像,提高医学影像的清晰 度和诊断价值。
医学图像配准与融合
数字图像处理技术可以实现不同模态医学图像之 间的配准与融合,提供更全面的医学信息。
离散余弦变换
将图像从空间域转换到余弦函数构成的系数矩阵,用于数据压缩 和去噪。
Matlab中的图像恢复实现
超分辨率
通过多幅低分辨率图像合成一幅高分辨率图 像,提高图像的分辨率。
去噪
利用各种滤波技术去除图像中的噪声,恢复 原始图像。
失真校正
对由于拍摄、传输等原因造成的图像失真进 行校正,提高图像质量。
数字图像处理及 Matlab实现
目录
Contents
• 数字图像处理基础 • Matlab基础 • 数字图像处理技术 • Matlab在数字图像处理中的应用 • 数字图像处理的应用案例
01 数字图像处理基础
图像的数字化
总结词
将连续的图像转化为离散的像素点阵列。
详细描述
通过将连续的图像转化为离散的像素点阵列,数字图像处理能够将图像信息转 化为计算机能够处理的数字信息。每个像素点由其位置和灰度值表示,形成数 字图像。
图像的灰度级别
总结词
描述像素的亮度级别。
详细描述
图像的灰度级别决定了像素的亮度范围。灰度级别越高,图像的亮度范围越丰富, 细节表现力越强。常见的灰度级别有256级(0-255)和16级(0-15)。
数字图像处理基础程序及运行结果图像matlab程序讲解
目录实验一MATLAB数字图像处理初步 (2)实验二图像的代数运算 (6)实验三图像增强—灰度变换 (9)实验四图像增强—直方图变换 (11)实验五图像增强—空域滤波 (13)实验六图像的傅立叶变换 (17)实验七图像增强—频域滤波 (19)实验八彩色图像处理 (21)实验九图像分割 (24)实验十形态学运算 (27)实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。
5.图像间如何转化。
二、实验内容及步骤1.利用imread( )函数读取一幅图像,假设其名为flower.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg 文件,设为flower.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flower.bmp。
7.用imread()读入图像:Lenna.jpg 和camema.jpg;8.用imfinfo()获取图像Lenna.jpg和camema.jpg 的大小;9.用figure,imshow()分别将Lenna.jpg和camema.jpg显示出来,观察两幅图像的质量。
10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
11.将每一步的函数执行语句拷贝下来,写入实验报告,并且将得到第3、9、10步得到的图像效果拷贝下来三、考核要点1、熟悉在MATLAB中如何读入图像、如何获取图像文件的相关信息、如何显示图像及保存图像等,熟悉相关的处理函数。
数字图像处理及应用MATLAB第8章.ppt
(3)imshow 功能:显示图像
格式:imshow(I,n) ;imshow(I,[low high]) ;imshow(BW) %显示黑白图像
imshow(X,map) %显示索引色图像;imshow(RGB) %显示真彩色图像
imshow filename (4)figure
功能:创建图形窗口 (5)subplot
功能:将多个图画到一个平面上的工具。 格式:subplot(m,n,p)或者subplot(mnp) 说明:其中,m表示是图排成m行,n表示图排成n列,也就 是整个figure中有n个图是排成一行的,一共m行。
(a)原始图像 实验结果图
(b) 处理后图像
(4)实现真彩色图像与索引图像的互相转换。
clear,clc close all RGB1 = imread('peppers.png');%读入真彩色图像 [X1,map1] = rgb2ind(RGB1,128);%真彩色图像转化为索引图 imshow(X1,map1) %显示索引图像 load clown;%载入图像 rgb2=ind2rgb(X,map);%将索引图像转化为真彩色图像 figure,imshow(rgb2)
2、实验中所用部分函数介绍
(1)imread 功能:图像文件的读取 格式: A=imread(filename,fmt) 将文件命为filename表示的扩展名为fmt的图像文件读Байду номын сангаас到矩
阵A中。MATLAB支持的图像格式有bmp、jpg或jpeg、tif或tiff、 gif、pcx、png、xwd。 (2)imwrite
MATLAB图形图像处理2课件
• imfilter是用来实现线性空间滤波的函数,其基本语法格式 为:
• hp = imfilter(p, w, filter_mode, boundary_options, size_options)
• 其中hp为经过滤波后输出的图像,p为原图像,参数w为滤 波模板,filter_mode指定滤波过程中使用相关核(corr)还 是卷积核(conv)。boundary_options控制边界填充方式为 边界复制(replicate)、边界循环(circular)还是边界对 称(symmetric)。size_options可以为same或者full两者之 一。如 hp = imfilter(p, w, ’replicate’)
• subplot(1,3,3);imshow(p2);
• 图3.33 拉普拉斯波和高斯-拉普拉斯滤波((a)原 图像;(b)拉普拉斯滤波后图像;(c)高斯-拉普拉 斯滤波后图像)
3.7 图像的空间变换
• 图像的空间变换也称为图像的几何变 换,是指将用户获得或设计的原始图像, 按照需要产生大小、形状和位置的变化。 图像几何变换是图像显示技术中的一个重 要组成部分,常用的图像几何变换主要包 括图像的缩放、图像的剪切及图像的旋转 等内容。
• p = imread('football.jpg');
• I = rgb2gray(p);
• imhist(I);
3.5.3直方图均衡化
• 通过直方图均衡化做适当的调整,即把一幅已知灰 度概率分布图像中的像素灰度做某种映射变换,使 它变成一幅具有均匀概率分布的新图像,使图像视 觉效果更加清晰。
• imnoise是MATLAB提供的图像噪声模拟函数,其 基本语法格式为:
数字图像处理实验程序MATLAB
实验一内容(一)(1)彩色图像变灰度图像A=imread('1.jpg');B=rgb2gray(A);figuresubplot(1,2,1),imshow(A)title('原图')subplot(1,2,2),imshow(B)title('原图灰度图像')(2)彩色图像变索引图像A=imread('1.jpg');figuresubplot(1,2,1),imshow(A)title('原图')[X,map]=rgb2ind(A,128);subplot(1,2,2),imshow(X,map)title('原图索引图像')(3)彩色图像变二值图像A=imread('1.jpg');figuresubplot(1,2,1),imshow(A)title('原图')C=im2bw(A,0.2);subplot(1,2,2),imshow(C)title('原图二值图像')(4)灰度图像变索引图像(一)A=imread('1.jpg');figureB=rgb2gray(A);subplot(1,2,1),imshow(B)title('灰度图像')C=grayslice(B,39);subplot(1,2,2),imshow(C)title('灰度变索引图像')(5)灰度图像变索引图像(二)A=imread('1.jpg');figureB=rgb2gray(A);subplot(1,2,1),imshow(B)title('灰度图像')[X,map]=gray2ind(B,63);subplot(1,2,2),imshow(X,map)title('灰度变索引图像')(6)灰度图像变彩色图像A=imread('1.jpg');figureB=rgb2gray(A);subplot(1,2,1),imshow(B)title('灰度图像')C=gray2rgb(B,map);subplot(1,2,2),imshow(C)title('灰度变彩色图像')内容(二)(1)灰度平均值A=imread('1.jpg');figureB=rgb2gray(A);subplot(1,2,1),imshow(B)title('灰度图像')B=double(B);[m,n]=size(B);sumg=0.0;for i=1:m;for j=1:n;sumg=sumg+B(i,j);endendavg=sumg/(m*n) % 均值maxg=max(max(B)) % 区域最大灰度ming=min(min(B)) % 区域最小灰度(2)彩色平均值figureimshow(A)title('彩色图像')A=double(A);[m,n]=size(A);sumg=0.0;for i=1:m;for j=1:n;sumg=sumg+A(i,j);endendavg=sumg/(m*n)squre=m*nmaxg=max(max(A))ming=min(min(A))内容(三)采样量化实验二图像变换傅里叶变换、反变换、I=imread('19.jpg');A=rgb2gray(I);x1=fft2(A);x2=fftshift(x1);x3=ifft(x1)/10;figure,subplot(1,4,1);imshow(A)title('原图');subplot(1,4,2);imshow(x1)title('频谱图');subplot(1,4,3);imshow(log(abs(x2)+1),[0 10]);title('直流分量移至频谱图中心');subplot(1,4,4);imshow(x3,[0 10])title('傅里叶反变换');DCT变换、反变换I=rgb2gray(X);subplot(1,3,1);imshow(I);title('原图');subplot(1,3,2);J=dct2(I);imshow(log(abs(J)),[0 20]);title('二维离散余弦变换');subplot(1,3,3);K=idct2(J)/20;imshow(K,[0 20]);title('二维离散反余弦变换');利用DCT变换压缩图像I=imread('19.jpg');A=rgb2gray(I);B=DCT2(A);B(abs(B)<0.1)=0;C=idct2(B)/255;figure,subplot(1,3,1);imshow(A);title('原图');subplot(1,3,2);imshow(B);title('二维离散余弦变换频谱图');subplot(1,3,3);imshow(C);title('压缩后图像');实验三图像增强(一)灰度图像增强(1)线性变换法clc;clear all;I=imread('19.jpg');A=rgb2gray(I);colormap;imshow(A);%设置图像倒数参数j=imadjust(A,[0 1],[1 0],1.5);figure;subimage(j)(2)灰度图像的非线性变换(之对数)I=imread('19.jpg');colormapimshow(I)J=double(I);J=45*log(J+1);I=uint8(J);figure,subimage(J)(二)直方图校正直方图均衡I=imread('19.jpg');B=rgb2gray(I);imshow(B,[40 255]);figure,imhist(B)title('直方图')J=imadjust(B,[0.15 0.9],[0 1]); figure,imhist(B,64)title('均衡直方图')滤波I=imread('19.jpg');figure,B=rgb2gray(I);C=imnoise(B,'salt & pepper',0.02);D=imfilter(B,fspecial('average',3)); E=medfilt2(B);subplot(1,3,2)imshow(D)title('均值滤波')subplot(1,3,3)imshow(D)title('中值滤波')subplot(1,3,1)imshow(C)title('加入椒盐噪声图像')锐化处理I=imread('19.jpg');A=rgb2gray(I);figure,subplot(2,3,1),imshow(A);title('原图');hs=fspecial('sobel');S=imfilter(A,hs);hp=fspecial('prewitt');P=imfilter(A,hs);A=double(A);%双精度型H=[0 1 0,1 -4 1,0 1 0];%拉普拉斯算子J=conv2(A,H,'same');K=A-J;subplot(2,3,2),imshow(K);title('拉普拉斯锐化图像');B=edge(A,'roberts',0.1);subplot(2,3,3),imshow(B);title('罗伯特锐化图像');subplot(2,3,4),imshow(S);title('sobel算子锐化图像');subplot(2,3,5),imshow(P);title('prewitt算子锐化图像');实验四放缩A=imread('19.jpg');imshow(A);title('原图')B=imresize(A,2)figure,imshow(B);title('二倍图')C=imresize(A,0.5)figureimshow(C)title('二分之一图')旋转A=imread('19.jpg');figuresubplot(1,4,1),imshow(A);title('原图像')B=imrotate(A,30,'nearest');subplot(1,4,2),imshow(uint8(B));title('旋转30度图像')C=imrotate(A,45,'nearest');subplot(1,4,3),imshow(uint8(C));title('旋转45度图像')D=imrotate(A,60,'nearest');subplot(1,4,4),imshow(uint8(D));title('旋转60度图像')镜像A1=imread('19.jpg');A1=double(A1);Figure,subplot(1,4,1),imshow(uint8(A1));H=size(A1);title('原像')A2(1:H(1),1:H(2),1:H(3))=A1(H(1):-1:1,1:H(2),1:H(3));%垂直镜像subplot(1,4,2),imshow(uint8(A2));title('垂直镜像')A3(1:H(1),1:H(2),1:H(3))=A1(1:H(1),H(2):-1:1,1:H(3));%水平镜像subplot(1,4,3),imshow(uint8(A3));title('水平镜像')A4(1:H(1),1:H(2),1:H(3))=A1(H(1):-1:1,H(2):-1:1,1:H(3));%对角镜像subplot(1,4,4),imshow(uint8(A4));title('对角镜像')剪切A1=imread('19.jpg');A2=imcrop(A1,[75 68 100 110]);figuresubplot(1,2,1),imshow(A1);title('原像')subplot(1,2,2),imshow(A2);title('剪切后像')实验五阈值分割A=imread('19.jpg');figuresubplot(1,4,1),imshow(A);title('原图像')B=im2bw(A,91/255);subplot(1,4,2),imshow(B);title('阈值91的图像')C=im2bw(A,71/255);subplot(1,4,3),imshow(C);title('阈值71的图像')D=im2bw(A,140/255);subplot(1,4,4),imshow(D);title('阈值140的图像')边缘检测I=imread('19.jpg');A=rgb2gray(I);figuresubplot(1,4,1),imshow(A);title('原图像')B=edge(A,'sobel',0.1);%edge边缘检测函数subplot(1,4,2),imshow(B);title('sobel算子检测')C=edge(A,'roberts',0.1);%0.1为门限subplot(1,4,3),imshow(C);title('roberts算子检测')D=edge(A,'prewitt',0.1);subplot(1,4,4),imshow(D);title('prewitt算子检测')所谓数字图像处理[7]就是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为。
基于MATLAB的数字图像处理的彩色图像处理
南京信息工程大学滨江学院基于MATLAB的数字图像处理的彩色图像处理专业:电子信工程学生姓名:***指导教师:***完成时间:2022年4月26日摘要自20世纪70年代以来,由于数字技术和计算机技术的迅猛发展,给数字图像处理(Digital Image Processing)提供了先进的技术手段。
图像科学从信息处理、自动控制系统理论、计算机科学、数据通信等学科中脱颖而出,成为研究图像信息的获取、传输、存储、变换、显示、理解和综合利用的新兴学科。
数字图像处理在实际中得到了广泛应用。
特别是在遥感、航空航天、通信、生物和医学、安全监控、工业生产、视频和多媒体、机器人视觉、物理和化学分析、公安和军事等领域.它在国家安全、经济发展和日常生活中已经起到越来越重要的作用。
由于彩色图像提供了比灰度图像更为丰富的信息,因此彩色图像处理正受到人们越来越多的关注。
关键字颜色空间彩色图像分割彩色空间转换彩色变换目录引言 (1)1 MATLAB图像处理工具箱及数字图像处理基本过程简介 (2)1.1 常用图像操作 (2)1.2 图像增强功能 (2)1.3边缘检测和图像分割功能 (3)1,4图像变换功能 (4)2 MATLAB中彩色图像表示 (4)2.1RGB图像 (4)2.2索引图像 (6)2.3处理RGB和索引图像 (6)3 彩色图像处理 (6)3.1读入一幅RGB图像,将其分别转换到CMY空间、HSI空间并显示 (6)3.2彩色空间滤波 (8)参考文献 (9)致谢 (9)引言MATLAB 语言是由美国MathWorks 公司推出的计算机软件,经过多年的逐步发展与不断完善,现已成为国际公认的最优秀的科学计算与数学应用软件之一,是近几年来在国内外广泛流行的一种可视化科学计算软件。
它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,而且还具有可扩展性特征。
MathWorks 公司针对不同领域的应用,推出了信号处理、控制系统、神经网络、图像处理、小波分析、鲁棒控制、非线性系统控制设计、系统辨识、优化设计、统计分析、财政金融、样条、通信等30 多个具有专门功能的工具箱,这些工具箱是由该领域内的学术水平较高的专家编写的,无需用户自己编写所用的专业基础程序,可直接对工具箱进行运用。
Matlab图像处理与应用(第8章)
Matlab图像处理与应用(第8章)第8章彩色图像处理及MATLAB实现8.1概述彩色对我们并不陌生,比如说日常生活中通过摄影相机用彩色胶卷所拍的照片。
它是指用各种观测系统,以不同形式和手段,观测客观世界而获得的,可以直接和间接作用于人眼,进而产生视觉的实体。
小到分子内部结构图片,大至宇宙星体照片,人类通过视觉识别文字、图片和周围环境,人的视觉系统就是一个观测系统,通过它得到的图像就是客观景物在人的心目中形成的影像。
我们生活在一个信息时代,科学研究和统计表明,人类感知的外界信息,80%以上是通过视觉得到的,也就是从图像中获得。
生活在色彩斑斓的世界中,人的视觉系统产生的图像多为彩色图像。
对人类而言,对彩色图像信息的感知,具有至关重要的意义。
彩色图像信息可以从科学和艺术两方面来理解。
本章仅从科学角度讨论彩色图像信息处理,当然通过科学手段对彩色图像进行处理自然也可能使彩色图像更具有艺术效果。
随着信号处理及计算机技术和彩色图像处理技术的发展,人们试图用摄像机获取环境彩色图像并转换成数字信号,用计算机实现人类对视觉信息处理的全过程,进而形成了一门新学科—计算机视觉,从而大大推动人工智能系统的发展,彩色图像处理技术是开发智能机器人的关键突破口,当前彩色图像技术已涉及人类生活和社会发展的各个方面,展望未来,彩色图像处理技术将能得到进一步发展和应用,从而改变人们的生活方式以及社会结构。
本章第二节讨论人类彩色视觉系统有关知识,第三节讨论彩色图像处理,第四节讨论彩色图像分析。
由于篇幅的关系,有关彩色图像理解的内容请参考有关计算机视觉的论著。
8.2彩色视觉与彩色图像彩色图像处理的许多目标是帮助人更好地观察和理解图像中的信息,处理方案的选择和设计与信源和信宿的特征密切相关。
所谓信源就是处理前或者处理后的图像,而信宿就是处理前后信息的接收者——人的视觉系统。
因此了解图像特点和人的视觉系统对彩色的感知规律是十分必要的,本节将介绍有关这方面的内容,即色度学的知识。
MATLAB彩色图像处理
色彩平衡是调整图像中颜色分量的过程,以改善图像的色彩表现。在Matlab中,可以 使用colorbalance函数进行色彩平衡。
03
图像滤波与变换
图像滤波
均值滤波
通过将像素邻域的平均 值赋给输出图像的相应 像素,减少图像中的噪
声。
中值滤波
将像素值替换为其邻域 的中值,对去除椒盐噪
声特别有效。
高斯滤波
使用高斯函数对图像进 行平滑处理,有助于减
少图像中的细节。
双边滤波
结合了像素的空间邻近 度和灰度值相似度,能
够保留边缘信息。
图像变换
傅里叶变换
小波变换
将图像从空间域转换到频率域,用于分析 图像的频率成分。
将图像分解成不同频率和方向的小波系数 ,用于图像压缩和特征提取。
离散余弦变换(DCT)
支持向量机(SVM)
基于统计学习理论的分类器,用于图像识别。
05
Matlab应用实例
图像平滑处理
01
02
03
均值滤波
通过将像素邻域的平均值 赋给输出图像的相应像素, 减少图像中的噪声。
高斯滤波
利用高斯函数的形状对图 像进行平滑,对图像的边 缘进行平滑处理,减少噪 声的影响。
中值滤波
将像素邻域的中值赋给输 出图像的相应像素,对去 除椒盐噪声特别有效。
图像锐化处理
拉普拉斯算子
利用拉普拉斯算子对图像 进行锐化,增强图像的边 缘和细节。
梯度算子
基于图像梯度的锐化方法, 能够突出显示图像中的边 缘和其他高频部分。
Sobel算子
通过计算像素邻域内像素 的加权差分,实现图像的 锐化。
图像边缘检测
Canny边缘检测
数字图像处理——彩色图像实验报告
数字图像处理——彩色图像实验报告第一篇:数字图像处理——彩色图像实验报告6.3实验步骤(1)对彩色图像的表达和显示* * * * * * * * * * * *显示彩色立方体* * * * * * * * * * * * *rgbcube(0,0,10);%从正面观察彩色立方体rgbcube(10,0,10);%从侧面观察彩色立方rgbcube(10,10,10);%从对角线观察彩色立方体%* * * * * * * * * *索引图像的显示和转换* * * * * * * * * f=imread('D:PictureFig0604(a)(iris).tif');figure,imshow(f);%f是RGB真彩图像%rgb图像转换成8色索引图像,不采用抖动方式[X1,map1]=rgb2ind(f,8,'nodither');figure,imshow(X1,map1);%采用抖动方式转换到8色索引图像[X2,map2]=rgb2ind(f,8,'dither');figure,imshow(X2,map2);%显示效果要好一些 g=rgb2gray(f);%f转换为灰度图像g1=dither(g);%将灰色图像经过抖动处理,转换打二值图像figure,imshow(g);%显示灰度图像figure,imshow(g1);%显示抖动处理后的二值图像程序运行结果:*彩色立方体原图不采用抖动方式转换到8色索引图像采用抖动方式转换到8色索引图像灰度图像抖动处理后的二值图像(2)彩色空间转换f=imread('D:PictureFig0604(a)(iris).tif');figure,imshow(f);%转换到NTSC彩色空间%f是RGB真彩图像ntsc_image=rgb2ntsc(f);figure,imshow(ntsc_image(:,:,1));%显示亮度信息figure,imshow(ntsc_image(:,:,2));%显示色差信息figure,imshow(ntsc_image(:,:,3));%显示色差信息%转换到HIS彩色空间hsi_image=rgb2hsi(f);figure,imshow(hsi_image(:,:,1));%显示色度信息figure,imshow(hsi_image(:,:,2));%显示饱和度信息figure,imshow(hsi_image(:,:,3));%显示亮度信息程序运行结果:原图转换到NTSC彩色空间显示亮度信息显示色差信息显示色差信息转换到HIS彩色空间显示色差信息显示饱和度信显示亮度信息(3)彩色变换f=imread('D:PictureFig0614(a)(Chalk Original).tif');G=ice('image',f);%打开ice窗口对图像进行调整%在窗口中执行以下操作:%a)得到图像的补色%b)拖动映射曲线,对图像显示效果进行修改%c)在颜色通道中选中某一颜色,然后对映射曲线进行修改程序运行结果(1):全彩色图片ICE窗口它的补色ICE窗口拖动映射曲线,图像的显示效果ICE窗口f2=imread('D:Picture JLK Magenta.tif');figure,imshow(f2);%在CMYK彩色空间内打开图像选择RedICE窗口g2=ice('image',f2,'space','CMYK');%f2的图像色彩偏红,拖动映射曲线,%调整映射参数,使图像的色彩看起来比较正常。
数字图像处理及MATLAB实现第八章彩色图像处理及MATLAB实现
8.4.1 彩色图像分割
8.4.2 彩色图像测量 8.4.3 图像的伪彩色和假彩色处理 (1)伪彩色处理 (2)假彩色处理
21
8.4.4 伪彩色和假彩色处理的MATLAB实现 (1)灰度分层方法伪彩色处理的MATLAB实现 (2)变换法伪彩色处理MATLAB实现
图8.13 伪彩色处理的灰度分层方法
1
8.2 彩色视觉与彩色图像 彩色图像处理的许多目标是帮助人更好地观察 和理解图像中的信息,处理方案的选择和设计与 信源和信宿的特征密切相关。所谓信源就是处理 前或者处理后的图像,而信宿就是处理前后信息 的接收者———人的视觉系统。因此了解图像特 点和人的视觉系统对彩色的感知规律是十分必要 的,本节将介绍有关这方面的内容,即色度学的 知识。
6
7
8.2.5 彩色图像的 MATLAB 的实现 (1)MATLAB 图像处理工具箱支持的彩色图像 1)索引图像 2)RGB 图像 3)HSV 图像 (2)MATLAB 图像处理工具箱 HSV 模式与 RGB 模式之间的相互变换 (3)相互转换的 MATLAB 实现
8
图8.3 RGB图像转变为 HSV 图像,再由HSV图像 转变为RGB图像示例
图8.10 色彩调整示例
17
(2)真彩色增强的 MATLAB 实现
图8.11 真彩色图像均值滤波前、后显示效果对比
18
(3)彩色图像恢复的MATLAB实现
图8.12 彩色图像恢复的示例
19
8.4 彩色图像分析 彩色图像分析主要是指对图像中感兴趣的目标 进行检测和测量,以获得它们的客观信息,从而 建立对图像的描述。图像分析是一个从图像到数 据的过程。这里的数据可以是对目标特征测量的 结果,或是基于测量的符号表示。它们指出了图 像中目标的特点和性质。这种处理基本上用于自 身图像分析、模式识别和计算机视觉等模式。例 如彩色体的分类、排列等。为了描述图像,首先 要进行分割,然后进行测量和特征提取等处理。
数字图像处理MATLAB图像处理PPT课件
主要应用举例: ➢ 差影法(检测同一场景两幅图像之间的变化) ➢ 混合图像的分离
第17页/共41页
(1)检测同一场景两幅图像之间的变化
设:时刻1的图像为 T1(x,y), 时刻2的图像为 T2(x,y) g(x,y) = T2 (x,y) - T1(x,y)
第25页/共41页
除法运算(Division)
4、除法运算
C(x, y) A(x, y) B(x, y)
简单的除法运算可用于改变图像的灰度级, 常用于遥感图像处理中。
在四种算术运算中,减法与加法在图像增强 处理中最为有用。
第26页/共41页
几何变换
1)简单变换 • 问题描述:图像的平移、放缩和旋转。 • 解题思路:从易到难。工具:线性代数中的齐次坐标。
x
象
素
y1
填y
充
映
射
f(x1,y1) (x1,y1)非整型
f(x,y) (x,y)整型
第32页/共41页
图像的缩放
• 两种映射方法的对比 • 对于向前映射:每个输出图像的灰度要经过多次运算; • 对于向后映射:每个输出图像的灰度只要经过一次运算。
实际应用中,更经常采用向后映射法。 其中,根据四个相邻像素灰度值计算某位置的像素灰度
1、加法运算
C(x, y) A(x, y) B(x, y)
主要应用举例: ➢ 去除“叠加性”随机噪音 ➢ 生成图像叠加效果
第12页/共41页
(1)去除“叠加性”噪音
对于原图象f(x,y),有一个噪音图像集 { g i (x ,y) } 其中:g i (x ,y) = f(x,y) + ei(x,y)
数字图像处理及MATLAB实现PPT课件
8.3.2梯度图像二值化
• 如果用适中的阈值对一幅梯度图像进行二值化,Kirsch的分割法利用了这种现象。 • 算法步骤 • 用一个中偏低的灰度阈值对梯度图像进行二值化从而检测出物体和背景,物体与背景被处于阈值之上的边
界点带分开。随着阈值逐渐提高,就引起物体和背景的同时增长。当它们接触上而又不至于合并时,可用 接触点来定义边界。这是分水岭算法在梯度图像中的应用。
OTSU算法定义:该算法是在灰度直方图的基础上用最小二乘法原理推导出来的, 具有统计意义上的最佳分割阈值。
第8页/共69页
• OTSU基本原理:以最佳阈值将图像的灰度直方图分割成两部分,是两部分之 间的方差取最大值,即分离性最大。
第9页/共69页
3. 迭代法求阈值
原理:图像中前景与背景之间的灰度分布为相互不重叠,在该前提下,实现对 两类对象的阈值分割方法。
除非图像中的物体有陡峭的边沿,否则灰度阈值的取值对所抽取物体的边界的 定位和整体的尺寸有很大的影响。这意味着后续的尺寸(特别是面积)的测量 对于灰度阈值的选择很敏感。由于这个原因,我们需要一个最佳的,或至少是 具有一致性的方法确定阈值。
第5页/共69页
1.直方图技术
• 含有一个与背景明显对比的物体的图像其有包含双峰的灰度直方图
第21页/共69页
Sobel边缘算子图
第22页/共69页
Prewitt边缘算子
Prewitr边缘算子 第23页/共69页
Kirsch边缘算子
图像中的每个点均与这8个模板进行卷积,每个掩模对某个特定边缘方向作出最大响应。所有8个方向中的 最大值作为边缘幅度图像的输出。最大响应掩模的序号构成了对边缘方向的编码。 Kirsch算子的梯度幅度值
数字图像处理及应用MATLAB第8章
是整个figure中有n个图是排成一行的,一共m行。
(6)rgb2ind 功能:将真彩色图像转换成索引色图像
格式:[X,map]= = rgb2ind ( I,n) 说明:I表示被转换的RGB原图像,其中n指定map中颜色项数, n 最大不能超过65536。 (7)ind2rgb 功能:将索引色图像转换成真彩色图像,
(a) rice
(b) cameraman (c)相加后的图像
4、实验内容程序设计部分
(1)对灰度图像、真彩色图像实现读取、显示和保存。 (2)matlab图像文件夹中的mri.tif是一个包含27帧、图像尺寸为 128*128的多帧索引图像,请将前20帧图像顺序读入到一个数组中 并显示出来。 (3)通过图像点运算减弱图像对比度。 (4)分别将索引色图像转换为灰度图像和二值图像,并将灰度图 像转换为索引色图像 (5)求对任意两幅大小不相等的图像相加的结果,并加以验证用 语句:K2=Ibackground+J;代替示例程序中 K2=imadd(Ibackground,J,'uint16');的处理结果是否相同。
(a) circbw.tif
(b) newcircbw.bmp
(c) clown.bmp (d) new clown.bmp
(2) 在一个图形窗口中显示RGB图像
clear,clc close all I=imread('peppers.png'); subplot(2,2,1),imshow(I,'notruesize'),title('真彩色图像') R=I;R(:,:,[2 3])=0;%红色分量 G=I;G(:,:,[1 3])=0;%绿色分量 B=I;B(:,:,[1 2])=0;%蓝色分量 subplot(2,2,2),imshow(R,'notruesize');title('显示第一个颜色分量') subplot(2,2,3),imshow(G,'notruesize');title('显示第二个颜色分量') subplot(2,2,4),imshow(B,'notruesize');title('显示第三个颜色分量') 实验结果图如图所示。
数字图像处理与机器视觉-基于MATLAB实现 第8章 彩色图像处理
8.2.2 Matlab实现
Matlab实现RGB模型
在Matlab中,RGB图像可以表示为 的三维矩阵。每个彩色像素对应于彩色图像中特定空间位置的红、绿、 蓝三个分量。组件图像的数据类型决定了它们的取值范围。如果RGB图像的数据类型为double,则每个分量 图像的取值范围为[0,1],如果数据类型为uint8或uint16,则每个分量图像的取值范围分别为[0,255]或[ 0, 65535]。
本章将会探究Matlab所带的图像处理工具箱进行彩色图像处理的基本原,并将工 具箱的某些功能通过使用所开发的彩色生成和变换函数来进行拓展。本章的内容建立 在假定部分读者已基本熟悉彩色图像处理的术语和原理。
8.1彩色图像基础 光谱
在17世纪60年代,人们普遍认为白光是一种没有其他颜色的纯色光,而彩色光是 有某种缘故发生变化的光。为了验证这个假设,牛顿让一束阳光通过一面三棱镜,光 线在墙上被分解成了八种不同的颜色,即:红、橙、黄、绿、青、蓝、紫,后来我们 称之为光谱。
图8-1 牛顿发现光谱现象
8.1.1彩色的定义
彩色
彩色是物体的一种属性就像纹理、形状和重量一样。一般来说它取决于三 个方面的因素:
• 光源—照射光的光谱特性或光谱能量分布。 • 物体—被照射物体的反射特性。 • 成像接收器(眼睛或成像传感器)—光谱能量吸收性质。
其中光特性是彩色科学的核心。如果光没有颜色(比如观察者看到的黑白 电视的光),那么它的属性只是亮度或数值。 亮度可以用灰度值来描述,灰 度值范围从黑色到灰色,最后到白色。
8.1.2彩色的物理认识
彩色的物理认识 人类能够感知的物体的颜色是由物体反射的光的性质决定的。如图8-2所示,可见
光是由电磁波谱中较窄的波段组成。 如果物体反射的光在所有可见光波长范围内都是平衡的,那么从观察者的角度来看,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
出版社 理工分社
图8.10 色彩调整示例
17
数字图像处理及MATLAB实现
(2)真彩色增强的 MATLAB 实现
出版社 理工分社
图8.11 真彩色图像均值滤波前、后显示效果对比
18
数字图像处理及MATLAB实现
(3)彩色图像恢复的MATLAB实现
出版社 理工分社
图8.12 彩色图像恢复的示例
19
出版社 理工分社 5
数字图像处理及MATLAB实现
出版社 理工分社
(2)从 HSV 变换到 RGB
6
数字图像处理及MATLAB实现
出版社 理工分社
7
数字图像处理及MATLAB实现
出版社 理工分社
8.2.5 彩色图像的 MATLAB 的实现 (1)MATLAB 图像处理工具箱支持的彩色图像 1)索引图像 2)RGB 图像 3)HSV 图像 (2)MATLAB 图像处理工具箱 HSV 模式与 RGB
模式之间的相互变换 (3)相互转换的 MATLAB 实现
8
数字图像处理及MATLAB实现
出版社 理工分社
图8.3 RGB图像转变为 HSV 图像,再由HSV图像 转变为RGB图像示例
9
数字图像处理及MATLAB实现
出版社 理工分社
图 8.4 RGB 图像转变为YCBCR图像,再由YCBCR 图像转变为RGB图像示例
11
数字图像处理及MATLAB实现
出版社 理工分社
图8.5 RGB图像转变为NTSC图像示例
12
数字图像处理及MATLAB实现
8.3.2 彩色图像增强 (1)密度分割法
出版社 理工分社
图8.6 简单的灰度到彩色变换
13
数字图像处理及MATLAB实现
(2)灰度级—彩色变换法
出版社 理工分社
图8.7 伪彩色处理原理图
20
数字图像处理及MATLAB实现
8.4.1 彩色图像分割
8.4.2 彩色图像测量 8.4.3 图像的伪彩色和假彩色处理 (1)伪彩色处理 (2)假彩色处理
出版社 理工分社 21
数字图像处理及MATLAB实现
出版社 理工分社
8.4.4 伪彩色和假彩色处理的MATLAB实现 (1)灰度分层方法伪彩色处理的MATLAB实现 (2)变换法伪彩色处理MATLAB实现
14
数字图像处理及MATLAB实现
(3)频率—彩色变换法
出版社 理工分社
图8.8 典型的变换函数
15
数字图像处理及MATLAB实现
出版社 理工分社
图8.9 频域—彩色增强原理框图 8.3.3 彩色补偿
16
数字图像处理及MATLAB实现
8.3.4 彩色图像恢复 8.3.5 彩色图像处理的MATLAB实现 (1)色彩平衡MATLAB的实现
2
数字图像处理及MATLAB实现
8.2.1 彩色视觉 8.2.2 三色成像原理
出版社 理工分社
图8.1 相加混色之三基色及补色亮度比例
3
数字图像处理及MATLAB实现
出版社 理工分社
图8.2 色度图示意
4
数字图像处理及MATLAB实现
8.2.3 彩色图像格式 1)RGB 模式 2)CMYK 模式 3)Lab模式 4)HSV 模式 8.2.4 彩色坐标变换 (1)从 RGB 变换到 HSV
1
数字图像处理及MATLAB实现
出版社 理工分社
8.2 彩色视觉与彩色图像 彩色图像处理的许多目标是帮助人更好地观察
和理解图像中的信息,处理方案的选择和设计与 信源和信宿的特征密切相关。所谓信源就是处理 前或者处理后的图像,而信宿就是处理前后信息 的接收者———人的视觉系统。因此了解图像特 点和人的视觉系统对彩色的感知规律是十分必要 的,本节将介绍有关这方面的内容,即色度学的 知识。
10
数字图像处理及MATLAB实现
出版社 理工分社
8.3 彩色图像处理
彩色图像处理就是对彩色图像信息进行加工处 理,首先强调在图像之间进行的变换,输入输出 都是图像。通过对彩色图像的各种加工处理,以 便于进行图像自动识别或对图像进行压缩编码以 减少对其所需存储空间或传输时间、传输通路的 要求。
8.3.1 彩色平衡
数字图像处理及MATL 彩色图像处理及MATLAB实现
8.1 概 述
彩色对我们并不陌生,比如说日常生活中通过 摄影相机用彩色胶卷所拍的照片。它是指用各 种观测系统,以不同形式和手段,观测客观世 界而获得的,可以直接和间接作用于人眼,进 而产生视觉的实体。小到分子内部结构图片, 大至宇宙星体照片,人类通过视觉识别文字、 图片和周围环境,人的视觉系统就是一个观测 系统
图8.13 伪彩色处理的灰度分层方法
22
数字图像处理及MATLAB实现
出版社 理工分社
图8.14 伪彩色处理的变换法
23
数字图像处理及MATLAB实现
(3)频域伪彩色处理MATLAB实现
出版社 理工分社
图8.15 滤波器变换法的伪彩色变换
24
数字图像处理及MATLAB实现
(4)假彩色处理MATLAB实现
数字图像处理及MATLAB实现
出版社 理工分社
8.4 彩色图像分析 彩色图像分析主要是指对图像中感兴趣的目标
进行检测和测量,以获得它们的客观信息,从而 建立对图像的描述。图像分析是一个从图像到数 据的过程。这里的数据可以是对目标特征测量的 结果,或是基于测量的符号表示。它们指出了图 像中目标的特点和性质。这种处理基本上用于自 身图像分析、模式识别和计算机视觉等模式。例 如彩色体的分类、排列等。为了描述图像,首先 要进行分割,然后进行测量和特征提取等处理。
出版社 理工分社
图8.16 一种假彩色变换
25