高考物理弹簧模型总结
高中物理弹簧模型详解

高中物理弹簧模型详解弹簧是我们在日常生活中经常接触到的一个物体,而在物理学中,弹簧也是一种非常重要的模型,能够帮助我们更好地理解力学性质。
本文将详细介绍高中物理中弹簧模型的相关知识,包括弹簧的基本概念、弹簧的力学性质以及弹簧在物理学中的应用。
一、弹簧的基本概念弹簧是一种具有自身形状恢复能力的物体,当外力作用在弹簧上时,会产生形变,当外力消失时,弹簧会恢复原来的形状。
弹簧通常是由金属或塑料等材料制成,形状多样,能够用于各种领域。
在物理学中,我们通常将弹簧视为一个理想模型,即认为弹簧具有以下特点:弹性系数恒定、无质量等。
弹簧的弹性系数(弹簧常数)用k表示,是衡量弹簧的硬度和形变能力的重要参数。
二、弹簧的力学性质1. 弹簧的伸长和弹性力当外力作用在弹簧上时,弹簧会发生形变,使长度发生变化,此时称为弹簧的伸长。
根据胡克定律,弹簧伸长的长度与作用力成正比,即F=kx,其中F为外力,k为弹簧的弹性系数,x为伸长的长度。
弹簧的弹性力也叫胡克力,是指弹簧对外力做出的响应,方向与伸长的方向相反。
当外力消失时,弹簧会产生一个恢复力,使形状恢复原状。
2. 弹簧振动在物理学中,弹簧振动是一种重要的现象,可以用简谐振动的原理进行描述。
当弹簧受到外力作用时,会产生振动,频率与质量和弹簧的弹性系数相关。
弹簧振动的频率用f表示,与弹簧的弹性系数k和振动体的质量m有关,可以用以下公式表示:f=1/(2π) * √(k/m)。
三、弹簧在物理学中的应用1. 弹簧振子弹簧振子是物理学中常见的实验器材,由一根弹簧和一个质点组成。
通过对弹簧振子的研究,可以了解振动的基本特性,包括振幅、频率、周期等。
2. 弹簧力学弹簧力学在实际生活中有着广泛的应用,例如弹簧秤、弹簧减震器等。
通过对弹簧力学的研究,可以更好地设计和制造各种弹簧产品,满足不同领域的需求。
3. 彩虹弹簧彩虹弹簧是一种特殊形状的弹簧玩具,通过不同颜色的环形弹簧组成。
彩虹弹簧不仅具有较强的伸缩性能,还有着独特的视觉效果,深受孩子们的喜爱。
高中物理弹簧模型经典题型汇总

弹簧专题1、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.例1、如图3-7-15所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b、对质点的作用力均为F,则弹簧c对质点作用力的大小可能为( )A、0B、F mg+C、F mg-D、mg F-2、轻弹簧高中物理中描述一类物体时常在其前面加上限定词“轻”,如“轻结点”、“轻绳”、“轻弹簧”、“轻杆”、“轻滑轮”等.“轻"主要可以理解为物体质量对所研究的物理问题影响很小,可以忽略不计,它是一种理想化的物理模型。
根据牛顿第二定律F = ma知,由于“轻物体”质量为零,无论其加速度多大,所受合外力必然为零,与物体的运动状态无关.这也是它与常规物体的最大区别.例2、如图4所示,4个完全相同的轻质弹簧都处于水平位置,他们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以L1、L2、L3、L4依次表示4个弹簧的伸长量.则有()3、质量不可忽略的弹簧例3、如图所示,一质量为M、长为L的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.答案解析Fx=FLx图3-7-154、三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是轻质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变,即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变。
例4、如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.求解下列问题:(1)现将线L2剪断,求剪断L2的瞬间物体的加速度.(2)若将图甲中的细线L1换成长度相同,质量不计的轻弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体的加速度.例5、如图所示,一光滑圆环竖直固定在地面上,三个完全相同的质量均为m的小球穿在圆环上,其中小球A位于圆环最高点,小球B、C位于同一高度,小球A与小球B之间、小球A与小球C间用等长的轻质细绳相连,小球B与小球C用轻弹簧相连。
高中物理专题复习之弹簧模型中的极值问题

在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
一、最大、最小拉力例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。
求此过程中所加外力的最大和最小值。
图1解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg km ==025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有2122∆l at =,代入数据得a m s =42/。
刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。
二、最大高度例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。
一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。
图2解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:v gx 006= ①物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=1222120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得:E m v mgx m v p +=+12331232202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度:h v g=22 ⑥ 解①~⑥式可得h x =02。
高三物理复习物理模型组合讲解——弹簧模型(功能问题)

模型组合讲解——弹簧模型(功能问题)[模型概述]弹力做功对应的弹簧势能,分子力做功所对应的分子势能、电场力做功对应的电势能、重力做功对应的重力势能有区别,但也有相似。
例:(2005年江苏高考)如图1所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直,磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略。
初始时刻,弹簧恰处于自然长度,导体在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触。
(1)求初始时刻导体棒受到的安培力。
(2)若导体棒从初始时刻到速度第一次为零时,则这一过程中安培力所做的功W1和电阻R上产生的焦耳热Q1分别为多少?(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R上产生的焦耳热Q为多少?图1解析:(1(2)由功和能的关系,得安培力做电阻R上产生的焦耳热(3[模型要点]在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系或能量转化和守恒定律求解,图象中的“面积”功也是我们要熟悉掌握的内容。
高考不作定理要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解。
分子力、电场力、重力做正功,对应的势能都减少,反之增加。
都具有相对性系统性。
弹簧一端连联物、另一端固定:当弹簧伸长到最长或压缩到最短时,物体速度有极值,弹簧的弹性势能最大,此时也是物体速度方向发生改变的时刻。
若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。
若关联物与接触面粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。
此时有两个方案:一是严格带符号运算,q考虑正和负,所得W的正、负直接表明电场力做功的正、负;二是只取绝对值进行计算,所得W只是功的数值,至于做正功还是负功?可用力学知识判定。
高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型
以下是关于弹簧的8种模型
1. 弹性线性模型(Hooke定律模型):弹簧的拉伸或压缩与弹力成正比。
2. 欧拉-伯努利悬链模型:将一条悬挂在两端支持点上的弹簧视为一个由无数小段组成的悬链,使该整体发生弹性形变。
3. 线圈弹簧模型:将弹簧看作一系列具有弹性的杆件相互连接而成的线圈。
4. 非线性弹簧模型(实验模型):弹簧长度非常短,增加弹簧的弹性,以进一步研究其弹性质量。
5. 结构弹簧模型:弹簧长度较长,由此建立的结构弹簧可以帮助研究建筑物和桥梁的耐力。
6. 重力弹簧模型:弹簧被用来模拟重力的作用。
7. 超弹性弹簧模型:这种弹簧的弹性大于普通弹簧,它被广泛应用于高精度测量、机器人学和其他高科技领域。
8. 线性簧模型:弹簧的材质、线径等是固定的,根据弹簧的特性建立模型,计算其应力、应变等力学参数。
高中物理重点经典力学问题----弹簧问题方法归类总结

高中物理重点经典力学问题----弹簧问题方法归类总结高考要求:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k=-(kx22-kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p=kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g /k2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.(1996全国)如图所示,倔强系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,倔强系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型:
1.简单弹簧模型:最基本的模型,将弹簧看作一个线性弹性体,满足胡克定律,即弹
簧力与变形量成正比。
2.质点弹簧模型:在简单弹簧模型的基础上,考虑到弹簧两端连接的物体的质量,将
其视为质点,分析弹簧振动、调和运动等问题。
3.弹簧振子模型:将弹簧与一定质量的物体(如小球)组合起来,形成一个简谐振动
系统,研究其振动频率、周期等特性。
4.弹簧串联模型:多个弹簧按照串联方式连接,研究整个系统的弹性特性和变形量的
分布情况。
5.弹簧并联模型:多个弹簧按照并联方式连接,研究整个系统的弹性特性和总的弹簧
常数。
6.弹簧平衡模型:将弹簧与其他物体相连接,使其处于平衡状态,通过分析受力平衡
条件,求解物体的位移和力的大小。
7.弹簧阻尼模型:考虑弹簧振动过程中存在的阻尼现象,引入阻尼系数,分析阻尼对
振动特性的影响。
8.非线性弹簧模型:考虑到弹簧在较大变形下不再满足胡克定律,采用非线性弹簧模
型进行分析,如非线性胡克定律、比例限制等。
高考物理弹簧类问题的几种模型及其处理方法归纳

弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。
2023年高考物理总复习核心素养微专题(二)模型建构—— 弹簧模型

模型建构——弹簧模型弹簧问题综合性大,但弹簧问题往往是由几个基本的模型组合而成,掌握弹簧问题的基本模型,对于解决复杂的弹簧问题有很重要的意义。
处理复杂的弹簧模型,要应用基本的弹簧模型,应用力的观点、能的观点以及动量的观点解决问题。
类型图示规律分析瞬时性初始时,A 、B 紧挨在一起但A 、B 之间无压力。
剪断细绳的瞬间,弹簧的弹力不能突变,AB 系统受到的合外力等于B 的重力,用整体法求AB 的加速度,隔离法求A 、B 间的相互作用力对称性斜面光滑,物块B 紧靠挡板,物块A 被外力控制恰使弹簧处于原长状态。
撤去外力后,A 物块的运动具有对称性分离性撤去外力F ,AB 向上运动的过程中,A 、B 相互作用力为0的位置为A 、B 分离的位置不变性弹性势能与物体质量无关,相等的伸长量和缩短量弹性势能相等弹性势能不变模型光滑斜面上物块A 被平行斜面的轻质弹簧拉住静止于O 点,如图所示,现将A 沿斜面拉到B 点无初速度释放,物块在BC 范围内做简谐运动,则下列说法错误的是( )A.在运动过程中,物块A 和弹簧组成的系统机械能守恒B.从B 到C 的过程中,合外力对物块A 的冲量为零C.物块A 从B 点到O 点过程中,动能的增量等于弹性势能的减小量D.B 点时物块A 的机械能最小【解析】选C。
在运动过程中,物块A和弹簧组成的系统机械能守恒,故A正确;从B到C的过程中,根据冲量定理可知Ft=mv C-mv B,由于B、C两点的速度为零,故合外力对物块A的冲量为零,故B正确;从B点到O点的过程中,对物块A根据动能定理可知-mgh-W弹=12m v O2-0,故动能的增量等于弹性势能的减小量减去克服重力做的功,故C错误;物块A和弹簧系统机械能守恒;B 点时弹簧的弹性势能最大,故物块A的机械能最小,故D正确。
弹性势能对称模型(2022·湖北选择考)如图所示,质量分别为m和2m的小物块Р和Q,用轻质弹簧连接后放在水平地面上,Р通过一根水平轻绳连接到墙上。
2025高考物理总复习“滑块—弹簧”模型和“滑块—斜(曲)面”模型

2
提升素养能力
目录
提升素养能力
A级 基础对点练 1.(2024·广东东莞高三检测)如图1所示,弹簧一端固定在竖直墙上,质量为m的光
滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量为2m的小球
从槽高h处自由下滑,则下列说法正确的是( C )
A.在下滑过程中,小球和槽组成的系统动量守恒
目录
研透核心考点
1.模型图示
模型二 “滑块—斜(曲)面”模型
目录
研透核心考点
2.模型特点 (1)上升到最大高度:m 与 M 具有共同水平速度 v 共,此时 m 的竖直速度 vy=0。 系统水平方向动量守恒,mv0=(M+m)v 共;系统机械能守恒,12mv20=12(M+m)v2共 +mgh,其中 h 为滑块上升的最大高度,不一定等于弧形轨道的高度(相当于完 全非弹性碰撞,系统减少的动能转化为 m 的重力势能)。 (2)返回最低点:m 与 M 分离点。水平方向动量守恒,mv0=mv1+Mv2;系统机 械能守恒,12mv20=21mv21+12Mv22(相当于弹性碰撞)。
01 02 03 04 05 06 07 08 09
目录
提升素养能力
5.如图5所示,光滑弧形滑块P锁定在光滑水平地面上,其弧形底端切线水平,小
球Q(视为质点)的质量为滑块P的质量的一半,小球Q从滑块P顶端由静止释放,
Q离开P时的动能为Ek1。现解除锁定,仍让Q从滑块顶端由静止释放,Q离开P
时的动能为Ek2,Ek1和Ek2的比值为( C )
3
C.16E
D.E
图2
01 02 03 04 05 06 07 08 09
目录
提升素养能力
解析 设 P 物体的初速度为 v0,由已知可得12mv20=E,P 与 Q 碰撞过程中,两 物体速度相等时,弹簧压缩量最大,此时弹性势能最大,整个过程中,满足动 量守恒 mv0=(m+3m)v1,最大弹性势能 Ep=12mv20-21×(m+3m)v21,解得 Ep= 38mv20=34E,故 A 正确。
高考物理建模之弹簧模型

高考物理建模之弹簧模型弹簧模型是高中物理里非常重要的建模,是高考物理必考的模型。
相比轻绳模型、轻杆模型,弹簧模型考查题型更加多样化,涉及的内容更加广全。
可以说,弹簧模型是历年高考物理的一个热点难点。
弹簧模型特点轻质弹簧质量可忽略,弹簧可以可压可伸,弹簧可产生拉力也可产生支持力。
在弹性限度内,弹力的大小与弹簧的压缩量或伸长量成正比。
弹簧模型规律1、同一根弹簧的弹力处处相等;2、弹力方向一定沿着弹簧轴线,并且与弹簧形变方向相反;3、弹力有指定公式:F=kx,其中x表示弹簧的压缩量或伸长量,非弹簧长度;4、弹簧弹力"瞬时"不会突变;5、弹簧处于原长时没有弹性势能,弹簧发生形变后具有弹性势能。
弹性势能有指定公式:F=kx2/2,该公式高中物理里没有涉及到,但仍然可以作为选择题判断的依据;6、弹性势能与弹力做功关系:弹力做正功,弹性势能减少;弹力做负功,弹性势能增加;7、弹力做功特点:与物体运动的路径无关,只与物体的始末位置有关(这和重力做功、电场力做功有共性);处理方法根据物体所处状态选择相对应的定则、定理或定律,具体表现:涉及平衡问题用平衡条件F合=0分析,涉及加速减速用牛顿运动定律,涉及圆周运动用向心力知识,涉及能量转化往往用动能定律、机械能守恒定律或能量转化定律等知识。
弹簧模型常见题型一、弹簧涉及的平衡问题梳理清楚研究对象,然后受力分析。
有时受力物体可能是一个结点,有时是弹簧的某一点,这就要根据题目来做判断。
然后利用F合=0列式求解。
经典例题1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有()A. l4>l3>l2>l1 B. l4=l3=l2=l1 C. l1>l3>l4>l2 D. l1>l3=l4>l2解析:B本题设计巧妙之处在于研究对象的选择,这个研究对象并不是木块,也不是整个弹簧,而是以弹簧最右端的"一点"进行受力研究。
高中物理弹簧模型详解

高中物理弹簧模型详解弹簧模型是物理中常用的简化实验模型,可以应用于弹性力学、动力学、波浪等多种领域。
在高中物理课程中,弹簧模型常常用来分析物体在不同条件下的弹性变形及恢复力等问题。
下面详细介绍一下高中物理中弹簧模型的相关内容。
I. 弹簧模型的基本概念弹簧模型是用弹簧代替物体之间的接触面,以研究物体之间的弹性变形和弹性力的模型。
它可以用来模拟各种物体的弹性特性,具有简化实验和便于分析的优势。
在弹簧模型中,物体可以被看作是由若干个质点组成的系统。
质点与质点之间通过一根弹簧连接,弹簧的特性可以用弹性系数k来描述。
当弹簧被压缩或拉长时,会产生恢复力(弹力),大小与弹簧形变的大小成正比,与弹簧形变的方向成反比。
II. 弹簧模型的应用1. 弹性变形当外力作用于物体上后,物体发生形变,但形变量又不足以改变物体的结构,这种形变称为弹性变形。
在弹簧模型中,外力就是作用于质点上的力,当外力大小不超过弹簧的弹性限度时,质点会发生弹性变形,而当外力大小超过弹性限度时,弹簧会进入塑性变形区,质点将发生塑性变形。
2. 弹性力弹性力是被压缩或拉长的弹簧恢复到原状时产生的力。
根据胡克定律,弹簧恢复力的大小与弹簧形变的大小成正比,与形变的方向成反比。
因此,在弹簧模型中,弹性力也可以用弹簧的弹性系数k来计算。
3. 振动弹簧模型还可以用来研究物体的振动。
例如,可以用一根手摇弹簧将质点与质点之间的耦合作用建立起来,通过摇动弹簧可以激发质点的振动。
这种振动可以用弹簧的弹性系数和质点的质量等参数来描述。
III. 弹簧模型的计算方法在使用弹簧模型时,需要根据具体情况建立起质点与质点之间的耦合关系。
通常,假设所有质点间连接的弹簧都相等,弹性系数为k,每个质点的质量均为m,这样就可以通过牛顿第二定律推导出弹簧模型的运动方程:F = mam(d^2)x/dt^2 = -kx其中,F表示合力,a表示加速度,x表示形变,t表示时间。
这个动力学方程描述了弹簧模型中物体的运动规律,可以用来计算物体的位移、速度和加速度等参数。
高考物理弹簧模型知识点

2019高考物理弹簧模型知识点2019高考物理弹簧模型知识点弹簧模型是以轻质弹簧为载体,与具体实际问题相结合,考查运动学、动力学、能量守恒、动量守恒、振动问题、功能关系、物体的平衡等相关问题。
有关弹簧的知识,是高考考查的重点,同时也是高考的难点,几乎每年的高考都会考查该内容,所以备考时要引起足够的重视.轻弹簧是一种理想化的物理模型,分析问题时不需要考虑弹簧本身的质量和重力.处理弹簧模型时,需要掌握以下知识点:1.弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变化而变化,同时还与弹簧的劲度系数有关。
2.弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变化,弹簧的弹力相应地发生变化;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变化,这与绳子的受力情况不同.(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的.(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种情况下,弹力的方向相反.在分析弹簧弹力的方向时,一定要全面考虑,如果题目没有说明是哪种形变,那么就需要考虑两种情况.(4)根据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动.3.弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在高中阶段不需要掌握该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的情况下,弹性势能是相等的;一般情况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解.4.常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.处理弹簧模型的策略(l)判断弹簧与连接体的位置,分析物体的受力情况;(2)判断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变化情况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)根据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解.模型1 考查弹簧的瞬时性问题弹簧弹力的大小与弹簧形变有关,而弹簧的形变在瞬间是不能突变的,即弹簧形变的改变需要一定的时间,所以弹簧弹力在瞬间不能够突变,这与绳模型是有区别的,不要混淆两者的区别,否则就会出错.模型2 考查弹簧中的碰撞问题弹簧中的碰撞问题是一类综合性很强的题目,一般综合了动量守恒、机械能守恒、功能关系和能量转化等.如果弹簧作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能,能量相互转化.在运动过程中,动能与势能相互转化。
由“弹簧模型”考点展望高考

、
大小为g , 则有 ( )
A. a 1 =0, a 2 =g B. a l g, a 2 =g
C. a l = 0, a : = m+ M g
D. a l = g , a 2 = m+ M
g
分析 : 在抽 出 木 板 的 瞬 时 , 弹簧 对 1 的 支 持力 和对 2 的压 力 并 未 改 变 。对 l 物 体 受 重力 和 支 持 力 , mg = F , a l = 0 ; 对2 物体 受 重 力和压力 , 根 据 牛顿 第 二 定 律a : 一 F + M g :n +m
1
,
1
’
点: W ~ ( ÷k Z x : 。 一 2 二k x ‘ ) , 弹力的功等于弹性势能增量的负值。
因此 在 求 弹力 的功 或 弹性 势 能 的 改 变 时 ,一 般 以 能 量 的 转 化 与 守恒 的角 度 求 解 。
四、 实 例 分 析 1 . 与 物 体 平 衡 相 关 的 弹 簧 问题
一
起 沿 水 平 方 向 做匀 速 直 线 运 动 。 得 水 平 和 竖 直 方 向受 力 平 衡 , 所 以竖 直 方 向N = m. g + m , g — F s i n O , 故 A正 确 , 水 平 方 向f = F c o s 0 , 故C 正确 , 答 案 为A C 。
高考物理含弹簧的物理模型专题分析(答案)

含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当的比重,高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等。
几乎贯穿整个力学的知识体系。
对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件。
因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题者的亲睐。
题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量相关的弹簧问题。
1.静力学中的弹簧问题(1)胡克定律:F =kx ,ΔF =k ·Δx(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力。
例题1:一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2。
弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为CA .2121F F l l B .2121F F l l C .2121F F l l D .2121F F l l 例题2:如图所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态。
现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中A 和B 的重力势能共增加了A .212221)(k k g m m B .)(2)(212221k k gm m C .)()(21212221k k k k g m m D .22221)(k g m m +12211)(k gm m m 解析:取A 、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A 的力F 恰好为:F =(m 1+m 2)g设这一过程中上面和下面的弹簧分别伸长x 1、x 2,由胡克定律得:x 1=121)(k g m m ,x 2=221)(k g m m 故A 、B 增加的重力势能共为:ΔE P =m 1g(x 1+x 2)+m 2gx 2=22221)(k g m m +12211)(k gm m m 答案:D【点评】计算上面弹簧的伸长量时,较多的同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx =kF进行计算更快捷方便。
弹簧模型(解析版)-高中物理动量守恒的十种模型

动量守恒的十种模型模型一弹簧模型模型解读【典例分析】1(2024高考辽吉黑卷)如图,高度h=0.8m的水平桌面上放置两个相同物块A、B,质量m A=m B=0.1kg。
A、B间夹一压缩量Δx=0.1m的轻弹簧,弹簧与A、B不栓接。
同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程x A=0.4m;B脱离弹簧后沿桌面滑行一段距离x B=0.25m后停止。
A、B均视为质点,取重力加速度g=10m/s2。
求:(1)脱离弹簧时A、B的速度大小v A和v B;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能ΔE p。
【答案】(1)1m/s,1m/s;(2)0.2;(3)0.12J(1)对物块A,由平抛运动规律,h=12gt2,x A=v A t,联立解得:v A=1m/s弹簧将两物块弹开,由动量守恒定律,m A v A=m B v B,解得v B=v A=1m/s(2)对物块B,由动能定理,-μm B g x B=0-12m B v B2解得:μ=0.2(3)由能量守恒定律,整个过程中,弹簧释放的弹性势能△E p=μm B g×12△x+μm A g×12△x+12m A v A2+12m B v B2=0.12J【针对性训练】1(2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A、B两物块,质量分别为2kg、6kg,B的左端拴接着一劲度系数为2003N/m的水平轻质弹簧,它们的中心在同一水平线上。
A以速度v0向静止的B方向运动,从A接触弹簧开始计时至A与弹簧脱离的过程中,弹簧长度l与时间t的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能E p=12kx2(x为弹簧的形变量),则()A.在0~2t0内B物块先加速后减速B.整个过程中,A、B物块构成的系统机械能守恒C.v0=2m/sD.物块A在t0时刻时速度最小【答案】C【解析】在0~2t0内,弹簧始终处于压缩状态,即B受到的弹力始终向右,所以B物块始终做加速运动,故A错误;整个过程中,A、B物块和弹簧三者构成的系统机械能守恒,故B错误;由图可知,在t0时刻,弹簧被压缩到最短,则此时A、B共速,此时弹簧的形变量为x=0.4m-0.1m=0.3m则根据A、B物块系统动量守恒有m1v0=(m1+m2)v根据A、B物块和弹簧三者构成的系统机械能守恒有1 2m1v20=12(m1+m2)v2+E pv0=2m/s故C正确;在0~2t0内,弹簧始终处于压缩状态,即A受到弹力始终向左,所以A物块始终做减速运动,则物块A在2t0时刻时速度最小,故D错误。
高中物理模型总结整理

lv 0 v Sv 0A Bv 0 AB v 0 l滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ②对木块 fs=0212-MV ③由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v Mm M -• ④ ②+④得 f l =})]([2121{2121212120220222v v Mm M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。
即Q=f l ,l 为子弹现木块的相对位移。
结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即 Q=ΔE 系统=μNS 相其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。
求两木板的最后速度。
2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理弹簧模型总结第一篇:高考物理弹簧模型总结特级教师分析2013年高考物理必考题:含弹簧的物理模型【命题规律】高考中常出现的物理模型中,斜面问题、叠加体模型、含弹簧的连接体、传送带模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述.有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型.高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下:三、含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重.高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等,几乎贯穿了整个力学的知识体系.为了帮助同学们掌握这类试题的分析方法,现将有关弹簧问题分类进行剖析.对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件.因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题老师的青睐.“高考直通车”联合衡水毕业清华北大在校生将于2013年5月中旬推出的手写版高考复习笔记,希望对大家复习备考有所帮助。
该笔记适合2014年、2015年、2016年高考生使用。
凡2013年5月中旬之后购买的高一、高二同学,每年指定日期可以免费更换一次最新一年的笔记。
另外,所有笔记使用者将被加入2014年高考备考专用平台,每周定期提供最新资料和高考互动。
笔记对外公开时间:5月20日1.静力学中的弹簧问题(1)胡克定律:F=kx,ΔF=k·Δx.(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力.●例4 如图9-12甲所示,两木块A、B的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,两弹簧分别连接A、B,整个系统处于平衡状态.现缓慢向上提木块A,直到下面的弹簧对地面的压力恰好为零,在此过程中A和B的重力势能共增加了()【解析】取A、B以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A的力F恰好为:F=(m1+m2)g设这一过程中上面和下面的弹簧分别伸长x1、x2,如图9-12乙所示,由胡克定律得:故A、B增加的重力势能共为:.[答案] D 【点评】①计算上面弹簧的伸长量时,较多同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx=ΔF/k进行计算更快捷方便.②通过比较可知,重力势能的增加并不等于向上提的力所做的功.2.动力学中的弹簧问题(1)瞬时加速度问题(与轻绳、轻杆不同):一端固定、另一端接有物体的弹簧,形变不会发生突变,弹力也不会发生突变.(2)如图9-13所示,将A、B下压后撤去外力,弹簧在恢复原长时刻B与A开始分离.图9-13 ●例5 一弹簧秤秤盘的质量m1=1.5 kg,盘内放一质量m2=10.5 kg的物体P,弹簧的质量不计,其劲度系数k=800 N/m,整个系统处于静止状态,如图9-14 所示.现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初0.2 s内F是变化的,在0.2 s后是恒定的,求F的最大值和最小值.(取g=10 m/s2)【解析】初始时刻弹簧的压缩量为: x0=((m1+m2)g/k=0.15 m 设秤盘上升高度x时P与秤盘分离,分离时刻有:又由题意知,对于0~0.2 s时间内P的运动有: 1/2)at2=x解得:x=0.12 m,a=6 m/s2故在平衡位置处,拉力有最小值Fmin=(m1+m2)a=72 N 分离时刻拉力达到最大值Fmax=m2g+m2a=168 N. [答案] 72 N 168 N 【点评】对于本例所述的物理过程,要特别注意的是:分离时刻m1与m2之间的弹力恰好减为零,下一时刻弹簧的弹力与秤盘的重力使秤盘产生的加速度将小于a,故秤盘与重物分离.3.与动量、能量相关的弹簧问题与动量、能量相关的弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点结论的应用非常重要:(1)弹簧压缩和伸长的形变相同时,弹簧的弹性势能相等;(2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物体的相对速度最大,弹簧的形变最大时两物体的速度相等.●例6 如图9-15所示,用轻弹簧将质量均为m=1 kg的物块A 和B连接起来,将它们固定在空中,弹簧处于原长状态,A距地面的高度h1=0.90 m.同时释放两物块,A与地面碰撞后速度立即变为零,由于B压缩弹簧后被反弹,使A刚好能离开地面(但不继续上升).若将B物块换为质量为2m的物块C(图中未画出),仍将它与A固定在空中且弹簧处于原长,从A距地面的高度为h2处同时释放,C压缩弹簧被反弹后,A也刚好能离开地面.已知弹簧的劲度系数k=100 N/m,求h2的大小.【解析】设A物块落地时,B物块的速度为v1,则有:设A刚好离地时,弹簧的形变量为x,对A物块有: mg=kx从A落地后到A刚好离开地面的过程中,对于A、B及弹簧组成的系统机械能守恒,则有:1/2·mv12=mgx+ΔEp换成C后,设A落地时,C的速度为v2,则有:1/2·2mv22=2mgh2从A落地后到A刚好离开地面的过程中,A、C及弹簧组成的系统机械能守恒,则有:联立解得:h2=0.5 m.[答案] 0.5 m 【点评】由于高中物理对弹性势能的表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上述结论“①”.●例7 用轻弹簧相连的质量均为2 kg的A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量为4 kg的物块C静止在前方,如图9-16 甲所示.B与C碰撞后二者粘在一起运动,则在以后的运动中:(1)当弹簧的弹性势能最大时,物体A的速度为多大?(2)弹簧弹性势能的最大值是多少?(3)A的速度方向有可能向左吗?为什么?【解析】(1)当A、B、C三者的速度相等(设为vA′)时弹簧的弹性势能最大,由于A、B、C三者组成的系统动量守恒,则有:(mA+mB)v=(mA+mB+mC)vA′解得:.(2)B、C发生碰撞时,B、C组成的系统动量守恒,设碰后瞬间B、C两者的速度为v′,则有:mBv=(mB+mC)v′解得:v′=A的速度为vA′时弹簧的弹性势能最大,设其值为Ep,根据能量守恒定律得:.(3)方法一 A不可能向左运动.根据系统动量守恒有:(mA+mB)v=mAvA+(mB+mC)vB 设A 向左,则vA<0,vB>4 m/s 则B、C发生碰撞后,A、B、C三者的动能之和为:实际上系统的机械能为:根据能量守恒定律可知,E′>E是不可能的,所以A不可能向左运动.方法二 B、C碰撞后系统的运动可以看做整体向右匀速运动与A、B和C相对振动的合成(即相当于在匀速运动的车厢中两物块相对振动)由(1)知整体匀速运动的速度v0=vA′=3 m/s取以v0=3 m/s匀速运动的物体为参考系,可知弹簧处于原长时,A、B和C相对振动的速率最大,分别为:vAO=v-v0=3 m/s vBO=|v′-v0|=1 m/s 由此可画出A、B、C的速度随时间变化的图象如图9-16乙所示,故A不可能有向左运动的时刻.[答案](1)3 m/s(2)12 J(3)不可能,理由略【点评】①要清晰地想象、理解研究对象的运动过程:相当于在以3 m/s匀速行驶的车厢内,A、B和C做相对弹簧上某点的简谐振动,振动的最大速率分别为3 m/s、1 m/s.②当弹簧由压缩恢复至原长时,A最有可能向左运动,但此时A 的速度为零.●例8 探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为m和4m.笔的弹跳过程分为三个阶段:①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(如图9-17甲所示);②由静止释放,外壳竖直上升到下端距桌面高度为h1时,与静止的内芯碰撞(如图9-17乙所示);③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为h2处(如图9-17丙所示).设内芯与外壳的撞击力远大于笔所受重力,不计摩擦与空气阻力,重力加速度为g.求:(1)外壳与内芯碰撞后瞬间的共同速度大小.(2)从外壳离开桌面到碰撞前瞬间,弹簧做的功.(3)从外壳下端离开桌面到上升至h2处,笔损失的机械能.【解析】设外壳上升到h1时速度的大小为v1,外壳与内芯碰撞后瞬间的共同速度大小为v2.(1)对外壳和内芯,从撞后达到共同速度到上升至h2处,由动能定理得:解得:.(2)外壳与内芯在碰撞过程中动量守恒,即: 4mv1=(4m+m)v2将v2代入得:设弹簧做的功为W,对外壳应用动能定理有:将v1代入得:.(3)由于外壳和内芯达到共同速度后上升至高度h2的过程中机械能守恒,只有在外壳和内芯的碰撞中有能量损失,损失的能量将v1、v2代入得:E损=5/4mg(h2-h1).[答案]由以上例题可以看出,弹簧类试题的确是培养和训练学生的物理思维、反映和开发学生的学习潜能的优秀试题.弹簧与相连物体构成的系统所表现出来的运动状态的变化,为学生充分运用物理概念和规律(牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律)巧妙解决物理问题、施展自身才华提供了广阔空间,当然也是区分学生能力强弱、拉大差距、选拔人才的一种常规题型.因此,弹簧试题也就成为高考物理题中的一类重要的、6独具特色的考题.第二篇:2010年经典物理模型--弹簧类问题难点探究思考高考资源网()您身边的高考专家弹簧类问题难点探究思考在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,这是一种常见的理想化物理模型弹簧类问题多为综合性问题,涉及的知识面广,要求的能力较高,是高考的难点之一.●难点提出1.(99年全国)如图2-1所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为A.m1gk1 B.m2gk1 C.m1gk2 D.m2g k2图2—1图2—22.如图2-2所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________.3.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时弹簧的压缩量为x0,如图2-3所示.一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量为m时,它们恰能回到O点.若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度.求物块向上运动到达的最高点与O点的距离.●案例探究[例1]如图2-4,轻弹簧和一根细线共同拉住一质量为m的物体,平衡时细线水平,弹簧与竖直夹角为θ,若突然剪断细线,刚刚剪断细线图2-3 欢迎广大教师踊跃来稿,稿酬丰厚。