二元一次方程组与不等式组应用题市级联考题(含答案)60504

合集下载

(826)二次函数与二元一次方程组不等式专项练习60题(有答案)ok

(826)二次函数与二元一次方程组不等式专项练习60题(有答案)ok

二次函数与二元一次方程组、不等式专项练习60题(有答案)1.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论:(1)4a+2b+c >0;(2)方程ax 2+bx+c=0两根之和小于零;(3)y 随x 的增大而增大;(4)一次函数y=x+bc 的图象 一定不过第二象限,其中错误的个数是( )A . 4个B .3个 C . 2个D .1个2.如图是二次函数y=ax 2+bx+c 的图象,图象上有两点分别为A (2.18,﹣0.51)、B (2.68,0.54),则方程ax 2+bx+c=0的一个解只可能是( )A . 2.18B .2.68 C .﹣0.51D .2.453.方程x 2+3x ﹣1=0的根可看作是函数y=x+3的图象与函数y=的图象交点的横坐标,那么用此方法可推断出方程 x 3﹣x ﹣1=0的实数根x 0所在的范围是( )A . ﹣1<x 0<0B . 0<x 0<1C . 1<x 0<2D .2<x 0<34.根据二次函数y=ax 2+bx+c (a ≠0,a 、b 、c 为常数)得到一些对应值,列表如下:判断一元二次方程ax 2+bx+c=0的一个解x 1的范围是( )A . 2.1<x 1<2.2B . 2.2<x 1<2.3C . 2.3<x 1<2.4D .2.4<x 1<2.55.已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:则下列判断中正确的是( )A . 抛物线开口向上B . 抛物线与y 轴交于负半轴C . 当x=3时,y <0D .方程ax 2+bx+c=0有两个相等实数根6.二次函数y=ax 2+bx+c (a ≠0)中,自变量x 与函数y 的对应值如下表: x 2.2 2.3 2.4 2.5 y ﹣0.76 ﹣0.11 0.561.25若,则一元二次方程ax 2+bx+c=0的两个根x 1,x 2的取值范围是( )A .﹣1<x1<0,2<x2<3B .﹣2<x1<﹣1,1<x2<2C . 0<x1<1,1<x2<2D .﹣2<x1<﹣1,3<x2<47.根据抛物线y=x 2+3x ﹣1与x 轴的交点的坐标,可以求出下列方程中哪个方程的近似解( ) A . x 2﹣1=﹣3x B . x 2+3x+1=0 C . 3x 2+x ﹣1=0 D . x 2﹣3x+1=08.已知二次函数y=x 2+2x ﹣10,小明利用计算器列出了下表:那么方程x 2+2x ﹣10=0的一个近似根是( ) A . ﹣4.1 B . ﹣4.2 C . ﹣4.3 D . ﹣ 4.49.根据关于x 的一元二次方程x 2+px+q=0,可列表如下:则方程x 2+px+q=0的正数解满足( )A . 解的整数部分是0,十分位是5B . 解的整数部分是0,十分位是8C .解的整数部分是1,十分位是1D . 解的整数部分是1,十分位是210.根据下列表格中的二次函数y=ax 2+bx+c (a ≠0,a 、b 、c 为常数)的自变量x 与函数y 的对应值,判断ax 2+bx+c=0 的一个解x 的取值范围为( )A . 1.40<x <1.43B . 1.43<x <1.44C . 1.44<x <1.45D . 1.45<x <1.4611.已知二次函数y=ax 2+bx+c (a ≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x 的一元二次方程ax 2+bx+c=0的两个根分别是x 1=1.3和x 2=( )A . ﹣1.3B .﹣2.3 C . ﹣0.3D .﹣3.312.如图,已知二次函数y=ax 2+bx+c 的部分图象,由图象可知关于x 的一元二次方程ax 2+bx+c=0的两个根分别是x 1=1.6,x 2=( )x … ﹣2﹣1 01 23 4 … y…m ﹣2mm ﹣2… x ﹣4.1 ﹣4.2 ﹣4.3 ﹣4.4 x 2+2x ﹣10﹣1.39 ﹣0.76﹣0.11 0.56 x 0 0.5 1 1.1 1.2 1.3 x 2+px+q﹣15 ﹣8.75 ﹣2 ﹣0.59 0.84 2.29 x 1.43 1.44 1.45 1.46y=ax 2+bx+c﹣0.095 ﹣0.046 0.003 0.052A .﹣1.6 B.3.2 C.4.4 D.以上都不对13.二次函数y=x2﹣6x+n的部分图象如图所示,若关于x的一元二次方程x2﹣6x+n=0的一个解为x1=1,则另一个解x2=_________.14.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.15.抛物线y=x2﹣4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是_________.16.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为_________.17.抛物线y=x2﹣4x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是_________.18.开口向下的抛物线y=(m2﹣2)x2+2mx+1的对称轴经过点(﹣1,3),则m=_________.19.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2=_________.20.如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是_________.21.对于二次函数y=x 2+2x ﹣5,当x=1.4时,y=﹣0.24<0,当x=1.45时,y=0.0025>0;所以方程x 2+2x ﹣5=0的一个正根的近似值是 _________ .(精确到0.1).22.根据下列表格中y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是 _________ . x 6.17 6.18 6.196.20y=ax 2+bx+c﹣0.03 ﹣0.01 0.02 0.0423.抛物线y=2x 2﹣4x+m 的图象的部分如图所示,则关于x 的一元二次方程2x 2﹣4x+m=0的解是 _________ .24.二次函数y=ax 2+bx+c 的部分对应值如下表:①抛物线的顶点坐标为(1,﹣9);②与y 轴的交点坐标为(0,﹣8);③与x 轴的交点坐标为(﹣2,0)和(2,0);④当x=﹣1时,对应的函数值y 为﹣5.以上结论正确的是 _________ .25.二次函数y=ax 2+bx+c 的自变量x 与函数值y 的部分对应值如下表:x … ﹣1 0 1 2 3 … y … ﹣1 ﹣ ﹣2﹣ …根据表格中的信息,完成下列各题(1)当x=3时,y= _________ ;(2)当x= _________ 时,y 有最 _________ 值为 _________ ;(3)若点A (x 1,y 1)、B (x 2,y 2)是该二次函数图象上的两点,且﹣1<x 1<0,1<x 2<2,试比较两函数值的大 小:y 1 _______ y 2(4)若自变量x 的取值范围是0≤x ≤5,则函数值y 的取值范围是 _________ .26.阅读材料,解答问题.例 用图象法解一元二次不等式:.x 2﹣2x ﹣3>0解:设y=x 2﹣2x ﹣3,则y 是x 的二次函数.∵a=1>0,∴抛物线开口向上. x … ﹣3 ﹣2 0 135 … y…7﹣8﹣9 ﹣57…又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是_________;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.27.一元二次方程x2+7x+9=1的根与二次函数y=x2+7x+9的图象有什么关系?试把方程的根在图象上表示出来.28.画出函数y=﹣2x2+8x﹣6的图象,根据图象回答:(1)方程﹣2x2+8x﹣6=0的解是什么;(2)当x取何值时,y>0;(3)当x取何值时,y<0.29.已知二次函数y=﹣x2+2x+m的部分图象如图所示,你能确定关于x的一元二次方程﹣x2+2x+m=0的解?30.小明在复习数学知识时,针对“求一元二次方程的解”整理了以下几种方法,请你将有关内容补充完整:例题:求一元二次方程x2﹣x﹣1=0的两个解.(1)解法一:选择合适的一种方法(公式法、配方法、分解因式法).(2)解法二:利用二次函数图象与两坐标轴的交点求解.如图,把方程x2﹣x﹣1=0的解看成是二次函数y=_________的图象与x轴交点的横坐标即x1,x2就是方程的解.(3)解法三:利用两个函数图象的交点求解①把方程x2﹣x﹣1=0的解看成是二次函数y=_________的图象与一个一次函数y=_________的图象交点的横坐标②画出这两个函数的图象,用x1,x2在x轴上标出方程的解.31.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A .﹣1<x<5 B.x>5 C.x<﹣1且x>5D.x<﹣1或x>532.二次函数y=ax2+bx+c(a ≠0)的图象如图所示,则下列结论中,正确的是()A.abc<0 B.a+c<b C.b>2a D.4a>2b﹣c33.现定义某种运算a⊕b=a(a>b),若(x+2)⊕x2=x+2,那么x的取值范围是()A.﹣1<x<2 B.x>2或x<﹣1C.x>2 D.x<﹣134.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(﹣1,5)、B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为()A.﹣1≤x≤9 B.﹣1≤x<9 C.﹣1<x≤9 D.x≤﹣1或x≥935.如图所示的抛物线是二次函数y=ax2﹣3x+a2﹣1的图象,那么下列结论错误的是()36.已知:二次函数y=x2﹣4x﹣a,下列说法中错误的个数是()①若图象与x轴有交点,则a≤4;②若该抛物线的顶点在直线y=2x上,则a的值为﹣8;③当a=3时,不等式x2﹣4x+a>0的解集是(3,0);④若将图象向上平移1个单位,再向左平移3个单位后过点x,则a=﹣1;⑤若抛物线与x轴有两个交点,横坐标分别为x1、x2,则当x取x1+x2时的函数值与x取0时的函数值相等.A.1 B.2 C.3 D.437.二次函数y=ax2的图象如图所示,则不等式ax>a的解集是()A.当y<0时,x>0B.当﹣3<x<0时,y>0C.当x<时,y随x的增大而增大D.上述抛物线可由抛物线y=﹣x2平移得到A . x >1B .x <1 C . x >﹣1D .x <﹣138.如图,函数y=x 2﹣2x+m (m 为常数)的图象如图,如果x=a 时,y <0;那么x=a ﹣2时,函数值( )A . y <0B .0<y <m C . y=mD .y >m39.已知:二次函数y=x 2﹣4x+a ,下列说法中错误的个数是 ( )①当x <1时,y 随x 的增大而减小 ②若图象与x 轴有交点,则a ≤4③当a=3时,不等式x 2﹣4x+a >0的解集是1<x <3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=﹣3. A . 1 B . 2 C . 3 D . 440.如图,二次函数y 1=ax 2+bx+c 与一次函数y 2=kx+n 的图象相交于A (0,4),B (4,1)两点,下列三个结论: ①不等式y 1>y 2的解集是0<x <4②不等式y 1<y 2的解集是x <0或 x >4③方程ax 2+bx+c=kx+n 的解是x 1=0,x 2=4 其中正确的个数是( )A . 0个B . 1个C . 2个D .3个41.二次函数y=x 2﹣2x ﹣3的图象如图所示.当y <0时,自变量x 的取值范围是 _________ .42. 如图是抛物线y=ax 2+bx+c 的一部分,其对称轴为直线x=1,若其与x 轴一交点为B (3,0),则由图象可知,不等式ax 2+bx+c >0的解集是 _________ .43.已知二次函数y=x2﹣6x+5.(1)请写出该函数的对称轴,顶点坐标;(2)函数图象与x轴交点坐标为_________,与y轴的交点坐标为_________;(3)当_________时y>0,_________时y随x的增大而增大;(4)写出不等式x2﹣6x+5<0的解集._________44.如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b_________0(填“>”、“<”、“=”);(2)当x满足_________时,ax2+bx+c>0;(3)当x满足_________时,ax2+bx+c的值随x增大而减小.45.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根.x1=_________,x2=_________;(2)写出不等式ax2+bx+c>0的解集._________;(3)写出y随x的增大而减小的自变量x的取值范围._________;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围._________.46.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①ac>0;②2a+b=0;③a+b+c=0;④当x>1时,函数y随x的增大而增大;⑤当y>0时,﹣1<x<3.其中,正确的说法有_________.(请写出所有正确说法的序号)47.如图是函数y=x2+bx﹣1的图象,根据图象提供的信息,确定使﹣1≤y≤2的自变量x的取值范围是_________.48.已知抛物线y=x2﹣x﹣6,则不等式x2﹣x﹣6<0的解集为_________.49.已知二次函数y=x2﹣2x﹣3的函数值y<0,则x的取值范围为_________.50.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)不等式ax2+bx+c>0的解集为_________.(2)若y随x的增大而减小,则自变量x的取值范围是_________.(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围是_________.51.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m 的解集为_________.52.函数y=x2﹣2x﹣2的图象如图所示,观察图象,使y≥l成立的x的取值范围是_________.53.已知函数y1=x2与y2=﹣x+3的图象大致如图,若y1≤y2,则自变量x的取值范围是_________.54.已知二次函数y=4x2﹣4x﹣3的图象如图所示,,则函数值y_________0.55.函数y=x2﹣2x﹣2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是_________.56.已知抛物线y=﹣x2﹣3x﹣(1)写出抛物线的开口方向、对称轴和顶点坐标;(2)求抛物线与x轴、y轴的交点坐标;(3)画出草图;(4)观察草图,指出x为何值时,y>0,y=0,y<0.57.如图是二次函数y=x2﹣2x﹣3的图象.(1)求该抛物线的顶点坐标、与x轴的交点坐标(2)观察图象直接指出x在什么范围内时,y>0?58.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)求不等式x2+bx+c>x+m的解集.(直接写出答案)59.如图,二次函数的图象与x轴交于A、B 两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,﹣3),一次函数y2=mx+n的图象过点A、C.(1)求二次函数的解析式;(2)求二次函数的图象与x轴的另一个交点A的坐标;(3)根据图象写出y2<y1时,x的取值范围.60.已知抛物线y1=x2+(m+1)x+m﹣4与x轴交于A、B两点(点A在点B左侧),且对称轴为x=﹣1.(1)求m的值;(2)画出这条抛物线;(2)若直线y2=kx+b过点B且与抛物线交于点P(﹣2m,﹣3m),根据图象回答:当x取什么值时,y1≥y2.二次函数与二元一次方程组、不等式60题参考答案:1.解:∵当x=2时,y=4a+2b+c,对应的y值即纵坐标为正,即4a+2b+c>0;故(1)正确;∵由二次函数y=ax2+bx+c(a≠0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根;并且正根的绝对值较大,∴方程ax2+bx+c=0两根之和大于零;故(2)错误;∵函数的增减性需要找到其对称轴才知具体情况;不能在整个自变量取值范围内说y随x的增大而增大;故(3)错误;∵由图象可知:c<0,b<0,∴bc>0,∴一次函数y=x+bc的图象一定经过第二象限,故(4)错误;∴错误的个数为3个,故选B.2.解:∵图象上有两点分别为A(2.18,﹣0.51)、B(2.68,0.54),∴当x=2.18时,y=﹣0.51;x=2.68时,y=0.54,∴当y=0时,2.18<x<2.68,只有选项D符合,故选D.3.解:方程x3﹣x﹣1=0,∴x2﹣1=,∴它的根可视为y=x2﹣1和y=的交点的横坐标,当x=1时,x2﹣1=0,=1,交点在x=1的右边,当x=2时,x2﹣1=3,=,交点在x=2的左边,又∵交点在第一象限.∴1<x0<2,故选C.4. :根据表格可知,ax2+bx+c=0时,对应的x的值在2.3~2.4之间.故选C.5.解:∵由图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是x=1,顶点坐标为(1,3),∴二次函数解析式为:y=a(x﹣1)2+3,再将(0,1)点代入得:1=a(﹣1)2+3,解得:a=﹣2,∴y=﹣2(x﹣1)2+3,∵a<0∴A,抛物线开口向上错误,故:A错误;∵y=﹣2(x﹣1)2+3=﹣2x2+4x+1,与y轴交点坐标为(0,1),故与y轴交于正半轴,故:B错误;∵x=3时,y=﹣5<0,故:C正确;∵方程ax2+bx+c=0,△=16+4×2×1=22>0,此方程有两个不相等的实数根,故:D.方程有两个相等实数根错误;故选:C6.解:∵,∴﹣1<m﹣2<﹣,<m﹣<1,∴函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0.由表中数据可知:y=0在y=m﹣2与y=m﹣之间,故对应的x的值在﹣1与0之间,即﹣1<x1<0,y=0在y=m﹣2与y=m﹣之间,故对应的x的值在2与3之间,即2<x2<3.故选:A.7.解:∵抛物线y=x2+3x﹣1与x轴的交点的横坐标就是方程x2+3x﹣1=0的根,∴可以求出方程x2+3x﹣1=0的根,方程x2﹣1=﹣3x与方程x2+3x﹣1=0等价,∴可以求出方程x2﹣1=﹣3x的根.故选A.8.解:根据表格得,当﹣4.4<x<﹣4.3时,﹣0.11<y<0.56,即﹣0.11<x2+2x﹣10<0.56,∵0距﹣0.11近一些,∴方程x2+2x﹣10=0的一个近似根是﹣4.3,故选C.9. 解:根据表中函数的增减性,可以确定函数值是0时,x应该是大于1.1而小于1.2.所以解的整数部分是1,十分位是1.故选C.10.解:由表可以看出,当x取1.44与1.45之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.44<x<1.45.故选C11.解:方法一:∵二次函数y=ax2+bx+c的顶点坐标(﹣1,﹣3.2)∴﹣=﹣1则﹣=﹣2∵x1x2是一元二次方程ax2+bx+c=0的两根∴x1+x2=﹣又∵x1=1.3∴x1+x2=1.3+x2=﹣2解得x2=﹣3.3.方法二:根据对称轴为;x=﹣1,关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.3,则=﹣1,即=﹣1,解得:x2=﹣3.3,故选D12.解:由抛物线图象可知其对称轴为x=3,又抛物线是轴对称图象,∴抛物线与x轴的两个交点关于x=3对称,而关于x的一元二次方程ax2+bx+c=0的两个根分别是x1,x2,那么两根满足2×3=x1+x2,而x1=1.6,∴x2=4.4.故选C.13.解:由图可知,对称轴为x=﹣==3,根据二次函数的图象的对称性,=3,解得x2=5.故答案为:514.解:把(0,﹣3)代入抛物线的解析式得:c=﹣3,∴y=x2+bx﹣3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx﹣3得:y=1+b﹣3<0把x=3代入y=x2+bx﹣3得:y=9+3b﹣3>0,∴﹣2<b<2,即在﹣2<b<2范围内的任何一个数都符合,故答案为:在﹣2<b<2范围内的任何一个数.15.解:把点(1,0)代入抛物线y=x2﹣4x+m中,得m=3,所以,原方程为y=x2﹣4x+3,令y=0,解方程x2﹣4x+3=0,得x1=1,x2=3,∴抛物线与x轴的另一个交点的坐标是(3,0).故答案为:(3,0).16.解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故填空答案:x1=﹣1或x2=3.17. 解:把点(1,0)代入抛物线y=x2﹣4x+中,得m=6,所以,原方程为y=x2﹣4x+3,令y=0,解方程x2﹣4x+3=0,得x1=1,x2=3 ∴抛物线与x轴的另一个交点的坐标是(3,0)18.解:由于抛物线y=(m2﹣2)x2+2mx+1的对称轴经过点(﹣1,3),∴对称轴为直线x=﹣1,x==﹣1,解得m1=﹣1,m2=2.由于抛物线的开口向下,所以当m=2时,m2﹣2=2>0,不合题意,应舍去,∴m=﹣1.19.解:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣1,﹣3.2),则对称轴为x=﹣1;所以=﹣1,又因为x1=1.3,所以x2=﹣2﹣x1=﹣2﹣1.3=﹣3.3.20. 解:依题意得二次函数y=ax2+bx+c的部分图象的对称轴为x=3,而对称轴左侧图象与x轴交点与原点的距离,约为1.6,∴x1=1.6;又∵对称轴为x=3,则=3,∴x2=2×3﹣1.6=4.4.21. 解:∵二次函数y=x2+2x﹣5中a=1>0,∴抛物线开口方向向上,∵对称轴x=﹣=﹣1,∴x>﹣1时y随x的增大而增大,∵当x=1.4时,y=﹣0.24<0,当x=1.45时,y=0.0025>0,∴方程x2+2x﹣5=0的一个正根:1.4<x<1.45,∴近似值是1.4.答案1.4.22.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故答案为:6.18<x<6.19.23.解:观察图象可知,抛物线y=2x2﹣4x+m与x轴的一个交点为(﹣1,0),对称轴为x=1,∴抛物线与x轴的另一交点坐标为(3,0),∴一元二次方程2x2﹣4x+m=0的解为x1=﹣1,x2=3.故本题答案为:x1=﹣1,x2=3.24.解:根据上表可画出函数的图象,由图象可得,①抛物线的顶点坐标为(1,﹣9);②与y轴的交点坐标为(0,﹣8);③与x轴的交点坐标为(﹣2,0)和(4,0);④当x=﹣1时,对应的函数值y为﹣5.故答案为:①②④.25.解:(1)由表得,解得,∴二次函数的解析式为y=x2﹣x﹣,当x=3时,y==﹣1;(2)将y=x2﹣x﹣配方得,y=(x﹣1)2﹣2,∵a=>0,∴函数有最小值,当x=1时,最小值为﹣2;(3)令y=0,则x=±2+1,抛物线与x轴的两个交点坐标为(2+1,0)(﹣2+1,0)∵﹣1<x1<0,1<x2<2,∴x1到1的距离大于x2到1的距离,∴y1>y2(4)∵抛物线的顶点为(1,﹣2),∴当x=5时,y最大,即y=2;当x=1时,y最小,即y=﹣2,∴函数值y的取值范围是﹣2≤y≤2;故答案为﹣1;1、小、﹣2;>;﹣2≤y≤2.26.解:(1)x<﹣1或x>3;(2)设y=x2﹣1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣1=0,解得x1=﹣1,x2=1.∴由此得抛物线y=x2﹣1的大致图象如图所示.观察函数图象可知:当x<﹣1或x>1时,y>0.∴x2﹣1>0的解集是:x<﹣1或x>1.27.解:一元二次方程x2+7x+9=1的根是二次函数y=x2+7x+9图象中y=1时,所对应的x的值;当y=1时,x2+7x+9=1,∴作出二次函数y=x2+7x+9的图象如图,由图中可以看出,当y=1时,x≈﹣5.6或﹣1.4,∴一元二次方程x2+7x+9=1的根为x1≈﹣5.6,x2≈﹣1.4.28.解:函数y=﹣2x2+8x﹣6的图象如图.由图象可知:(1)方程﹣2x2+8x﹣6=0的解x1=1,x2=3.(2)当1<x<3时,y>0.(3)当x<1或x>3时,y<0.29.解:根据图象可知,二次函数y=﹣x2+2x+m的部分图象经过点(3,0),所以该点适合方程y=﹣x2+2x+m,代入,得﹣32+2×3+m=0解得,m=3 ①把①代入一元二次方程﹣x2+2x+m=0,得﹣x2+2x+3=0,②解②,得x1=3,x2=﹣130.解:(1)由原方程,得:=0,即=;解得x1=,x2=.(2)设二次函数方程为y=ax2+bx+c(a,b,c均为实数,且a≠0).由图象得知,该函数过点(0,﹣1),所以该点满足方程y=ax2+bx+c,∴把(0,﹣1)代入方程y=ax2+bx+c,得c=﹣1,①二次函数方程为y=ax2+bx+c与x轴交点的横坐标就是方程x2﹣x﹣1=0的解;∴x1•x2==﹣1,即c=﹣a;②x1+x2==1;③由①②③,得:;∴二次函数方程为y=x2﹣x﹣1.(3)31.解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(﹣1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<﹣1或x>5.故选:D.32.解:A、∵图象开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,∵对称轴在y轴左侧,﹣<0,∴b<0,∴abc>0,故本选项错误;B、∵当x=﹣1时,对应的函数值y>0,即a﹣b+c>0,∴a+c>b,故本选项错误;C、∵抛物线的对称轴为直线x=﹣>﹣1,又a<0,∴b>2a,故本选项正确;D、∵当x=﹣2时,对应的函数值y<0,即4a﹣2b+c<0,∴4a<2b﹣c,故本选项错误.故选C.33. 解:由定义运算得:x+2>x2,即解不等式x2﹣x﹣2<0,设y=x2﹣x﹣2,函数图象开口向上,图象与x轴交点是(﹣1,0),(2,0),由图象可知,当﹣1<x<2时,y<0,即x的取值范围﹣1<x<2.故选A.34.解:由图形可以看出:抛物线y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的交点的横坐标分别为﹣1,9,当y1≥y2时,x的取值范围正好在两交点之内,即﹣1≤x≤9.故选A.35.解:由图象可知,抛物线经过原点(0,0),所以a2﹣1=0,解得a=±1,∵图象开口向下,a<0,∴a=﹣1.∴y=﹣x2﹣3x,∴二次函数与图象的交点为:(﹣3,0),(0,0),∴当y<0时,x<﹣3或x>0,故A选项错误;当﹣3<x<0时,y>0,故B选项正确;当x<时,y随x的增大而增大故C选项正确;上述抛物线可由抛物线y=﹣x2平移得到,故D选项正确;故选:A.36.解:①∵图象与x轴有交点,则△=16﹣4×1×(﹣a)≥0,解得a≥﹣4;故本选项错误;②∵二次函数y=x2﹣4x﹣a的顶点坐标为(2,﹣a﹣4),代入y=2x得,﹣a﹣4=2×2,a=﹣8,故本选项正确;③表达错误,解集不能表示为(3,0),故本选项错误;④表达错误,点不能用x表示,故本选项错误;⑤由根与系数的关系,x1+x2=4,当x=4时,y=16﹣16﹣a=﹣a,当x=0时,y=﹣a,故本选项正确.故选C.37.解:由图象可知a<0,∴不等式ax>a的解集为x<1.故选B.38.解:x=a代入函数y=x2﹣2x+m中得:y=a2﹣2a+m=a(a﹣2)+m,∵x=a时,y<0,∴a(a﹣2)+m<0,由图象可知:m>0,∴a(a﹣2)<0,又∵x=a时,y<0,∴a>0则a﹣2<0,由图象可知:x=0时,y=m,又∵x<1时y随x的增大而减小,∴x=a﹣2时,y>m.故选:D.39.解:二次函数为y=x2﹣4x+a,对称轴为x=2,图象开口向上.则:A、当x<1时,y随x的增大而减小,故说法正确;B、若图象与x轴有交点,即△=16﹣4a≥0,则a≤4,故说法正确;C、当a=3时,不等式x2﹣4x+3<0的解集是x<0或x>3,故说法错误;D、原式可化为y=(x﹣2)2﹣4+a,将图象向上平移1个单位,再向左平移3个单位后所得函数解析式是y=(x+1)2﹣3+a,函数过点(1,﹣2),代入解析式得到:a=﹣3.故说法正确.故选A.40.①通过图象可知,在点A和B之间y1的图象在y2的上面,也就是y1>y2,且解集是0<x<4,此选项正确;②通过图象可知,在点A的左边和在B的右边,y1的图象在y2的下面,也就是y1<y2,且解集是x<0或x>4,此选项正确;③两函数图象的交点就是y1=y2的解,且解是x1=0,x2=4,此选项正确.故选D.41.解:∵二次函数y=x2﹣2x﹣3的图象如图所示.∴图象与x轴交在(﹣1,0),(3,0),∴当y<0时,即图象在x轴下方的部分,此时x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3.42.解:∵抛物线与x轴的一个交点(3,0)而对称轴x=1∴抛物线与x轴的另一交点(﹣1,0)当y=ax2+bx+c>0时,图象在x轴上方此时x<﹣1或x>3故填空答案:x<﹣1或x>3.43.解:(1)根据二次函数的性质可知对称轴为x=﹣=﹣=3顶点坐标为x=﹣=3,y===﹣4,故对称轴为x=3,顶点坐标为(3,﹣4);(2)令y=0,即x2﹣6x+5=0解得x1=1,x2=5故函数图象与x轴交点为(1,0),(5,0)∴c=0,故图象与y轴交点为(0,5);(3)由图象可知当x<1或x>5时,y>0当x>3时,y随x的增大而增大(4)由图象可知,x2﹣6x+5<0的解集为1<x<5.44.解:(1)根据图象得二次函数y=ax2+bx+c(a≠0)的图象,a>0,∵对称轴经过x轴的负半轴,即可得出a,b同号,∴b>0,故答案为:b>0;(2)根据图象得二次函数y=ax2+bx+c(a≠0)的图象与x轴交点坐标为(2,0)、(﹣4,0),而ax2+bx+c>0,即y>0,∴x<﹣4或x>2;故答案为:x<﹣4或x>2;(3)根据图象得二次函数y=ax2+bx+c(a≠0)的图象与x轴交点坐标为(2,0)、(﹣4,0),∴抛物线的对称轴为x=﹣1,∴当x<﹣1时,y随x的增大而减小.故答案为:x<﹣1.45.解:(1)∵二次函数y=ax2+bx+c的图象与x轴的交点为(1,0),(3,0)∴方程ax2+bx+c=0的两个根x1=1,x2=3;(2)由二次函数y=ax2+bx+c的图象可知:1<x<3时,二次函数y=ax2+bx+c的值大于0 ∴不等式ax2+bx+c>0的解集为1<x<3;(3)由图象可知:二次函数y=ax2+bx+c的对称轴为x=2∴y随x的增大而减小的自变量x的取值范围为x >2;(4)由图象可知:二次函数y=ax2+bx+c的顶点坐标为(2,2),当直线y=k,在(0,2)的下边时,一定与抛物线有两个不同的交点,因而当k<2时,方程ax2+bx+c=k有两个不相等的实数根.46.解:∵抛物线的开口向下,与y轴的交点在y轴的正半轴上,∴a<0,c>0,∴ac<0,∴①错误;由图象可知:﹣=1,∴2a+b=0,∴②正确;当x=1时,y=a+b+c>0,∴③错误;由图象可知:当x>1时,函数y随x的增大而减小,∴④错误;根据图象,当﹣1<x<3时,y>0,∴⑤正确;正确的说法有②⑤.47.解:∵y=x2+bx﹣1经过(3,2)点,∴b=﹣2,∵﹣1≤y≤2,∴﹣1≤x2﹣2x﹣1≤2,解得2≤x≤3或﹣1≤x≤0.48. 解:∵x2﹣x﹣6=0∴x1=﹣2,x2=3∴抛物线y=x2﹣x﹣6与x轴的交点坐标为(﹣2,0),(3,0)而抛物线y=x2﹣x﹣6开口向上当y<0时,图象在x轴的下方,此时﹣2<x<3故填空答案:﹣2<x<3.49. 解:当y=0时,即x2﹣2x﹣3=0,∴x1=﹣1,x2=3,∴图象与x轴的交点是(﹣1,0),(3,0),当y<0时,图象在x轴的下方,此时﹣1<x<3.故填空答案:﹣1<x<3.50.解:(1)依题意因为ax2+bx+c>0,得出x的取值范围为:1<x<3;(2)如图可知,当y随x的增大而减小,自变量x的取值范围为:x>2;(3)由顶点(2,2)设方程为a(x﹣2)2+2=0,∵二次函数与x轴的2个交点为(1,0),(3,0),∴a=﹣2,∴抛物线方程为y=﹣2(x﹣2)2+2,y=﹣2(x﹣2)2+2﹣k实际上是原曲线下移k个单位,由图形知,当k<2时,曲线与x轴有两个交点.故k<2.故答案为:(1)1<x<3;(2)x>2;(3)k<2.51.解:∵直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),∴根据图象可知,不等式x2+bx+c>x+m 的解集为x<1或x>3;故答案为:x<1或x>3.52.解:直线y=1上方的函数图象所对应的自变量的取值为x≤﹣1或x≥3,故答案为x≤﹣1或x≥3.53.解:根据图象知,当y1≤y2时,自变量x的取值范围是﹣2≤x≤.故答案为﹣2≤x≤.54.解:由图可知,﹣<x<时,函数图象在x轴的下方,所以y<0.故答案为:<.55.解:当y=1时,x2﹣2x﹣2=1,解得(x+1)(x﹣3)=0,x1=﹣1,x2=3.由图可知,x≤﹣1或x≥3时y≥1.故答案为x≤﹣1或x≥3.56.解:(1)∵y=﹣x2﹣3x﹣=﹣(x2+6x+5)=﹣(x2+6x+9﹣4)=﹣(x+3)2+2,∴开口向下,对称轴为x=﹣3,顶点坐标为(﹣3,2);(2)∵令x=0,得:y=﹣,∴抛物线与y轴的交点坐标为:(0,﹣);令y=0,得到﹣x2﹣3x﹣=0,解得:x=﹣1或x=﹣5,故抛物线与x轴的交点坐标为:(﹣1,0)和(﹣5,0);(3)草图为:(4)根据草图知:当x=﹣1或x=﹣5时,y=0,当﹣5<x<﹣1时y>0,当x<﹣5或x>﹣1时y<0.57.解:(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4=(x+1)(x﹣3),∴抛物线的顶点坐标为(1,﹣4),对称轴为直线x=1,与x轴交点为(﹣1,0),(3,0);(2)由图象可知,当x>3或x<﹣1时,y>0.58.解:(1)把点A(1,0),B(3,2)分别代入直线y=x+m和抛物线y=x2+bx+c得:0=1+m,,∴m=﹣1,b=﹣3,c=2,所以y=x﹣1,y=x2﹣3x+2;(2)由(1)知,该抛物线的解析式为:y=x2﹣3x+2,∴y=(x﹣)2﹣,∴抛物线的对称轴是:x=;顶点坐标是(,﹣);(3)x2﹣3x+2>x﹣1,解得:x<1或x>3.59.解:(1)由二次函数的图象经过B(1,0)、C (0,﹣3)两点,得,解这个方程组,得,∴抛物线的解析式为;(2)令y1=0,得x2+2x﹣3=0,解这个方程,得x1=﹣3,x2=1,∴此二次函数的图象与x轴的另一个交点A的坐标为(﹣3,0);(3)当x<﹣3或x>0,y2<y1.60.解:(1)由题意,有,解得m=1.(2)∵m=1,∴y1=x2+2x﹣3,∴y1=(x+1)2﹣4,列表为:x …﹣3 ﹣2 ﹣1 0 1 ……0 ﹣3 ﹣4 ﹣3 0 …y=x2+2x﹣3描点并连线为:(3)∵m=1∴P(﹣2,﹣3),∴可以画出直线的图象.∴由图象得x≤﹣2或x≥1时,y1≥y2.。

二元一次方程组和不等式与不等式组应用专题

二元一次方程组和不等式与不等式组应用专题

二元一次方程组的应用专题1、篮球联赛中,每场比赛都要分出胜负,每队胜一场得两分,负一场得一分,某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?2、根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5。

某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?3、张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5小时后到达县城。

他骑车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米。

他骑车与步行各用多少时间?4、2台大收割机和5台小收割机均工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机均工作5小时共收割小麦8公顷。

1台大收割机和1台小收割机每小时各收割小麦多少公顷?5、甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行,甲3小时可追上乙。

两人的平均速度各是多少?6、一条船顺流航行,每小时20km;逆流航行,每小时16km.求轮船在静水中的速度与水的流速。

7、用白铁皮做罐头盒。

每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒。

现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身和盒底正好配套?8、从甲地到乙地的路有一段上坡与一段平路。

如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54分钟,从乙地到甲地需42分钟。

甲地到乙地全程是多少?9、用含药30%和75%的两种防腐药水,配制含药50%的防腐药水18kg,两种药水各需取多少?10、某农场有300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜三种农作物,已知种植各种农作物已知该农场计划投入资金67万元,应该怎样安排这三种农作物的种植面积才能使所有职工都有工作,而且投入的资金正好够用?一元一次不等式(组)的应用专题1、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,问他至少买多少支钢笔才能打折?2、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共用50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。

二元一次方程组和不等式组测试题

二元一次方程组和不等式组测试题

二元一次方程组和不等式组测试题1.已知关于x 的不等式组⎪⎩⎪⎨⎧<->>a x x x 12无解,则a 的取值范围是( )A 、1-≤aB 、2≤aC 、21<<-aD 、1-<a 或2>a2.已知方程组⎩⎨⎧=+=+15231032y x y x ,不解方程组则=+y x 3.已知关于x 的不等式组()324213x x a x x --≤⎧⎪⎨+>-⎪⎩的解集是13x ≤<,则=a 4.已知关于x 的不等式组⎩⎨⎧--≥-1230 x a x 的整数解有5个,则a 的取值范围是_____5.某商场计划在一月份销售彩电1000台,据统计本月前10天平均每天销售32台.现商场决定开展促销活动,并追加月计划量的20%,则这个商场本月后20天至少平均每天销售多少台?6.风景点门票是每人10元,20人以上(含20人)的团体八折优惠.现有18位游客买20人的团体票;(1)问这样比普通票总共便宜多少钱?(2)此外,不足20人时,需多少人以上买20人的团体票才比普通票便宜?7.车站有有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节A,B两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?8.某园林的门票每张10元,一次使用.考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分A,B,C三类:A类年票每张120元,持票者进入园林时,无需再购买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式;(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算.10.解不等式652123--≤-x x 并把解集在数轴上表示出来11.⎪⎩⎪⎨⎧-<-≤--x x x x 14214)23( 12. 求不等式组⎪⎩⎪⎨⎧>--≤--41)3(28)3(2x x x x 的整数解13.若不等式7)1(68)2(5+-<+-x x 的最小整数解是方程32=-ax x 的解,求aa 144-的值14. 有大小两种货车,3辆大车与5辆小车一次可运货24.5吨,两辆大车与3辆小车一次可运15.5吨,求5辆大车和6辆小车一次可运货多少吨?15.两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x ;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==45y x , 试计算20052004101⎪⎭⎫ ⎝⎛-+b a的值.16.关于y x ,的方程组⎩⎨⎧-=-+=+131m y x m y x 的解满足x >y ,求m 的最小整数值?。

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。

(专题精选)初中数学方程与不等式之二元一次方程组经典测试题附答案解析

(专题精选)初中数学方程与不等式之二元一次方程组经典测试题附答案解析

(专题精选)初中数学方程与不等式之二元一次方程组经典测试题附答案解析一、选择题1.由方程组53x m y m-=⎧⎨+=⎩,可得到x 与y 的关系式是()A .2x y -=-B .2x y -=C .8x y -=D .8x y -=-【答案】C 【解析】 【分析】先解方程组求得5x m =+、3y m =-,再将其相减即可得解. 【详解】 解:∵53x m y m -=⎧⎨+=⎩①②由①得,5x m =+ 由②得,3y m =-∴()()53538x y m m m m -=+--=+-+=. 故选:C 【点睛】本题考查了解含参数的二元一次方程组、以及代数求值的知识点,熟练掌握相关知识点是解决本题的关键.2.某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A .7161328x y x y +=⎧⎨+=⎩B .()72161328x y x y ⎧+-=⎨+=⎩C .()71613228x y x y +=⎧⎨+-=⎩D .()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩【答案】D 【解析】 【分析】根据津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元可列方程组. 【详解】设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩,故选D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.3.x=2y=7⎧⎨⎩是方程mx-3y=2的一个解,则m为( )A.8 B.232C.-232D.-192【答案】B【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把x=2y=7⎧⎨⎩代入方程得:2m-21=2,解得:m=232,故选:B.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x文,乙原有钱y文,可得方程组()A.14822483x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.14822483y xx y⎧+=⎪⎪⎨⎪+=⎪⎩C.14822483x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.14822483y xx y⎧-=⎪⎪⎨⎪-=⎪⎩【答案】A【解析】【分析】根据题意,通过题目的等量关系,结合题目所设未知量列式即可得解.【详解】设甲原有x文钱,乙原有y文钱,根据题意,得:14822483x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,准确设出未知量根据等量关系列式求解是解决本题的关键.5.已知二元一次方程1342x y-=的一组解是x ay b=⎧⎨=⎩,则63a b-+的值为()A.11 B.7 C.5 D.无法确定【答案】A【解析】【分析】把二元一次方程12x-3y=4的一组解先代入方程,得12a-3b=4,即a-6b=8,然后整体代入求出结果.【详解】∵x ay b=⎧⎨=⎩是二元一次方程12x-3y=4的一组解,∴12a-3b=4,即a-6b=8,∴a-6b+3=8+3=11.故选:A.【点睛】此题考查二元一次方程的解,解题的关键是运用整体代入的方法.6.已知2,1.xy=⎧⎨=⎩是方程25+=x ay的解,则a的值为( )A.1 B.2 C.3 D.4【答案】A【解析】将21xy=⎧⎨=⎩代入方程2x+ay=5,得:4+a=5,解得:a=1,故选:A.7.小李去买套装6色水笔和笔记本,若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种物品(两种都买)的方案有()A.3种B.4种C.5种D.6种【答案】C【解析】【分析】设1袋笔的价格为x元,1本笔记本的价格为y元,根据“若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元”,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出结论,再设可购买a袋笔和b本笔记本,根据总价=单价×数量可得出关于a,b的二元一次方程,结合a,b均为正整数即可得出结论.【详解】设1袋笔的价格为x元,1本笔记本的价格为y元,依题意,得:4x+6y-22=x+2y+34,∴3x+4y=56,即y=14-34 x.∵x,y均为正整数,∴411xy⎧⎨⎩==,88xy⎧⎨⎩==,125xy⎧⎨⎩==,162xy⎧⎨⎩==.设可购买a袋笔和b本笔记本.①当x=4,y=11时,4x+6y-22=60,∴4a+11b=60,即a=15-114b,∵a,b均为正整数,∴44ab⎧⎨⎩==;②当x=8,y=8时,4x+6y-22=58,∴8a+8b=58,即a+b=294,∵a,b均为正整数,∴方程无解;③当x=12,y=5时,4x+6y-22=56,∴12a+5b=56,即b=56125a-,∵a,b均为正整数,∴34a b ==⎧⎨⎩;④当x=16,y=2时,4x+6y-22=54, ∴16a+2b=54,即b=27-8a , ∵a ,b 均为正整数,∴119a b ⎧⎨⎩==,211a b ⎧⎨⎩==,33a b ⎧⎨⎩==.综上所述,共有5种购进方案. 故选:C . 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.8.如果230x y z +-=,且20x y z -+=,那么xy的值为( ) A .15B .15-C .13D .13-【答案】D 【解析】 【分析】将题目中的两个方程相加,即可求得3x +y =0的值,根据x 与y 的关系代入即可求出x y的值. 【详解】解:2x +3y −z =0 ① ,x −2y +z =0 ② , ①+②,得 3x +y =0, 解得,1=-3x y , 故选D . 【点睛】本题主要考查解三元一次方程组,解答本题的关键是明确题意,求出所求式子的值.9.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组( ) A .1204016x y y x +=⎧⎨=⎩B .1204332x y y x +=⎧⎨=⎩C .12040210x y y x+=⎧⎨=⨯⎩D .以上都不对【答案】C【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组. 【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x =40y ; 制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x +y =120, 故可得方程组12040210x y y x +=⎧⎨=⨯⎩.故选:C . 【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.10.若215(3)()x mx x x n +-=++,则m 的值为() A .-2 B .2 C .-5 D .5【答案】A 【解析】 【分析】将等式右边的整式展开,然后和等式左边对号入座进行对比:一次项系数相等、常数项相等,从而得到关于m 、n 的二元一次方程组,解方程组即可得解. 【详解】解:∵()()()2215333x mx x x n x n x n +-=++=+++∴3315m n n =+⎧⎨=-⎩①②由②得,5n =-把5n =-代入①得,2m =- ∴m 的值为2-. 故选:A 【点睛】本题考查了多项式乘以多项式法则、两个多项式相等即各项对应相等、解二元一次方程组等知识点,能够得到关于m 、n 的二元一次方程组是解决问题的关键.11.已知方程组31331x y mx y m +=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( )A .m >1B .m <-1C .m >-1D .m <1【答案】C【分析】直接把两个方程相加,得到12mx y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】 解:31331x y mx y m+=+⎧⎨+=-⎩,直接把两个方程相加,得: 4422x y m +=+,∴12mx y ++=, ∵0x y +>, ∴102m+>, ∴1m >-; 故选:C. 【点睛】本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12mx y ++=,然后进行解题.12.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各买了多少个?设购买篮球x 个,购买足球y 个,可列方程组( )A .x y 160x 30y 480-=⎧+=⎨⎩B .x y 160x 30y 480=-⎧+=⎨⎩C .x y 130x 60y 480=-⎧+=⎨⎩D .x y 130x 60y 480-=⎧+=⎨⎩【答案】B 【解析】 【分析】根据“购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元”找到等量关系列出方程即可. 【详解】设购买篮球x 个,购买足球y 个,根据题意可列方程组:x y 160x 30y 480=-⎧+=⎨⎩, 故选:B .本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够找到题目中的等量关系,难度不大.13.如果方程组4x y mx y m+=⎧⎨-=⎩的解是二元一次方程3x ﹣5y ﹣30=0的一个解,那么m 的值为( ) A .7 B .6C .3D .2【答案】D 【解析】 【分析】理解清楚题意,运用三元一次方程组的知识,把x ,y 用含m 的代数式表示出来,代入方程3x-5y-30=0求得a 的值. 【详解】()()142x y m x y m ⎧+⎪⎨-⎪⎩== (1)+(2)得x=52m , 代入(1)得y=-32m ,把x ,y 代入方程3x-5y-30=0得:3×52m +5×32m -30=0,解得m=2; 故选D . 【点睛】本题的实质是解三元一次方程组,用加减法或代入法来解答.14.已知点()3,1P -关于y 轴的对称点(),1Q a b b +-,则b a 的值为( ) A .9 B .25C .32D .16【答案】B 【解析】 【分析】根据关于y 轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等,即可求出a 、b ,从而求出b a 的值. 【详解】解:∵点P (3,1-)关于y 轴的对称点(),1Q a b b +-,∴311+=-⎧⎨-=-⎩a b b 解得:52a b ìï=-í=ïïïî ∴()2-5=25=b a 故选:B. 【点睛】此题考查的是求一个点关于y 轴的对称点,掌握关于y 轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等,是解决此题的关键.15.甲、乙两人在同一个地方练习跑步,如果让乙先跑10米,甲跑5秒钟就追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,若设甲、乙每秒钟分别跑x 、y 米,则列出方程组应是( )A .5105442x y x y +=⎧⎨-=⎩B .5510424x y x y =+⎧⎨-=⎩C .()5510 42x y x y y -=⎧⎨-=⎩ D .()()51042x y x y x ⎧-=⎪⎨-=⎪⎩【答案】C 【解析】解:设甲、乙每秒分别跑x 米,y 米,由题意知:()551042x y x y y -=⎧⎨-=⎩.故选C .点睛:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.16.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-3分,不答的题得-1分.已知欢欢这次竞赛得了72分,设欢欢答对了x 道题,答错了y 道题,则( )A .5372x y -=B .5372x y +=C .6292x y -=D .6292x y +=【答案】C 【解析】 【分析】设欢欢答对了x 道题,答错了y 道题,根据“每答对一题得+5分,每答错一题得-3分,不答的题得-1分,已知欢欢这次竞赛得了72分”列出方程. 【详解】解:设答对了x 道题,答错了y 道题,则不答的题有()20x y -- 道, 依题意得:()532072x y x y ----=, 化简得:6292x y -=. 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程,关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20.17.已知关于x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,则m 的值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m. 【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2, ∵x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩,∴23m x y =+=3, 故选C. 【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.18.若方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩的解是( )A . 2.20.4a b =⎧⎨=-⎩B .2014.22012.6a b =⎧⎨=⎩C .2009.82012.6a b =-⎧⎨=⎩D .2014.22013.4a b =⎧⎨=⎩【答案】C 【解析】 【分析】将2012+a 和2013-b 分别看作整体,则可分别对应x ,y 的值,分别解方程即可求得结果. 【详解】解:令 2012+=a m ,2013-=b n ,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩可化为23345m n m n -=⎧⎨+=⎩, ∵方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩, ∴方程组23345m n m n -=⎧⎨+=⎩的解是 2.20.4m n =⎧⎨=-⎩, 即2012 2.220130.4a b +=⎧⎨-=-⎩, 解得:2009.82012.6a b =-⎧⎨=⎩, 故选:C .【点睛】本题考查了二元一次方程组的解,掌握整体思想的运用是解题的关键.19.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .设普通公路长、高速公路长分别为km km x y 、,则可列方程组为( )A .2 2.210060x y x y =⎧⎪⎨+=⎪⎩B .2 2.260100x y x y =⎧⎪⎨+=⎪⎩C .2 2.260100x y x y =⎧⎪⎨+=⎪⎩D .2 2.210060x y x y =⎧⎪⎨+=⎪⎩ 【答案】C【解析】【分析】设普通公路长、高速公路长分别为xkm 、ykm ,由普通公路占总路程的13,结合汽车从A 地到B 地一共行驶了2.2h ,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】设普通公路长、高速公路长分别为xkm 、ykm ,依题意,得: 2 2.260100x y x y =⎧⎪⎨+=⎪⎩ 故答案为:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.20.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x 天,生产乙种玩具零件y 天,则有( )A .30200100x y x y +=⎧⎨=⎩B .30100200x y x y +=⎧⎨=⎩C .302200100x y x y +=⎧⎨⨯=⎩D .302100200x y x y +=⎧⎨⨯=⎩ 【答案】C【解析】【分析】根据题意可以列出相应的二元一次方程组,本题得以解决. 【详解】由题意可得,{x y 302200x 100y +=⨯=,故答案为C【点睛】 本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.。

(专题精选)初中数学方程与不等式之二元一次方程组经典测试题含答案解析

(专题精选)初中数学方程与不等式之二元一次方程组经典测试题含答案解析

(专题精选)初中数学方程与不等式之二元一次方程组经典测试题含答案解析一、选择题1.若215(3)()x mx x x n +-=++,则m 的值为()A .-2B .2C .-5D .5【答案】A【解析】【分析】将等式右边的整式展开,然后和等式左边对号入座进行对比:一次项系数相等、常数项相等,从而得到关于m 、n 的二元一次方程组,解方程组即可得解.【详解】解:∵()()()2215333x mx x x n x n x n +-=++=+++ ∴3315m n n =+⎧⎨=-⎩①② 由②得,5n =-把5n =-代入①得,2m =-∴m 的值为2-.故选:A【点睛】本题考查了多项式乘以多项式法则、两个多项式相等即各项对应相等、解二元一次方程组等知识点,能够得到关于m 、n 的二元一次方程组是解决问题的关键.2.如果方程组3921ax y x y +=⎧⎨-=⎩无解,则a 为( ) A .6B .-6C .9D .-9 【答案】B【解析】【分析】用代入法或加减法把未知数y 消去,可得方程(6)12a x +=,由原方程无解可得60a +=,由此即可解得a 的值.【详解】把方程21x y -=两边同时乘以3,再与方程39ax y +=相加,消去y 得:693ax x +=+,即(6)12a x +=,∵原方程无解,∴60a +=,解得6a =-.故选B.【点睛】本题考查了二元一次方程组解的问题,明白“关于某一个未知数的一元一次方程无解,则这个未知数的系数为0”是解答本题的关键.3.x=2y=7⎧⎨⎩是方程mx-3y=2的一个解,则m 为( ) A .8B .232C .-232D .-192 【答案】B【解析】【分析】把x 与y 的值代入方程计算即可求出m 的值.【详解】解:把x=2y=7⎧⎨⎩代入方程得:2m-21=2, 解得:m=232, 故选:B .【点睛】 此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.已知关于x 的方程x-2m=7和x-5=3m 是同解方程,则m 值为( )A .1B .-1C .2D .-2【答案】C【解析】【分析】根据同解方程,可得方程组,根据解方程组,可得答案.【详解】解:由题意,得 2753x m x m -=⎧⎨-=⎩①②, 由①得:7+2x m =,由②得:3+5x m =,∴7+23+5m m =,解得:2m =,故选C.【点睛】本题考查了同解方程,利用同解方程得出方程组是解题关键.5.已知二元一次方程1342x y -=的一组解是x a y b =⎧⎨=⎩,则63a b -+的值为( ) A .11B .7C .5D .无法确定 【答案】A【解析】【分析】 把二元一次方程12x-3y=4的一组解先代入方程,得12a-3b=4,即a-6b=8,然后整体代入求出结果.【详解】 ∵x a y b=⎧⎨=⎩是二元一次方程12x-3y=4的一组解, ∴12a-3b=4, 即a-6b=8,∴a-6b+3=8+3=11.故选:A .【点睛】此题考查二元一次方程的解,解题的关键是运用整体代入的方法.6.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组 ( )A .1204010x y y x +=⎧⎨=⎩B .1201040x y y x +=⎧⎨=⎩C .1204020x y y x +=⎧⎨=⎩D .1202040x y y x +=⎧⎨=⎩【答案】C【解析】【分析】 首先根据题意可以得出以下两个等量关系:①制作盒身的白铁皮张数+制作盒底的白铁皮的张数=120,②盒身的个数×2=盒底的个数,据此进一步列出方程组即可.【详解】∵一共有120张白铁皮,其中x 张制作盒身,y 张制作盒底,∴120x y +=,又∵每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒, ∴4020y x =,∴可列方程组为:1204020x y y x +=⎧⎨=⎩, 故选:C.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.7.已知2,1.xy=⎧⎨=⎩是方程25+=x ay的解,则a的值为( )A.1 B.2 C.3 D.4【答案】A【解析】将21xy=⎧⎨=⎩代入方程2x+ay=5,得:4+a=5,解得:a=1,故选:A.8.小李去买套装6色水笔和笔记本,若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种物品(两种都买)的方案有()A.3种B.4种C.5种D.6种【答案】C【解析】【分析】设1袋笔的价格为x元,1本笔记本的价格为y元,根据“若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元”,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出结论,再设可购买a袋笔和b本笔记本,根据总价=单价×数量可得出关于a,b的二元一次方程,结合a,b均为正整数即可得出结论.【详解】设1袋笔的价格为x元,1本笔记本的价格为y元,依题意,得:4x+6y-22=x+2y+34,∴3x+4y=56,即y=14-34 x.∵x,y均为正整数,∴411xy⎧⎨⎩==,88xy⎧⎨⎩==,125xy⎧⎨⎩==,162xy⎧⎨⎩==.设可购买a袋笔和b本笔记本.①当x=4,y=11时,4x+6y-22=60,∴4a+11b=60,即a=15-114b,∵a,b均为正整数,∴44a b ⎧⎨⎩==; ②当x=8,y=8时,4x+6y-22=58,∴8a+8b=58,即a+b=294, ∵a ,b 均为正整数,∴方程无解;③当x=12,y=5时,4x+6y-22=56, ∴12a+5b=56,即b=56125a -, ∵a ,b 均为正整数, ∴34a b ==⎧⎨⎩; ④当x=16,y=2时,4x+6y-22=54,∴16a+2b=54,即b=27-8a ,∵a ,b 均为正整数,∴119a b ⎧⎨⎩==,211a b ⎧⎨⎩==,33a b ⎧⎨⎩==. 综上所述,共有5种购进方案.故选:C .【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( ) A .2018B .2019C .2020D .2021 【答案】D【解析】【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可.【详解】解:32232732x y k x y k -=-⎧⎨+=-⎩①② ①+②得 5x +5y =5k-5,∴x +y =k -1.∵2020x y +=,∴k -1=2020,故选:D .【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.若关于x y 、的方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩的解是 ( ) A .223x y =⎧⎪⎨=⎪⎩B .343x y =⎧⎪⎨=⎪⎩C .243x y =⎧⎪⎨=-⎪⎩D .323x y =⎧⎪⎨=⎪⎩【答案】B【解析】【分析】 根据整体思想和方程组ax by c ex fy d +=⎧⎨+=⎩的解可得:112x -=和322=y ,分别求解方程即可得出结果.【详解】解:方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩可化为:()()13221322a x by c e x fy d ⎧-+=⎪⎪⎨-⎪+=⎪⎩, 令12-=x m ,32=y n ,则am bn c em fn d +=⎧⎨+=⎩, ∵方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩, ∴方程组am bn c em fn d +=⎧⎨+=⎩的解为12m n =⎧⎨=⎩, 即112322x y -⎧=⎪⎪⎨⎪=⎪⎩,解得:343x y =⎧⎪⎨=⎪⎩,【点睛】本题主要考查了解二元一次方程组中的同解方程组问题,能把二元一次方程组转化成关于m ,n 的方程组是解此题的关键.11.图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示.则被移动石头的重量为( )A .5克B .10克C .15克D .20克【答案】A【解析】【分析】【详解】解:设左天平的一袋石头重x 克,右天平的一袋石头重y 克,被移动的石头重z 克,由题意,得: 2010x y x z y z =+⎧⎨-=++⎩解得z=5答:被移动石头的重量为5克.故选A .【点睛】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时理解图象天平反映的意义找到等量关系是关键.12.如图,将长方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大18°.设∠BAE 和∠BAD 的度数分别为x ,y ,那么x ,y 所适合的一个方程组是( )A .1890y x y x -=⎧⎨+=⎩B .18290y x y x -=⎧⎨+=⎩C .182y x y x -=⎧⎨=⎩D .18290x y y x -=⎧⎨+=⎩【答案】B【解析】【分析】首先根据题意可得等量关系:①∠BAD-∠BAE大18°;②∠BAD+2∠BAE=90°,根据等量关系列出方程组即可.【详解】解:设∠BAE和∠BAD的度数分别为x°和y°,依题意可列方程组:18290 y xy x-=⎧⎨+=⎩故选:B.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.13.已知a,b满足方程组2226a ba b-=⎧⎨+=⎩,则3a+b的值是()A.﹣8 B.8 C.4 D.﹣4【答案】B【解析】【分析】方程组中的两个方程相加,即可得出答案.【详解】解:2226a ba b-=⎧⎨+=⎩①②,①+②,得:3a+b=8,故选B.【点睛】本题考查了解二元一次方程组和二元一次方程的解等知识点,能选择适当的方法求出解是解题的关键.14.二元一次方程3x+y=7的正整数解有()组.A.0 B.1 C.2 D.无数【答案】C【解析】【分析】分别令x=1、2进行计算即可得【详解】解:方程3x+y=7,变形得:y=7-3x,当x=1时,y=4;当x=2时,y=1,则方程的正整数解有二组故本题答案应为:C【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可. 15.已知(x+3)2+3x y m++= 0,y为负数,则m的取值范围是()A.m>9 B.m<9 C.m> -9 D.m<-9【答案】A【解析】分析:根据平方数和绝对值的非负性,列方程求解即可.详解:由题意可得x+3=0,3x+y+m=0解得x=-3,y=9-m,因为y为负数所以9-m<0解得m>9故选:A.点睛:此题主要考查了非负数的应用,关键是根据平方数和绝对值的非负性构造二元一次方程组.16.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意所列方程组正确的是()A.2753x yy x+=⎧⎨=⎩B.2753x yx y+=⎧⎨=⎩C.2753x yy x-=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩【答案】B【解析】【分析】根据图示可得:矩形的宽可以表示为x+2y,宽又是75厘米,故x+2y=75,矩的长可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】根据图示可得,2753x yx y+=⎧⎨=⎩故选B.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.17.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-3分,不答的题得-1分.已知欢欢这次竞赛得了72分,设欢欢答对了x 道题,答错了y 道题,则( )A .5372x y -=B .5372x y +=C .6292x y -=D .6292x y +=【答案】C【解析】【分析】设欢欢答对了x 道题,答错了y 道题,根据“每答对一题得+5分,每答错一题得-3分,不答的题得-1分,已知欢欢这次竞赛得了72分”列出方程.【详解】解:设答对了x 道题,答错了y 道题,则不答的题有()20x y -- 道,依题意得:()532072x y x y ----=,化简得:6292x y -=.故选:C .【点睛】本题考查了由实际问题抽象出二元一次方程,关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20.18.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±CD . 【答案】A【解析】【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可.【详解】∵657237x y m x y +=+⎧⎨-=⎩且x+y=9, ∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩, ∴72m +=65x y +=6×4+5×5=49,∴72m +的算术平方根为:7.故选A .【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.19.幼儿园阿姨分别给甲、乙两个小朋友若干颗糖果,她们数了一下,甲说“把你的一半给我,我就有14颗糖果”,乙说:“那把你的一半给我,我就有16颗糖果.”那么原来甲小朋友有糖果( )颗.A .6B .8C .10D .12【答案】B【解析】【分析】设原来甲小朋友有x 颗,乙小朋友有y 颗,根据描述建立二元一次方程组求解.【详解】设原来甲小朋友有x 颗,乙小朋友有y 颗,由题意得: 11421162x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得812x y =⎧⎨=⎩∴甲小朋友原来有8颗故选B .【点睛】本题考查二元一次方程组的应用,题目较简单,根据描述建立方程是解题的关键.20.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x 天,生产乙种玩具零件y 天,则有( )A .30200100x y x y +=⎧⎨=⎩B .30100200x y x y +=⎧⎨=⎩C .302200100x y x y +=⎧⎨⨯=⎩D .302100200x y x y +=⎧⎨⨯=⎩ 【答案】C【解析】【分析】根据题意可以列出相应的二元一次方程组,本题得以解决. 【详解】由题意可得,{x y 302200x 100y +=⨯=,故答案为C【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.。

2020-2021初中数学方程与不等式之二元一次方程组经典测试题含答案解析(1)

2020-2021初中数学方程与不等式之二元一次方程组经典测试题含答案解析(1)

2020-2021初中数学方程与不等式之二元一次方程组经典测试题含答案解析(1) 一、选择题1.若12xy=⎧⎨=-⎩是关于x和y的二元一次方程1ax y+=的解,则a的值等于()A.3 B.1 C.1-D.3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a的一元一次方程即可.【详解】解:将12xy=⎧⎨=-⎩代入1ax y+=得,21a-=,解得:3a=.故选:A.【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.2.某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这种板材生产一批桌椅(不考虑板材的损耗,恰好配套),设用x块板材做椅子,用y块板材做桌子,则下列方程组正确的是()A.12024x yx y+=⎧⎨=⎩B.12024x yx y+=⎧⎨⨯=⎩C.12042x yx y+=⎧⎨=⎩D.12024x yx y+=⎧⎨=⨯⎩【答案】C【解析】【分析】根据“用120块这种板材生产一批桌椅”,即可列出一个二元一次方程,根据“每块板材可做桌子1张或椅子4把,使得恰好配套,一张桌子两把椅子”,列出另一个二元一次方程,即可得到答案.【详解】解:设用x块板材做椅子,用y块板材做桌子,∵用120块这种板材生产一批桌椅,∴x+y=120 ①,生产了y张桌子,4x把椅子,∵使得恰好配套,1张桌子2把椅子,∴4x=2y ②,①和②联立得:12042x y x y+=⎧⎨=⎩, 故选:C.【点睛】本题考查了由实际问题抽象出二元一次方程组,正确找出等量关系,列出二元一次方程组是解题的关键.3.二元一次方程3420x y +=的正整数解有( )A .1组B .2组C .3组D .4组【答案】A【解析】【分析】通过将方程变形,得到以x 的代数式,利用倍数逻辑关系,枚举法可得.【详解】 ∵由3420x y += 可得,34y 203, 54x y x =-=- ,,x y 是正整数. ∴根据题意,x 是4的倍数,则05x y ==,(不符题意);4,2x y == 是方程的解,8,1x y ==- (不符题意).故答案是A .【点睛】本题既考查正整数的概念又考查代数式的变形,理解二元一次方程解的概念是本题的关键.4.某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( ) A .7161328x y x y +=⎧⎨+=⎩ B .()72161328x y x y ⎧+-=⎨+=⎩C .()71613228x y x y +=⎧⎨+-=⎩D .()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩【答案】D【解析】【分析】 根据津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元可列方程组.【详解】设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩, 故选D .【点睛】 本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.5.甲乙两人同解方程 2{78ax by cx y +=-= 时,甲正确解得 3{2x y ==- ,乙因为抄错c 而得 2{2x y =-= ,则a+b+c 的值是( )A .7B .8C .9D .10 【答案】A【解析】【分析】根据题意可以得到a 、b 、c 的三元一次方程组,从而可以求得a 、b 、c 的值,本题得以解决.【详解】解:根据题意可知,∴3a-2b=2,3c+14=8,-2a+2b=2∴c=-2,a=4,b=5∴a+b+c=7.故答案为:A.【点睛】此题考查二元一次方程组的解,解题的关键是明确题意,找出所求问题需要的条件.6.二元一次方程2x +y =5的正整数解有( )A .一组B .2组C .3组D .无数组【答案】B【解析】【分析】由于要求二元一次方程的正整数解,可分别把x=1、2、3分别代入方程,求出对应的值,从而确定二元一次方程的正整数解.【详解】解:当x=1,则2+y=5,解得y=3,当x=2,则4+y=5,解得y=1,当x=3,则6+y=5,解得y=-1, 所以原二元一次方程的正整数解为,.故选B.【点睛】本题考查了解二元一次方程:二元一次方程有无数组解;常常要确定二元一次方程的特殊解.7.某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为65;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为A .B .C .D .【答案】D【解析】根据(1)班与(5)班得分比为6:5,有x:y=6:5,得5x=6y;根据(1)班得分比(5)班得分的2倍少40分,则x=2y-40.可列方程组为.故选D.8.下列4组数值,哪个是二元一次方程2x+3y=5的解?()A.35xy=⎧⎪⎨=⎪⎩B.11xy=⎧⎨=⎩C.23xy=⎧⎨=-⎩D.41xy=⎧⎨=⎩【答案】B【解析】【分析】二元一次方程2x+3y=5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.【详解】A、把x=0,y=35代入方程,左边=0+95=95≠右边,所以不是方程的解;B、把x=1,y=1代入方程,左边=右边=5,所以是方程的解;C、把x=2,y=﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D、把x=4,y=1代入方程,左边=11≠右边,所以不是方程的解.故选B.【点睛】此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.9.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==【答案】A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.若关于x,y的方程组4510(1)8x ykx k y+=⎧⎨--=⎩中x的值比y的相反数大2,则k是()A.-3 B.-2 C.-1 D.1【答案】A【解析】【分析】根据“x的值比y的相反数大2”得出“x=-y+2”,再代入到方程组的第一个方程得到y的值,进而得出x的值,把x,y的值代入方程组中第二方程中求出k的值即可.【详解】∵x的值比y的相反数大2,∴x=-y+2,把x=-y+2代入4x+5y=10得,-4y+8+5y=10,解得,y=2,∴x=0,把x=0,y=2代入kx-(k-1)y=8,得k=-3.故选A.【点睛】此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.11.已知2728x y x y +=⎧⎨+=⎩,那么x y -的值是( ) A .-1B .0C .1D .2【答案】A【解析】【分析】观察方程组,利用第一个方程减去第二个方程即可求解.【详解】 2728x y x y ①②+=⎧⎨+=⎩, ①-②得,x-y=-1.故选A.【点睛】本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.12.已知(x+3)2+3x y m ++= 0,y 为负数,则m 的取值范围是( )A .m >9B .m <9C .m > -9D .m <-9【答案】A【解析】分析:根据平方数和绝对值的非负性,列方程求解即可.详解:由题意可得x+3=0,3x+y+m=0解得x=-3,y=9-m ,因为y 为负数所以9-m <0解得m >9故选:A.点睛:此题主要考查了非负数的应用,关键是根据平方数和绝对值的非负性构造二元一次方程组.13.若2334a b x y +与634a b x y -的和是单项式,则a b +=( ) A .3-B .0C .3D .6 【答案】C【解析】【分析】根据同类项的定义可得方程组263a b a b +=⎧⎨-=⎩,解方程组即可求得a 、b 的值,即可求得a+b的值.【详解】 ∵2334a b x y +与643a b x y -是同类项, ∴263a b a b +=⎧⎨-=⎩, 解得30a b =⎧⎨=⎩, ∴a+b=3.故选C.【点睛】本题考查了同类项的定义及二元一次方程组的解法,根据同类项的定义得到方程组263a b a b +=⎧⎨-=⎩是解决问题的关键.14.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±CD . 【答案】A【解析】【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可.【详解】 ∵657237x y m x y +=+⎧⎨-=⎩且x+y=9, ∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩, ∴72m +=65x y +=6×4+5×5=49,∴72m +的算术平方根为:7.故选A .【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.15.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .设普通公路长、高速公路长分别为km km x y 、,则可列方程组为( )A .2 2.210060x y x y =⎧⎪⎨+=⎪⎩B .2 2.260100x y x y =⎧⎪⎨+=⎪⎩C .2 2.260100x y x y =⎧⎪⎨+=⎪⎩D .2 2.210060x y x y =⎧⎪⎨+=⎪⎩ 【答案】C【解析】【分析】设普通公路长、高速公路长分别为xkm 、ykm ,由普通公路占总路程的13,结合汽车从A 地到B 地一共行驶了2.2h ,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】设普通公路长、高速公路长分别为xkm 、ykm ,依题意,得: 2 2.260100x y x y =⎧⎪⎨+=⎪⎩ 故答案为:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.16.已知方程组31331x y m x y m +=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( ) A .m >1B .m <-1C .m >-1D .m <1【答案】C【解析】【分析】 直接把两个方程相加,得到12m x y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】 解:31331x y m x y m +=+⎧⎨+=-⎩, 直接把两个方程相加,得:4422x y m +=+, ∴12m x y ++=,∵0x y +>, ∴102m +>, ∴1m >-;故选:C.【点睛】 本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12m x y ++=,然后进行解题.17.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( ) A .﹣1B .1C .﹣5D .5【答案】A【解析】【分析】 把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案.【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩, 可得:322323a b b a -=⎧⎨-=-⎩, 两式相加:1a b +=-,故选A .【点睛】本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.18.如果方程组x 35ax by =⎧⎨+=⎩的解与方程组y 42bx ay =⎧⎨+=⎩的解相同,则a 、b 的值是( )A .a 12b =-⎧⎨=⎩B .a 12b =⎧⎨=⎩C .a 12b =⎧⎨=-⎩D .a 12b =-⎧⎨=-⎩【答案】A【解析】【分析】把34x y =⎧⎨=⎩代入方程中其余两个方程得345342a b b a +=⎧⎨+=⎩,解方程组可得. 【详解】解:由于两个方程组的解相同,所以这个相同的解是34x y =⎧⎨=⎩, 把34x y =⎧⎨=⎩代入方程中其余两个方程得345342a b b a +=⎧⎨+=⎩解得a 12b =-⎧⎨=⎩故选A .【点睛】本题考核知识点:解二元一次方程组.解题关键点:熟练解二元一次方程组.19.甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的60%.从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨。

宁波市初中数学方程与不等式之二元一次方程组专项训练解析含答案

宁波市初中数学方程与不等式之二元一次方程组专项训练解析含答案

宁波市初中数学方程与不等式之二元一次方程组专项训练解析含答案一、选择题1.对于实数a 、b 定义运算“※”:22()()a ab a b a b ab b a b ⎧-≥=⎨-<⎩※,例如2424428=-⨯=※,若x ,y 是方程组33814x y x y -=⎧⎨-=⎩的解,则y ※x 等于( )A .3B .3-C .1-D .6-【答案】D 【解析】 【分析】先根据方程组解出x 和y 的值,代入新定义计算即可得出答案. 【详解】 解:∵33814x y x y -=⎧⎨-=⎩∴21x y =⎧⎨=-⎩所以()()2y x=-12=-12-2=-2-4=-6⨯※※.故选:D . 【点睛】本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.2.《九章算术》中记载:“今有共买羊,人出五,不足四十五人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( ). A .54573y x y x =+⎧⎨=-⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=+⎩D .54573y x y x =-⎧⎨=-⎩【答案】C 【解析】 【分析】根据羊价不变即可列出方程组. 【详解】解:由“若每人出5钱,还差45钱”可以表示出羊价为:545y x =+,由“若每人出7钱,还差3钱”可以表示出羊价为:73y x =+,故方程组为54573y x y x =+⎧⎨=+⎩.故选C.本题考查了二元一次方程组的应用,正确理解题意,明确羊价不变是列出方程组的关键.3.某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( ) A .7161328x y x y +=⎧⎨+=⎩B .()72161328x y x y ⎧+-=⎨+=⎩C .()71613228x y x y +=⎧⎨+-=⎩D .()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩【答案】D 【解析】 【分析】根据津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元可列方程组. 【详解】设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩,故选D . 【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.4.若(x +y ﹣1)2+|x ﹣y +5|=0,则x =( ) A .﹣2 B .2C .1D .﹣1【答案】A 【解析】 【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 即可. 【详解】解:∵(x +y ﹣1)2+|x ﹣y +5|=0, ∴1050x y x y +-=⎧⎨-+=⎩,解得:23x y =-⎧⎨=⎩,故选:A.本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.5.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .9【答案】B 【解析】 【分析】把两个方程相加可得3x+3y=15,进而可得答案. 【详解】两个方程相加,得3x+3y=15, ∴x+y=5, 故选B. 【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.6.已知关于x 的方程x-2m=7和x-5=3m 是同解方程,则m 值为( ) A .1 B .-1C .2D .-2【答案】C 【解析】 【分析】根据同解方程,可得方程组,根据解方程组,可得答案. 【详解】 解:由题意,得2753x m x m -=⎧⎨-=⎩①②, 由①得:7+2x m =, 由②得:3+5x m =, ∴7+23+5m m =, 解得:2m =, 故选C. 【点睛】本题考查了同解方程,利用同解方程得出方程组是解题关键.7.下列方程组中,是二元一次方程组的是( )A .2113x y x⎧+=⎪⎨⎪=⎩ B .3526x y y z -=⎧⎨-=⎩C .1521x yxy ⎧+=⎪⎨⎪=⎩D .2224xy x ⎧=⎪⎨⎪-=⎩【答案】D 【解析】 【分析】根据二元一次方程组的定义进行判断即可. 【详解】解:A 、该方程组中未知数的最高次数是2,属于二元二次方程组,故本选项错误; B 、该方程组中含有3个未知数,属于三元一次方程组,故本选项错误; C 、该方程组中未知数的最高次数是2,属于二元二次方程组,故本选项错误; D 、该方程组符合二元一次方程组的定义,故本选项正确; 故选D . 【点睛】本题考查了二元一次方程组的定义,组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.8.若关于x ,y 的方程组4510(1)8x y kx k y +=⎧⎨--=⎩中x 的值比y 的相反数大2,则k 是( )A .-3B .-2C .-1D .1 【答案】A 【解析】 【分析】根据“x 的值比y 的相反数大2”得出“x=-y+2”,再代入到方程组的第一个方程得到y 的值,进而得出x 的值,把x ,y 的值代入方程组中第二方程中求出k 的值即可. 【详解】∵x 的值比y 的相反数大2, ∴x=-y+2,把x=-y+2代入4x+5y=10得,-4y+8+5y=10, 解得,y=2, ∴x=0,把x=0,y=2代入kx-(k-1)y=8,得k=-3. 故选A. 【点睛】此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( )A .2018B .2019C .2020D .2021【答案】D 【解析】 【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可. 【详解】 解:32232732x y k x y k -=-⎧⎨+=-⎩①②①+②得 5x +5y =5k-5, ∴x +y =k -1. ∵2020x y +=, ∴k -1=2020, ∴k=2021. 故选:D . 【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩,给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是() A .①② B .①③C .②③D .①②③【答案】D 【解析】 【分析】①将5k =代入方程组可得3563510x y x y +=⎧⎨+=⎩,解方程组即可作出判断;②将10k =代入方程组可得35631010x y x y +=⎧⎨+=⎩求得方程组的解后,再将解代入61516x y +=即可作出判断;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,根据k 为整数即可作出判断.【详解】解:①当5k =时,关于x 、y 的二元一次方程组为:3563510x y x y +=⎧⎨+=⎩,此时方程组无解,故本说法正确;②当10k =时,关于x 、y 的二元一次方程组为:35631010x y x y +=⎧⎨+=⎩,解得2345x y ⎧=⎪⎪⎨⎪=⎪⎩,将其代入61516x y +=,能使其左右两边相等,故本说法正确;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,因为k 为整数而x 、y 不能都为整数,故本说法正确. 故选:D 【点睛】此题考查了二元一次方程(组)的解、解二元一次方程组等,方程组的解即为能使方程组中两方程同时成立的未知数的值.11.甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的60%.从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨。

二元一次方程组与不等式组应用题市级联考题(含答案)培训资料

二元一次方程组与不等式组应用题市级联考题(含答案)培训资料

二元一次方程组与不等式组应用题专题练习(2007年绵阳中考)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得⎩⎨⎧≥-+≥-+12)8(220)8(24x x x x 解此不等式组, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:方案一,甲种货车2辆,乙种货车6辆方案二,甲种货车3辆,乙种货车5辆方案三,甲种货车4辆,乙种货车4辆(2)方案一所需运费 204062402300=⨯+⨯元;方案二所需运费 210052043300=⨯+⨯元;方案三所需运费 216042404300=⨯+⨯元.所以王灿应选择方案一运费最少,最少运费是2040元.(2007年济南)某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩≥≥ 解得:56x ≤≤即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为520003180015400⨯+⨯=元;第二种租车方案的费用为620002180015600⨯+⨯=元∴第一种租车方案更省费用.(2007资阳)年陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元. ”王老师算了一下,说:“你肯定搞错了. ”⑴ 王老师为什么说他搞错了?试用方程的知识给予解释;⑵ 陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本. 但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?(1) 设单价为8.0元的课外书为x 本,得:812(105)1500418x x +-=-(2) 解之得:44.5x =(不符合题意)(3) 所以王老师肯定搞错了.⑵ 设单价为8.0元的课外书为y 本,解法一:设笔记本的单价为a 元,依题意得:812(105)1500418y y a +-=-- .解之得:178+a =4y ,∵ a 、y 都是整数,且178+a 应被4整除,∴ a 为偶数,又∵a 为小于10元的整数,∴ a 可能为2、4、6、8 .当a =2时,4x =180,x =45,符合题意;当a =4时,4x =182,x =45.5,不符合题意;当a =6时,4x =184,x =46,符合题意;当a =8时,4x =186,x =46.5,不符合题意 .∴ 笔记本的单价可能2元或6元 . ······················································ 8分解法2:设笔记本的单价为b 元,依题意得:[][]⎩⎨⎧+-+-+-+-10418)105(1281500418)105(12815000<<x x x x 解得:475.44<<x∴ x 应为45本或46本 .当x =45本时,b =1500-[8×45+12(105-45)+418]=2,当x =46本时,b =1500-[8×46+12(105-46)+418]=6,(2012四川泸州,6分)某商店准备购进甲、乙两种商品。

方程与不等式之二元一次方程组经典测试题及答案解析

方程与不等式之二元一次方程组经典测试题及答案解析

方程与不等式之二元一次方程组经典测试题及答案解析一、选择题1.由方程组53x m y m-=⎧⎨+=⎩,可得到x 与y 的关系式是()A .2x y -=-B .2x y -=C .8x y -=D .8x y -=-【答案】C 【解析】 【分析】先解方程组求得5x m =+、3y m =-,再将其相减即可得解. 【详解】 解:∵53x m y m -=⎧⎨+=⎩①②由①得,5x m =+ 由②得,3y m =-∴()()53538x y m m m m -=+--=+-+=. 故选:C 【点睛】本题考查了解含参数的二元一次方程组、以及代数求值的知识点,熟练掌握相关知识点是解决本题的关键.2.若是关于x 、y 的方程组的解,则(a+b)(a ﹣b)的值为( ) A .15 B .﹣15C .16D .﹣16【答案】B 【解析】 【分析】把方程组的解代入方程组可得到关于a 、b 的方程组,解方程组可求a ,b ,再代入可求(a+b )(a-b )的值. 【详解】 解:∵是关于x 、y 的方程组的解,∴ 解得∴(a+b )(a-b )=(-1+4)×(-1-4)=-15. 故选:B .【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.3.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.1204016x yy x+=⎧⎨=⎩B.1204332x yy x+=⎧⎨=⎩C.12040210x yy x+=⎧⎨=⨯⎩D.以上都不对【答案】C【解析】【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组.【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x=40y;制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+y=120,故可得方程组120 40210x yy x+=⎧⎨=⨯⎩.故选:C.【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.4.若关于x,y的方程组2{x y mx my n-=+=的解是2{1xy==,则m n-为()A.1 B.3 C.5 D.2【答案】D【解析】解:根据方程组解的定义,把21xy=⎧⎨=⎩代入方程,得:412mm n-=⎧⎨+=⎩,解得:35mn=⎧⎨=⎩.那么|m-n|=2.故选D.点睛:此题主要考查了二元一次方程组解的定义,以及解二元一次方程组的基本方法.5.甲乙两人同解方程2{78ax bycx y+=-=时,甲正确解得3{2xy==-,乙因为抄错c而得2{2x y =-= ,则a+b+c 的值是( )A .7B .8C .9D .10【答案】A 【解析】 【分析】根据题意可以得到a 、b 、c 的三元一次方程组,从而可以求得a 、b 、c 的值,本题得以解决. 【详解】解:根据题意可知,∴3a-2b=2,3c+14=8,-2a+2b=2 ∴c=-2,a=4,b=5 ∴a+b+c=7. 故答案为:A. 【点睛】此题考查二元一次方程组的解,解题的关键是明确题意,找出所求问题需要的条件.6.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x 文,乙原有钱y 文,可得方程组( )A .14822483x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .14822483y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .14822483x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .14822483y x x y ⎧-=⎪⎪⎨⎪-=⎪⎩【答案】A 【解析】 【分析】根据题意,通过题目的等量关系,结合题目所设未知量列式即可得解. 【详解】设甲原有x 文钱,乙原有y 文钱,根据题意,得:14822483x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩,故选:A . 【点睛】本题主要考查了二元一次方程组的实际应用,准确设出未知量根据等量关系列式求解是解决本题的关键.7.某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果, 甲同学说:(1)班与(5)班得分比为65;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为 A .B .C .D .【答案】D 【解析】根据(1)班与(5)班得分比为6:5,有x :y=6:5,得5x=6y ; 根据(1)班得分比(5)班得分的2倍少40分,则x=2y-40. 可列方程组为.故选D .8.若关于x ,y 的方程组2315x y m x y +=-⎧⎨-=⎩的解满足x +y =3,则m 的值为 ( )A .-2B .2C .-1D .1【答案】D 【解析】 【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可. 【详解】由题意得:2315x y m x y +=-⎧⎨-=⎩①②,∴由①−②可得:()2315x y x y m +--=--, 化简可得:336y m =-,即:2y m =-, 将其代入②可得:25x m -+=, ∴3x m =+ ∵3x y +=, ∴323m m ++-=, ∴1m =, 故选:D. 【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.9.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==【答案】A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.已知2,1.xy=⎧⎨=⎩是方程25+=x ay的解,则a的值为( )A.1 B.2 C.3 D.4【答案】A【解析】将21xy=⎧⎨=⎩代入方程2x+ay=5,得:4+a=5,解得:a=1,故选:A.11.已知2728x yx y+=⎧⎨+=⎩,那么x y-的值是()A.-1 B.0 C.1 D.2【答案】A【解析】【分析】观察方程组,利用第一个方程减去第二个方程即可求解. 【详解】2728x y x y ①②+=⎧⎨+=⎩, ①-②得, x-y=-1. 故选A. 【点睛】本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.12.下面几对数值是方程组233,22x y x y +=⎧⎨-=-⎩的解的是( )A .1,0x y =⎧⎨=⎩B .1,2x y =⎧⎨=⎩C .0,1x y =⎧⎨=⎩D .2,1x y =⎧⎨=⎩【答案】C 【解析】 【分析】利用代入法解方程组即可得到答案.【详解】23322x y x y +=⎧⎨-=-⎩①②, 由②得:x=2y-2③,将③代入①得:2(2y-2)+3y=3, 解得y=1,将y=1代入③,得x=0,∴原方程组的解是01x y =⎧⎨=⎩,故选:C. 【点睛】此题考查二元一次方程组的解法:代入法或加减法,根据每个方程组的特点选择恰当的解法是解题的关键.13.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各买了多少个?设购买篮球x 个,购买足球y 个,可列方程组( )A .x y 160x 30y 480-=⎧+=⎨⎩B .x y 160x 30y 480=-⎧+=⎨⎩C .x y 130x 60y 480=-⎧+=⎨⎩D .x y 130x 60y 480-=⎧+=⎨⎩【答案】B 【解析】 【分析】根据“购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元”找到等量关系列出方程即可. 【详解】设购买篮球x 个,购买足球y 个,根据题意可列方程组:x y 160x 30y 480=-⎧+=⎨⎩, 故选:B . 【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够找到题目中的等量关系,难度不大.14.如果方程组4x y mx y m +=⎧⎨-=⎩的解是二元一次方程3x ﹣5y ﹣30=0的一个解,那么m 的值为( ) A .7 B .6 C .3 D .2 【答案】D 【解析】 【分析】理解清楚题意,运用三元一次方程组的知识,把x ,y 用含m 的代数式表示出来,代入方程3x-5y-30=0求得a 的值. 【详解】()()142x y m x y m ⎧+⎪⎨-⎪⎩== (1)+(2)得x=52m , 代入(1)得y=-32m ,把x ,y 代入方程3x-5y-30=0得:3×52m +5×32m -30=0,解得m=2;故选D . 【点睛】本题的实质是解三元一次方程组,用加减法或代入法来解答.15.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±CD .【答案】A 【解析】 【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可. 【详解】∵657237x y m x y +=+⎧⎨-=⎩且x+y=9, ∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩,∴72m +=65x y +=6×4+5×5=49, ∴72m +的算术平方根为:7. 故选A . 【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.16.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种 B .3种C .2种D .1种【答案】B 【解析】【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为非负整数即可得. 【详解】设购买篮球x 个,排球y 个, 根据题意可得120x+90y=1200, 则y=4043x-, ∵x 、y 均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种, 故选B .【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.17.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A .3201036x y x y -=⎧⎨+=⎩ B .3201036x y x y +=⎧⎨+=⎩ C .3201036y x x y -=⎧⎨+=⎩ D .3102036x y x y +=⎧⎨+=⎩【答案】B 【解析】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可. 详解:设练习本每本为x 元,水笔每支为y 元, 根据单价的等量关系可得方程为x+y=3, 根据总价36得到的方程为20x+10y=36,所以可列方程为:3201036x y x y +⎧⎨+⎩==,故选:B .点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.18.关于x ,y 的方程组2647x ay x y -=⎧⎨+=⎩的解是整数,则整数a 的个数为()A .4个B .3个C .2个D .1个【答案】C 【解析】 【分析】先解方程组求出x y 、的值,根据y 和a 都是整数求出121a +=-或125a +=或121a +=或125a +=-,求出a 的值,再代入x 求出x ,再逐个判断即可; 【详解】2647x ay x y -=⎧⎨+=⎩①②2⨯①-②得:()215a y --=解得:521y a =--把521y a =--代入②得:54721x a -=+ 解得:7624a x a+=+ Q 方程组的解为整数∴ ,x y 均为整数∴ 121a +=-或125a +=或121a +=或125a +=-解得:1,2,0,3a =--,当1a =-时,12x =,不是整数,舍去; 当2a =时,2x =,是整数,符合;当0a =时,3x =,是整数,符合; 当3a =-时,32x =,不是整数,舍去; 故选:C. 【点睛】本题主要考查二元一次方程组的含参问题,准确的解出方程组并且列出整数解的情况是求解本题的关键.19.如果方程组x 35ax by =⎧⎨+=⎩的解与方程组y 42bx ay =⎧⎨+=⎩的解相同,则a 、b 的值是( )A .a 12b =-⎧⎨=⎩B .a 12b =⎧⎨=⎩C .a 12b =⎧⎨=-⎩D .a 12b =-⎧⎨=-⎩【答案】A 【解析】 【分析】把34x y =⎧⎨=⎩代入方程中其余两个方程得345342a b b a +=⎧⎨+=⎩,解方程组可得.【详解】解:由于两个方程组的解相同,所以这个相同的解是34x y =⎧⎨=⎩, 把34x y =⎧⎨=⎩ 代入方程中其余两个方程得345342a b b a +=⎧⎨+=⎩解得a 12b =-⎧⎨=⎩故选A .【点睛】本题考核知识点:解二元一次方程组.解题关键点:熟练解二元一次方程组.20.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5B .k=5C .k=-10D .k=10 【答案】A【解析】【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩ , 解得,1015x y =-⎧⎨=-⎩ ; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.。

二元一次方程组与不等式组应用题市级联考题(含答案)

二元一次方程组与不等式组应用题市级联考题(含答案)

二元一次方程组与不等式组应用题专题练习(2007年绵阳中考)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷 20吨,桃子12 吨.现计划租用甲、乙两种货车共 8辆将这批水果全部运往外地销售 ,已知一辆甲种货车 可装枇杷 4吨和桃子 1吨,一辆乙种货车可装枇杷和桃子各2吨. (1)王灿如何安排甲、乙两种货车可一次性地运到销售地 ?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费 240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车 x 辆,则安排乙种货车(8-)辆,依题意,得 x4x2(8 x)20解此不等式组,即2≤x ≤4.x 2(8 x)12∵ x 是正整数x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:方案一,甲种货车2辆,乙种货车6辆 方案二,甲种货车3辆,乙种货车5辆 方案三,甲种货车4辆,乙种货车4辆(2)方案一所需运费 300 2 240 6 2040元;方案二所需运费 300 3 204 5 2100元; 方案三所需运费 300 4 240 4 2160元. 所以王灿应选择方案一运费最少 ,最少运费是2040元.(2007年济南)某校准备组织 290名学生进行野外考察活动 ,行李共有100件.学校计划 租用甲、乙两种型号的汽车共 8辆,经了解,甲种汽车每辆最多能载 40人和10件行李, 乙种汽车每辆最多能载 30人和20件行李.专业资料(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.解:(1)由租用甲种汽车x辆,则租用乙种汽车(8 x)辆40x 30(8 x)≥290由题意得:10x20(8 x)≥100解得:5≤x≤6即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为520003180015400元;第二种租车方案的费用为620002180015600元∴第一种租车方案更省费用.(2007 资阳)年陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”⑴王老师为什么说他搞错了?试用方程的知识给予解释;⑵陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?(1)设单价为8.0元的课外书为x本,得:8x 12(105 x) 1500 418(2)解之得:x44.5(不符合题意)(3)所以王老师肯定搞错了.⑵设单价为8.0元的课外书为y本,解法一:设笔记本的单价为a元,依题意得:8y 12(105 y) 1500 418 a.解之得:178+a=4y,专业资料WORD 格式. . . .∵a、y都是整数,且178+a应被4整除,∴a为偶数,又∵a为小于10元的整数,∴a可能为2、4、6、8.当a=2时,4x=180,x=45,符合题意;当a=4时,4x=182,x=45.5,不符合题意;当a=6时,4x=184,x=46,符合题意;当a=8时,4x=186,x=46.5,不符合题意.∴笔记本的单价可能2元或6元.··································8分解法2:设笔记本的单价为b元,依题意得:<8x12(105 x)418015001500 8x12(105 x)<41810解得:44.5<x<47∴x应为45 本或46本.当x=45 本时,b=1500- [8×45+12(105-45)+418]=2 ,当x=46 本时,b=1500- [8×46+12(105-46)+418]=6 ,(2012 四川泸州,6分)某商店准备购进甲、乙两种商品。

二元一次方程组和不等式组的综合应用题

二元一次方程组和不等式组的综合应用题

二元一次方程组和不等式组的综合应用题1、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆,经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2 000元.乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?2、某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需资金4 120元.(1)每台电脑机箱和液晶显示器进价各多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22 240元.根据市场行情,电脑机箱、液晶显示器销售一台获利分别为10元、160元.该经销商希望销售完这两种商品后,所获利润不少于4 100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?3、响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过...132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?4、为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B 两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?5、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?。

七年级下册二元一次方程组和不等式组练习题

七年级下册二元一次方程组和不等式组练习题

一、解方程组和不等式组(1)⎩⎨⎧=+-=300342150y x y x ⎩⎨⎧==6030y x (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x ⎩⎨⎧==125175y x (3)2525,4315.x y x y +=⎧⎨+=⎩ (4)236,145 2.x x x x -<-⎧⎨-≤-⎩(5)32522(32)28x y x x y x +=+⎧⎨+=+⎩ (6)()4321213x x x x -<-⎧⎪⎨++>⎪⎩ 二、解答题1.长沙市某公园的门票价格如下表所示:购票人数 1~50人 51~100人 100人以上票价 10元/人 8元/人 5元/人某校九年级甲、乙两个班共100•多人去该公园举行毕业联欢活动,•其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人?解:设甲、乙两班分别有x 、y 人.根据题意得81092055515x y x y +=⎧⎨+=⎩解得5548x y =⎧⎨=⎩故甲班有55人,乙班有48人.2.情系灾区. 2008年5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一辆乙货车可装床架10个和课桌凳10套.(10分)(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?3.用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:有多少辆汽车? 分析:这是典型的不空也不满的问题.“用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物”,这句话告诉了“这批货物的总量”(4x+20)吨“若每辆汽车装满8吨,则最后一辆汽车不空也不满”,这句话告诉了“最后一辆车所装货物量”“最后一辆车所装货物量”应为“这批货物的总量”减去“除最后一辆车外其他汽车所装的货(4x+20)-8(x-1)由题意,得0<(4x+20)-8(x-1)<8,解:设有x辆车,则有(4x+20)吨货物.由题意,得解得5<x<7 ∵x为正整数,∴x=6.∴4x+20=4×6+20=44.答:有6辆车,44吨货物.4. 把一些书分给几个学生,如果每人分三本,那么剩余8本;如果前面的每个学生分5本,那么最后一人分不到三本,这些书有多少本?学生有多少人?分析:设有x个学生,根据“每人分3本,还余8本”用含x的代数式表示出数的本数(3x+8)本;每人分5本,最后一组分到3x+8-5(x-1);分不到3本,不足3本,大于等于0,小于3;再根据“每人分5本,最后一组就分不到3本”列不等式.解:设有x个学生,那么共有(3x+8)本书,根据题意得:解得5<x≤6.5,∵x为整数∴x=6,∴3x+8=3×6+8=26(本)答:有26本书,6个学生.5. 学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满.最多有多少间宿舍,多少名女生?解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.解:设有x间宿舍,依题意得,解之得,13 /3 <x<6,因为宿舍数应该为整数,所以,最多有x=5间宿舍,当x=5时,学生人数为:5x+5=5×5+5=30人.答:最多有5间房,30名女生.。

二元一次方程组和不等式的结合应用题

二元一次方程组和不等式的结合应用题

二元一次方程组和不等式的结合应用题摘要:一、二元一次方程组的定义和基本解法1.二元一次方程组的定义2.代入法解二元一次方程组3.消元法解二元一次方程组二、不等式的基本性质和解法1.不等式的定义和基本性质2.解不等式的方法3.解含有绝对值的不等式三、二元一次方程组和不等式的结合应用题1.结合二元一次方程组解不等式2.结合不等式解二元一次方程组3.二元一次方程组和不等式的实际应用正文:一、二元一次方程组的定义和基本解法二元一次方程组是指包含两个未知数,且每个方程中的次数都是一次的方程组。

解决二元一次方程组的方法有代入法和解元法。

代入法是将一个方程的未知数表示为另一个方程的未知数的函数,然后代入另一个方程求解。

解元法是先将两个方程相加或相减,消去一个未知数,然后再用已知条件求解另一个未知数。

二、不等式的基本性质和解法不等式是指含有比较关系的数学表达式,如大于、小于、大于等于、小于等于等。

解不等式首先要了解不等式的基本性质,如加减同一数、乘除同一正数或负数等。

解不等式的方法有移项法、系数化为1法、解集的端点法等。

对于含有绝对值的不等式,可以先将其转化为不含绝对值的不等式,然后再用相应的方法解出。

三、二元一次方程组和不等式的结合应用题在实际问题中,我们常常需要同时解决二元一次方程组和不等式的问题。

例如,一个商店的苹果和香蕉的价格分别为每斤x元和y元,已知苹果的总价不小于100元,香蕉的总价不大于200元,求苹果和香蕉各多少斤。

这类问题需要先根据不等式确定未知数的取值范围,然后再用二元一次方程组求解。

另外,二元一次方程组和不等式的结合应用题也可以是关于时间、速度、距离等问题。

2020-2021初中数学方程与不等式之二元一次方程组图文答案

2020-2021初中数学方程与不等式之二元一次方程组图文答案

2020-2021初中数学方程与不等式之二元一次方程组图文答案一、选择题1.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各买了多少个?设购买篮球x 个,购买足球y 个,可列方程组( )A .x y 160x 30y 480-=⎧+=⎨⎩B .x y 160x 30y 480=-⎧+=⎨⎩C .x y 130x 60y 480=-⎧+=⎨⎩D .x y 130x 60y 480-=⎧+=⎨⎩【答案】B 【解析】 【分析】根据“购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元”找到等量关系列出方程即可. 【详解】设购买篮球x 个,购买足球y 个,根据题意可列方程组:x y 160x 30y 480=-⎧+=⎨⎩, 故选:B . 【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够找到题目中的等量关系,难度不大.2.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组( ) A .1204016x y y x+=⎧⎨=⎩B .1204332x y y x +=⎧⎨=⎩C .12040210x y y x+=⎧⎨=⨯⎩D .以上都不对【答案】C 【解析】 【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组. 【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x =40y ; 制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x +y =120,故可得方程组12040210x y y x +=⎧⎨=⨯⎩.故选:C . 【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.3.二元一次方程3420x y +=的正整数解有( ) A .1组 B .2组C .3组D .4组【答案】A 【解析】 【分析】通过将方程变形,得到以x 的代数式,利用倍数逻辑关系,枚举法可得. 【详解】∵由3420x y += 可得,34y 203, 54x y x =-=-,,x y 是正整数. ∴根据题意,x 是4的倍数,则05x y ==,(不符题意);4,2x y == 是方程的解,8,1x y ==- (不符题意).故答案是A . 【点睛】本题既考查正整数的概念又考查代数式的变形,理解二元一次方程解的概念是本题的关键.4.如果方程组3921ax y x y +=⎧⎨-=⎩无解,则a 为( )A .6B .-6C .9D .-9【答案】B 【解析】 【分析】用代入法或加减法把未知数y 消去,可得方程(6)12a x +=,由原方程无解可得60a +=,由此即可解得a 的值.【详解】把方程21x y -=两边同时乘以3,再与方程39ax y +=相加,消去y 得: 693ax x +=+,即(6)12a x +=,∵原方程无解, ∴60a +=, 解得6a =-.故选B.【点睛】本题考查了二元一次方程组解的问题,明白“关于某一个未知数的一元一次方程无解,则这个未知数的系数为0”是解答本题的关键.5.x=2y=7⎧⎨⎩是方程mx-3y=2的一个解,则m为( )A.8 B.232C.-232D.-192【答案】B【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把x=2y=7⎧⎨⎩代入方程得:2m-21=2,解得:m=232,故选:B.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.下列4组数值,哪个是二元一次方程2x+3y=5的解?()A.35xy=⎧⎪⎨=⎪⎩B.11xy=⎧⎨=⎩C.23xy=⎧⎨=-⎩D.41xy=⎧⎨=⎩【答案】B【解析】【分析】二元一次方程2x+3y=5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.【详解】A、把x=0,y=35代入方程,左边=0+95=95≠右边,所以不是方程的解;B、把x=1,y=1代入方程,左边=右边=5,所以是方程的解;C、把x=2,y=﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D、把x=4,y=1代入方程,左边=11≠右边,所以不是方程的解.故选B.【点睛】此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.7.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( ) A .8374y xy x+=⎧⎨-=⎩B .8374x yx y +=⎧⎨-=⎩C .8374x yx y-=⎧⎨+=⎩D .8374y xy x-=⎧⎨+=⎩【答案】C 【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y -=⎧⎨+=⎩, 故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.8.若关于x y 、的方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩的解是 ( )A .223x y =⎧⎪⎨=⎪⎩B .343x y =⎧⎪⎨=⎪⎩C .243x y =⎧⎪⎨=-⎪⎩D .323x y =⎧⎪⎨=⎪⎩【答案】B 【解析】 【分析】根据整体思想和方程组ax by c ex fy d +=⎧⎨+=⎩的解可得:112x -=和322=y,分别求解方程即可得出结果. 【详解】解:方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩可化为:()()13221322a x byc e x fy d⎧-+=⎪⎪⎨-⎪+=⎪⎩,令12-=x m ,32=yn ,则am bn c em fn d +=⎧⎨+=⎩,∵方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,∴方程组am bn c em fn d +=⎧⎨+=⎩的解为12m n =⎧⎨=⎩,即112322x y -⎧=⎪⎪⎨⎪=⎪⎩,解得:343x y =⎧⎪⎨=⎪⎩,故选:B . 【点睛】本题主要考查了解二元一次方程组中的同解方程组问题,能把二元一次方程组转化成关于m ,n 的方程组是解此题的关键.9.方程组的解为,则被遮盖的前后两个数分别为( )A .1、2B .1、5C .5、1D .2、4【答案】C 【解析】 【分析】把x=2代入x+y=3求出y ,再将x ,y 代入2x+y 即可求解. 【详解】 根据,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5 故被遮盖的两个数分别为5和1. 故选C. 【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键.10.三个二元一次方程37x y -=,231x y +=,9y kx =-有公共解,则k 的值是( ) A .3 B .163-C .-2D .4【答案】D 【解析】 【分析】先结合37x y -=,231x y +=,求出x 、y 的值,然后代入9y kx =-,即可求出k 的值. 【详解】 解:根据题意,有37231x y x y -=⎧⎨+=⎩, 解得:21x y =⎧⎨=-⎩;把21x y =⎧⎨=-⎩代入9y kx =-,得 291k -=-,解得:4k =; 故选:D . 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握代入消元法和加减消元法.11.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( ) A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【答案】A 【解析】 【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可. 【详解】 解:由题意得:10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =,∴方程组的解为75a b =⎧⎨=⎩, 故选:A . 【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.12.已知a ,b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a +b 的值是( )A .﹣8B .8C .4D .﹣4【答案】B 【解析】 【分析】方程组中的两个方程相加,即可得出答案. 【详解】 解:2226a b a b -=⎧⎨+=⎩①②,①+②,得:3a+b=8, 故选B . 【点睛】本题考查了解二元一次方程组和二元一次方程的解等知识点,能选择适当的方法求出解是解题的关键.13.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,若每人出8钱,则多了3钱;若每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( )A .8374x y x y -=⎧⎨+=⎩B .8374x yx y +=⎧⎨-=⎩C .8374y x y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】A 【解析】 【分析】设有x 人,物品价值y 钱,根据题意相等关系:①8×人数﹣3=物品价值,②7×人数+4=物品价值,可列方程组. 【详解】设有x 人,物品价值y 钱,由题意,得83 74x yx y -=⎧⎨+=⎩, 故选A.14.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( ) A .7B .7±CD.【答案】A 【解析】 【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可. 【详解】∵657237x y m x y +=+⎧⎨-=⎩且x+y=9,∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩,∴72m +=65x y +=6×4+5×5=49, ∴72m +的算术平方根为:7. 故选A . 【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.15.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种 B .3种C .2种D .1种【答案】B 【解析】【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为非负整数即可得. 【详解】设购买篮球x 个,排球y 个, 根据题意可得120x+90y=1200, 则y=4043x-, ∵x 、y 均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种, 故选B .【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.16.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为( )A .B .C .D .【答案】A 【解析】 【分析】设甲需带钱x ,乙带钱y ,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得. 【详解】解:设甲需带钱x ,乙带钱y ,根据题意,得:故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.17.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ).A .m >2B .m >-3C .-3<m <2D .m <3或m >2【答案】A 【解析】 【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可. 【详解】解325x y m x y m -=+⎧⎨+=⎩,得212x m y m =+⎧⎨=-⎩. ∵x >y >0, ∴21220m m m +>-⎧⎨->⎩ , 解之得m >2. 故选A. 【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.18.方程组2x y x y 3n+=⎧+=⎨⎩的解为{x 2y ==n ,则被遮盖的两个数分别为( )A .2,1B .5,1C .2,3D .2,4【答案】B 【解析】把x=2代入x+y=3中,得:y=1, 把x=2,y=1代入得:2x+y=4+1=5, 故选B .19.如果方程组45x by ax =⎧⎨+=⎩的解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为( )A .﹣1B .1C .2D .0【答案】B 【解析】 【分析】把43x y ==⎧⎨⎩代入方程组25bx ay by ax +⎧⎨+⎩==,得到一个关于a ,b 的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b 的值. 【详解】把43x y ==⎧⎨⎩代入方程组25bx ay by ax +⎧⎨+⎩==, 得:432345b a b a =①=②+⎧⎨+⎩,①+②,得:7(a+b )=7, 则a+b=1. 故选B . 【点睛】此题主要考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.理解定义是关键.20.已知关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩,满足12x y ≥,则下列结论:①2a ≥-;②53a =-时,x y =;③当1a =-时,关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩的解也是方程2x y +=的解;④若1y ≤,则1a ≤-,其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 ①解方程组得322x a y a =+⎧⎨=--⎩,由12x y ≥得到关于a 的不等式,解之可得答案;②将x =y 代入方程组,求出a 的值,即可做出判断;③将x =y 代入322x a y a =+⎧⎨=--⎩求出x 、y 的值,从而依据x =y 得出答案;④由y≤1得出关于a 的不等式,解之可得.【详解】解:关于x 、y 的方程组135x y a x y a +=-⎧⎨-=+⎩, 解得:322x a y a =+⎧⎨=--⎩. ①∵12x y ≥, ∴a +3≥−a−1,解得a≥−2,故①正确;②将x =y 代入322x a y a =+⎧⎨=--⎩,得:4353x a ⎧=⎪⎪⎨⎪=-⎪⎩, 即当x =y 时,a =53-,此结论正确; ③当a =−1时,20x y =⎧⎨=⎩,满足x +y =2,此结论正确; ④若y≤1,则−2a−2≤1,解得a≥−32,此结论错误; 故选:C .【点睛】本题考查了二元一次方程组的解,解题的关键是牢记二元一次方程组的解题方法.。

最新初中数学方程与不等式之二元一次方程组专项训练及答案

最新初中数学方程与不等式之二元一次方程组专项训练及答案

最新初中数学方程与不等式之二元一次方程组专项训练及答案一、选择题1.关于x、y的方程组222x ymx y m+=⎧⎨+=+⎩的解为整数,则满足这个条件的整数m的个数有()A.4个B.3个C.2个D.无数个【答案】A【解析】【分析】先解二元一次方程组x、y,然后利用解为整数解题即可【详解】解方程组222x ymx y m+=⎧⎨+=+⎩得到242m xmym ⎧=⎪⎪-⎨⎪=⎪-⎩因为方程组的解为整数,所以m可以为0、1、3、4,所以满足条件的m的整数有4个,选A【点睛】本题主要考查二元一次方程组的解,解出x、y再利用解为整数求解是本题关键2.方程组的解为,则被遮盖的前后两个数分别为()A.1、2 B.1、5 C.5、1 D.2、4【答案】C【解析】【分析】把x=2代入x+y=3求出y,再将x,y代入2x+y即可求解.【详解】根据,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5故被遮盖的两个数分别为5和1.故选C.【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y值为解题关键.3.若是关于x 、y 的方程组的解,则(a+b)(a ﹣b)的值为( ) A .15B .﹣15C .16D .﹣16【答案】B【解析】【分析】 把方程组的解代入方程组可得到关于a 、b 的方程组,解方程组可求a ,b ,再代入可求(a+b )(a-b )的值.【详解】 解:∵是关于x 、y 的方程组的解,∴解得∴(a+b )(a-b )=(-1+4)×(-1-4)=-15.故选:B .【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.4.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组( )A .4243y x x y +=⎧⎨=⎩B .4243x y x y +=⎧⎨=⎩C .421134x y x y -=⎧⎪⎨=⎪⎩D .4234x y x y +=⎧⎨=⎩【答案】D【解析】【分析】 按照题干关系分别列出二元一次方程,再组合行成二元一次方程组即可.【详解】解:由甲、乙两数之和是42可得,42x y +=;由甲数的3倍等于乙数的4倍可得,34x y =,故由题意得方程组为:4234x y x y +=⎧⎨=⎩, 故选择D.【点睛】本题考查了二元一次方程组的应用,理清题干关系,分别列出两个二元一次方程即可.5.甲乙两人同解方程 2{78ax by cx y +=-= 时,甲正确解得 3{2x y ==- ,乙因为抄错c 而得 2{2x y =-= ,则a+b+c 的值是( )A .7B .8C .9D .10 【答案】A【解析】【分析】根据题意可以得到a 、b 、c 的三元一次方程组,从而可以求得a 、b 、c 的值,本题得以解决.【详解】解:根据题意可知,∴3a-2b=2,3c+14=8,-2a+2b=2∴c=-2,a=4,b=5∴a+b+c=7.故答案为:A.【点睛】此题考查二元一次方程组的解,解题的关键是明确题意,找出所求问题需要的条件.6.二元一次方程2x +y =5的正整数解有( )A .一组B .2组C .3组D .无数组【答案】B【解析】【分析】由于要求二元一次方程的正整数解,可分别把x=1、2、3分别代入方程,求出对应的值,从而确定二元一次方程的正整数解.【详解】解:当x=1,则2+y=5,解得y=3,当x=2,则4+y=5,解得y=1,当x=3,则6+y=5,解得y=-1, 所以原二元一次方程的正整数解为,. 故选B .【点睛】本题考查了解二元一次方程:二元一次方程有无数组解;常常要确定二元一次方程的特殊解.7.若关于x ,y 的方程组2315x y m x y +=-⎧⎨-=⎩的解满足x +y =3,则m 的值为 ( ) A .-2 B .2 C .-1 D .1【答案】D【解析】【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可.【详解】由题意得:2315x y m x y +=-⎧⎨-=⎩①②, ∴由①−②可得:()2315x y x y m +--=--,化简可得:336y m =-,即:2y m =-,将其代入②可得:25x m -+=,∴3x m =+∵3x y +=,∴323m m ++-=,∴1m =,故选:D.【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.8.已知2,1.x y =⎧⎨=⎩是方程25+=x ay 的解,则a 的值为( ) A .1B .2C .3D .4【答案】A【解析】 将21x y =⎧⎨=⎩代入方程2x+ay=5,得:4+a=5, 解得:a=1,故选:A.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( ) A .2018B .2019C .2020D .2021【答案】D【解析】【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可.【详解】解:32232732x y k x y k -=-⎧⎨+=-⎩①② ①+②得 5x +5y =5k-5,∴x +y =k -1.∵2020x y +=,∴k -1=2020,∴k=2021.故选:D .【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.用四个完全一样的长方形和一个小正方形拼成如图所示的大正方形,若已知大正方形的面积是196,小正方形的面积是4,若用(),x y x y >表示长方形的长和宽,则下列四个等式中不成立的是( )A .14x y +=B .2x y -=C .22196x y +=D .48xy =【答案】C【解析】【分析】 根据大正方形及小正方形的面积,分别求出大正方形及小正方形的边长,然后解出x 、y 的值,即可判断各选项.【详解】由题意得,大正方形的边长为14,小正方形的边长为2∴x+y=14,x−y=2,则142x y x y +=⎧⎨-=⎩ , 解得:86x y =⎧⎨=⎩ , 故可得C 选项的关系式符合题意.故选C.【点睛】此题考查二元一次方程组的应用,解题关键在于理解题意找出等量关系.11.用5个大小相同的小长方形拼成了如图所示的大长方形,若大长方形的周长是28,则每个小长方形的周长是( )A .12B .14C .13D .16【答案】A【解析】【分析】设小长方形的长为x,宽为y ,根据题意列出方程组,解方程组求出x,y 的值,进而可求小长方形的周长.【详解】设小长方形的长为x,宽为y ,根据题意有 2(3)228x y y x x =⎧⎨++⨯=⎩ 解得42x y =⎧⎨=⎩∴小长方形的周长为(42)212+⨯= ,故选:A .【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.12.已知(x+3)2+3x y m ++= 0,y 为负数,则m 的取值范围是( )A .m >9B .m <9C .m > -9D .m <-9【答案】A【解析】分析:根据平方数和绝对值的非负性,列方程求解即可.详解:由题意可得x+3=0,3x+y+m=0解得x=-3,y=9-m ,因为y 为负数解得m>9故选:A.点睛:此题主要考查了非负数的应用,关键是根据平方数和绝对值的非负性构造二元一次方程组.13.已知关于x,y的方程组34{3x y ax y a+=--=,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x+y=4-a的解;②当a=-2时,x、y的值互为相反数;③若x≤1,则1≤y≤4;④5{1xy==-是方程组的解,其中正确的是()A.①②B.③④C.①②③D.①②③④【答案】C【解析】【分析】【详解】解:解方程组34{3x y ax y a+=--=,得12{1x ay a=+=-,∵-3≤a≤1,∴-5≤x≤3,0≤y≤4,①当a=1时,x+y=2+a=3,4-a=3,方程x+y=4-a两边相等,结论正确;②当a=-2时,x=1+2a=-3,y=1-a=3,x,y的值互为相反数,结论正确;③当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1,∴-3≤a≤0∴1≤1-a≤4∴1≤y≤4结论正确,④5{1xy==-不符合-5≤x≤3,0≤y≤4,结论错误;故选:C.【点睛】本题考查二元一次方程组的解;解一元一次不等式组.14.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意所列方程组正确的是()A.2753x yy x+=⎧⎨=⎩B.2753x yx y+=⎧⎨=⎩C.2753x yy x-=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩【解析】【分析】根据图示可得:矩形的宽可以表示为x+2y ,宽又是75厘米,故x+2y=75,矩的长可以表示为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联立两个方程即可.【详解】根据图示可得,2753x y x y +=⎧⎨=⎩故选B .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.15.甲、乙两人在同一个地方练习跑步,如果让乙先跑10米,甲跑5秒钟就追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,若设甲、乙每秒钟分别跑x 、y 米,则列出方程组应是( )A .5105442x y x y +=⎧⎨-=⎩B .5510 424x y x y =+⎧⎨-=⎩C .()5510 42x y x y y -=⎧⎨-=⎩D .()()510 42x y x y x ⎧-=⎪⎨-=⎪⎩【答案】C【解析】 解:设甲、乙每秒分别跑x 米,y 米,由题意知:()551042x y x y y -=⎧⎨-=⎩.故选C . 点睛:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.16.幼儿园阿姨分别给甲、乙两个小朋友若干颗糖果,她们数了一下,甲说“把你的一半给我,我就有14颗糖果”,乙说:“那把你的一半给我,我就有16颗糖果.”那么原来甲小朋友有糖果( )颗.A .6B .8C .10D .12【答案】B【解析】【分析】设原来甲小朋友有x 颗,乙小朋友有y 颗,根据描述建立二元一次方程组求解.【详解】设原来甲小朋友有x 颗,乙小朋友有y 颗,由题意得:11421162x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得812x y =⎧⎨=⎩∴甲小朋友原来有8颗故选B .【点睛】本题考查二元一次方程组的应用,题目较简单,根据描述建立方程是解题的关键.17.用加减消元法解方程组2333211x y x y +=⎧⎨-=⎩,下列变形正确的是( ) A .4639611x y x y +=⎧⎨-=⎩ B .6396222x y x y +=⎧⎨-=⎩ C .4669633x y x y +=⎧⎨-=⎩ D .6936411x y x y +=⎧⎨-=⎩【答案】C【解析】【分析】运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数,把原方程变形要根据等式的性质,本题中方程①×2,②×3,就可把y 的系数变成互为相反数.【详解】解:233{3211x y x y +=-= ①×2得,4x+6y=6③,②×3得,9x-6y=33④,组成方程组得:466{9633x y x y +=-=. 故选C .【点睛】本题考查二元一次方程组的解法有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数.18.A 地至B 地的航线长9360km ,一架飞机从A 地顺风飞往B 地需12h ,它逆风飞行同样的航线要13h ,则飞机无风时的平均速度是( )A .720km/hB .750 km/hC .765 km/hD .780 km/h【答案】B【解析】【分析】设飞机无风时的平均速度为x 千米/时,风速为y 千米/时,根据飞机顺风速度×时间=路程,飞机逆风速度×时间=路程,列方程组进行求解.【详解】设飞机无风时的平均速度为x 千米/时,风速为y 千米/时,由题意得,12()936013()9360x y x y +=⎧⎨-=⎩, 解得,75030x y =⎧⎨=⎩, 答:飞机无风时的平均速度为750千米/时,故选B .【点睛】本题考查二元一次方程组的应用,熟练掌握顺风速度=静风速度+风速,逆风速度=静风速度-风速是解题的关键.19.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 【答案】B【解析】【分析】根据路程=时间乘以速度得到方程35 1.26060x y +=,再根据总时间是16分钟即可列出方程组.【详解】∵她去学校共用了16分钟,∴x+y=16,∵小颖家离学校1200米, ∴35 1.26060x y +=,∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B.【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.20.如果方程组4x y m x y m +=⎧⎨-=⎩的解是二元一次方程3x ﹣5y ﹣30=0的一个解,那么m 的值为( )A .7B .6C .3D .2【答案】D【解析】【分析】理解清楚题意,运用三元一次方程组的知识,把x ,y 用含m 的代数式表示出来,代入方程3x-5y-30=0求得a 的值.【详解】()()142x y m x y m ⎧+⎪⎨-⎪⎩== (1)+(2)得x=52m , 代入(1)得y=-32m , 把x ,y 代入方程3x-5y-30=0得: 3×52m +5×32m -30=0, 解得m=2;故选D .【点睛】 本题的实质是解三元一次方程组,用加减法或代入法来解答.。

二元一次方程组和不等式的应用.doc

二元一次方程组和不等式的应用.doc

二元一次方程组的应用一次篮、排球比赛,共有48 个队, 520 名运动员参加,其中篮球队每队10 名,排球队每队12名,求篮、排球各有多少队参赛?2. 某厂买进甲、乙两种材料共56 吨,用去9860 元。

若甲种材料每吨190 元,乙种材料每吨 160 元,则两种材料各买多少吨?3. 某人用24000 元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350 元,试问某人买的甲、乙两股票各是多少元?4. 一次篮、排球比赛,共有48 个队, 520 名运动员参加,其中篮球队每队10 名,排球队每队 12 名,求篮、排球各有多少队参赛?5. 某厂买进甲、乙两种材料共56 吨,用去 9860 元。

若甲种材料每吨190 元,乙种材料每吨160元,则两种材料各买多少吨?6. 某人用 24000 元买进甲、乙两种股票,在甲股票升值获利 1350 元,试问某人买的甲、乙两股票各是多少元?15%,乙股票下跌10%时卖出,共7.有甲乙两种债券年利率分别是 10%与 12%,现有 400 元债券,一年后获利 45 元,问两种债券各有多少?8.种饮料大小包装有4 角,大、中、小各买3 种,1 个中瓶比 2 小瓶便宜 2 角,1 个大瓶比 1 个中瓶加1 瓶,需 9 元 6 角。

3 种包装的饮料每瓶各多少元?1 个小瓶贵9.某班同学去 18 千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至 A 处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。

已知汽车速度是60 千米 / 时,步行速度是 4 千米 / 时,求 A 点距北山站的距离。

10. 一级学生去饭堂开会,如果每 4 人共坐一张长凳,则有 28 人没有位置坐,如果 6 人共坐一张长凳,求初一级学生人数及长凳数.11.两列火车同时从相距 910 千米的两地相向出发, 10 小时后相遇,如果第一列车比第二列车早出发 4 小时 20 分,那么在第二列火车出发8 小时后相遇,求两列火车的速度.12. 购买甲种图书 10 本和乙种图书16 本共付款410 元,甲种图书比乙种图书每本贵15 元,问甲、乙两种图书每本各买多少元?13.甲、乙两人分别从甲、乙两地同时相向出发,在甲超过中点50 米处甲、乙两人第一次相遇,甲、乙到达乙、甲两地后立即返身往回走,结果甲、乙两人在距甲地100 米处第二次相遇,求甲、乙两地的路程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组与不等式组应用题专题练习(2007年绵阳中考)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得⎩⎨⎧≥-+≥-+12)8(220)8(24x x x x 解此不等式组, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案: 方案一,甲种货车2辆,乙种货车6辆 方案二,甲种货车3辆,乙种货车5辆 方案三,甲种货车4辆,乙种货车4辆(2)方案一所需运费 204062402300=⨯+⨯元;方案二所需运费 210052043300=⨯+⨯元; 方案三所需运费 216042404300=⨯+⨯元. 所以王灿应选择方案一运费最少,最少运费是2040元.(2007年济南)某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩≥≥解得:56x ≤≤即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为520003180015400⨯+⨯=元; 第二种租车方案的费用为620002180015600⨯+⨯=元 ∴第一种租车方案更省费用.(2007资阳)年陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元. ” 王老师算了一下,说:“你肯定搞错了. ”⑴ 王老师为什么说他搞错了?试用方程的知识给予解释;⑵ 陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本. 但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?(1) 设单价为8.0元的课外书为x 本,得:812(105)1500418x x +-=- (2) 解之得:44.5x =(不符合题意) (3) 所以王老师肯定搞错了.⑵ 设单价为8.0元的课外书为y 本,解法一:设笔记本的单价为a 元,依题意得: 812(105)1500418y y a +-=-- . 解之得:178+a =4y ,∵ a 、y 都是整数,且178+a 应被4整除,∴ a 为偶数, 又∵a 为小于10元的整数,∴ a 可能为2、4、6、8 .当a =2时,4x =180,x =45,符合题意;当a =4时,4x =182,x =45.5,不符合题意; 当a =6时,4x =184,x =46,符合题意;当a =8时,4x =186,x =46.5,不符合题意 . ∴ 笔记本的单价可能2元或6元 . ······················································ 8分 解法2:设笔记本的单价为b 元,依题意得:[][]⎩⎨⎧+-+-+-+-10418)105(1281500418)105(12815000<<x x x x 解得:475.44<<x∴ x 应为45本或46本 . 当x =45本时,b =1500-[8×45+12(105-45)+418]=2, 当x =46本时,b =1500-[8×46+12(105-46)+418]=6,(2012四川泸州,6分)某商店准备购进甲、乙两种商品。

已知甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。

(1)若该商品同时购进甲、乙两种商品共100件,恰好用去2700元,求购进的甲、乙两种商品各多少件?(2)若该商品准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润为多少? (利润 = 售价 - 进价)解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意⎩⎨⎧=+=+.27003515,100y x y x 解这个方程组得,⎩⎨⎧==.60,40y x答:商店购进甲种商品40件,则购进乙种商品60件。

(2)设商店购进甲种商品x 件,则购进乙种商品(x -100)件,根据题意,得 ()()⎩⎨⎧≥-+≤-+.890100105,31001003515x x x x 解之得20≤x ≤22方案一,甲种商品20件,乙种商品80件 方案二,甲种商品21件,乙种商品79件 方案三,甲种商品22件,乙种商品78件 方案一所得利润9008010205=⨯+⨯元; 方案二所得利润8957910215=⨯+⨯元 方案三所得利润8907810225=⨯+⨯元.所以应选择方案一利润最大, 为2040元。

(2014•宜宾)在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?解:(1)设小李答对了x 道题. 依题意得 5x ﹣3(20﹣x )=60. 解得x=15.答:小李答对了16道题.(2)设小王答对了y 道题,依题意得:,解得:≤y ≤,即∵y 是正整数, ∴y=17或18,答:小王答对了17道题或18道题.(2009年河南)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5类别电视机冰 箱洗衣机(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下. 如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元? 设购进电视机、冰箱各x 台,则洗衣机为(15-2x )台依题意得:⎪⎩⎪⎨⎧≤-++≤-32400)215(16002400200021215x x x xx解这个不等式组,得6≤x ≤7∵x 为正整数,∴x =6或7 方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台 (2)方案1需补贴:(6×2100+6×2500+1×1700)×13%=4251(元); 方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元); ∴国家的财政收入最多需补贴农民4407元.(2011年达州)我市化工园区一化工厂,组织20辆汽车装运A 、B 、C 三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解(1)设装运A 种物资的车辆数为x ,装运B 种物资的车辆数为y .求y 与x 的函数关系式; (2)如果装运A 种物资的车辆数不少于5辆,装运B 种物资的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费. )解:(1)根据题意,得:200)20(81012=--++y x y x 200881601012=--++y x y x202=+y x∴x y 220-=……………………2分 (2)根据题意,得:⎩⎨⎧≥-≥42205x x 解之得:85≤≤x ∵x 取正整数,∴=x 5,6,7,8……………………4分 ∴共有4种方案,即……………………5分 (3)设总运费为M 元,则M=)20220(2008)220(3201024012-+-⨯+-⨯+⨯x x x x 即:M=640001920+-x∵M 是x 的一次函数,且M 随x 增大而减小,∴当x =8时,M 最小,最少为48640元……………………7分(2011年广元)某童装店到厂家选购A 、B 两种服装.若购进A 种服装12件、B 种服装8件,需要资金1880元;若购进A 种服装9件、B 种服装10件,需要资金1810元. (1)求A 、B 两种服装的进价分别为多少元?(2)销售一件A 服装可获利18元,销售一件B 服装可获利30元.根据市场需求,服装店决定:购进A 种服装的数量要比购进B 种服装的数量的2倍还多4件,且A 种服装购进数量不超过28件,并使这批服装全部销售完毕后的总获利不少于699元.设购进B 种服装x 件,那么请问该服装店有几种满足条件的进货方案?哪种方案获利最多?解:(1)设A 种型号服装每件x 元,B 种型号服装每件y 元. 依题意可得⎩⎨⎧=+=+18808121810109y x y x 解得⎩⎨⎧==10090y x ,答:A 种型号服装每件90元,B 种型号服装每件100元.(2)①设购进B 种服装x 件,则购进A 种服装的数量是2x+4, ∴y=30x+(2x+4)×18, =66x+72;②设B 型服装购进m 件,则A 型服装购进()42+m 件,根据题意得⎩⎨⎧≤+≥++284269930)42(18m m m ,解不等式得12219≤≤m ,因为m 这是正整数,所以m=10,11,12,则2m+4=24,26,28 有三种进货方案:方案一:B 型服装购进10件,A 型服装购进24件; 方案二:B 型服装购进11件,A 型服装购进26件; 方案三:B 型服装购进12件,A 型服装购进28件.方案一所得利润90024301018=⨯+⨯元; 方案二所得利润97826301118=⨯+⨯元 方案三所得利润105628301218=⨯+⨯元. 所以应选择方案一利润最大, 为1056元。

相关文档
最新文档