SPSS聚类分析--用于筛选聚类变量的一套方法

合集下载

SPSS统计分析 第八章 聚类分析与判别分析

SPSS统计分析 第八章 聚类分析与判别分析

聚类分析小结

聚类分析是研究“物以类聚”的一种数理统计方法。它把一些个 体或研究对象分成若干个未知母体,事先并不知道它们可以分为 几类及哪些个体是属于同一类。 聚类的原则是样品间距离最小,指标(变量)间相似性最大。 样品聚类的基本思想是:把每个样品当作一类,几个样品就有几 类;逐次并类(先定义类间距离),并类时总是把距离最近的两 类合为一类,再计算新类与合并类的距离,等等。这样每次减少 一类,直至所有样品都合成一类为止。
变量聚类实例

有10个测验项目,分别用变量x1~x10表示,50 名学生参加测试。
数据编号data14-03。


要求:对十个变量进行变量聚类;计算并打印 各变量间的相关矩阵,用相关测度各变量间的 距离。打印出聚为两类的结果即各变量属于两 类中的哪一类;打印出聚类全过程的冰柱图, 以便对于变量分类进行进一步的探讨。

聚类法的选择:定义、计算两项间距离和相似 性的方法,系统默认值:组间平均连接法。
测度方法的选择:对距离和相似性的测度方法 又有多种,例如是用欧氏距离还是用欧氏距离 的平方测度其相近程度,还是用相关系数测度 其相似性?这一点体现在测度方法(Measure)的 选择上。如果对测度方法不熟悉,可以采用系 统默认的测度方法:欧氏距离平方。
CLUSTER过程可以很快将观测量分到各 类中去。其特点是处理速度快,占用内存 少。适用于大样本的聚类分析。

可以完全使用系统默认值进行聚类
2、分层聚类(Hierarchical Cluster)
分层聚类的概念与聚类分析过程

分层聚类反映事物的特点的变量很多,往 往根据所研究的问题选择部分变量对事物 的某一方面进行分析。 聚类的方法有多种,除了前面介绍的快速 聚类法外,最常用的是分层聚类法。根据 聚类过程不同又分为凝聚法和分解法。

SPSS Statistics 19_聚类分析

SPSS Statistics 19_聚类分析

此外还有中间距离法(Median Clustering)、类内平均法(Within-Groups
Linkage)等
12
2 系统聚类

系统聚类

优点

聚类变量可以是分类或连续型变量; 既可以对变量聚类,也可以对数据点/记录聚类(市场细分一般都是对记录聚类); 一次运行即可得到完整的分类序列;
确定样品间相似的度量

距离度量 相似性度量

确定样本点的聚类数量

实际应用中,一般推荐4-6类(5% < 细分群体占比 < 35%)

对聚类结果进行描述和解释

验证细分方案的可接受性 描述各细分群体(交叉表分析) 市场定位(Positioning)
7
©确定目标消费群体 (Targeting) 2009 SPSS Inc.

分类变量:使用卡方(Chi-square)统计量作为距离指标 连续型变量:一般使用欧式平方距离进行距离度量
© 2009 SPSS Inc.
8
1 聚类分析

使用聚类分析时应关注的一些问题(续):

聚类方法的选择

系统聚类法(Hierarchical Clustering),也称分层聚类法 K-均值聚类法(K-means Clustering),也称快速聚类法 两步聚类法(TwoStep Clustering),一种较智能化的聚类方法
2 系统聚类练习

基本思路:综合考察城市的若干社会、经济发展指标(来源《中国城市统计 年鉴》),譬如

城市化程度 生活质量和收入水平 经济发展水平
采用系统聚类法对城市进行系统、科学的分类

spss聚类分析方法选择

spss聚类分析方法选择

SPSS聚类分析方法选择引言在数据分析中,聚类分析是一种常用的技术,用于将一组数据点分成不同的类别或群组。

聚类分析有助于揭示数据中的模式和结构,并帮助我们理解数据集中的关联性。

SPSS是一个流行的统计软件,提供了多种聚类分析方法供用户选择。

本文将介绍SPSS中常用的聚类分析方法,并讨论如何选择适合的方法。

聚类分析方法SPSS提供了多种聚类分析方法,包括K-means聚类、层次聚类和模糊聚类。

下面将对这些方法进行简要介绍:K-means聚类K-means聚类是一种基于距离的聚类方法,将数据点分为K个不同的类别。

该方法的主要优点是计算效率高,适用于大规模数据集。

K-means聚类的基本步骤包括选择初始聚类中心、计算每个数据点到聚类中心的距离、将数据点分配到最近的聚类中心,并重新计算聚类中心的位置。

K-means聚类的结果可以用于发现类别之间的差异和相似性。

层次聚类层次聚类是一种自下而上或自上而下的聚类方法,通过构建一个层次化的聚类结构来组织数据。

在层次聚类中,数据点被逐步合并形成更大的聚类,直到所有数据点都被合并为一个聚类或达到预定的停止条件。

层次聚类方法的优点是可以自动确定聚类的个数,并提供了一个可视化的聚类结构。

模糊聚类模糊聚类是一种基于隶属度的聚类方法,将数据点分配到多个不同的聚类中心,并为每个数据点计算其属于不同聚类的隶属度。

与传统的硬聚类方法不同,模糊聚类允许数据点属于多个不同的聚类,反映了数据的不确定性和模糊性。

模糊聚类的结果可以用于描述数据点在不同类别之间的相似性。

方法选择在选择聚类分析方法时,需要考虑以下几个因素:数据类型首先需要考虑数据的类型。

如果数据是连续变量,则可以使用K-means聚类或层次聚类方法。

如果数据是分类变量,则可以使用层次聚类方法。

如果数据既包含连续变量又包含分类变量,则可以使用模糊聚类方法。

聚类个数另一个需要考虑的因素是聚类的个数。

K-means聚类和模糊聚类需要在分析之前确定聚类的个数。

SPSS聚类分析具体操作步骤spss如何聚类

SPSS聚类分析具体操作步骤spss如何聚类

算法步骤:初始 化聚类中心、分 配数据点到最近 的聚类中心、重 新计算聚类中心、 迭代直到聚类中 心不再变化
适用场景:探索 性数据分析、市 场细分、异常值 检测等
注意事项:选择 合适的聚类数目、 处理空值和异常 值、考虑数据的 尺度问题
定义:根据数据点间的距离或相似性,将数据点分为多个类别的过程 常用方法:层次聚类、K-均值聚类、DBSCAN聚类等 适用场景:适用于探索性数据分析,发现数据中的模式和结构 注意事项:选择合适的距离度量方法、确定合适的类别数目等
常见的聚类分析方法包括层次聚类、Kmeans聚类、DBSCAN聚类等。
聚类分析基于数据的相似性或距离度量, 将相似的数据点归为一类,使得同一类 中的数据点尽可能相似,不同类之间的 数据点尽可能不同。
聚类分析广泛应用于数据挖掘、市场细分、 模式识别等领域。
K-means聚类:将数据划分为K个簇,使得每个数据点到所在簇中心的距离之和最小
聚类结果的可视化:通过图表展示聚类结果 聚类质量的评估:使用适当的指标评估聚类效果的好坏 聚类结果的解释:根据实际需求和背景知识,对聚类结果进行合理的解释和解读 聚类结果的应用:探讨聚类结果在各个领域的应用场景和价值
SPSS聚类分析常 用方法
定义:将数据集 划分为K个聚类, 使得每个数据点 属于最近的聚类 中心
聚类结果展示:通过图表或表格展示聚类结果,包括各类别的样本数和占比
聚类质量评估:采用适当的指标评估聚类效果,如轮廓系数、Davies-Bouldin指数等
聚类结果解读:根据业务背景和数据特征,解释各类别的含义和特征 聚类结果应用:说明聚类分析在具体场景中的应用,如市场细分、客户分类等
SPSS聚类分析注 意事项
确定聚类变量:选 择与聚类目标相关 的变量,确保变量 间无高度相关性。

SPSS聚类分析--用于筛选聚类变量的一套方法

SPSS聚类分析--用于筛选聚类变量的一套方法

SPSS聚类分析--用于筛选聚类变量的一套方法SPSS聚类分析:用于筛选聚类变量的一套方法来源:数据小兵聚类分析是常见的数据分析方法之一,主要用于市场细分、用户细分等领域。

利用SPSS进行聚类分析时,用于参与聚类的变量决定了聚类的结果,无关变量有时会引起严重的错分,因此,筛选有效的聚类变量至关重要。

案例数据源:在SPSS自带数据文件plastic.sav中记录了20中塑料的三个特征,分别是tear_res(抗拉力)、gloss(光滑度)、opacity(透明度),相关经验表面这20中塑料可以分为3个种类,如果用这三个变量进行聚类,请判断和筛选有效聚类变量。

一套筛选聚类变量的方法一、盲选将根据经验得到的、现有的备选聚类变量全部纳入模型,暂时不考虑某些变量是否不合适。

本案例采用SPSS系统聚类方法。

对话框如下:统计量选项卡:聚类成员选择单一方案,聚类数输入数字3;绘制选项卡:勾选树状图;方法选项卡:默认选项,不进行标准化;保存选项卡:聚类成员选择单一方案,聚类数输入数字3;二、初步聚类这是盲选得到的初步聚类结果,并且在数据视图我们可以看到已经自动生成了一个聚类结果变量,这个变量非常有用。

三、方差分析是不是每一个纳入模型的聚类变量都对聚类过程有贡献?利用已经生成的初步聚类结果,我们可以用一个单因素方差分析来判断分类结果在三个变量上的差异是否显著,进而判断哪些变量对聚类是没有贡献的。

分析——比较均值——单因素方差分析:选项选项卡:勾选均值图由方差分析我们很明确的得知,纳入模型的三个聚类变量,其中只有“透明度”指标在各个分类上有显著的差异,也就是说分类有效果,让每个分类的差异很大,而两外两个变量则在三个分类上没有显著差异,没有很好的类别区分度,所以,我们可以认为,这两个变量对聚类无作用或者无贡献,可考虑踢出模型。

我们还想从可视化的角度来查看和判断,单因素方差分析为我们提供了均值图,可惜,这三个图却最容易误导我们的判断,因为spss在自动生产均值图时为每一个变量单独制图,而且分配不同的纵轴坐标,导致每个图看起来都有非常大的差异,从视觉上迷惑我们做出错误的判断。

spss聚类分析

spss聚类分析

20 2
3
2
4
7
2
层次聚类法
分析->分类->系统聚类
层次聚类法
放入变量(V1-V7)和个案标注依据(ID)
层次聚类法
谱系图
层次聚类法
选择聚类方法
层次聚类法
分析->分类->系统聚类
层次聚类法
结果
层次聚类法
层次聚类法
回到数据的变量视图
层次聚类法
层次聚类法
谱系图
层次聚类法
分成2组还是3组? 方差分析
层次聚类法
层次聚类法
如果分成三组?
层次聚类法
层次聚类法
层次聚类法
三个聚类的变量均值
V1:购物很有趣 V2:购物时可以看到新上市的产品 V3:购物时可以顺便吃饭 V4:购物时可以找到物美价廉产品 V5:我不在乎购物 V6:购物时货比三家可以省钱
聚类1 5.750 3.625 6.000 3.125 1.875 3.875
非层次聚类法
迭代和保存
非层次聚类法
选项
非层次聚类法
结果
非层次聚类法
回到数据
非层次聚类法
最终聚类中心
聚类1 聚类2 聚类3 V1 5.750 1.667 3.500 V2 3.625 3.000 5.833 V3 6.000 1.833 3.333 V4 3.125 3.500 6.000 V5 1.875 5.500 3.500 V6 3.875 3.333 6.000
非层次聚类法
方差分析
打开数据“mobile”,TESCO客户的通话数据
用什么聚类方法何时?分为几类?
变量 Zpeak_mins:工作日上班时期电话时长 ZOffPeak_mins:工作日下班时期电话时长 ZWeekend_mins:周末电话时长 ZInternational_mins:国际电话时长 ZTotal_mins:总通话时长 Zaverage_mins:平均每次通话时长

基于SPSS用K-means聚类做聚类分析

基于SPSS用K-means聚类做聚类分析

作业2:城镇居民消费结构的K-means聚类模型
本次作业为基于IBM SPSS Statistics 24的K-means聚类运算
一、第一步:导入数据,点击文件下方的图标,选中”案例2-城镇居民消费结构“,点击打开,
二、分析数据
1、点击Spss界面的“分析”,然后依次点击“分类”、“K-均值聚类”,如下图
2、在弹出的界面中点击“选项”,勾选“ANOVA表”,如下图,再点击“继续”
3、在弹出的界面中点击“保存”,勾选“聚类成员”、“与聚类中心距离”,如下图所示,点击“继续”
4、最后在弹出的界面中,把“地区”放入“个案标注依据”,其余的放入“变量”中,如下图所示,点击“确定”。

三、结果展示
ANOVA。

聚类分析 spss

聚类分析  spss

聚类分析聚类分析的目的是将资料按相似程度进行分类。

分类的对象可以是指标(变量)也可以是观测数据。

分类方法大致可分为两类:系统聚类法和非系统聚类法。

一、系统聚类法1.适用范围:可对观测数据或变量进行聚类2.聚类原理:3.聚类方法:组间连接法(类平均法)、组内连接法、最远距离法、ward 法等7 种。

4.Spss 的实现例1 生物学家收集了21种蝴蝶花样本的4个指标:萼片长度()1x ,萼片宽度()2x ,花瓣长度()3x ,花瓣宽度()4x ,数据如下表。

试进行聚类分析。

序号 1x 2x 3x 4x序号 1x 2x 3x 4x序号 1x 2x 3x 4x1 50 24 342 2 55 23 33 2 3 50 47 44 21 4 55 46 35 18 5 55 46 44 21 6 86 24 40 217 83 22 39 248 54 23 76 229 53 24 34 3 10 46 26 40 2 11 58 22 69 23 12 87 23 41 22 13 55 25 43 2 14 54 23 74 20 15 57 45 41 24 16 83 23 42 23 17 53 49 42 20 18 51 23 37 4 19 49 24 44 1 20 57 25 73 23 21 88 25 40 19(1)录入数据点击variable view 定义变量名;点击data view 输入数据(按行输入 一个数据一行);点击file-save 或save as 保存数据。

(2)聚类分析Analyze---classify----hierarchical cluster主对话框界面说明:Variables 框:用于选入进行聚类分析的变量。

Label cases by框:选入标签变量,如果选入,该变量的取值将在分析结果中取代记录号出现。

该框只在样品聚类时可用。

Cluster框:用于选择是进行样品聚类还是变量聚类,默认前者。

第九章SPSS的聚类分析

第九章SPSS的聚类分析

K-means快速聚类
(一)出发点
希望:
–克服分层聚类在大样本时产生的困难,提高聚类效 率
做法:
–通过用户事先指定聚类数目的方式提高效率 –因此,分层聚类可以对不同的聚类数而产生一系列
的聚类解,而快速聚类只能产生单一的聚类解
K-means快速聚类
(二)思路
1.指定最后要聚成K类 2.用户指定k个样本作为初始类中心或系统自动确定k个样本作为
k
EUCLID(x, y) (xi yi )2
i1
聚类分析概述
品质型个体间的距离
姓名 张三 李四 王五
授课方式 上机时间 选某门课程
1
1
1
1
1
0
0
0
1
聚类分析概述
品质型个体间的距离
– 简单匹配(simple matching)系数:适用二值变量。
个体j
个体i 1 0
10 ab cd
始到第n2类结束,间隔n3类的聚类分析过程在冰柱 图中体现 orientation:冰柱图的方向 –vertical:纵向; –horizontal:横向
分层聚类
进一步的工作
3. 结果保存(save选项) single solution:生成一新变量存储在聚成n类时各样
本属于哪一类(cluN_M: N为聚类数,M为第几次做的) range of solutions:生成若干个变量分别存放聚成
姓名 授课方式 上机时间 选某门课程
张三
1
1
1
李四
1
1
0
王五
0
0
1
(张三,李四):a=2 b=1 c=0 d=0 d(x,y)=1/(1+2)=1/3

第九章SPSS的聚类分析PPT课件

第九章SPSS的聚类分析PPT课件
–达到指定迭代次数(maximum iteration),默认10次。 –收敛标准(convergence),默认0.02,即:本次迭代产生的任意新类,各
中心位置变化较小.其中最大的变化率小于2%.
29
K-means快速聚类
(三)基本操作步骤
A.菜单选项:analyze->classify->k means cluster B.选定参加快速聚类分析的变量到variables框 C.确定快速聚类的类数(number of clusters).类数应小
第九章 SPSS的聚类分析
1
聚类分析概述
• 概念:
– 聚类分析是统计学中研究“物以类聚”的一种方法,属多元统计分析方法. – 例如:细分市场、消费行为划分
• 聚类分析是建立一种分类,是将一批样本(或变量)按照在性质上的“亲疏” 程度,在没有先验知识的情况下自动进行分类的方法.其中:类内个体具有 较高的相似性,类间的差异性较大.
•(张三,李四) 2: a=0 b=0 c=1 d=2 J(x,y)=1/1=1 (不相同)
11
聚类分析概述
• 品质型个体间的距离
– Jaccard系数举例:根据临床表现研究病人是否有类似的病
•姓名 性别 发烧 咳嗽 检查1 检查2 检查3 检查4
•张三 男 1 0 1 0 0
0
•李四 女 1 0 1 0 1
•姓名 授课方式 上机时间 选某门课程
•张三
1
1
1
•李四
1
1
0
•王五
0
0
1
•(张三,李四):a=2 b=1 c=0 d=0 d(x,y)=1/(1+2)=1/3
•(张三,王五):a=1 b=2 c=0 d=0 d(x,y)=2/(1+2)=2/3

SPSS聚类的分析详解

SPSS聚类的分析详解

二、聚类统计量
首先定义一些分类统计指标 —— 刻画样或指标之 间的相似程度(这些统计指标称为聚类统计量) 在市场研究中,样品 —— 用作分类的事物 指标 —— 用来作为分类依据的变量。 (如:年龄、收入、销售量) (一)相似系数(夹角余弦) 一般式:假定每个样品包含有P项指标,若有几个样品 的调查数据
3、步骤:1)首先给出度量“相似”或“关系密切”的 统计指标
指标:(1)统计指标是相似系数。 根据相似性归为一类,否则为另一类。 (2)统计指标是样品(空间的点)之间的距离 将距离近的点归成一类,否则为另一类。 (3)相关系数
(4)关联系数 2)形成一个由小到大的分析系统。
3)把整个分类系统画成一张分类图
CLUSTER过程 开始每个观测值自成一类,然后求两两之间的距离, 将距离最近的两个观测值合成一类。这个过程一直 进行下去,每次减少一类,直到合成一类为止。 聚类方法有11种,可根据问题的性质选用,它们的 区别在于怎样计算两类之间的距离。
METHOD=指定方法
AVERAGE(平均法)、CENTROID(重心法)、 COMPLETE(最大距离法)、DENSITY(密度 法)、MEDIAM(中位数法)等
1
按就近原则将每个观测量选入一个类中,然后计算各个类的中 心位置,即均值,作为新的聚心。 3、使用计算出来的新聚心重新进行分类,分类完毕后继续计 算各类的中心位置,作为新的聚心,如此反复操作,直到两次 迭代计算的聚心之间距离的最大改变量小于初始聚类心间最小 距离的倍数时,或者到达迭代次数的上限时,停止迭代。
观测量概述表
聚类步骤,与图结合看!
4、5
聚类方法有系统聚类和逐步聚类,输入数据集可以是普 通数据集、相关矩阵(CORR过程产生)或协方差矩阵 (FACTOR等过程产生)。SAS提供的聚类过程有:

SPSS聚类分析具体操作步骤spss如何聚类PPT资料【优选版】

SPSS聚类分析具体操作步骤spss如何聚类PPT资料【优选版】

SPSS中聚类分析分类
(一)按分类对象 对变量的聚类称为R型聚类 对观测值聚类称为Q型聚类 这两种聚类在数学上是对称的,没有什么不同。
(二)按聚类的方法分类 分层聚类或系统聚类分析 快速聚类分析 两步聚类分析:新型的
事先不用确定分多少类:分层聚类
分层聚类或系统聚类(hierarchical cluster)。开始 时,有多少点就是多少类。
聚类分析概述
(一)概念 • (1)聚类分析是统计学中研究“物以类聚”的一种
方法,属多元统计分析方法.
– 例如:细分市场、消费行为划分
• 聚类分析是建立一种分类,是将一批样本(或变量 )按照在性质上的“亲疏”程度,在没有先验知识 的情况下自动进行分类的方法.其中:类内个体具 有较高的相似性,类间的差异性较大.
• 它第一步先把最近的两类(点)合并成一类,然 后再把剩下的最近的两类合并成一类;
• 这样下去,每次都少一类,直到最后只有一大类 为止。显然,越是后来合并的类,距离就越远。 再对饮料例子来实施分层聚类。
• 对于一个数据,人们既可以对变量(指标)进行 分类(相当于对数据中的列分类),也可以对观测 值(事件,样品)来分类(相当于对数据中的行 分类)。
• 度量标准 计算样本距离的方法
点击“继续”接下来指定SPSS分析图形输出
属性图以树的形式展现 聚类分析的每一次合并 过程。冰柱图通过表格 中的冰柱显示。 可以指定并主图的输出 方向,纵向和横向
显示凝聚状态表,单击“统计量”
• 单一方案:输入一个具体数值n,n小于样本总数 当然还有一些和距离相反但起同样作用的概念,比如相似性等,两点越相似度越大,就相当于距离越短。
• 类间距离是基于点间距离定义的:比如两类之间最近点之 间的距离可以作为这两类之间的距离,也可以用两类中最 远点之间的距离作为这两类之间的距离;当然也可以用各 类的中心之间的距离来作为类间距离。在计算时,各种点 间距离和类间距离的选择是通过统计软件的选项实现的。 不同的选择的结果会不同,但一般不会差太多。

IBM SPSS MODELER 实验一、聚类分析

IBM SPSS MODELER 实验一、聚类分析

IBM SPSS Modeler 实验一、聚类分析在数据挖掘中,聚类分析关注的内容是一些相似的对象按照不同种类的度量构造成的群体。

聚类分析的目标就是在相似的基础上对数据进行分类。

IBM SPSS Modeler提供了多种聚类分析模型,其中主要包括两种聚类分析,K-Mean 聚类分析和Kohonen聚类分析,下面对各种聚类分析实验步骤进行详解。

1、K-Means聚类分析实验首先进行K-Means聚类实验。

(1)启动SPSS Modeler 14.2。

选择“开始”→“程序”→“IBM SPSS Modeler 14.2”→“IBM SPSS Modeler 14.2”,即可启动SPSS Modeler程序,如图1所示。

图1 启动SPSS Modeler程序(2)打开数据文件。

首先选择窗口底部节点选项板中的“源”选项卡,再点击“可变文件”节点,单击工作区的合适位置,即可将“可变文件”的源添加到流中,如图2所示。

右键单击工作区的“可变文件”,选择“编辑”,打开如图3的编辑窗口,其中有许多选项可供选择,此处均选择默认设定。

点击“文件”右侧的“”按钮,弹出文件选择对话框,选择安装路径下“Demos”文件夹中的“DRUG1n”文件,点击“打开”,如图4所示。

单击“应用”,并点击“确定”按钮关闭编辑窗口。

图2 工作区中的“可变文件”节点图3 “可变文件”节点编辑窗口图4 文件选择对话框图5 工作区中的“表”节点(3)借助“表(Table)”节点查看数据。

选中工作区的“DRUG1n”节点,并双击“输出”选项卡中的“表”节点,则“表”节点出现在工作区中,如图5所示。

运行“表”节点(Ctrl+E或者右键运行),可以看到图6中有关病人用药的数据记录。

该数据包含7个字段(序列、年龄(Age)、性别(Sex)、血压(BP)、胆固醇含量(Cholesterol)、钠含量(Na)、钾含量(K)、药类含量(Drug)),共200条信息记录。

《用SPSS作聚类分析》课件

《用SPSS作聚类分析》课件

《用SPSS作聚类分析》 PPT课件
欢迎来到《用SPSS作聚类、SPSS的应用以及结果分析。让我们一起开始这个有趣而有深度的数据 挖掘之旅吧!
什么是聚类分析?
聚类分析是一种数据分析方法,将相似的事物归类到同一组,帮助我们找到 数据中的规律和模式。
SPSS聚类分析的基本步骤
1
数据准备
选取要分析的数据并进行预处理,
聚类方法选择
2
如缺失值填充。
根据需求选择合适的聚类方法,如
层次聚类、K-Means聚类或模糊聚 类。
3
变量选择
选择对聚类分析有影响的变量并进
行预处理。
聚类分析运行
4
对选取的变量运行聚类分析,并选
择最优的聚类数。
5
结果分析
分析聚类结果,命名聚类结果,并 可视化展示。
为什么要进行聚类分析?
聚类分析能够帮助我们发现数据中隐藏的规律和模式,为决策提供科学依据,优化业务流程,提 高效率。
参考文献
贺志鹏. 数据挖掘与SPSS实战[M].
清华大学出版社, 2009.
Mirkin B. Clustering: A Data Recovery Approach[M].
CRC Press, 1996.

使用SPSS软件进行因子分析和聚类分析的方法

使用SPSS软件进行因子分析和聚类分析的方法

使用SPSS软件进行因子分析和聚类分析的方法因子分析和聚类分析是一种常用的数据分析方法,可以用于数据降维和分组。

SPSS是一款常用的统计软件,提供了丰富的分析工具和函数,可以方便地进行因子分析和聚类分析。

一、因子分析:因子分析是一种多变量分析方法,可以将一组相关的变量转化为少数几个互相独立的综合变量,称为因子。

因子分析可以用于降低数据的维度,提取主要的因素,并分析因素之间的关系。

以下是使用SPSS软件进行因子分析的步骤:1.打开SPSS软件,并导入要进行因子分析的数据集。

2.菜单栏选择“分析”-“降维”-“因子”。

3.在弹出的因子分析对话框中,选择要进行因子分析的变量,将其添加到“因子”框中。

4.在“提取”选项中,选择提取的因子个数。

可以根据实际需求和经验进行选择。

5. 在“旋转”选项中,选择旋转方法。

常用的旋转方法有方差最大旋转(Varimax),斜交旋转(Oblique)等。

6.点击“确定”按钮,进行因子分析。

7.SPSS会生成因子载荷矩阵、解释方差表、因子得分等结果。

可以根据因子载荷矩阵和解释方差表来解释因子的含义和解释度。

8.根据具体需求和分析目的,可以进行因子得分的计算和因子分组的分析。

二、聚类分析:聚类分析是一种无监督学习方法,可以将一组样本数据自动分成若干互不相交的群组,称为簇。

聚类分析可以用于数据的分组和群体特征的分析。

以下是使用SPSS软件进行聚类分析的步骤:1.打开SPSS软件,并导入要进行聚类分析的数据集。

2.菜单栏选择“分析”-“分类”-“聚类”。

3.在弹出的聚类分析对话框中,选择要进行聚类分析的变量,将其添加到“变量”框中。

可以选择多个变量进行分析。

4.在“距离”选项中,选择计算样本间距离的方法。

常用的方法有欧几里得距离、曼哈顿距离等。

5. 在“聚类方法”选项中,选择聚类算法的方法。

常用的方法有层次聚类(Hierarchical Clustering)、K均值聚类(K-means)等。

SPSS操作方法:聚类分析.doc

SPSS操作方法:聚类分析.doc

实验指导之一聚类分析的SPSS操作方法系统聚类法实验例城镇居民消费水平通常用下表中的八项指标来描述。

八项指标间存在一定的线性相关。

为研究城镇居民的消费结构,需将相关性强的指标归并到一起,这实际上就是对指标聚类。

实验数据表 XXXX年30个省。

市,自治区城镇居民月平均消费数据x1人均粮食支出(元/人) x5人均衣着商品支出(元/人)x2人均副食支出(元/人) x6人均日用品支出(元/人)x3人均烟、酒、茶支出(元/人) x7人均燃料支出(元/人)x4人均其他副食支出(元/人) x8人均非商品支出(元/人)x1x2x3x4x5x6x7x8北京7.78 48.44 8.00 20.51 22.12 15.73 1.15 16.61天津10.85 44.68 7.32 14.51 17.13 12.08 1.26 11.57河北9.09 28.12 7.40 9.62 17.26 11.12 2.49 12.65山西8.35 23.53 7.51 8.62 17.42 10.00 1.04 11.21内蒙古9.25 23.75 6.61 9.19 17.77 10.48 1.72 10.51辽宁7.90 39.77 8.49 12.94 19.27 11.05 2.04 13.29吉林8.19 30.50 4.72 9.78 16.28 7.60 2.52 10.32黑龙江7.73 29.20 5.42 9.43 19.29 8.49 2.52 10.00上海8.28 64.34 8.00 22.22 20.06 15.52 0.72 22.89江苏7.21 45.79 7.66 10.36 16.56 12.86 2.25 11.69浙江7.68 50.37 11.35 13.30 19.25 14.59 2.75 14.87安徽8.14 37.75 9.61 8.49 13.15 9.76 1.28 11.28福建10.60 52.41 7.70 9.98 12.53 11.70 2.31 14.69江西 6.25 35.02 4.72 6.28 10.03 7.15 1.93 10.39山东8.82 33.70 7.59 10.98 18.82 14.73 1.78 10.10河南9.42 27.93 8.20 8.14 16.17 9.42 1.55 9.76湖北8.67 36.05 7.31 7.75 16.67 11.68 2.38 12.88湖南 6.77 38.69 6.01 8.82 14.79 11.44 1.74 13.23广东12.47 76.39 5.52 11.24 14.52 22.00 5.46 25.50广西7.27 52.65 3.84 9.16 13.03 15.26 1.98 14.57海南13.45 55.85 5.50 7.45 9.55 9.52 2.21 16.30四川7.18 40.91 7.32 8.94 17.60 12.75 1.14 14.80贵州7.67 35.71 8.04 8.31 15.13 7.76 1.41 13.25云南9.98 37.69 7.01 8.94 16.15 11.08 0.83 11.67西藏7.94 39.65 20.97 20.82 22.52 12.41 1.75 7.90陕西9.41 28.20 5.77 10.80 16.36 11.56 1.53 12.17甘肃9.16 27.98 9.01 9.32 15.99 9.10 1.82 11.35青海10.06 28.64 10.52 10.05 16.18 8.39 1.96 10.81宁夏8.70 28.12 7.21 10.53 19.45 13.30 1.66 11.96新疆 6.93 29.85 4.54 9.49 16.62 10.65 1.88 13.61系统聚类法的SPSS操作:1. 从数据编辑窗口点击Analyze →Classify →Hierachical Cluster , (见图1)图1 系统聚类法打开层次聚类法对话如图2。

SPSS聚类分析具体操作步骤spss如何聚类 ppt课件

SPSS聚类分析具体操作步骤spss如何聚类 ppt课件
3. 聚类分析更象是一种建立假设的方法,而对相关假设 的检验还需要借助其他统计方法
SPSS聚类分析具体操作步骤spss如何聚类
• 注意
1. 聚类分析主要用于探索性研究,其分析结果可提供多 个可能的解,最终解的选择需要研究者的主观判断和 后续分析
2. 聚类分析的解完全依赖于研究者所选择的聚类变量, 增加或删除一些变量对最终解都可能产生实质性的影 响
• 按照远近程度来聚类需要明确两个概念:一个是点和点之 间的距离,一个是类和类之间的距离。
• 点间距离有很多定义方式。最简单的是欧式距离,还有其 他的距离。
• 当然还有一些和距离相反但起同样作用的概念,比如相似 性等,两点越相似度越大,就相当于距离越短。
• 由一个点组成的类是最基本的类;如果每一类都由一个点 组成,那么点间的距离就是类间距离。但是如果某一类包 含不止一个点,那么就要确定类间距离,
SPSS聚类分析具体操作步骤spss如何聚类
(一)按分类对象 对变量的聚类称为R型聚类 对观测值聚类称为Q型聚类 这两种聚类在数学上是对称的,没有什么不同。
(二)按聚类的方法分类 分层聚类或系统聚类分析 快速聚类分析 两步聚类分析:新型的
SPSS聚类分析具体操作步骤spss 如何聚类
分层聚类或系统聚类(hierarchical cluster)。开始 时,有多少点就是多少类。
SPSS聚类分析具体操作步骤spss如何 聚类
• 下拉框指定的是小类之间的距离计算方法7种供用 户选择
SPSS聚类分析具体操作步骤spss如何聚类
• 度量标准 计算样本距离的方法
SPSS聚类分析具体操作步骤spss如何聚类
属性图以树的形式展现 聚类分析的每一次合并 过程。冰柱图通过表格 中的冰柱显示。 可以指定并主图的输出 方向,纵向和横向
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS聚类分析:用于筛选聚类变量的一套方法
聚类分析是常见的数据分析方法之一,主要用于市场细分、用户细分等领域。

利用SPSS进行聚类分析时,用于参与聚类的变量决定了聚类的结果,无关变量有时会引起严重的错分,因此,筛选有效的聚类变量至关重要。

案例数据源:
在SPSS自带数据文件plastic.sav中记录了20中塑料的三个特征,分别是tear_res(抗拉力)、gloss(光滑度)、opacity(透明度),相关经验表面这20中塑料可以分为3个种类,如果用这三个变量进行聚类,请判断和筛选有效聚类变量。

一套筛选聚类变量的方法
一、盲选
将根据经验得到的、现有的备选聚类变量全部纳入模型,暂时不考虑某些变量是否不合适。

本案例采用SPSS系统聚类方法。

对话框如下:
统计量选项卡:聚类成员选择单一方案,聚类数输入数字3;
绘制选项卡:勾选树状图;
方法选项卡:默认选项,不进行标准化;
保存选项卡:聚类成员选择单一方案,聚类数输入数字3;
二、初步聚类
这是盲选得到的初步聚类结果,并且在数据视图我们可以看到已经自动生成了一个聚类结果变量,这个变量非常有用。

三、方差分析
是不是每一个纳入模型的聚类变量都对聚类过程有贡献?利用已经生成的初步聚类结果,我们可以用一个单因素方差分析来判断分类结果在三个变量上的差异是否显著,进而判断哪些变量对聚类是没有贡献的。

分析——比较均值——单因素方差分析:
选项选项卡:勾选均值图
由方差分析我们很明确的得知,纳入模型的三个聚类变量,其中只有“透明度”指标在各个分类上有显著的差异,也就是说分类有效果,让每个分类的差异很大,而两外两个变量则在三个分类上没有显著差异,没有很好的类别区分度,所以,我们可以认为,这两个变量对聚类无作用或者无贡献,可考虑踢出模型。

我们还想从可视化的角度来查看和判断,单因素方差分析为我们提供了均值图,可惜,这三个图却最容易误导我们的判断,因为spss在自动生产均值图时为每一个变量单独制图,而
且分配不同的纵轴坐标,导致每个图看起来都有非常大的差异,从视觉上迷惑我们做出错误的判断。

这里需要改进!
四、均值描述
为改进以上SPSS默认选项的不足之处,我们需要自己生成三个变量在不同类别上的均值,means过程可以帮助到我们。

从数字上来看,抗拉力(6.8、6.7、7.1)、光滑度(9.3、9.4、9.2)两个指标在三个类别上并没有多大的差异,而对聚类有贡献的透明度指标在不同类别上区分度非常明显。

五、多线均值图
克服纵轴刻度的方法是将这三个指标放在同一个坐标轴上进行对比,也就是制作一个多线均值图。

此时,结果已经一目了然了。

综上,我们可以将抗拉力、光滑度两个指标从模型中剔除,只留下透明度一个指标再进行聚类。

我们发现,前后两次聚类的结果一模一样,用一个指标可以代替以前三个指标的进行聚类。

我们这样做的意义何在?如果能将这些整理成为规则,形成经验,那我们就可以不用测量抗拉力和光滑度这两个指标了,你不觉得多测量两个指标成本会增加吗?。

相关文档
最新文档