演示文稿第七章淬火钢在回火时的转变
回火中组织变化.
淬火钢回火时组织和性能的变化
80~200℃,发生马氏体的分解
由淬火M中析出薄 片状细小的ε碳化物, 使M中碳的过饱和 度降低,通常把这 种过饱和α+ε碳化物 的组织称为回火马 氏体(M回)。在显 微镜下观察呈黑色 针叶状。
回火马氏体
淬火钢回火时组织和性能的变化
200~300℃发生残余奥氏体分解
残余奥氏体完 全分解为过饱 和的α+ε碳化 物的混合物, 这种组织与马 氏体分解的组 织基本相同。 组织为M回。
回火马氏体
淬火钢回火时组织和性能的变化
300~400℃,发生碳化物的转变 马氏体分解完成,过饱和的α中的含碳量达饱和 状态,M→F,但这时的铁素体仍保持着马氏体 的针叶状外形,这பைடு நூலகம்ε碳化物转变为极细的颗粒 状的渗碳体。 这种由针叶状F和极细粒状渗碳体组成的机械混 合物称为回火托氏体(T回)。
回火托氏体
淬火钢回火时组织和性能的变化
400℃以上,发生渗碳体的长大与固溶体再结晶
400℃以上粒状渗碳体将逐渐聚集长大,α相 开始回复,500℃以上时发生再结晶,从针 叶状转变为多边形的粒状,同时粒状渗碳体 聚集长大成球状,即在500℃以上(500650℃)得到由粒状铁素体+球状Fe3C组成 的回火组织——回火索氏体。(S回)
回火中组织变化(与“回火”有关优秀PPT文档)
组织为M 。 残余奥氏体完全分解为过饱和的α+ε碳化物的混合物,这种组织与马氏体分解的组织基本相同。
400℃以上,发生渗碳体的长回大与固溶体再结晶
回火马氏体
第3页,共5页。
淬火钢回火时组织和性能的变化
300~400℃,发生碳化物的转变
, 马氏体分解完成,过饱和的α中的含碳量达饱和状态 400℃以上,发生渗碳体的长大与固溶体再结晶
400℃以上,发生渗碳体的长大与固溶体再结晶
M→F,但这时的铁素体仍保持着马氏体的针叶状 淬火钢回火时组织和性能的变化
由淬火M中析出薄片状细小的ε碳化物,使M中碳的过饱和度降低,通常把这种过饱和α+ε碳化物的组织称为回火马氏体(M回)。
淬火钢回火时组织和性能的变化
外形,这时ε碳化物转变为极细的颗粒状的渗碳体。 在显微镜下观察呈黑色针叶状。
球状Fe3C组成的回火组织——回火索氏体。(S 回)
回火索氏体
第5页,共5页。
颗粒状的渗碳体。
回火托氏体
第4页,共5页。
淬火钢回火时组织和性能的变化
400℃以上,发生渗碳体的长大与固溶体再结晶
400℃以上粒状渗碳体将逐渐聚集长大,α相开始回 复,500℃以上时发生再结晶,从针叶状转变为多 边形的粒状,同时粒状渗碳体聚集长大成球状,即 在500℃以上(500-650℃)得到由粒状铁素体+
马氏体分解完成,过饱和的α中的含碳量达饱和状态,M→F,但这时的铁素体仍保持着马氏体的针叶状外形,这时ε碳化物转变为极细的
颗粒状的渗碳体。
这种由针叶状F和极细粒状渗碳体组成的机械混合 200~300℃发生残余奥氏体分解
由淬火M中析出薄片状细小的ε碳化物,使M中碳的过饱和度降低,通常把这种过饱和α+ε碳化物的组织称为回火马氏体(M回)。
第七章 合金钢简答题
第七章合金钢碳钢具备很多优点,在机器制造业中获得了广泛应用。
但是碳钢淬透性低、回火抗力差、不具备特殊的物理、化学性能,且屈强比低,约为0.6。
而合金钢屈强比一般为0.85~0.9。
在零件设计时,屈服强度是设计的依据。
所以,碳钢的强度潜力不能充分发挥。
为了满足使用要求,必须选用合金钢。
1、合金元素对钢中基本相有哪些影响?答:⑴与碳亲合力很弱的合金元素,溶入铁素体内形成合金铁素体,对基体起固溶强化作用,与碳不发生化合反应。
⑵与碳亲合力较强的合金元素,一般能置换Fe3C中的铁原子,形成合金Fe3C。
合金Fe3C较Fe3C稳定性略高,硬度较为提高,是低合金钢中存在的主要碳化物。
⑶与碳亲合力很强的合金元素,且含量大于5%,易形成特殊碳化物。
它比合金渗碳体具有更高的熔点、硬度、耐磨性和回火稳定性。
2、普通低合金钢与含碳量相同的碳素钢相比有什么特点?这类钢常用于哪些场合?钢中合金元素主要作用是什么?答:普通低合金钢是一种低碳、低合金含量的结构钢,其含碳量<0.2%,合金元素含量<3%。
与具有相同含碳量的碳素钢相比具有较高的强度,较高的屈服强度,因此,在相同受载条件下,使结构的重量减轻20~30%。
具有较低的冷脆转变温度(-30℃)。
普通低合金钢主要用于桥梁、车辆、油罐以及工程构件。
因此它的工作环境大多在露天,受气温和大气中腐蚀性气体的影响较大。
钢中合金元素的主要作用:Mn—强化铁素体基体;V、Ti—细化铁素体晶粒,形成碳化物起弥散强化的作用;Cu、P—提高钢对大气的抗蚀能力。
3、普通低合金钢常用于哪些场合?对性能有何要求?如何达到这些性能要求?答:普通低合金钢主要用于桥梁、车辆、油罐以及工程构件。
由于它的工作环境大多在露天,受气温和大气中腐蚀性气体的影响较大。
因此对它的性能要求如下:良好的综合力学性能,σs=350~650 MPa,δ=16~23%,αk=60~70 J/cm2;良好的焊接性、冷热加工性;较好的抗蚀性;低的冷脆转化温度,一般为-30℃。
淬火钢的回火转变.ppt
20世纪40~50年代
1940年,М.П.阿尔布左夫、库尔久莫夫等对奥氏体 单晶淬成的马氏体回火后X射线分析,提出在低温回 火时,析出一种不同于平衡相θ-1年,R.D.海登瑞琪及K.H.贾克的X射线研 究确定,FexC的晶体结构是正方晶系,定名为ε-碳 化物,x值在2~3之间。1962年,Μ.Β.别罗路斯确定 x=2.4。
困扰人们多年的马氏体强化机制问题也从此得 到突破。现在一致认为,Fe-C合金马氏体强 化机制中最重要的问题之一是碳原子的偏聚— —预脱溶阶段。
回火转变的内容:
淬火钢在回火过程中发生的转变
主要是马氏体的分解 残留奥氏体的转变 碳化物的聚集长大 α相的回复、再结晶等。
淬火钢组织中往往存在一些贝氏体组织,在连 续冷却过程中贝氏体往往与马氏体共存,因此, 回火时还有贝氏体的组织变化问题。如贝氏体 中的碳化物、M/A岛、贝氏体铁素体的转变等。
6.淬火钢的回火转变
序言
将淬火马氏体重新加热到低于临界点的某一温度, 保温一定时间,使亚稳的马氏体及残留奥氏体发 生某种程度的转变,再冷却到室温,从而调整零 件的使用性能。这种工艺操作称为回火。
在回火过程中发生的组织结构的变化即为马氏体 的回火转变。
钢经淬火获得的马氏体组织不能直接使用,需要进行 回火,以降低脆性,增加塑性和韧性,获得强韧性的 配合后才能实际应用。
断向平衡态转化的过程。
钢的回火转变的研究历程
20世纪30年代: 1927年,Г.В.库尔久莫夫等应用X射线研究马
氏体本质时,也测定了回火马氏体的晶体结构, 首先提出了马氏体回火后,马氏体的正方度c/a 值下降.随着温度升高而趋于1。 试验证实了马氏体在回火时的转变乃是一种过 饱和固溶体的脱溶过程。
1972年弘津利用薄晶体电子衍射技术得出,高、中碳马氏 体低温回火时析出的过渡相,即所谓ε-FexC相,并非六方 晶格,而应当为正交晶格,x=2,定名为η-Fe2C。这一结果 被一些研究者认同。
第7章 过饱和固溶体的脱溶分解
5、α相的再结晶( 400℃以上 )
当回火温度升高后,F基体将发生回复 (1)回复和晶粒长大 低、中碳钢的淬火M中有大量的位错,这些位错在回复初 期将通过滑移和攀移使得部分消失。同时有部分板条界面 消失,相邻板条合并成宽的板条。剩余的位错相互缠结成 胞块。400℃以上时,回复非常明显,板条形状丌明显,只 能看到边界丌清晰的亚晶块。但是有碳化物钉扎晶界,丌 会出现再结晶的现象。 高碳钢主要为孪晶型M,在250℃以上回火时孪晶开始消失, 到400℃以上时孪晶完全消失,保留片状M的特征成为回火 托氏体,在600℃以上回火时,片状M特征消失得到的组织 成为回火索氏体
34
三、合金钢在回火时力学性能变化的特点
合金元素对回火转变和组织性有很大影响,可归纳为三 个方面:
① 延缓钢的软化,即提高淬火 钢的回火抗力;
原因:合金与C及F的相互作用, 影响C的扩散和M的分解从而 提高回火抗力 ② 发生二次硬化现象;
原因:析出的合金碳化物的弥散 强化
③ 影响钢回火后的脆性。
35
第七章 过饱和固溶体的脱溶分解
脱溶分解:由过饱和固溶体析出新相或形成原子偏聚的过 程。 条件:固溶体的溶解度随温度的降低发生变化。
得到过饱和固溶体的方法:将合金加热到固溶线以上一定温 度保温足够时间,得到均匀的单相固溶体,然后快冷至室温, 即可得到过饱和固溶体。这个过程称为固溶处理。
过饱和固溶体的分解方法:将经固溶处理的合金加热到固溶 线一下某一温度保温一定时间,可实现过饱和固溶体的分解。 这一过程称为时效。 时效: 自然时效 T=室温 人工时效 T>室温 时效强化-沉淀强化
在100℃以下回火时,铁及合金元素的原子难以扩散,但C、 N等间隙原子尚可进行短距离的近程扩散。当C、N原子扩 散到微观缺陷处后,将降低马氏体的能量。因此,马氏体 中过饱和的C、N原子将向微观缺陷处偏聚。
钢的淬火和回火
对于共析钢和过共析钢,淬火温度为Ac1+ (30-50)℃。共析钢淬火后的组织为马氏体 和少量残余奥氏体。过共析钢由于淬火前经过 球化退火,因而淬火后组织为细马氏体加颗粒 状的渗碳体和少量残余奥氏体,如下图所示。 分散分布的颗粒状渗碳体对提高钢的硬度和耐 磨性有利。如果将过共析钢加热到Accm以上, 则由于奥氏体晶粒粗大,含碳量提高,使淬火 后马氏体晶粒也粗大,且残余奥氏体量增多, 这将使钢的硬度、耐磨性下降,脆性和变形开 裂倾向增加。
淬透性的应用
力学性能是机械设计中选材的主要依据,而钢 的淬透性又直接影响其热处理后的力学性能。 因此,在选材时,必须对钢的淬透性有充分的 了解。
图为两种淬透性不同的钢制成相同的轴经调质处理后, 其力学性能的比较。高淬透性的钢的整个截面都是回火索 氏体组织,力学性能均匀,强度高,韧性好。低淬透性钢 的心部组织为片状索氏体加铁素体,韧性差。
淬火方法
采用适当的淬火 方法可以弥补冷 却介质的不足, 常用的淬火方法 如图所示。
1)单介质淬火方法
将加热工件在一种介质中连续冷却到室温的淬 火方法。如水淬和油淬都属于这种方法。该方 法操作简单,易实现机械化,应用较广。
2)双介质淬火
是指将工件先在一种冷却能力较强的介质中 冷却,避免珠光体转变,然后转入另一种冷却 能力较弱的介质中发生马氏体转变的方法。常 用的方法是水淬油冷或油淬空冷。其优点是冷 却比较理想,缺点是第一种介质中停留时间不 易控制,需要有实践经验。该方法主要用于形 状复杂的碳钢工件及大型合金钢工件。
温 度
Ac3
Ar1
时间
3. 控制马氏体组织形态的热处理
低碳马氏体淬火 中碳钢高温淬火 高碳钢低温短时加热淬火 低碳合金钢复合组织淬火
《钢的淬火与回火》课件
03
02
01
03
新型环保介质开发
研发新型环保的淬火介质和回火材料,降低对环境的污染和破坏。
01
减少能源消耗
研究节能型的淬火与回火工艺,降低能源消耗和碳排放,实现绿色生产。
02
废弃物资源化利用
对淬火与回火过程中产生的废弃物进行资源化利用,减少对环境的负担。
目的
淬火的方法包括单液淬火、双液淬火、分级淬火和等温淬火等。
方法
淬火过程包括加热、保温和冷却三个阶段。加热阶段是将钢加热到奥氏体化温度;保温阶段是为了保证奥氏体化充分进行;冷却阶段是将钢迅速冷却至室温,使奥氏体转变为马氏体。
过程
淬火后的组织主要包括马氏体、残余奥氏体和少量未转变的铁素体。马氏体的形态和分布对钢的性能有重要影响。
淬火后的钢具有较高的硬度和强度,但同时也存在较大的脆性。为了获得良好的综合性能,通常需要对淬火后的钢进行回火处理。
性能
组织
CHAPTER
钢的回火
02
定义
回火是钢淬火后加热到低于临界点某一温度,并保温一定时间,然后冷却到室温的一种热处理工艺。
目的
消除淬火产生的内应力,提高钢的塑性和韧性,获得良好的力学性能和稳定组织。
组织:回火后钢的组织转变为多相混合组织,包括铁素体、奥氏体和碳化物。
CHAPTER
淬火与回火的关系
03
淬火的目的是通过快速冷却使钢的内部组织转变为马氏体,从而提高钢的硬度和强度。
回火的目的是通过加热使钢的内部组织进行转变,消除淬火过程中产生的内应力,提高钢的韧性和塑性。
淬火与回火是钢铁热处理工艺中的两个重要环节,二者相互关联,相互影响。淬火是回火的基础,回火的质量直接影响淬火的效果。
淬火钢的回火转变淬火钢在回火时的组织转变
淬火钢的回火转变淬火钢在回火时的组织转变§6淬火钢在回火时的组织转变概述:一、回火定义:经淬火硬化的钢被加热至A1以下的某一温度,保温一段时间,然后以适当的冷速冷却至室温,这一工艺过程称回火二、回火的目的1. 消除淬火应力,淬火应力(组织应力、热应力)>ζs变形,>ζb时引起裂纹,残余应力使钢的脆性上升2. 改善钢的韧性和塑性,使片状M中的Sv↓,使M正方度下降,内应力↓(晶格间)↓3.调整钢的力性指标4.稳定组织,稳定尺寸,使AR→k;AR→M→M回→B下§6-1碳钢的淬火组织在回火时发生的转变钢中含碳量不同时,钢在淬火后的组织也不尽相同当0.2-0.5﹪C 大部分为板条,少量为片状0.6-1.0﹪C混合M 错误!未找到引用源。
0.77﹪C M板+M片+AR 错误!未找到引用源。
>0.8﹪C 75﹪M片+M板+AR>1.0﹪C 100M片+AR淬火组织为亚稳定组织,及相对稳定状态亚稳状态,一个系统内除可以出现一个稳定状态外,其他任何事件还可能发生,这种状态称之为亚稳状态,它是系统本身强制作用形成的,在一定条件下可转变为稳定状态淬火钢被重新加热(回火)时,随加热温度升高,其比容和体积均发生变化,说明系统有组织转变发生,而且不同温度阶段有不同变化发生,这是钢从亚温状态向稳定状态变化的过程一、碳原子的偏聚淬火时M的C、N原子被强制溶入α相中,位于体心立方点阵(或体心正方点阵)的扁八面体间隙中心位置,使α点阵畸变,使系统的能量上升,而处于不稳定状态另一方面淬火M中存在大量的缺陷,也使其处于不稳定状态在室温附近,Me和Fe原子已经不能扩散,但C、N原子尚可以做短距离扩散,计算表明在0℃时,在一分钟内C、N可以迁移2埃的距离由于间隙造成的应力场与晶体缺陷造成的应力场相互作用,C、N原子扩散到这些微观晶体缺陷处,可是系统的能量降低——C、N原子发生偏聚偏聚,M中的C、N原子在一定的温度下向点阵缺陷处聚积的过程,成为C、N原子的偏聚,偏聚过程是一个自发过程,可以表示为C+⊥C⊥它是可逆过程,过程的方向取决于当时的系统能量状态1. 板条M中碳原子的偏聚错误!未找到引用源。
淬火碳钢回火时的组织转变
双相分解的速度 与温度有关,温度愈高,分解速度就愈快。经计算得出在不同温度下马氏体分解 一半所需时间,如表11.3所示。
表11.3 不同温度回火时马氏体的半分解期
温度,
0
20
40
℃
时间
340年 6.4年
2.5
月
60
80
100
120
3
8
50
8
天
小时
分钟
分钟
可见,提高温度将使高碳马氏体的双相分解速度大大加快。
随回火温度升高,c/ a逐渐减小,α相中碳含量逐渐降低。
这表明,由于回火温度不同,碳化物析出可以有两种不同方式,即双相分解和
单相分解。
(1)马氏体的双相分解 回火温度在125~150℃以下,马氏体以双相分解方式进行分解。此时,随着
碳化物的析出,出现两种正方度不同的α相,即具有高正方度的保持原始碳含量 的未分解的马氏体以及具有低正方度的碳已部分析出的α相。
由于温度较低,碳原子不能作远距离扩散,已经析出的碳化物不能继续长大。 马氏体的继续分解只能依靠在其他高碳区析出新的碳化物颗粒,并在其周围形成 新的低碳区。
随着分解过程进行,高碳区愈来愈少,低Байду номын сангаас区愈来愈多。当高碳区完全消失时 双相分解即告结束。此时,α相的平均碳含量降至C1。
低碳区的C1与马氏体原始C0及分解温度无关,为一恒定值,约为0.25%~ 0.30%。
在室温附近,Fe及合金元素原子都难以扩散迁移,但C、N等间隙原子尚能作 短距离扩散。当C、N原子扩散到上述微观缺陷处后,将降低马氏体的能量。
因此处于不稳定状态的淬火马氏体在室温附近,甚至在更低温度下停留时,C、 N原子可以作一定距离的迁移,出现C、N原子向微观缺陷处的偏聚现象。 对于板条状马氏体:
热处理讲稿-钢的常规热处理
3. 回火工艺选择和计算
a. 回火温度选择原则 在生产中按照回火硬度来选择回火温度,各种钢的
回火温度与硬度的关系曲线可从手册中查到,淬火温 度高的、工件尺寸小的,通常采用回火温度范围的上 限温度,反之则选下限温度。
b. 回火时间的选择原则 保证工件透烧和组织转变充分,内应力得到消除。
回火时间th可用下式定量计算: 回火温度保持时间 th =
﹣11Cr+ 100V + 60Mo + 60W + 60Si + 700P+3 (硫效应)
Ms (℃) =
39﹣423C﹣30.4Mn﹣17.7Ni﹣12.1Cr﹣7.5Mo﹣3 .7W
五、 回火工艺
定义 回火是将淬硬后的工件加热到Ac1以下的某一温度,保温
一段时间后,再冷却到室温的热处理工艺。
级淬火 e 贝氏体等温淬
火
4. 马氏体分级淬火
a . 图中c、d曲线。工件在盐浴或碱浴的分级温 度(接近Ms点)中保持一定时间,再出炉空冷。
b. 由于在靠近Ms点温度停留,使工件截面均匀 冷却后再空冷,使相变应力和热应力大大降低,有 效地减少变形和开裂的倾向。
5. 贝氏体等温淬火 a. 在260-400℃等温,获得下贝氏体组织的淬火,
二、退火工艺
定义 退火是将工件加热到适当温度,保温一段时间后再进行缓慢冷却的热处理
工艺。 类型
完全退火— 亚共析钢铸、轧、锻和焊接件, Ac3+30~70℃ 球化退火— 适应共析和过共析钢 ,Ac1+20~30℃ 去应力退火— 消除内应力,﹤Ac3 再结晶退火— 亦形变过程中的中间退火,再结晶温度以上150 ~200℃。 均匀化退火— 亦扩散退火,熔点以下100~200℃ ( 还有不完全退火、等温退火、预防白点退火等) 目的 ① 降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ② 减少或消除铸、锻、焊等引起的诸如偏析和晶粒粗大等组织缺陷,为尔 后的热处理作组织准备。 ③ 降低或消除工件的内应力,防止变形和开裂。
第七章 钢的回火转变
等轴F的形成
①再结晶;②晶粒长大的结果
淬火内应力的消除—第一、第二、第三类内应力
高碳钢中回火马氏体与下贝氏体的区别
从显微组织的形态和分布来看,下贝氏体与高碳钢回火马氏体很相似, 都是暗黑色针状,各个针状物之间都有一定的交角,而它们的区别是 :
1)高碳钢的回火马氏体表面浮凸呈N字形,下贝氏体的表面浮凸是不平行 的,相交成“v”形或“Λ”形; 2)高碳钢回火马氏体中存在位错与孪晶,下贝氏体中铁素体也有位错缠结 存在,但没有孪晶结构存在; 3)下贝氏体中碳化物的分布与高碳钢回火马氏体中碳化物的分布明显不 同,前者沿着与贝氏体长轴呈50~60倾斜的直线规律排列,与相间析出相 似,而后者在相中均匀分布; 4)在高碳钢中回火马氏体的韧性低于同强度下贝氏体的韧性。
2.合金元素对AR转变的影响 1)ARB、 ARP 、AR M 二次淬火—当AR在B和P之间的A稳定区域保持,AR不发生分解,在随后冷 却转变为M。 2)回火时的二次淬火和稳定化、催化现象 催化—回火时二次淬火的Ms’Ms产生的二次M的量较多 稳定化—回火时二次淬火的Ms’Ms 产生的二次M的量较少 二次淬火M 脆性--必须再进行回火 3.合金元素对碳化物聚集长大的影响 合金碳化物的聚集长大:小颗粒碳化物的溶解,碳和合金元素扩散到大颗粒
Fe5C2 单斜晶系 /-碳化物与-碳化物的惯习面不同 -碳化物不是由/-碳化物转变而来
单独形核并长大 离位析出 -碳化物 {112} 从-碳化物直接转变而来—就地形核(原位析出)
{110} 重新形核长大 变化趋势:由具有一定饱和度的相与其有共格联系的-碳化物的混合组织, 转变为相与其无共格联系的-碳化物的混合组织。 转变后的组织—回火屈氏体 注:①在碳浓度<0.4%的马氏体回火时, 不形成-碳化物; ②在碳浓度<0.2%的马氏体回火时, 不析出-碳化物,而是直接形成-碳 化物。
材料热处理第7章钢的回火转变
低碳钢的Ms点较高,淬火时发生自回火。
在淬火形成马氏体的过程中,除了可能发生碳原子向位错的偏聚外,在最先形成
的马氏体中还可能发生自回火,析出碳化物。钢的Ms点愈高,淬火冷却速度愈慢, 则自回火析出的碳化物就愈多。
回火温度较低不析出碳化物,高于200℃的回火析出碳化物。 淬火后在100~200℃之间回火时,低碳板条状马氏体不析出碳化物,C原子仍然 偏聚在位错线附近,这是由于C原子偏聚的能量状态低于析出碳化物的能量状态。 当回火温度高于200℃时,才有可能通过单相分解析出碳化物,使α基体中的碳含 量降低。
560 ℃ 如Ta= 250℃
等温 停留
二次淬火现象产生的原因:
a. C 、N原子气团作用。
一定温度 (如560℃)保温,破坏了柯氏气团,C、N原子将从位错逸出而使
原子气团“蒸发”,从而减小相变阻力,起到催化(反稳定化)作用。
b. 碳化物的析出提高了残余奥氏体的Ms点。
碳化物析出使其碳含量和合金元素含量下降。
马氏体分解(回火第一阶段转变)
总结:
随着回火温度↑——→不断析出过饱和碳——→马氏体的 碳含量↓ ——→立方马氏体+ε碳化物
淬火+低温回火
回火M B下组织相似
不同碳含量马 氏体回火时碳 浓度的变化
(三) 残余奥氏体转变(200~300℃)
残余奥氏体转变
1)残余奥氏体向珠光体及贝氏体的转变
2)残余奥氏体向马氏体的转变
a. 马氏体的双相分解
温度: 回火温度在125~150℃以下; 特征:
C0
碳化物
C1
碳化物
随着碳化物的析出,出现两种正方度不同的α相:
具有高正方度的保持原始碳含量的未分解的M; 具有低正方度的碳已部分析出的M。
第七章钢的回火转变
• 温度对马氏体的分解起决定作用。马氏 体的含碳量随回火温度的变化规律如图958所示。马氏体的含碳量随回火温度升 高不断(bùduàn)降低,高碳钢的马氏体含碳量 降低较快。
精品文档
• 回火时间对马氏体中含碳量影响较小。当回火温度高 于150℃后,在一定温度下,随回火时间延长,在开 始1-2h内,过饱和碳从马氏体中析出很快,然后逐渐 减慢,随后再延长时间,马氏体中含碳量变化(biànhuà)不 大。因此钢的回火保温时间常在2h左右。
• 淬火钢中内应力很大,淬火钢件必须立即回火,以 消除或减少内应力,防止变形或开裂,并获得稳 定的组织和所需的性能。
精品文档
• 为了保证淬火钢回火获得所需的组织 和性能,必须研究淬火钢在回火过程 中的组织转变,探讨回火钢性能和组 织形态之关系,并为正确制订回火工 艺(gōngyì)(温度、时间等)提供理论依据。
• 碳钢中比E碳化物稳定的碳化物有两种: 一种是x-碳化物,化学式是Fe5C2,具有 (jùyǒu)单斜晶格;另一种是更稳定的渗碳体 ( Fe3C)。
精品文档
• 碳化物的转变主要取决于回火温度,也 与回火时间有关。图9-63表示(biǎoshì)回火温 度和回火时间对淬火钢中碳化物变化的 影响。由图可见,随着回火时间的延长 ,发生碳化物转变的温度降低。回火温 度升高,达到相同效果所需时间减少。
精品文档
• 淬火钢在500—650℃回火得到的回复或 再结晶了的铁素体和粗粒状渗碳体的机 械混合物叫做(jiàozuò)回火索氏体。在光学显 微镜下能分辨出颗粒状渗碳体(图9-69), 在电子显微镜下可看到渗碳体颗粒明显 粗化(图9-70)。
• 淬火高碳钢在200-300℃回火时, 残留奥氏体分解为a相和E碳化物组 成的机械混合物,称为回火马氏体 或下贝氏体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3).残余奥氏体转变,发生于200℃300℃, 属于低温回 火,得到回火马氏体(M');
(4).碳化物转变,ε(η)→θ, 发生于~400℃,属于中温回
火,得到回火屈氏体(T'); (5). 基 体 α 相 回 复 再 结 晶 , 碳 化 物 聚 集 长 大 , 发 生 于
7.1.2 马氏体的分解
马氏体的分解--过渡型碳化物析出阶段。
此过程发生在温度高于100℃(80~250℃)时,马氏体 开始发生部分分解,随回火温度的升高及时间的延长,富 集区的碳原子发生有序化然后转变为碳化物。随碳化物的 析出,马氏体的含碳量不断减少,点阵常数c下降、a升高、
正方度c/a不断下降,并析出弥散分布的过渡型ε碳化物。
马氏体的分解有两种分解方式(即双相分解和单相分解),分 解析出的ε碳化物与马氏体保持共格关系。 化ε物碳与化基物体为ε马-氏Fe体xC保(持x共=2格~关3)系,,具存有在蜜一排定六的方晶结体构学,关ε系碳。 ε不是平衡相,而是向渗碳体转变前的一个过渡相。
对于含碳量低的板条马氏体只发生碳原子向位错线附近的 偏聚,没有碳化物析出。
400℃550℃,属于高温回火,得到回火索氏体(S')。 这五个过程的温度不能截然分开。
7.1.1 马氏体中碳原子的偏聚
马氏体中碳原子偏聚-时效阶段(~100℃)
马氏体是碳在α-Fe中的过饱和固溶体,存在于体心立方扁 八面体中的碳原子将使晶体点阵产生严重畸变,使马氏体处 于不稳定状态。为了降低能量,在100℃左右,碳原子就偏 聚于位错或孪晶界面,或板条界,形成微小的碳的富集区。
1.板条马氏体 亚结构为位错, 碳原子向位错线附近偏聚形成偏
聚区。C+⊥ = ⊥C
2.片状马氏体 亚结构主要为 孪晶,大量的碳原子向垂直于马 氏体的C轴的(100)面富集, 形成富碳区。
含碳0.21%的Fe-C合金,奥氏 体化后淬火,150℃回火10分钟, 用原子探针测得α基底含碳0.03 %,而板条马氏体的条界碳含量 为0.42 %,说明淬火或回火过 程中,碳偏聚于板条。
时,正方度c/a接近1。
合金元素对单相式分解有 很大的影响。
(二)低碳及中碳马氏体的分解
低碳钢及中碳中MS点高,淬火过程中会
发生碳原子偏聚及碳化物析出,这一特征 称为自回火。淬火后,在150℃回火时, 不再发生碳化物的析出。当回火温度高于 200℃时,发生单相分解析出碳化物。中 碳钢正常淬火得到板条与片状马氏体的混 合组织,并有低碳、高碳马氏体特征。
双相分解机制: a) 在碳原子的富集区,形成碳化物核,周围碳原子的扩
散促使其长大。但由于温度低,进行的仅仅是近程扩散, 从而形成具有二个浓度的α相,析出的碳化物粒子也不易 长大。
b) 在高碳区继续形成新核,随时间延长,高碳区逐渐变 成低碳区,高碳区减少。
c) 低碳区增多,平均成分将至0.250.3%,与原始碳量、 分解温度无关。
概述
回火的定义:
度将加淬热火保零温件,重使新淬加火热亚到稳低组于织临发界生点转A变1某为一稳定温 的回火组织,并一适当的冷却速度冷却到室温 的热处理工艺过程。
回火目的:
(1)使淬火得到的亚稳组织转变为稳定的回 火组织;
(2)提高淬火钢的塑性和韧性,降低脆性;
(3)降低或消除淬火引起的残余应力,防止 变形和开裂,稳定工件尺寸。
(一)高碳马氏体分解
1.马氏体双相分解
当温度低于125℃时,回火后可出现两种 不同的正方度。下页表为含碳1.4% 的马氏 体回火后点阵常数、正方度与含碳量的变化。 从表中可看出,125℃以下回火得到的二种 正方度为:具有高正方度的保持原始碳浓度的 未分解的马氏体以及具有低正方度的碳已部 分析出的α相。
表7-1 含碳 1.4%的马氏体回火后点阵常数、 正方度与含碳量的变化
回火温 回火时 a 度℃ 间
室 温 10d 2.846
100 1h
2.846
125 1h
2.846
150 1h
2.852
175 1h
2.857
200 1h
2.859
225 1h
2.861
250 1h
2.863cຫໍສະໝຸດ c/a3.02 3.02 2.886 2.886 2.884 2.878 2.874 2.872
(优选)第七章淬火钢在回火 时的转变
本章基本内容
• 回火的定义、目的 • 淬火钢的回火时的组织转变 • 淬火钢回火时力学性能的变化
基本要求
1.回火的定义、目的、淬火组织为淬火亚稳组织 2.淬火钢的回火时的组织转变的五个阶段: • 马氏体中碳的偏聚 • 马氏体分解:类型、过程、产物, • 残余奥氏体转变:过程、产物 • 碳化物转变:碳化物类型、方式、过程、产物 • 基体α相回复再结晶,碳化物聚集长大:淬火内应力的变化、 碳化物聚集长大方式、基体α相回复再结晶的过程、产物 3. 淬火钢回火时力学性能的变化 • (1)低、中、高碳钢淬火后回火时力学性能的变化 • (2)回火时强度、硬度、塑性、韧性、淬火裂纹等的变化 • (3)合金元素对钢回火时组织转变和性能的影响 • (4)回火脆性:类型、特征、影响因素、减小和防止方法 • 4. 回火转变产物与过冷奥氏体分解产物在组织、性能等方面的 区别
7.1 淬火钢的回火时的组织转变
淬火后得到的组织由马氏体和残余奥氏体所组成,它们都 是处于亚稳定状态,是亚稳组织,有自发转变为铁素体和渗 碳体平衡组织的倾向。回火可使组织转变,性能改变,内应 力消除。回火时组织和性能的转变称为回火转变。 回火时的组织转变大体上可分为五个阶段:
(1).马氏体中碳的偏聚— 时效阶段,100℃以下;
1.062 1.062 1.013 1.012 1.009 1.006 1.004 1.003
碳含量 (%) 1.4 1.2 0.29 0.27 0.21 0.14 0.08 0.06
2.马氏体单相分解
当温度高于150℃时,碳 原子扩散能力加大,α相中 不同浓度可通过长程扩散 消除,析出的碳化物粒子 可从较远处得到碳原子而 长大。故在分解过程中, 不再存在两种不同碳含量 的α相,碳含量和正方度不 断下降,当温度达300℃