基于TL494的推挽式开关电源
基于TL494直流开关电源的设计
题目名称:基于TL494直流开关电源的设计陈摘要:本文主要介绍脉冲宽度集成芯片TL494内部结构和功能,以及基于TL494直流开关稳压电源的设计。
该电源输入15~28V直流电源,输出5~12V可调,文波峰峰值小于150mV,限流保护电流为2A的直流电源。
关键字:脉冲宽度 TL494 开关电源目录1系统设计 (3)1.1设计指标 (3)1.2设计思路 (3)1.2.1 DC-DC变换器电路拓扑结构 (3)1.2.2实现方案及结构框图 (4)2单元电路设计 (4)2.1 TL494内部结果及功能 (4)2.2基于TL494直流型稳压电源的设计 (6)2.2.1工作原理 (6)2.2.2参数计算机器件选择 (7)3系统测试 (8)3.1测试方法 (8)3.2测试结果 (8)4设计结论分析 (9)5参考文献 (9)6附录 (10)6.1器件清单 (10)6.2电路原理图 (10)1系统设计1.1设计指标(1)电源容量输入:直流15~28V 。
输出:电源电压5~12V(可调),纹波小于150mVP-P ,最大输出电流2A(限 流型保护) 。
(2)工作频率开关电源的工作频率为30~40kHz 。
(3)控制电路采用脉冲宽度调制控制集成电路。
1.2设计思路1.2.1 DC -DC 变换器电路拓扑结构如图1所示为DC -DC 变换器电路,电路正常工作时,当功率管T1的基极输入为低电平时,T1管导通。
此时电感处于储能的状态。
从电感出来的电流一部分流过负载,另一部分则对电容C 进行充电。
反之,当T1管的基极输入为高电平时,PNP 管截止。
此时电感开始释放能量,同时电容C 放电,这两部分的电流图1.DC -DC 变换器电路通过续流管,继续维持负载的电流。
导通状态:11t LU U t L U I OI L ON -==∆截止状态:22t LU t L U I O L OFF ==∆由于OFF ON I I ∆=∆,所以有:I IO U Ut t t U ε=+=211。
基于TL494构成推挽式9~15 V开关电源的设计
1
≈ 45 kHz
RC 22 kΩ ⋅1 000 pF
(1)
1.3 推挽式电路的设计
直流电压进入变压器 T1、T2 的初级线圈,形成感
应电动势,驱动两个次级绕组也形成感应电动势,进 而推挽式电路工作 [3]。其中正反馈的作用使得两个三
极管 V1、V2 交替导通,此时构成自激型推挽式电路。
但当 TL494 驱动 V3、V4 功率管工作后,经由变压器
关键词:开关电源;推挽式;线性调整率;TL494
Design of Push-pull 9~15 V Switching Power Supply Based on TL494
WU Zi-han,JIANG Xin-xin (College of Engineering,Yanbian University,Yanji 133002,China)
TL494控制BUCK型开关电源电路
TL494控制BUCK型开关电源电路摘要1、引言电源的优劣直接影响到各类电子设备的性能。
因此设计出性能良好的电源意义重大。
广义的讲,能够提供电能的设备称为电源。
我们这里所指的电源是把身边现有的电源转化成我们电子设备所需要的某种类型电源的一种电子装置。
开关电源是直流稳压电源的一种,自问世以来,以其轻小高效越来越受到人们的青睐,在直流电源的大多场合已取代了传统的线性开关电源,并且正不断发展,其市场广阔。
2、DC/Dc变换器主电路及其控制方式开关电源功率调整管都工作在开关状态下,而线性稳压电源的功率管工作在线性放大状态下,这是开关电源与线性稳压电源的显著区别,也是开关电源这个名字由来的原因。
目前开关电源中目前常用的半导体开关管有GTR、MOSFET、IGBT等,通过控制信号控制其导通与关断,实现将一种直流电转换成另外一种大小的直流电,配上电感电容滤波器件能输出稳定。
DC/DC变换器是开关电源中最主要的功率变换环节。
DC/DC变换器有输入输出无隔离(即“直通”)型和输人输出隔离型两种类型。
“直通”型DC/oC变换器典型的电路有Buck(降压)型、Boost(升压)型、Buck一Boost(升降压)式和Cuk型等几种类型;输人与输出隔离型的DC/DC变换器典型的电路有单端正激式、单端反激式、推挽式、半桥式和全桥式等几种类型。
但无论哪种类型的DC/DC变换器的开关电源,其基本原理都是开关管工作于开关状态下,通过改变开关管导通与关断的时间关系来改变输出电压的。
开关电源要实现输出稳定少不了相应的控制电路,其电路有三种:(l)由分立元件构成;(2)通过软件编程由单片机系统来实现;(3)由专用的集成控制器来实现。
其中专用集成控制器实现方式以其使用方便、无需编程、所需元件数量少等优点,是开关电源常用的一种控制方式。
TL494就是其中常见的一种专用集成控制器。
3、TL494介绍TL494由德州仪器公司设计并推出,推出后立刻得到市场的广泛接受,尤其是在PC机的ATx半桥电源上。
基于TL494的井下高频开关电源应用分析
测到 出现过流 , 减小 晶体管的导通时 间 , 出电 只要 其输 压就会 降低 , 到过流保护作用 。 起
2 0 第2 0年 期 1
互 斜l 瞧晨 技
8 3
K 2 0 N 综 合 监 控 系 统 应 用 J00
刘 世 刚
( 岗矿 业集 团公 司 新岭煤矿 , 鹤 黑龙江 鹤 岗 140 ) 510
A
关键词
软启动
中图分类号 T 64 D 1
文献标识码
当前 在井下运 输 、 升、 提 通风 等各控 制系统 中常 需要高频 、 高性能 、 功能强大的开关 电源来辅 助各控制 设备 的运行 , 以前应 用 的开关 电源大都 使用简单 模 而 拟电路实现 , 其功 能及稳 定性都 不是很 理想 , 于此 , 鉴
驱动级 ; 5 具 有 死 区 时 间可 调 功能 , () 因而可 实 现 过
图 1 基 于 TA9 I 4的井下开关电源电气原理 图
热, 过压 和过流等 参数范 围 的控 制 ; 6 内部 5 () V基 准
电压源具有 5 %稳压精度 ;7 具有外 同步功能 ;8 工 () ()
2 2 过 流保 护 的方 法 .
输入电压
1
输出电压 VE CR 输 出电流 ( 个 电路 ) 1 I C 误差放 大器 同步 电流 1 A 0 MP 计时器容量范 围 计时期阻抗范 围 振荡器频率 C T R T F S OC 0 4 .7 18 . 1
0 4 2o 0 O3 . 10 O Oo 50 0 30 3
V m A mA n F k Q kz H
TA 4是一种 电压控 制模 式的 P I9 WM 控制 和驱 动 的集 成 电路 芯 片 。由 于 它 具 有 两 路 相 位 差 10 的 8。
基于TL494开关电源设计
基于TL494的DC-DC开关电源设计摘要随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。
近年来 ,随着功率电子器件(如IGBT、MOSFET)、PWM技术以及电源理论发展 ,新一代的电源开始逐步取代传统的电源电路。
该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。
开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。
开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。
本论文采用双端驱动集成电路——TL494输的PWM脉冲控制器设计小汽车中的音响供电电源,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。
关键词:IGBT,PWM,推挽电路,半桥电路,单端正激BASED ON THE DC-DC TL494 SWITCHING POWER SUPPLYABSTRACTWith the rapid development of electronic technology, electronic systems, more and more extensive applications, the types of electronic equipment, more and more electronic equipment and people work and live closer and closer. In recent years, with the power electronic devices (such as IGBT, MOSFET), PWM switching power supply technology and development of the theory, a new generation of power began to gradually replace the traditional power supply circuits. The circuit is small, flexible to control the output characteristics of a good, ripple, load adjustment rate and so on.Switching power supply in the power adjustment control work in the off state, with low power consumption, high efficiency, wide voltage range, low temperature rise, and other outstanding advantages of small size, the communication equipment, CNC equipment, Instrumentation, video audio, home appliances so widely used in electronic circuits. High frequency converter switching power supply so many forms of commonly used with push-pull converter, full bridge, half bridge, single-ended forward and the form of single-ended flyback. In this thesis, two-side driver IC - TL494 PWM pulse output of the controller design car audio power supply in use as a switch MOSFET, can improve the efficiency of the power transformer, is conducive to impulse noise suppression, but also can reduce the size of the power transformer.KEY WORDS: IGBT,MOSFET,Push-pull circuit,Half bridge circuit, Single-ended forward目录前言 (1)第1章开关电源基础技术 (6)1.1 开关电源概述 (6)1.1.1 开关电源的工作原理 (6)1.1.2 开关电源的组成 (7)1.1.3 开关电源的特点 (7)1.2 电源电路组成 (8)1.3开关电源典型结构 (5)1.3.1串联开关电源结构 (5)1.3.2并联开关电源结构 (5)1.4 电力场效应晶体管MOSFET (11)1.5 开关电源的技术指标 (8)第2章开关变换电路 (10)2.1 推挽开关变换电路 (10)2.1.1 推挽开关变换基本电路 (14)2.1.2 自激推挽式变换器 (15)2.2 半桥变换电路 (18)2.3 正激变换电路 (19)2.4 DC/DC升压模块设计 (20)第3章双端驱动集成电路TL494 (19)3.1 TL494简介 (19)3.2 TL494的工作原理 (20)3.3 TL494内部电路 (240)3.4 TL494构成的PWM控制器电路 (22)第4章 TL494 在汽车音响供电电源中的应用 (28)4.1 汽车音响电源简述 (28)4.2 汽车音响供电电源的组成 (30)4.2.1 TL494的辅助电路设计 (30)4.2.2 主电路的设计 (32)结论 (29)谢辞 (30)参考文献 (35)附录 (36)外文资料翻译 (37)前言电源是实现电能变换和功率传递的主要设备、在信息时代,农业、能源、交通运输、信息、国防教育等领域的迅猛发展,对电源产业提出了更多、更高的要求,如:节能、节电、节材、缩体、减重、环保、可靠、安全等。
基于TL494开关电源的设计_白炳良
第22卷第2期大 学 物 理 实 验 Vol .22No .22009年06月出版PHYSICAL E XPERIMENT OF COLLE GE Jun .2009收稿日期:2009-04-10文章编号:1007-2934(2009)02-0073-06基于TL494开关电源的设计白炳良 周慰君(漳州师范学院,漳州,363000)摘 要 开关电源主回路将输入的15VAC 电压整流滤波所得的直流电压通过升压斩波电路,变换为25~30VDC 输出。
主控制器为PIC16F877A 单片机。
整个系统由整流滤波电路、DC -DC 变换器、控制电路、按键显示等模块组成。
主控制器和TL494以闭环形式控制DC -DC 变换电路,实现输出电压稳定可调。
该电源还具有过流保护、自恢复、软启动和短路报警功能。
关键词 DC -DC 变换器;PWM ;TL494;单片机PIC16F877A中图分类号:O4-33 文献标识码:A1 系统设计1.1 DC -DC 变换器电路拓扑结构图1 升压斩波电路原理图将降压后的交流电压进行升压变换,这里选择了升压斩波电路,其电路原理图如图1所示。
此拓扑结构电路结构简单,仅由开关管、二极管、电感、电解电容等元件组成,只要控制合适的占空比,就能够以较高的效率进行升压,而且此电路稳压性能优、转换效率高。
因此,选择升压轨波电路作为DC -DC 变换的主拓扑结构[1,2]。
1.2 系统实现方案及结构框图系统设计框图如图2所示。
设计中以升压斩波电路为主回路,该电路实现将整流滤波后的输入电压变为25V ~30V 的输出电压。
整个系统以单片机PIC16F73和PW M 调制芯片TL494构成控制系统。
TL494产生的脉冲信号控制DC -DC 变换器,同时还通过外围电路实现稳压、过流保护、自恢复、软启动和短路报警等功能。
单片机与电压反馈模块配合,通过控制数字电位器MCP41010的输出值,实现输出电压值的设定和步进的调整,单片机还通过A /D 模块,实现输出电压、电流值的数显。
【开题报告】基于TL494小功率开关电源设计
开题报告电子信息工程基于TL494小功率开关电源设计一、综述本课题国内外研究动态,说明选题的依据和意义(1)国内外研究动态随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,然而电子设备都离不开可靠的电源,进入80年代后计算机的电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。
开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。
开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。
线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。
随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。
开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。
另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。
开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。
与线性电源相比,PWM开关电源更为效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。
脉冲的占空比由开关电源的控制器来调节。
一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。
推挽式直流开关电源的设计
推挽式直流开关电源的设计摘要随着现代通讯技术的飞速发展,对通讯电源的重量、体积、可靠性、效率等提出了更高的要求。
而应用于中大功率场合的移相全桥DC/DC变换器具有结构简单、输出功率大、效率高、易实现软开关、功率开关管所承受的电压电流应力小等一系列优点,因此,对它进行研究具有十分重要的意义。
本文首先对DC/DC升压变换器的电流触发主电路、输入电路、反馈电路控制芯片、推挽变压器进行了详细的讲解,其中重点对MOS场效应管的损耗问题进行了研究和分析。
其次本文也对本实验用到的器件进行了简单的介绍并给出了所需器件的参数,建立了模型并用Protel Altium Designer 6.9仿真软件对系统的稳定性进行了分析。
最后根据自己的仿真结果做出了实际电路并进调试一切正常,达到了所需要的效果。
关键词:DC/DC电压变换器;推挽变压器;反馈电路控制芯片AbstractWith the rapid development of modern communication technology, communication power of the weight, volume, reliability, efficiency, and put forward higher requirements. The power applied to the phase-shifted full-bridge where the DC/DC converter has a simple structure, high output power, high efficiency, easy to realize soft-switching, the power switch is exposed to a series of voltage and current stress of the advantages, therefore, its study is of great significance. This article first DC/DC boost converter current triggering the main circuit, input circuit, feedback circuit control chip, push-pull transformers were in detail.The focus of the MOS FET loss problems were studied and analyzed. Secondly, the paper also used in this study a brief introduction devices and gives the necessary parameters of the device, the establishment of a model and simulation using Protel Altium Designer 6.9 software to analyze the stability of the system. Finally, the simulation results according to their actual circuit and thus made all the normal debugging, achieves the required effect.Keywords: DC/DC boost converter; push-pull transformer; feedback circuit control chip目录摘要 (I)1 绪论 (1)1.1开关电源的发展历程 (1)1.2开关电源的分类 (1)1.2.1按驱动方式分类 (1)1.2.2按能量转换过程的类型分类 (2)1.2.3按输入与输出是否隔离分类 (2)1.2.4按功率开关管关断和开通工作条件分类 (2)1.3开关电源的特点 (2)1.4本文主要工作 (3)2 开关电源的基础知识 (4)2.1开关电源DC/DC变换器的软开关技术分类 (4)2.2开关电源移相全桥DC/DC变换器控制技术 (5)2.3开关电源常用拓扑结构 (6)2.3.1非隔离式开关电源拓扑结构 (6)2.3.2隔离式开关电源拓扑结构 (8)2.3.3开关电源各种拓扑结构的比较 (10)2.4开关电源的调制方式 (10)2.4.1脉冲宽度调制 (10)2.4.2 脉冲频率调制 (10)2.4.3 混合调制 (11)2.5开关电源的控制方式 (11)2.5.1电压控制模式 (12)2.5.2电流控制模式 (13)3 开关电源主电路的设计 (15)3.1逆变器的工作原理 (15)3.2换器的滤波电容和电感的选取 (16)3.2.1滤波电容的选取 (16)3.2.2滤波电感的选取 (16)3.2.3高频逆变电源的设计核心就是变压器的设计 (17)3.3变压器绕制步骤 (18)3.4硬件抗干扰措施 (19)3.5仿真结果 (19)4 开关电源控制芯片的设计 (22)4.1 TL494芯片简介 (22)4.2外围电路的介绍 (26)4.3仿真结果 (27)5 开关电源反溃电路的设计 (28)5.1电源反馈部分的工作原理 (28)5.2仿真结果 (30)6 结论 (31)致谢 (33)参考文献 (34)1 绪论1.1开关电源的发展历程随着电子技术的发展, DC/DC 电源已经形成一个庞大的工业, 材料、工艺、外封装的不断改进, 使DC/DC产品普遍被工业界采用, 并在军界、医疗、宇航等领域迅速推广。
基于TL494的开关稳压电源设计
基于TL494的开关稳压电源设计张双冀苗苗李怡潜李竹(山西师范大学物理与信息工程学院,山西临汾041004)[摘要]在分析传统BUCK 电路特点的基础上,提出了一种基于TL494的开关稳压电源设计方案。
为了缓解开关电源效率与纹波二者之间的矛盾,该设计方案采用了两个改善措施:开关管代替续流二极管;多个滤波电容并联代替单个滤波电容。
通过测试,当电源效率大于85%时,纹波系数可降低到1.6%。
另外本设计还具有过流保护功能和负载识别功能。
[关键词]开关电源;PWM 波;BUCK 电路;稳压中图分类号:TN86文献标识码:A文章编号:1008-6609(2019)01-0009-041引言对开关电源的研究是当今电源设计中最为活跃的课题之一,由于开关电源具有效率高、稳压范围宽、体积小、重量轻、输出精度高等优点,因此被广泛用于电子计算机、通讯、家电等各个行业。
然而开关电源的效率和纹波存在矛盾,即在开关频率一定时,提高了电源效率,同时纹波也增大,使电源稳定性能降低,反之若降低纹波,又会导致电源效率下降。
为了缓解效率和纹波二者之间的矛盾,同时电源效率和纹波电压都控制在比较理想的范围内,本设计方案主要采用了两个改进措施:用开关管代替续流二极管和用多个滤波电容并联代替单个滤波电容。
本设计方案以16V 到5V 的直流电源降压转换为例进行说明。
2理论分析在DC-DC 非隔离式开关电源拓扑结构中,根据工作开关T 、电感L 、二极管D 、电容C 的连接方式不同,可以分为BUCK 拓扑结构、BOOST 拓扑结构、BUCK-BOOST 拓扑结构,其中BUCK 拓扑结构能完成输出电压低于输入电压的降压功能。
BUCK 拓扑结构电路原理图如图1所示。
PWM 波作用于开关管T 的控制极,使得输入电压值为U I 的直流电压源为后续电路间歇提供能量;电感L 起储能作用,是开关稳压电路的标志元器件;电容C 起滤波作用,将开关高频谐波滤除;续流二极管D 在开关管断开时,为负载R L 提供了通路;反馈采样电路中的采样电阻R 1和R 2,为主控电路提供负反馈信号,使其产生稳定占空比的PWM 波。
ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解
用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路ATX电源的控制电路见图1。控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。本例为此种工作方式,故将{13}脚与{14}脚相连接。比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。其中a是死区时间比较器。因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。为防止这样的事情发生,494设置了死区时间比较器a。从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。494内部还有3个二输入端与门(用1、2、3表示)、两个二输入端与非门、反相器、T触发器等电路。与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平。反相器的作用是把输入信号隔离放大后反相输出。与非门则相当于一个与门和一个反相器的组合。T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次。如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平。比较器、与门、反相器、T触发器以及锯齿波振荡器及{8}脚、{11}脚输出的波形见图2。339是四比较过流保护过压保护一、产生PW-OK信号PC主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-OK信号(约的C比较器的输出端{14}脚为零电平。另外,339的{1}脚低电平信号因D34的钳位作用,也使{14}脚为低电平,经R50和R63使{11}脚亦为低电平。因此D比较器的输出端{13}脚为低电平,也就是PW-OK信号为低电平,主机不会工作。开启主机时,通过人工或遥控操作闭合了与PS-ON相关的开关,PS-ON呈低电平,经R37使339的反相端{6}脚为低电平,B比较器{1}脚输出高电平,D35、D36反偏截止,A比较器的输出电平则由{5}脚与{4}脚的电平决定。正常工作时,{5}脚电平低于{4}脚电平,{2}脚输出低电平,经R41送到494的{4}脚,使{4}脚的电平变为低电平,锯齿波振荡信号可以从死区时间比较器a输出脉冲信号,另一方面,振荡信号送到了PWM比较器b 的同相输入端,PWM比较器输出的脉冲信号的宽度,则是由494的{1}脚的电平(也就是负载的大小)与{16}脚的电平来决定。PWM比较器输出的脉冲信号,最后经缓冲放大器放大后,从{8}、{11}脚输出脉冲信号,ATX电源向主机输出±5V、±12V、+3.3V电源。此过程因C35的充电有数百毫秒的延时,但对主机开机并无影响。494的{1}脚从+5V、+12V经取样电阻R15、R16得到电压,其电平略高于{2}脚电平,{3}脚输出高电平,经R48使339的{9}脚得到高电平,其电平高于{8}脚电平,因而{14}脚输出高电平,此电平经R50与基准+5V电源经R64共同对C39充电,经数百毫秒后,{11}脚电平升到高于{10}脚电平时,D比较器{13}脚输出高电平,此电平经R49反馈至{11}脚,维持{11}脚处于高电平状态,故{13}脚输出稳定的高电平PW-OK信号,主机检测到此信号后即开始正常工作。关机时,主机内开关使PS-ON呈高电平,此时339的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管D34的钳位作用,{14}脚呈低电平,C39对C比较器及B比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK信号呈低电平。在339的{1}脚为低电平时,经D36使{4}臆脚为低电平,{2}脚输出高电平,经R41传送到494的{4}脚,但因C35电位不能突变,经数百毫秒的放电后方使494的{4}脚转为高电平,从而封锁正负脉冲的输出,主机进入待机状态。上述的过程中,关机时C39和C35都要放电,但因放电时间常数不同,C39放电较快,故PW-OK信号先于各电源变成低电平,满足了主机关机的需要。此外,关机时因各路输出电源的电解电容放电需要时间,也使PW-OK信号先于各电源回到低电平。二、稳压494的{2}脚经R47与基准电压+5V相连,维持较好的稳定电压,而{1}脚则与取样电阻R15、R16与+5V、+12V相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高。当输出电压升高时(无论+5V或+12V),{1}脚电平高于{2}脚电平,c比较器输出误差电压与锯齿波振荡脉冲在PWM比较器b进行比较使输出脉冲宽度变窄,输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升。由于494内的放大器增益很高,故稳压精度很好。从稳压的原理,我们可以得到ATX电源输出电压偏高或偏低的维修方法。如果输出电压偏低,可在494的{1}脚对地并联电阻,或是把R47的电阻增大。要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大R33或取下R69、R35来降低输出电压。三、过流保护过流保护的原理是基于负载愈大,Q3、Q4集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14整流和C36滤波,再经R54、R55并联电阻与R51、R56、R58等组成的分压电路送到494的{16}脚。随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促使调制脉冲的宽度变窄从而使负载电流减小。另外,从R56、R58并联电阻获得的分压再经R52送到339的{5}脚,当{5}脚的电平超过{4}脚时,{2}脚即输出高电平送到494的{4}脚,494停止输出脉冲信号,终止±5V、±12V、+3.3V 电源的输出,达到过流及短路保护的目的。需要说明的是:494的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响494的{4}脚电平状态,而339的{5}脚电平一旦超过{4}脚的电平,339的{2}脚就送出高电平去封锁449的脉冲输出,终止±5V、±12V、+3.3V电源的输出,同时{2}脚的高电平经R59和二极管D39反馈到{5}脚,维持{5}脚处于高电平状态,此时若过载或短路状态消失,494的{4}脚仍维持高电平,±5V与±12V、+3.3V电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机。四、过压保护过电压保护由R17和稳压管Z02并联电路从+5V采样,经D37送到339的{5}脚。若+5V电源由于某种原因升高,339的{5}脚电平也会随之升高,当超过{4}脚电平时,{2}脚即送出高电平去494的{4}脚,封锁±5V、±12V、+3.3V电源的输出,达到过电压保护的目的。正常工作时,R17上的压降不大,Z02截止送到{5}脚的电压较低,若+5V电源的电压上升,使R17上的压降超过Z02的稳压值,Z02导通,+5V电源上升后的电压值全部加到339的{5}脚上,促使其快速封锁494脉冲的输出,以保护电源五、欠压保护欠压保护从-5V的D32及-12V处的R14取样,经R34和D37送到339的{5}脚。若因某种原因使输出电压过低时,-12V及-5V电压的负值也会随之减小,也就是电压值上升,经R34及D37送往339的{5}脚使电平上升,339的{2}脚送出高电平到494的{4}脚,从而封锁449脉冲的输出,实现欠压保护。二极管D32在导通时,其电压降与通过的电流基本无关,保持在0.6V~0.7V,于是-5V电压的减少量会全部传送到D32的负端,提高了欠压保护的灵敏度。六、电源保护电路故障的维修从上面的叙述中可以了解到,各种保护电路最终都是通过控制339的{5}脚电平来控制494的{4}脚电平实现的。正常工作时,339的{5}脚电平低于339的{4}脚电平,339的{2}脚输出低电平,使494的{4}脚呈低电平状态(约为0.25V)。若339的{5}脚电平高于339的{4}脚电平,339的{2}脚输出高电平,于是494的{4}脚变为高电平,电源就进入了保护状态,终止各路电源的输出。因此ATX电源出了故障,若电源的整流、滤波、逆变以及辅助电源均完好,则要检查339的{4}、{5}脚的电平。若是{5}脚电平高于{4}脚的电平,表示电源进入了保护状态。下一步则找出是什么原因使电源进入了保护状态。可检查与339的{5}脚相连各支路另一端的电压是不是比{5}脚电压高,高出{5}脚电压的支路就是故障所在的支路。另外,也可以用断开与{5}脚相连的一个个支路,若是断开某一条支路后{5}脚的电平正常了,那么故障就出在这一条支路上。再沿着这条支路往下查,很快就可以把故障排除。下面通过两个实例来加以说明。1.一台SLPS-250ATXC电源的输出电压偏低。空载下,+5V电源的电压只有+1.8V,其他各路电压也按比例同样下降。电源是采用TL494及LM339集成电路的典型ATX电路。检查494的{4}脚电压为+2.6V。电路似乎处于保护状态。但保护状态时各路输出的电压均应为零,而现在却是正常电压的三分之一,令人费解。试着把494的第{4}脚接地,电源立即输出正常。{4}脚接地就正常工作,说明494并未损坏,问题可能出在339以及有关的电路。用万用表查339管脚的电压,当查到第{4}脚及{7}脚时,各路电源均正常了。甚至只用一条表笔去碰{7}脚或{4}脚,也可使电源恢复正常工作。这等于在{4}脚或{7}脚上加了一条“天线”,天线接收了外来信号电源就工作正常了!我试了试天线的长度,40厘米以下对电源不起作用,长度增加了,输出电压也随着增加,达到1米左右时,输出电压就正常了,494的{4}脚电压也恢复到0V。但电源要用“天线”才能工作,说明还有故障未找到。再检查339的{4}脚与{5}脚的电压,{5}脚电压为2.4V,{4}脚的电压为1.2V,输出端{2}脚的电压为2.9V。(这部分电路见图3)。但是339的{2}脚高电位,必须由{5}脚电位高于{4}脚的电位时才能产生,那{5}脚最初的高电位是怎么来的?把与{5}脚相连的各支路断开试一试。在断开c支路以后,电源就正常了。沿着D2往下找,最后在+3.3V电源处对地接一个1000μF的电容时,电源就正常了。再检查+3.3V电源原来的滤波电容,发现已经失效。更换电容后494的{4}脚电压恢复正常,用表笔去碰触339的{4}脚或{7}脚也不起作用,问题得到了解决。为什么+3.3V电源的滤波电容失效会造成输出电压偏低?+3.3V电源在没有电容滤波时,输出的直流电源中含有很强的由逆变功率管输出的脉冲成分,通过D3及D2送到LM339的{5}脚,使{5}脚的电平高于{4}脚的电平,电源进入了保护状态。从+20V 电源经R3、D1、R2和三个并联电阻到接地的支路中,三个电阻并联后的电阻值是2.43kΩ,再略去其他支路的影响,可以估算出{5}脚的电压大约是2.3V,因二极管D1的钳位作用,{2}脚输出电压只能在2.9V左右,经R1送到TL494的{4}脚,减去电阻R1的降压,494的{4}脚电压就是2.6V了。在此电压下,494会输出较窄的脉冲,于是在空载下,+5V电源有约1.8V的电压输出。解决的办法可在d支路中串联一个47kΩ的电阻,并把R2由3.9kΩ换成100kΩ就行了。经这样处理后,不论是正常工作或是保护状态,各路电源的输出电压和各管脚的电压均正常了。而R2电阻的改动,也不会影响电源的过载保护性能。至此,电源的故障才完全得到了解决(爱好者手中若有SLPS-250ATXC电源,可参考此例加一个47kΩ电阻以提高电源的保护性能)。为什么339的{4}脚加了天线会正常工作呢?这是{2}脚经D1反馈到{5}脚后,产生了轻微的高频寄生振荡。{4}脚或{7}脚接了天线以后,破坏了电路的振荡条件,使{4}脚的电压升高,当超过{5}脚的电压时,{2}脚送出0V的低电平信号到494的{4}脚,电源就工作正常了。同样,在D1支路中串联了47kΩ电阻后,增加了阻尼因数,破坏了电路的振荡条件,电源也就正常了。此时若取下+3.3V电源处新加的电解电容,通电后,电源会立即进入保护状态,各路电源都没有输出。2.一台新时代HY-ATX300电源,空载时输出电压正常,但不能带动负载。检查494各个管脚的电压,发现{12}脚的电压只有10V,这是造成不能带动负载的原因。在辅助电源逆变变压器T3的初级线圈1加上16.5V的高频电压,测得次级+5VSB挡线圈3的电压是0.9V,向494集成电路{12}脚供电线圈4的电压为1.5V,约是+5VSB挡线圈电压的 1.7倍。电源的+5VSB电源是直接从线圈3经整流和滤波后得到,+5VSB电源的稳压则是借助WD431稳压集成电路和光电耦合器反馈回逆变三极管得到的,如图4所示。由此可以算出线圈4的电压为5×1.7=8.5V,因负载较轻,经电容滤波后的电压就是10V左右了。由此说明T3脉冲变压器线圈4的匝数少了。拆开T3变压器,得到各绕组的匝数为:初级2×110匝;反馈绕组10匝;+5VSB绕组12匝;绕组4的匝数是8匝。重新绕制绕组4,把匝数由原来的8匝增加到20匝,其余绕组的匝数不变。绕好后上机实验,494集成电路{12}脚的电压上升到17V,电源的输入功率可达130W,故障排除。从故障现象看,可能是工厂生产时将变压器装错了。。
基于TL494的推挽式开关电源
基于TL494的推挽式开关电源基于TL494的推挽式开关电源摘要:采用双端脉冲调制器件TL494,在输出端设置分压电路,通过反馈回路形成闭环调制,实现了电压的稳定输出。
拓补结构采用推挽式,控制俩开关管的轮流交替导通。
本电源输出电压为28V,输出功率P0为5.6W一、系统的结构框图图一:电源的结构框图二、各部分的介绍1.推挽式拓补结构图二是典型的推挽式电路,基本原理是:输入电压通过开关管K1和K2的轮流交替导通实现斩波,使直流变成交流,通过变压器升压后,经过二极管整流滤波,再经电感输出平均的直流电压。
电容C为输出滤波电容。
由于推挽式开关电源中的两个控制开关K1和K2轮流交替工作,其输出电压波形非常对称,并且开关电源在整个工作周期之内都向负载提供功率输出,因此,其输出电流瞬间响应速度很高,电压输出特性很好。
推挽式变压器开关电源是所有开关电源中电压利用率最高的开关电源,它在输入电压很低的情况下,仍能维持很大的功率输出,所以推挽式变压器开关电源被广泛应用于低输入电压的DC/AC逆变器,或DC/DC转换器电路中。
图二:推挽式拓补结构原理图2.TL494脉宽调制器TL494为专用双端脉宽调制器件,本电源的连接原理图如下图。
图中误差放大器EA1的同相端(脚1)接在由两个电阻组成的分压器上,EA1的反相端(脚2)通过4.7K的电阻接到基准电压端(脚14),若一脚反馈回的电压大于基准电压5V,误差放大器EA1输出电压增加,导致晶体管Q1的导通时间变短,使一脚处电压保持在5V,从而稳定了输出电压。
同理当误差放大器EA2的反相端(脚15)连接的回路有扰动时就会通过控制晶体管Q2的导通时间来是输出稳定。
15脚和3脚之间的电容是为了加大误差放大器EA1的高频负反馈降低其高频增益及抑制高频寄生振荡用的。
死区时间控制端(脚4)不是直接接地的,而是通过10K电阻接地并通过10UF电容和14脚连接电阻和电容器组成一个软启动电路,输入电源刚接通时,由于电容器两端电压不能突变,故14脚输出地基准电压5V全部加到4脚上,使脚4处于高电平,死区时间比较器的输出亦为高电平,故Q1、Q2处于截止状态,开关电源无输出,随着电容器充电的进行,电容器两端电压逐渐升高,10K电阻两端电压逐渐降低,Q1、Q2逐渐导通,正常工作时,10K电阻两端电压近似为零。
基于TL494的推挽式开关电源设计
0 引 言
随着 太 阳能 、 风 能等 自然 绿色 能 源被开 发 , 电源 的 设计 必 不 可 少 [ 】 ] 。绿 色 能 源 受 外 界 环 境 因 素 的影 响, 输 出功率 不稳 定 , 因此 本 文介 绍 了 由 TI A9 4芯 片 为控 制核 心 的2 5 0 W高 频开关 电源 模块 作 为直 流 辅 助 供 电 电源 , 系 统结 构 简 单 , 输 出 电压 稳 定 且 可 调 范 围 宽 。该模 块可 以作 为 太 阳能 电池 、 风能 以及 车 载 逆 变 电源 的前 级 I X; / D C模 块 。
通 镌 电 . 潦
2 0 1 7年 3月 2 5日第 3 4卷第 2期
举
Ma r .2 5 ,2 0 1 7,Vo 1 .3 4 No . 2
Te l e c o m P o we r Te c h n o l o g y
d o i : 1 0 . 1 9 3 9 9 / j . c n k i . t p t . 2 0 1 7 . 0 2 . 0 2 7
:
基于 T L 4 9 4的推 挽 式 开关 电源 设计
欧少敏
( 桂林 电子科技大学 信息科技学 院 电子工程系 , 广西 桂林 5 4 1 0 0 4 )
摘要 :针对 当前绿 色能源单独供 电不稳定 , 而逆变并 网技 术要求 高的情况下 , 采 用直 流辅助供 电方法 , 设 计 了以电压
t h e c o r e , D C / D C p u s h - p u l l c o n v e r t e r a s ma i n c i r c u i t t o p o l o g y o f p u l s e wi d t h mo d u l a t i o n s wi t c h i n g p o we r s u p p l y , t h e c i r —
tl494开关电源工作原理
tl494开关电源工作原理摘要:1.TL494 开关电源的工作原理概述2.TL494 开关电源的主要构成部分3.TL494 开关电源的工作过程4.TL494 开关电源的优点与应用领域正文:一、TL494 开关电源的工作原理概述TL494 开关电源是一种高效、低噪音的开关型直流稳压电源,广泛应用于各种电子设备中。
其工作原理主要基于开关管的开通和关断,通过改变开关管的占空比来调整输出电压,实现高效稳定的电源供应。
二、TL494 开关电源的主要构成部分TL494 开关电源主要由以下几个部分组成:1.输入电源:为开关电源提供交流电源,一般为220V 交流电。
2.开关管:负责开启和关闭电源通路,通常采用场效应管或绝缘栅双极晶体管。
3.控制电路:用于驱动和控制开关管,主要包括驱动电路和保护电路。
4.输出滤波电路:用于滤除开关电源输出电压中的高频成分,得到干净的直流电压。
5.反馈电路:用于实时监测输出电压,通过调整开关管占空比来保持输出电压稳定。
三、TL494 开关电源的工作过程TL494 开关电源的工作过程可以分为以下几个步骤:1.开关管导通:在控制电路的驱动下,开关管被导通,输入电源的交流电通过开关管进入开关电源。
2.开关管截止:在控制电路的控制下,开关管被截止,输入电源的交流电被切断,开关电源输出电压为0。
3.输出滤波:开关电源输出的电压经过输出滤波电路,滤除其中的高频成分,得到稳定的直流电压。
4.反馈调整:反馈电路实时监测输出电压,根据输出电压与目标电压的偏差,调整开关管的占空比,从而实现输出电压的稳定。
四、TL494 开关电源的优点与应用领域TL494 开关电源具有以下优点:1.转换效率高:采用开关管进行能量传递,损耗较小,转换效率较高。
2.输出电压稳定:通过反馈电路实时调整开关管占空比,实现输出电压的稳定。
3.低噪音:采用开关方式进行能量转换,有效降低了电源工作过程中的噪音。
基于TL494的推挽式开关电源设计
基于TL494的推挽式开关电源设计欧少敏【摘要】针对当前绿色能源单独供电不稳定,而逆变并网技术要求高的情况下,采用直流辅助供电方法,设计了以电压型控制芯片TL494为电源管理芯片、DC/DC推挽变换器为主电路拓扑结构的脉宽可调制的开关电源,并给出了系统的电路设计方法以及主要功能模块电路的参数计算,同时对该电源进行了性能测试,搭建了直流辅助供电的硬件实验平台,并进行了可行性验证.实验数据和结果表明设计的可行性.%In view of the current green power supply instability alone and the demand of invert grid-connected technology is high, this paper adapts the dc auxiliary power supply method.Designed with the voltage type control chip TL494 as the core, DC/DC push-pull converter as main circuit topology of pulse width modulation switching power supply, the circuit design method of the system and the main function modules of the circuit parameters are calculated.At the same time, the performance of the power supply is tested, and the hardware experiment platform isbuilt.Experimental data and results show the feasibility of the design.【期刊名称】《通信电源技术》【年(卷),期】2017(034)002【总页数】3页(P78-79,86)【关键词】TL494;DC/DC变换器;开关电源;辅助供电【作者】欧少敏【作者单位】桂林电子科技大学信息科技学院电子工程系,广西桂林 541004【正文语种】中文随着太阳能、风能等自然绿色能源被开发,电源的设计必不可少[1,2]。
基于TL494芯片的开关电源设计
的心脏,是所有电设备的动力,但电源却不像心脏那样形式单 丝管 FU、滤波线圈 LBQ、热敏电阻 RT1 和由 D1、D2、D3、D4 组
一,其形式根据要求是多样化的。一般电力(如市电)要经过转换 成的整流桥及滤波电容 C5、C6 构成。滤波线圈 LBQ 和电容
才能符合使用的需求,转换要求有:交流转换成直流,大功率中 取小功率等,这一过程有人形象地说成:粗电炼为精电,炼为精
过开关电路把直流电转为高频脉动直流电,再送高频开关变压 (带抽头) 向 Q3、Q4 提供集电极电压,13V 副电源也向 TL494
器降压。然后滤除高频交流部分,这样最后输出供电路使用相对 芯片提供直流电压。
纯净的低压直流电。
24V 电源输出由 D16(MUR3040)集成块组成的全波整流、
在线性电源中,让功率晶体管工作在线性模式,与线性电 电容、电感滤波获得,其稳定性是由芯片 TL494 控制的,其控制
秦月梅
基于 TL494 芯片的开关电源设计
教理育论观 研察 究
基于 TL4 9 4 芯片的开关电源设计
秦月梅
(常州建东职业技术学院 江苏省 213022)
摘 要 本文以 TI 公司的 TL494 芯片作为开关电源控制器,设计了一款半桥式变压器开关电源。首先介绍
了开关电源的优点及整体设计思路,其次按照几大功能模块(输入部分、控制部分、输出部分、保护电路部分)分别
从日常生活到最尖端的科学都离不开电源技术的参与和支 持,而电源技术和产业对提高一个国家劳动生产率的水平,即提
来升高或者降低。通过增加变压器的二次绕组数就可以增加输 高一个国家单位能耗的产出水平,具有举足轻重的作用。本文通
出的电压组数,最后这些交流波形经过整流滤波后就得到直流 过对浪涌电流保护,输入输出的滤波整流,电路中的缓冲吸收电
基于TL494的开关电源设计
毕业设计报告书设计题目:基于TL494的开关电源制作系部:电子信息系专业:新能源应用技术班级:能源1001基于TL494的12V开关电源制作摘要随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备与人们的工作、生活的关系日益密切。
近年来 ,随着功率电子器件(如GTR、MOSFET)、PWM技术以及电源理论发展 ,新一代的电源开始逐步取代传统的电源电路。
该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。
开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。
开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。
本论文是基于TL494的12V开关电源设计,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。
矚慫润厲钐瘗睞枥庑赖。
关键词:直流磁偏自激振荡TL494目录第1章开关电源基础技术 (1)1.1 开关电源概述 (1)1.1.1 开关电源的工作原理 (1)1.1.2 开关电源的组成 (2)1.1.3 开关电源的特点 (3)1.2 关电源典型结构 (3)1.2.1 串联开关电源结构 (3)1.2.2 并联开关电源结构 (4)第2章开关电源主控元件 (6)2.1 功率晶体管(GTR) (6)2.1.1 功率晶体管的结构 (6)2.1.2 功率晶体管的工作原理 (7)2.1.3 功率晶体管的特性与参数 (7)2.2 电力场效应晶体管(MOSFET) (8)2.2.1 电力场效应晶体管特点 (8)2.2.2 MOSFET的结构和工作原理 (8)第3章开关电源中的TL494 (10)3.1 TL494的内部功能 (10)3.2 TL494的特点 (10)3.3 TL494的工作原理 (11)3.4 TL494内部电路 (12)第4章开关电源的原理图设计 (14)4.1 交流滤波设计 (14)4.2 整流桥电路设计 (14)4.3 半桥逆变和全波整流设计 (16)4.4 变压器电路设计 (16)4.5 主控电路设计 (17)4.6 滤波电路设计 (18)第5章组装与调试 (19)5.1 开关电源的组装 (19)5.2 开关电源的调试 (19)总结 (20)致谢 (21)参考文献 (22)第1章 开关电源基础技术1.1 开关电源概述1.1.1 开关电源的工作原理开关电源的工作原理图如图1-1所示;图中输入的直流不稳定电压U i 经开关S 加至输出端,S 为受控开关,是一个受开关脉冲控制的开关调整管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于TL494的推挽式开关电源
基于TL494的推挽式开关电源
摘要:采用双端脉冲调制器件TL494,在输出端设置分压电路,通过反馈回路形成闭环调制,实现了电压的稳定输出。
拓补结构采用推挽式,控制俩开关管的轮流交替导通。
本电源输出电压为28V,输出功率P0为5.6W
一、系统的结构框图
图一:电源的结构框图
二、各部分的介绍
1.推挽式拓补结构
图二是典型的推挽式电路,基本原理是:输入电压通过开关管K1和K2的轮流交替导通实现斩波,使直流变成交流,通过变压器升压后,经过二极管整流滤波,再经电感输出平均的直流电压。
电容C为输出滤波电容。
由于推挽式开
关电源中的两个控制开关K1和K2轮流交替工作,其输出电压波形非常对称,并且开关电源在整个工作周期之内都向负载提供功率输出,因此,其输出电流瞬间响应速度很高,电压输出特性很好。
推挽式变压器开关电源是所有开关电源中电压利用率最高的开关电源,它在输入电压很低的情况下,仍能维持很大的功率输出,所以推挽式变压器开关电源被广泛应用于低输入电压的DC/AC逆变器,或DC/DC转换器电路中。
图二:推挽式拓补结构原理图
2.TL494脉宽调制器
TL494为专用双端脉宽调制器件,本电源的连接原理图如下图。
图中误差放大器EA1的同相端(脚1)接在由两个电阻组成的分压器上,EA1的反相端(脚2)通过4.7K的电阻接到基准电压端(脚14),若一脚反馈回的电压大于基准
电压5V,误差放大器EA1输出电压增加,导致晶体管Q1的导通时间变短,使一脚处电压保持在5V,从而稳定了输出电压。
同理当误差放大器EA2的反相端(脚15)连接的回路有扰动时就会通过控制晶体管Q2的导通时间来是输出稳定。
15脚和3脚之间的电容是为了加大误差放大器EA1的高频负反馈降低其高频增益及抑制高频寄生振荡用的。
死区时间控制端(脚4)不是直接接地的,而是通过10K电阻接地并通过10UF电容和14脚连接电阻和电容器组成一个软启动电路,输入电源刚接通时,由于电容器两端电压不能突变,故14脚输出地基准电压5V全部加到4脚上,使脚4处于高电平,死区时间比较器的输出亦为高电平,故Q1、Q2处于截止状态,开关电源无输出,随着电容器充电的进行,电容器两端电压逐渐升高,10K电阻两端电压逐渐降低,Q1、Q2逐渐导通,正常工作时,10K电阻两端电压近似为零。
图三:电源的原理图
5脚和6脚连接的RT 、CT 决定了振荡频率,振荡频率CT RT f .1
.1 。
TL494的脚图如下:
图四:TL494引脚图
3.电感L 值的选取及计算
(1)电感值的计算 在图二中,当控制开关K1接通时,输入电压i U 通过控制开关K1加到开关变压器线圈N1绕组的
两端,在控制开关K1接通Ton 期间,开关变压器线圈N3绕组输出一个幅度为Up (半波平均值)的正激电压o
U ,然后加到储能滤波电感L 和储能滤波电容C 组成的滤波电路上,在此期间储能滤波电感L 两端的电压l e 为:
t i l d Ld e /=—— K1接通期间
(3-1)
式中:i U 为输入电压,o U 为直流输出电压,即:o U 为滤波电容两端电压c
u 的平均值。
对(3-1)式进行积分得:
)0(0i t L U U d L U U i o p t t
o p l +-=-=⎰——K1接通瞬间 (3-2)
式中)0(i 为初始电流(t = 0时刻流过电感L 的电流)。
当控制开关K 由接通期间Ton 突然转换到关断期间off T 的瞬间,流过电感L 的电流l
i 达到最大值:
x on o
p m I T L U U I +-=——K1
关断前瞬间 (3-3) a o p p a x o m U U U U U I I I =+=+=-
,,2 (3-4)
即:
2-
+=p p o U U U ——输出电压 (3-5)
进一步求得:
)1(2D nU U i o -= ——D 小于0.5时 (3-6)
3-5和3-6式就是计算推挽式变压器开关电源输出电压的表达式。
式中,o
U 为推挽式变压器开关电源输出电压,i
U 为推挽式变压器开关电源输入电压,Up 为推挽式变压器开关电源开关变压器次级线圈N3绕组的正激输出电压,Up-为推挽式变压器开关电源开关变压器次级线圈N3绕组的反激输出电压,n 为开关电源次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。
根据上面分析结果,3-3式可以写为:
on P p T I U U L 02-
-= ——K1关断前瞬间 (3-7)
当两个控制开关K1、K2的占空比取值均为0.25时,-
=pa pa U U 3,由此我们也可以认为Up 等于3Up-。
把上面已知条件代入3-7式,可求得:
001212FI nU I T nU L i i == ——D 为0.25时
(3-8)
F 为控制开关的工作频率,n 为开关电源次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。
在本例中,通过计算电感最终选取299UH 。
,
(2)磁环的选择及圈数的确定
在本电源中,磁环选择的是型号050125,通过查阅磁环技术资料可知,电感的大小与所绕圈数的平方成正比。
050125型号绕制1000圈时电感值为56mH ,由此可计算出电感值为299uH 时圈数为73圈。
通过实际绕制,非常准确。
考虑到裕量,实际取电感值略大于299uH 。
4.正激式变压器参数值的确定
由3-6式,在本电源中,取占空比为0.25,代入3-6式可得匝数比n=21:6。
(1)输入功率
在本电源中输出电压为28V ,输出功率为5.6W ,效率为71%。
则输入功率:
W P IN O P .88≈=效率 (4-1)
(2)磁芯的选择
面积乘积AP 可由下式确定:
e a IN A W f
P AP ⨯=⨯=6.675 (4-2)
本电源中频率为73KHZ ,代入上式可得出AP=7404
mm ,查阅磁芯资料选EE-25磁芯,e
A 为51.8,则可算出a
W 为14.28。
(3)有效热阻
根据EE-EI-ETD-EC 型磁芯经验公式可得有效热阻
54.053-⨯=e th V R ℃/W (4-3)
查阅磁芯资料,找到EE-25所对应的e
V 为2.99cm 3
,代入上式,可得th
R =29.4℃/W (4)最大磁通密度的变化范围
当最大温升为40℃时,变压器最大可允许损耗功率为
th core cu R C
P P P deg =+≡
(4-4)
算出P 为1.36W ,通常假设将此损耗等分为铜耗与磁芯损耗。
即2/P P P core cu ===0.68W
故可得磁芯允许的单位体积损耗为
e core V P v = =227mW/3cm
(4-5)
单位为mW 级,通常采用B 类单位换算,可通过查表知道
d p f B C v ⨯⨯= (4-6)
其中B 的单位为Gs ,f 单位为HZ ,求解得B 为
P d f C B /11⎪⎪⎭⎫ ⎝⎛⨯⨯=体积磁芯损耗
(4-7)
我们采用的TDK 公司的铁氧体磁芯PC40,查表得P=2.5,C=4.514
10-⨯,d=1.55。
代入上式可求得B=0.1844T 。
上式中B 代表实际变换器工作的AC B 大小,于是可得允许变化的磁通密度范围为B B ⨯=∆2=3688Gs 。
(5)伏秒数
Gs A Z E B t ⨯⨯=∆100 (4-8)
其中A 代表有效磁通面积。
实际工作的伏秒数为:
f D V E IN t ⨯=
(4-9)
本电源选取的占空比为0.25,输入电压取15V ,代入上式可得t
E =51.4Vus (6)匝数
令Gs B 3688=∆,依据以下方程式求解N
A B E n t P ⨯∆⨯=100 (4-10)
将数据代入上式求得P
n =5.4匝。
实际取6匝,则副边为23匝。
原边选取0.5mm 漆包线,采用双层双线并绕;副边选取0.35mm 漆包线,采用双层双线并绕。