山东省淄博实验中学2020届高三上学期期末考试数学试题 (含答案)

合集下载

高考数学复习历年考点题型专题讲解38--- 数列中的通项公式(解析版)

高考数学复习历年考点题型专题讲解38--- 数列中的通项公式(解析版)

高考数学复习历年考点题型专题讲解38数列中的通项公式一、题型精讲 解题方法与技巧 题型一、由S a n n 与的关系求通项公式例1、(2020届山东省烟台市高三上期末)已知数列{}n a 的前n 项和n S 满足()()21n n S n a n N *=+∈,且12a =.求数列{}n a 的通项公式;【解析】因为2(1)n n S n a =+,n *∈N , 所以112(2)n n S n a ++=+,n *∈N ,两式相减得112(2)(1)n n n a n a n a ++=+-+, 整理得1(1)n n na n a +=+,即11n n a a n n +=+,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭为常数列, 所以121n a a n ==,所以2n a n =例2、(2020届山东省枣庄、滕州市高三上期末)已知等比数列{}n a 满足1,a 2,a 31a a -成等差数列,且134a a a =;等差数列{}n b 的前n 项和2(1)log 2nn n a S +=.求:(1),n a n b ;【解析】设{}n a 的公比为q. 因为1,a 2,a 31a a -成等差数列, 所以()21312a a a a =+-,即232a a =.因为20a ≠,所以322a q a ==. 因为134a a a =,所以4132a a q a ===. 因此112n n n a a q-==.由题意,2(1)log 2n n n a S +=(1)2n n+=.所以111b S ==,1223b b S +==,从而22b =.所以{}n b 的公差21211d b b =-=-=.所以1(1)1(1)1n b b n d n n =+-=+-⋅=.例3、(2020届山东省德州市高三上期末)已知数列{}n a 的前n 项和为n S ,且0n a >,242n n n S a a =+.求数列{}n a 的通项公式;【解析】当1n =时,211142a a a =+,整理得2112a a =,10a >,解得12a =;当2n ≥时,242n n n S a a =+①,可得211142n n n S a a ---=+②,①-②得2211422n n n n n a a a a a --=-+-,即()()221120n n n n a a a a ----+=,化简得()()1120n n n n a a a a --+--=,因为0n a >,10n n a a -∴+>,所以12n n a a --=,从而{}n a 是以2为首项,公差为2的等差数列,所以()2212n a n n =+-=; 题型二、由a a n n 与1+的递推关系求通项公式例3、【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21nn a b n -=-. 所以111[()()]222n n n n n na ab a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.例4、(2020届山东省德州市高三上期末)对于数列{}n a ,规定{}n a ∆为数列{}n a 的一阶差分数列,其中()*1n n n a a a n +∆=-∈N ,对自然数()2k k ≥,规定{}kn a ∆为数列{}n a 的k 阶差分数列,其中111k k k n n n a a a --+∆=∆-∆.若11a =,且()2*12n n n n a a a n +∆-∆+=-∈N ,则数列{}n a 的通项公式为()A .212n n a n -=⨯ B .12n n a n -=⨯C .()212n n a n -=+⨯D .()1212n n a n -=-⨯【答案】B【解析】根据题中定义可得()()2*1112n n n n n n n n a a a a a a n a +++∆-∆+=∆-∆-∆+=-∈N ,即()1122nn n n n n n n a a a a a a a ++-∆=--=-=-,即122nn n a a +=+,等式两边同时除以12n +,得111222n n n n a a ++=+,111222n n n n a a ++∴-=且1122a =, 所以,数列2n n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列,()1112222n n a n n ∴=+-=, 因此,12n n a n -=⋅.故选:B.例5、【2019年高考天津卷理数】设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221nna c -的通项公式;【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n n n n a n n b -=+-⨯=+=⨯=⨯. 所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯. (2)(i )()()()()22211321321941nnnn n n n a c a b -=-=⨯+⨯-=⨯-.所以,数列(){}221nna c -的通项公式为()221941nnn a c -=⨯-.题型三、新定义题型中通项公式的求法例6、【2020年高考江苏】已知数列{}()n a n ∈*N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111kk k n nn S S a λ++-=成立,则称此数列为“λ~k ”数列.(1)若等差数列{}n a 是“λ~1”数列,求λ的值; (2)若数列{}n a”数列,且0n a >,求数列{}n a 的通项公式; 【解析】(1)因为等差数列{}n a 是“λ~1”数列,则11n n n S S a λ++-=,即11n n a a λ++=,也即1(1)0n a λ+-=,此式对一切正整数n 均成立.若1λ≠,则10n a +=恒成立,故320a a -=,而211a a -=-,这与{}n a 是等差数列矛盾.所以1λ=.(此时,任意首项为1的等差数列都是“1~1”数列)(2)因为数列*{}()n a n ∈N是“”数列,==.因为0n a >,所以10n n S S +>>1-=.n b,则1n b -=221(1)(1)(1)3n n n b b b -=->. 解得2n b =,即2=,也即14n nS S +=, 所以数列{}n S 是公比为4的等比数列.因为111S a ==,所以14n n S -=.则21(1),34(2).n n n a n -=⎧=⎨⨯≥⎩例7、【2019年高考北京卷理数】已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12mi i i a a a <<⋅⋅⋅<,则称新数列12mi i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列; (2)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(3)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.【解析】(1)1,3,5,6.(答案不唯一)(2)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -.由p <q ,得1pq r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a ,又12,,,pr r r a a a 是{}n a 的长度为p 的递增子列,所以0pm r a a ≤.所以0m n a a <·(3)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数).假设2m 排在2m −1之后.设121,,,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m . 因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中.又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m m m --⨯⨯⨯⨯⨯⨯=<个.与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m .与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件.所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.二、达标训练1、(2020届浙江省温州市高三4月二模)已知数列{}n a 满足:12125 1,6n n n a a a a n -≤⎧=⎨-⎩()*n N ∈)若正整数()5k k ≥使得2221212k k a a a a a a ++⋯+=⋯成立,则k =()A .16B .17C .18D .19【答案】B【解析】当6n ≥时,()1211111n n n n n a a a a a a a +--==+-,即211n n n a a a +=-+,且631a =.故()()()222677687116......55n n n n a a a a a a a a a n a a n +++++=-+-++-+-=-+-,2221211...161k k k a a a a k a +++++=+-=+,故17k =.故选:B .2、(2020届山东省潍坊市高三上学期统考)设数列{}n a 的前n 项和为n S ,且21n S n n =-+,在正项等比数列{}n b 中22b a =,45b a =.求{}n a 和{}n b 的通项公式;【解析】当1n =时,111a S ==, 当2n ≥时,1n n n a S S -=- =22(1)[(1)(1)1]n n n n -+----+=22n -,所以1(1)22(2)n n a n n =⎧=⎨-≥⎩.所以22b =,48b =于是2424b q b ==,解得2q 或2q =-(舍)所以22n n b b q-=⋅=12n -.3、(2020届山东省日照市高三上期末联考)已知数列{}{},n n a b 满足:1112,,2n n n n a a n b a n b ++=+-==.(1)证明数列{}n b 是等比数列,并求数列{}n b 的通项; 【解析】证明:因为n n b a n -=,所以n n b a n =+.因为121n n a a n +=+- 所以()()112n n a n a n +++=+ 所以12n n b b +=.又12b =,所以{}n b 是首项为12b =,公比为2的等比数列,所以1222n n n b -=⨯=.4、(2020·山东省淄博实验中学高三上期末)已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满足()()1126n n n S a a =++,并且2a ,4a ,9a 成等比数列.求数列{}n a 的通项公式;【解析】对任意*n ∈N ,有()()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.② ①-②并整理得()()1130n n n n a a a a --+--=. 而数列{}n a 的各项均为正数,13n n a a -∴-=. 当11a =时,()13132n a n n =+-=-,此时2429a a a =成立;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成立,舍去.32n a n ∴=-,*n ∈N .5、(2020届山东师范大学附中高三月考)设等差数列{}n a 前n 项和为n S ,满足424S S =,917a =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足1212112n n n b b b a a a +++=-…,求数列{}n b 的通项公式 【解析】(1)设等差数列{}n a 首项为1a ,公差为d .由已知得11914684817a d a d a a d +=+⎧⎨=+=⎩,解得112a d =⎧⎨=⎩.于是12(1)21n a n n =+-=-.(2)当1n =时,1111122b a =-=. 当2n ≥时,1111(1)(1)222n n n n nb a -=---=, 当1n =时上式也成立.于是12n n nb a =. 故12122n n n n n b a -==. 6、(2020·浙江温州中学3月高考模拟)已知各项均为正数的数列{}n a 的前n 项和为n S ,且11a =,n a =*n N ∈,且2n ≥)求数列{}n a 的通项公式;【解析】由n a =1n n S S --=+1(2)n =≥,所以数列1==为首项,以1为公差的等差数列,1(1)1n n =+-⨯=,即2n S n =,当2n ≥时,121n n n a S S n -=-=-,当1n =时,111a S ==,也满足上式,所以21n a n =-;7、【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==. 从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .8、【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n项和.①求数列{b n }的通项公式;【解析】解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠.由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n nb b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .。

山东省淄博市实验中学2020年高三数学文期末试卷含解析

山东省淄博市实验中学2020年高三数学文期末试卷含解析

山东省淄博市实验中学2020年高三数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )A.138 B.135 C.95 D.23参考答案:C考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.解答:解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C点评:在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式2. 已知向量且,则()A.3 B.-3 C. D.参考答案:C考点:向量共线【思路点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.(3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.3. 已知圆锥的底面半径为4,高为8,则该圆锥的外接球的表面积为()A.10π B.64π C. 100π D.参考答案:C4. 对任意x,y∈R,恒有,则等于()A.B.C.D.参考答案:B【考点】三角函数中的恒等变换应用.【分析】根据式子,解方程组得x、y的值,再代入已知等式即可求值.【解答】解:由方程组,解得,.∴=(sin+cos)=.故选:B.5. 下列说法正确的是有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱,四棱锥的四个侧面都可以是直角三角形,有两个面互相平行,其余各面都是梯形的多面体是棱台,以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥. 参考答案:6. 已知某几何体的三视图如,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A.B.C.2cm3 D.4cm3参考答案:B考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:由题目给出的几何体的三视图,还原得到原几何体,然后直接利用三棱锥的体积公式求解.解答:解:由三视图可知,该几何体为底面是正方形,且边长为2cm,高为2cm的四棱锥,如图,故,故选B.点评:本题考查了棱锥的体积,考查了空间几何体的三视图,能够由三视图还原得到原几何体是解答该题的关键,是基础题.7. 的展开式中不含项的系数的和为()A.33B.32C.31D.-1参考答案:A令,得所有项的系数和为,又由通项公式,其中可取.,,,,,令,得,所以不含项的系数的和为.试题立意:本小题考查二项式定理及其求展开式系数等基础知识;考查运算求解能力.8. 设向量,若,则=()A. B.3 C. D.参考答案:C9. 已知等差数列{a n}前四项中第二项为606,前四项和S n为3883,则该数列第4项为()A. 2004 B. 3005 C. 2424 D. 2016参考答案:D考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:根据等差数列前n项和公式和通项公式之间的关系进行推导即可.解答:解:已知a2=606,S4=3883,则S3=a1+a2+a3=3a2=1818即a4=S4﹣S3=3834﹣1818=2016,故选:D点评:本题主要考查等差数列的前n项和公式和通项公式的应用,比较基础.10. 如图甲所示,点P在边长为1的正方形的边上运动,设M是CD边的中点,则当点P沿着A—B—C—M运动时,以点P经过的路程x为自变量,三角形APM的面积函数的图象形状大致是图乙中的 ( )图甲图乙参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 记,当时,观察下列等式:,,,可以推测,___________.参考答案:12. 已知抛物线的焦点为,△的顶点都在抛物线上,且满足,则_______.参考答案:0【知识点】抛物线及其几何性质H7设A、B、C三点的坐标分别为(x1,y1),(x2,y2),(x3,y3),则∵,∴△ABC的重心是F,∵抛物线y2=2px的焦点F的坐标为F(,0),∴y1+y2+y3=0,∴++==0.【思路点拨】由,可得△ABC的重心是F,从而y1+y2+y3=0,利用斜率公式,即可求得结论.13. 各面均为等边三角形的四面体的外接球的表面积为,过棱作球的截面,则截面面积的最小值为.参考答案:14. 已知:,则的取值范围是_______参考答案:由得,,易得,故,.15. 在的二项展开式中,的项的系数是_______.(用数字作答)参考答案:70根据二项式定理,的通项为,当时,即r=4时,可得.即项的系数为70.16. 设x,y满足约束条件,则的最小值是________参考答案:-4【分析】根据约束条件画出可行域,可知需确定在轴截距的最大值,通过平移可得结果,从而确定所求最小值.【详解】由约束条件可得可行域如下图阴影部分所示:将化为:可知的最小值即为在轴截距最大时的取值由图像平移可知,当过点时,截距最大由得本题正确结果:【点睛】本题考查线性规划中的求解的最值类的问题,重点是通过平移确定取得最值的点.17. 我国齐梁时代的数学家祖暅(公元前5﹣6世纪)提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得的两个截面的面积总是相等,那么这两个几何体的体积相等.设:由曲线x2=4y和直线x=4,y=0所围成的平面图形,绕y轴旋转一周所得到的旋转体为Γ1;由同时满足x≥0,x2+y2≤16,x2+(y ﹣2)2≥4,x2+(y+2)2≥4的点(x,y)构成的平面图形,绕y轴旋转一周所得到的旋转体为Γ2.根据祖暅原理等知识,通过考察Γ2可以得到Γ1的体积为.参考答案:32π考点:定积分在求面积中的应用.专题:综合题;空间位置关系与距离.分析:由题意可得旋转体夹在两相距为8的平行平面之间,用任意一个与y轴垂直的平面截这两个旋转体,设截面与原点距离为|y|,求出所得截面的面积相等,利用祖暅原理知,两个几何体体积相等.解答:解:如图,两图形绕y轴旋转所得的旋转体夹在两相距为8的平行平面之间,用任意一个与y轴垂直的平面截这两个旋转体,设截面与原点距离为|y|,所得截面面积 S1=π(42﹣4|y|),S2=π(42﹣y2)﹣π[4﹣(2﹣|y|)2]=π(42﹣4|y|)∴S1=S2,由祖暅原理知,两个几何体体积相等,∵由同时满足x≥0,x2+y2≤16,x2+(y﹣2)2≥4,x2+(y+2)2≥4的点(x,y)构成的平面图形绕y 轴旋转一周所得的旋转体,它应该为一个大的球体减去两个球半径一样的小的球体,体积为?43﹣2??23=64π,∴Γ1的体积为32π.故答案为:32π.点评:本题主要考查祖暅原理的应用,求旋转体的体积的方法,体现了等价转化、数形结合的数学思想,属于基础题.三、解答题:本大题共5小题,共72分。

2020届山东省新高考高三优质数学试卷分项解析 专题05 三角函数与解三角形(原卷版)

2020届山东省新高考高三优质数学试卷分项解析 专题05 三角函数与解三角形(原卷版)

专题5 三角函数与解三角形1.近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主.2.高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.预测2020年将突出考查恒等变换与三角函数图象和性质的结合、恒等变换与正弦定理和余弦定理的结合.一、单选题1.(2020届山东省潍坊市高三上期中)sin 225︒= ( )A .12-B .2-C .D .1-2.(2020届山东省泰安市高三上期末)“1a <-”是“0x ∃∈R ,0sin 10+<a x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.(2020届山东省潍坊市高三上期末)已知345sin πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=( )A .10B .10C .2 D .104.(2020届山东省枣庄市高三上学期统考)设函数2sin cos ()(,0)x x xf x a R a ax +=∈≠,若(2019)2f -=,(2019)f =( )A .2B .-2C .2019D .-20195.(2020届山东省枣庄市高三上学期统考)已知函数()cos()(0)f x x ωϕω=+>的最小正周期为π,且对x ∈R ,()3f x f π⎛⎫⎪⎝⎭…恒成立,若函数()y f x =在[0,]a 上单调递减,则a 的最大值是( ) A .π6 B .π3C .2π3D .5π66.(2020届山东省滨州市三校高三上学期联考)若π1sin 34α⎛⎫-= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭( ).A .78-B .14-C .14 D .787.(2020届山东省潍坊市高三上期中)已知函数()sin cos f x x x =+,则( ) A .()f x 的最小正周期为π B .()y f x =图象的一条对称轴方程为4x π=C .()f x 的最小值为2-D .()f x 的0,2π⎡⎤⎢⎥⎣⎦上为增函数8.(2020届山东省九校高三上学期联考)如图是一个近似扇形的鱼塘,其中OA OB r ==,弧AB 长为l (l r <).为方便投放饲料,欲在如图位置修建简易廊桥CD ,其中34OC OA =,34OD OB =.已知1(0,)2x ∈时,3sin 3!x x x ≈-,则廊桥CD 的长度大约为( )A .323432r r l - B .323432l l r - C .32324l l r-D .32324r r l-9.(2020·武邑县教育局教研室高三上期末(理))已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为() A .-7B .7C .1D .-110.(2020届山东师范大学附中高三月考)为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象( ) A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位11.(2020届山东省枣庄、滕州市高三上期末)将曲线()cos 2y f x x =上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移4π个单位长度,得到曲线cos 2y x =,则6f π⎛⎫= ⎪⎝⎭( )A .1B .-1C D .12.(2020届山东省济宁市高三上期末)在ABC ∆中,1,3,1AB AC AB AC ==⋅=-u u u r u u u r,则ABC ∆的面积为( )A .12B .1CD .213.(2020届山东省潍坊市高三上学期统考)将函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0a a >个单位得到函数()πcos 24g x x ⎛⎫=+ ⎪⎝⎭的图像,则a 的值可以为( )A .5π12B .7π12C .19π24D .41π2414.(2020届山东省临沂市高三上期末)已知函数2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭(0)>ω的图象关于直线4x π=对称,则ω的最小值为( ) A .13B .16C .43D .5615.(2020届山东省潍坊市高三上学期统考)已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,2b =,则△ABC 面积的最大值是A .1B C .2D .416.(2020届山东省烟台市高三上期末)若x α=时,函数()3sin 4cos f x x x =+取得最小值,则sin α=( )A .35B .35-C .45D .45-17.(2020届山东实验中学高三上期中)在ABC △中,若 13,3,120AB BC C ==∠=o ,则AC =( ) A .1B .2C .3D .418.(2020届山东实验中学高三上期中)已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为( ) A .-7B .7C .1D .-119.(2020届山东省济宁市高三上期末)函数22cos cos 1y x x =-++,,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象大致为( ) A . B .C .D .20.(2020届山东师范大学附中高三月考)泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A 处测得“泉标”顶端的仰角为45︒,沿点A 向北偏东30︒前进100 m 到达点B ,在点B 处测得“泉标”顶端的仰角为30︒,则“泉标”的高度为( ) A .50 mB .100 mC .120 mD .150 m21.(2020届山东实验中学高三上期中)已知函数()sin 23f x a x x =的图象关于直线12x π=-对称,若()()124f x f x ⋅=-,则12a x x -的最小值为( ) A .4πB .2π C .πD .2π22.(2020届山东省滨州市高三上期末)已知函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,则( ) A .把()y f x =的图象向右平移6π个单位得到函数2sin 2y x =的图象B .函数()f x 在区间,02π⎛⎫- ⎪⎝⎭上单调递减C .函数()f x 在区间[]0,2π内有五个零点D .函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最小值为1 二、多选题23.(2020届山东省滨州市三校高三上学期联考)设函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( ) A .π-是()f x 的一个周期 B .()f x 的图像可由sin 2y x =的图像向右平移3π得到 C .()f x π+的一个零点为6x π=D .()y f x =的图像关于直线1712x π=对称 24.(2020届山东师范大学附中高三月考)在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+25.(2020·蒙阴县实验中学高三期末)关于函数()22cos cos(2)12f x x x π=-+-的描述正确的是( )A .其图象可由2y x =的图象向左平移8π个单位得到 B .()f x 在(0,)2π单调递增C .()f x 在[]0,π有2个零点D .()f x 在[,0]2π-的最小值为26.(2020·山东省淄博实验中学高三上期末)已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中正确的是( )A .函数()f x 的值域与()g x 的值域不相同B .把函数()f x 的图象向右平移2π个单位长度,就可以得到函数()g x 的图象 C .函数()f x 和()g x 在区间,44ππ⎛⎫-⎪⎝⎭上都是增函数 D .若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点27.(2020届山东省枣庄市高三上学期统考)将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度得到()g x 图象,则下列判断正确的是( ) A .函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增 B .函数()g x 图象关于直线712x π=对称 C .函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .函数()g x 图象关于点,03π⎛⎫⎪⎝⎭对称28.(2020届山东省潍坊市高三上期末)已知()()22210f x cos x x ωωω=->的最小正周期为π,则下列说法正确的有( ) A .2ω= B .函数()f x 在[0,]6π上为增函数C .直线3x π=是函数()y f x =图象的一条对称轴D .5π,012骣琪琪桫是函数()y f x =图象的一个对称中心29.(2020届山东省潍坊市高三上学期统考)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1tan A ,1tan B ,1tan C依次成等差数列,则下列结论中不一定成立.....的是( ) A .a ,b ,c 依次成等差数列B C .2a ,2b ,2c 依次成等差数列 D .3a ,3b ,3c 依次成等差数列30.(2020届山东省济宁市高三上期末)将函数()sin 2f x x =的图象向右平移4π个单位后得到函数()g x 的图象,则函数()g x 具有性质( )A .在0,4π⎛⎫⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=-对称 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称 31.(2020届山东实验中学高三上期中)己知函数()()()sin 0,023f x x f x ππωϕωϕ⎛⎫=+><<- ⎪⎝⎭,为的一个零点,6x π=为()f x 图象的一条对称轴,且()()0f x π在,上有且仅有7个零点,下述结论正确..的是( ) A .=6πϕB .=5ωC .()()0f x π在,上有且仅有4个极大值点D .()042f x π⎛⎫⎪⎝⎭在,上单调递增32.(2019·山东师范大学附中高三月考)在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+33.(2020届山东省烟台市高三上期末)已知函数()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线4x π=对称,则( ) A .函数12f x π⎛⎫+⎪⎝⎭为奇函数 B .函数()f x 在,123ππ⎡⎤⎢⎥⎣⎦上单调递增 C .若()()122f x f x -=,则12x x -的最小值为3πD .函数()f x 的图象向右平移4π个单位长度得到函数cos3y x =-的图象 三、填空题34.(2020届山东省枣庄市高三上学期统考)已知1sin 4x =,x 为第二象限角,则sin 2x =______. 35.(2020届山东省日照市高三上期末联考)已知tan 3α=,则sin cos sin cos αααα-+的值为______.36.(2020届山东师范大学附中高三月考)已知1tan 3α=,则2sin 2sin 1cos 2ααα-+的值为________.37.(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,角α的顶点是O ,始边是x 轴的非负半轴,02απ<<,点1tan,1tan1212P ππ⎛⎫+- ⎪⎝⎭是α终边上一点,则α的值是________. 38.(2020·全国高三专题练习(文))已知sin cos 11cos 2ααα=-,1tan()3αβ-=,则tan β=________.39.(2020届山东实验中学高三上期中)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 40.(2020届山东省日照市高三上期末联考)已知函数()9sin 26f x x π⎛⎫=-⎪⎝⎭,当[]0,10x π∈时,把函数()()6F x f x =-的所有零点依次记为123,,,,n x x x x ⋅⋅⋅,且123n x x x x <<<⋅⋅⋅<,记数列{}n x 的前n 项和为n S ,则()12n n S x x -+=______.41.(2020届山东省德州市高三上期末)已知函数()()sin f x A x =+ωϕ0,0,||2A πωϕ⎛⎫>><⎪⎝⎭的最大值2π,且()f x 的图象关于直线3x π=-对称,则当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最小值为______.42.(2020届山东省泰安市高三上期末)在△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,若cos cos sin A B C a b c +=,22265b c a bc +-=,则tan B =______. 四、解答题43.(2020届山东省临沂市高三上期末)在①3cos 5A =,cos C =,②sin sin sin c C A b B =+,60B =o,③2c =,1cos 8A =三个条件中任选一个补充在下面问题中,并加以解答. 已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若3a =,______,求ABC V 的面积S . 44.(2020届山东省泰安市高三上期末)在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x图象关于原点对称;②向量),cos 2m x x ωω=u r,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭r u r r ;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若02πθ<<,且sin θ=()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间.45.(2020届山东省枣庄市高三上学期统考)ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,已知()2cos cos 0a c B b A ++=.(I )求B ;(II )若3,b ABC =∆的周长为3ABC +∆的面积.46.(2020届山东省滨州市三校高三上学期联考)已知函数()sin()f x A x ωϕ=+,其中0A >,0>ω,(0,)ϕπ∈,x ∈R ,且()f x 的最小值为-2,()f x 的图象的相邻两条对称轴之间的距离为2π,()f x 的图象过点,03π⎛-⎫ ⎪⎝⎭.(1)求函数()f x 的解析式和单调递增区间; (2)若[0,2]x πÎ函数()f x 的最大值和最小值.47.(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=.(1)求a ,b 的值: (2)求sin C 的值.48.(2020届山东省烟台市高三上期末)在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a Bb A π=+,③sinsin 2B Cb a B +=中任选一个,补充到下面问题中,并给出问题解答. 在ABC ∆中,角,,A B C 的对边分别为,,a bc ,6b c +=,a =, . 求ABC ∆的面积.49.(2020届山东省泰安市高三上期末)如图所示,有一块等腰直角三角形地块ABC ,90A ∠=o ,BC 长2千米,现对这块地进行绿化改造,计划从BC 的中点D 引出两条成45°的线段DE 和DF ,与AB 和AC 围成四边形区域AEDF ,在该区域内种植花卉,其余区域种植草坪;设BDE α∠=,试求花卉种植面积()S α的取值范围.50.(2020届山东省日照市高三上期末联考)在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC . 如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .51.(2020届山东省滨州市三校高三上学期联考)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,23sin 2cos02A CB +-=. (1)求角B 的大小;(2)若2sin 2sin sin B A C =,且ABC ∆的面积为3ABC ∆的周长.52.(2020届山东省德州市高三上期末)已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,若ABC ∆同时满足下列四个条件中的三个:①2633()b a ac c a b -+=+;②2cos 22cos 12A A +=;③6a =④2b =(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应ABC ∆的面积. (若所选条件出现多种可能,则按计算的第一种可能计分)53.(20203(cos )sin b C a c B -=;②22cos a c b C +=;③sin 3sin2A Cb A a += 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________________,23,b =4a c +=,求ABC ∆的面积.54.(2020届山东师范大学附中高三月考)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足cos cos 2c A a C a +=.(1)求a b的值; (2)若1a =,7c =,求ABC V 的面积. 55.(2020·蒙阴县实验中学高三期末)在非直角ABC ∆中,a ,b ,c 分别是A ,B ,C 的对边.已知4a =,5AB AC ⋅=u u u r u u u r ,求:(1)tan tan tan tan A A B C+的值; (2)BC 边上的中线AD 的长.56.(2020届山东师范大学附中高三月考)设函数5()2cos()cos 2sin()cos 122f x x x x x ππ=++++. (1)设方程()10f x -=在(0,)π内有两个零点12,x x ,求12x x +的值;(2)若把函数()y f x =的图象向左平移6π个单位,再向下平移2个单位,得函数()g x 图象,求函数()g x 在[,]33ππ-上的最值. 57.(2020届山东省潍坊市高三上期末)在①34asinC ccosA =;②252B C bsinasinB +=这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知 ,32a =.(1)求sinA ;(2)如图,M 为边AC 上一点,,2MC MB ABM π=∠=,求ABC V 的面积58.(2020·山东省淄博实验中学高三上期末)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知4cos cos cos a A c B b C =+.(1)若4a =,ABC ∆的面积为15,求b ,c 的值; (2)若()sin sin 0B k C k =>,且角C 为钝角,求实数k 的取值范围.59.(2020届山东省潍坊市高三上学期统考)已知函数()()23sin cos sin 10f x x x x ωωωω=-+>图象的相邻两条对称轴之间的距离为2π.(1)求ω的值及函数()f x 的单调递减区间;(2)如图,在锐角三角形ABC 中有()1f B =,若在线段BC 上存在一点D 使得2AD =,且6AC =,31CD =-,求三角形ABC 的面积.60.(2020届山东省济宁市高三上期末)已知()()23sin sin cos 2f x x x x ππ⎛⎫=-+- ⎪⎝⎭. (1)若1210f α⎛⎫= ⎪⎝⎭,求2cos 23πα⎛⎫+ ⎪⎝⎭的值; (2)在△ABC 中,角A ,B ,C 所对应的边分别,,a b c ,若有()2cos cos a c B b C -=,求角B 的大小以及()f A 的取值范围.61.(2020届山东省济宁市高三上期末)如图,某市三地A ,B ,C 有直道互通.现甲交警沿路线AB 、乙交警沿路线ACB 同时从A 地出发,匀速前往B 地进行巡逻,并在B 地会合后再去执行其他任务.已知AB =10km ,AC =6km ,BC =8km ,甲的巡逻速度为5km /h ,乙的巡逻速度为10km /h .(1)求乙到达C 地这一时刻的甲、乙两交警之间的距离;(2)已知交警的对讲机的有效通话距离不大于3km ,从乙到达C 地这一时刻算起,求经过多长时间,甲、乙方可通过对讲机取得联系.62.(2020·全国高三专题练习(文))在ABC V 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满()(sin sin )(3sin sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③3=c b 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积.63.(2020届山东实验中学高三上期中)己知函数()23sin cos sin 244f x x x x a ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求实数a 的值;(2)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.64.(2020届山东实验中学高三上期中)“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形ABCD 的麦田里成为守望者,如图所示,为了分割麦田,他将BD 连接,设ABD ∆中边BD 所对的角为A ,BCD ∆中边BD 所对的角为C ,经测量已知2AB BC CD ===,23AD =.(1)霍尔顿发现无论BD 3cos A C -为一个定值,请你验证霍尔顿的结论,并求出这个定值;(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记ABD ∆与BCD ∆的面积分别为1S 和2S ,为了更好地规划麦田,请你帮助霍尔顿求出2212S S +的最大值.。

2020年山东省淄博市高新区实验中学高三数学文上学期期末试题含解析

2020年山东省淄博市高新区实验中学高三数学文上学期期末试题含解析

2020年山东省淄博市高新区实验中学高三数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 为等差数列的前项和,若公差则()A. B. C. D.参考答案:D略2. 已知{a n}是由正数组成的等比数列,S n表示数列{a n}的前n项的和,若a1=3,a2a4=144,则S5的值为A.B.69 C.93 D.189参考答案:C3. 设等差数列的前n项和为,若则()A.27 B.36 C.44 D.54参考答案:B知识点:数列的求和解析:∵等差数列的前n项和为,∴成等差数列.∴2()= + .∴2×(15﹣3)=3+ ﹣15,解得=36.故选:B.【思路点拨】利用等差数列的前n项和为,可得成等差数列.即可得出.4. 若点(a,b)在y=lg x图像上,a≠1,则下列点也在此图像上的是()A.(,b) B.(10a,1-b)C.(,b+1) D.(a2,2b)参考答案:D5. 甲、乙、丙、丁四位同学各自对、两变量的线性相关试验,并用回归分析方法分别求得相关系数如下表:则这四位同学的试验结果能体现出、两变量有更强的线性相关性的是()A.甲 B.乙 C.丙D.丁参考答案:6.与命题“”等价的命题是()A. B.C. D.参考答案:答案:D7. 已知数列是公比为实数的等比数列,且,,则等于( )A.2B. 3C. 4D.5参考答案:B8. 已知满足约束条件则的最小值是()A.B.C.D.参考答案:D9. 已知函数在点(1,2)处的切线与的图像有三个公共点,则的取值范围是()A.B.C.D.参考答案:D10. (2013?黄埔区一模)在四边形ABCD中,=,且?=0,则四边形ABCD()B略二、填空题:本大题共7小题,每小题4分,共28分11. 非空集合G关于运算⊕满足:(1)对任意,都有;(2)存在,使得对一切,都有, 则称G关于运算⊕为“融洽集”。

高常考题—函数的性质(含解析)

高常考题—函数的性质(含解析)

函数的性质一、题型选讲题型一 、 函数的奇偶性正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;(2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.填空题,可用特殊值法解答,但取特值时,要注意函数的定义域.例1、(2020届山东省枣庄、滕州市高三上期末)函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =( ) A .2x - B .2x - C .2x --D .2x例2、(2020·山东省淄博实验中学高三上期末)已知定义在[]5,12m m --上的奇函数()f x ,满足0x >时,()21x f x =-,则()f m 的值为( )A .-15B .-7C .3D .15例3、(2020届浙江省台州市温岭中学3月模拟)若函数()2ln 1f x a x ⎛⎫=+ ⎪-⎝⎭是奇函数,则使()1f x <的x 的取值范围为( ) A .11,1e e -⎛⎫- ⎪+⎝⎭B .10,1e e -⎛⎫⎪+⎝⎭C .1,11e e -⎛⎫⎪+⎝⎭D .11,(1,)1e e -⎛⎫-⋃+∞ ⎪+⎝⎭例4、【2018年高考全国Ⅰ卷理数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =题型二、函数的单调性已知函数的单调性确定参数的值或范围要注意以下两点:①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.简称:同增异减.例5、(江苏省如皋市2019-2020学年高三上学期10月调研)已知函数22,1()1,1ax x x f x ax x ⎧+≤=⎨-+>⎩在R 上为单调増函数,则实数a 的取值范围为________.例6、函数()()212log 4f x x =-的单调递增区间是例7、(2020届山东师范大学附中高三月考)已知函数()f x 是定义在R 上的奇函数,当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,若(31)(2)0f x f ++>,则x 的取值范围是________.题型三、 函数的周期性1、若()f x 是一个周期函数,则()()f x T f x +=,那么()()()2f x T f x T f x +=+=,即2T 也是()f x 的一个周期,进而可得:()kT k Z ∈也是()f x 的一个周期2、函数周期性的判定:(1)()()f x a f x b +=+:可得()f x 为周期函数,其周期T b a =- (2)()()()f x a f x f x +=-⇒的周期2T a = (3)()()()1f x a f x f x +=⇒的周期2T a = (4)()()f x f x a k ++=(k 为常数)()f x ⇒的周期2T a = (5)()()f x f x a k ⋅+=(k 为常数)()f x ⇒的周期2T a =例8、(2019通州、海门、启东期末)已知函数f(x)的周期为4,且当x ∈(0,4]时,f(x)=⎩⎨⎧cos πx 2,0<x≤2,log 2⎝⎛⎭⎫x -32,2<x≤4.则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12的值为________.例9、(2017南京三模)已知函数f (x )是定义在R 上且周期为4的偶函数. 当x ∈[2,4]时,f (x )=|log 4(x -32)|,则f (12)的值为 ▲ .题型四 函数的对称性函数的对称性要注意一下三点:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。

专题08 平面解析几何(解析版)

专题08 平面解析几何(解析版)

专题8 平面解析几何纵观近几年的高考试题,考查圆锥曲线的题目有小有大,其中小题以考查圆、椭圆、双曲线、抛物线的方程及几何性质为主,难度在中等或以上;大题则主要考查直线与椭圆、直线与抛物线的位置关系问题;命题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;二是以不同曲线(圆、椭圆、抛物线)的位置关系为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;三是直线与圆锥曲线的位置关系问题,综合性较强,往往与向量(共线、垂直、数量积)结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等.预测2020年将保持稳定,一大二小.其中客观题考查圆、椭圆、双曲线、抛物线问题,难度在中等或以下.主观题考查或直线与椭圆的位置关系、直线与抛物线的位置关系,相关各种综合问题应有充分准备.一、单选题1.(2020届山东省烟台市高三上期末)若双曲线()222210,0x y a b a b-=>>,则其渐近线方程为( ) A .230x y ±= B .320x y ±= C .20x y ±= D .230x y ±=【答案】C 【解析】由题,离心率c e a ===解得12b a =, 因为焦点在x 轴上,则渐近线方程为12y x =±,即20x y ±= 故选:C2.(2020届山东省枣庄、滕州市高三上期末)已知直线1:0l kx y +=()k R ∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为( )A.B.C.5+D.3+【答案】C 【解析】 由0220kx y x ky k +=⎧⎨-+-=⎩,消去参数k 得22(1(1)2x y -+-=), 所以A 在以(1,1)C为半径的圆上,又点B 是圆22(2)(3)2x y +++=上的动点,此圆圆心为(2,3)D --,5CD ==,∴AB的最大值为5CD =+ 故选:C.3.(2020届山东省九校高三上学期联考)已知点A 在圆224x y +=上,且712xOA π∠=,则点A 的横坐标为( ) A.2 B.4 CD【答案】A 【解析】由题设点A 00(,)x y ,点A 在圆上,22004x y +=,712xOA π∠=,7coscos()cos cos sin sin 124343434πππππππ=+=-=7cos 122x xOA π∠==,0x =.故选:A4.(2020届山东省泰安市高三上期末)已知圆22:10210C x y y +-+=与双曲线22221(0,0)x y a b a b-=>>的渐近线相切,则该双曲线的离心率是( ) AB .53C .52D【答案】C 【解析】由双曲线22221(0,0)x y a b a b -=>>,可得其一条渐近线的方程为b y x a=,即0bx ay -=,又由圆22:10210C x y y +-+=,可得圆心为(0,5)C ,半径2r =,则圆心到直线的距离为5a d c ==,则52a c =,可得52c e a ==, 故选C.5.(2020届山东省九校高三上学期联考)已知直线1l ,2l 为双曲线M :()222210,0x y a b a b-=>>的两条渐近线,若1l ,2l 与圆N :()2221x y -+=相切,双曲线M 离心率的值为( )ABCD.3【答案】B 【解析】设渐近线方程b y x a =±,即0b x y a±=,与圆N :()2221x y -+=相切,圆心到直线的距离1d ==,22222222()()1,3,3()b b b a c a a a a =+=-=,所以222434,,1,33c a e e e ==>=故选:B6.(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()122,0F ,点A的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( ) A .2 B .3C .2D .22【答案】D 【解析】 如下图所示:设该双曲线的左焦点为点F ,由双曲线的定义可得12PF PF a =+,所以,1APF ∆的周长为11123262AP AF PF AF AP PF a AF a a ++=+++≥++=+, 当且仅当A 、P 、F 三点共线时,1APF ∆的周长取得最小值,即628a +=,解得1a =.因此,该双曲线的离心率为222e a==故选:D.7.(2020届山东省济宁市高三上期末)已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若点2F 关于双曲线渐近线的对称点A 满足11F AO AOF ∠=∠(O 为坐标原点),则双曲线的渐近线方程为( ) A .2y x =± B .3y x = C .2y x =±D .y x =±【答案】B 【解析】如图所示:由对称性可得:M 为2AF 的中点,且2AF OM ⊥, 所以12F A AF ⊥,因为11F AO AOF ∠=∠,所以11AF F O c ==,故而由几何性质可得160AFO ∠=o ,即260MOF ∠=o , 故渐近线方程为3y x =, 故选B.8.(2020·山东省淄博实验中学高三上期末)抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点()3,1M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM ∆的周长为( ) A .712612+B .910+C .832612D .926+【答案】D 【解析】抛物线方程中:令1y =可得14x =,即1,14A ⎛⎫ ⎪⎝⎭, 结合抛物线的光学性质,AB 经过焦点F ,设执行AB 的方程为()1y k x =-, 与抛物线方程联立可得:()2222220k x k x k -++=, 据此可得:11,4A B B Ax x x x =∴==, 且:254A B AB x x p =++=,将4x =代入24y x =可得4y =±,故()4,4B -,故()()22434126MB =-+--=,故△ABM 的周长为12532692644MA AB BM ⎛⎫++=-++=+ ⎪⎝⎭, 本题选择D 选项.9.(2020届山东省滨州市高三上期末)已知抛物线24y x =的焦点为F ,准线为l ,P 为该抛物线上一点,PA l ⊥,A 为垂足.若直线AF 的斜率为3-,则PAF △的面积为( )A .23B .43C .8D .83【答案】B 【解析】由题意,抛物线24y x =的焦点为(1,0)F ,设抛物线24y x =的准线与x 轴交点为D ,则2DF =,又直线AF 的斜率为3-,所以60AFD ∠=o ,因此24AF DF ==,60AFP ∠=o ; 由抛物线的定义可得:PA PF =,所以PAF △是边长为4的等边三角形, 所以PAF △的面积为144sin 60432⨯⨯⨯=o . 故选:B.10.(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b-=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( )A B C .53D .73【答案】C 【解析】取1PF 的中点M ,连接2MF ,由条件可知1111142HF PF MF ==, Q O 是12F F 的中点,2//OH MF ∴又1OH PF ⊥Q ,21MF PF ∴⊥1222F F PF c ∴==,根据双曲线的定义可知122PF a c =+,12a cHF +∴=, 直线1PF 的方程是:()ay x c b=+ ,即0ax by ac -+= ,原点到直线的距离OH a ==,1OHF ∴∆中,2222a c a c +⎛⎫+= ⎪⎝⎭,整理为:223250c ac a --= , 即23250e e --= , 解得:53e = ,或1e =-(舍) 故选:C二、多选题11.(2020届山东省德州市高三上期末)已知点A 是直线:20l x y +-=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .()0,2 B .()1,21-C .()2,0D .()21,1-【答案】AC 【解析】 如下图所示:原点到直线l 的距离为222111d ==+,则直线l 与圆221x y +=相切,由图可知,当AP 、AQ 均为圆221x y +=的切线时,PAQ ∠取得最大值,连接OP 、OQ ,由于PAQ ∠的最大值为90o ,且90APO AQO ∠=∠=o,1OP OQ ==,则四边形APOQ 为正方形,所以22OA OP ==,由两点间的距离公式得()2222OA t t=+-=,整理得22220t t -=,解得0t =或2,因此,点A 的坐标为()0,2或()2,0.故选:AC.12.(2020届山东省德州市高三上期末)已知抛物线2:2C y px =()0p >的焦点为F ,直线的斜率为3且经过点F ,直线l 与抛物线C 交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =u u u r u u u rC .2BD BF = D .4BF =【答案】ABC 【解析】 如下图所示:分别过点A 、B 作抛物线C 的准线m 的垂线,垂足分别为点E 、M .抛物线C 的准线m 交x 轴于点P ,则PF p =,由于直线l 360o ,//AE x Q 轴,60EAF ∴∠=o ,由抛物线的定义可知,AE AF =,则AEF ∆为等边三角形,60EFP AEF ∴∠=∠=o ,则30PEF ∠=o ,228AF EF PF p ∴====,得4p =,A 选项正确;2AE EF PF ==Q ,又//PF AE ,F ∴为AD 的中点,则DF FA =u u u r u u u r,B 选项正确;60DAE ∴∠=o ,30ADE ∴∠=o ,22BD BM BF ∴==(抛物线定义),C 选项正确; 2BD BF =Q ,118333BF DF AF ∴===,D 选项错误. 故选:ABC.13.(2020届山东省滨州市高三上期末)已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1(5,0)F -,2(5,0)F ,则能使双曲线C 的方程为221169x y -=的是( )A .离心率为54B .双曲线过点95,4⎛⎫ ⎪⎝⎭C .渐近线方程为340±=x yD .实轴长为4【答案】ABC 【解析】由题意,可得:焦点在x 轴上,且5c =;A 选项,若离心率为54,则4a =,所以2229b c a =-=,此时双曲线的方程为:221169x y -=,故A 正确;B 选项,若双曲线过点95,4⎛⎫ ⎪⎝⎭,则22222812516125a b a b c ⎧⎪⎪-=⎨⎪+==⎪⎩,解得:22169a b ⎧=⎨=⎩;此时双曲线的方程为:221169x y -=,故B 正确;C 选项,若双曲线的渐近线方程为340±=x y ,可设双曲线的方程为:22(0)169x y m m -=>,所以216925c m m =+=,解得:1m =,所以此时双曲线的方程为:221169x y -=,故C 正确; D 选项,若实轴长为4,则2a =,所以22221b c a =-=,此时双曲线的方程为:224121x y -=,故D 错误;故选:ABC.14.(2020届山东省潍坊市高三上期末)把方程1169x x y y+=-表示的曲线作为函数()y f x =的图象,则下列结论正确的有( )A .()y f x =的图象不经过第一象限B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为3D .函数()()43g x f x x =+不存在零点 【答案】ACD 【解析】当0,0x y >>,方程是221169x y +=-不表示任何曲线,故A 正确;当0,0x y ≥≤ ,方程是221169x y -=-,即221916y x -= ,当0,0x y ≤≥ ,方程是221169x y -+=- ,即221169x y -=,当0,0x y ≤≤ ,方程是221169x y --=-,即221169x y+= ,如图画出图象由图判断函数在R 上单调递减,故B 不正确;由图判断()y f x =图象上的点到原点距离的最小值点应在0,0x y ≤≤的图象上,即满足221169x y += ,设图象上的点(),P x y2222279191616x PO x y x x ⎛⎫=+=+-=+ ⎪⎝⎭当0x =时取得最小值3,故C 正确;当()430f x x += ,即()34f x x =-, 函数()()43g x f x x =+的零点,就是函数()y f x = 和34y x =-的交点, 而34y x =-是曲线221916y x -=,0,0x y ≥≤和221169x y -=0,0x y ≤≥的渐近线,所以没有交点,由图象可知34y x =-和221169x y +=,0,0x y ≤≤没有交点,所以函数()()43g x f x x =+不存在零点,故D 正确. 故选:ACD15.(2020届山东省日照市高三上期末联考)过抛物线24y x =的焦点F 作直线交抛物线于A ,B 两点,M为线段AB 的中点,则( ) A .以线段AB 为直径的圆与直线32x =-相离 B .以线段BM 为直径的圆与y 轴相切 C .当2AF FB =u u u r u u u r时,92AB = D .AB 的最小值为4【答案】ACD 【解析】对于选项A ,点M 到准线1x =-的距离为()1122AF BF AB +=,于是以线段AB 为直径的圆与直线1x =-一定相切,进而与直线32x =-一定相离:对于选项B ,显然AB 中点的横坐标与12BM 不一定相等,因此命题错误.对于选项C ,D ,设()11,A x y ,()22,B x y ,直线AB 方程为1x my =+,联立直线与抛物线方程可得2440y my --=,124y y =-,121=x x ,若设()24,4A a a ,则211,4B aa ⎛⎫- ⎪⎝⎭,于是21221424AB x x p a a=++=++,AB 最小值为4;当2AF FB =u u u r u u u r 可得122y y =-, 142a a ⎛⎫=-- ⎪⎝⎭,所212a =,92AB =.故选:ACD.16.(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,抛物线2:2C y px =(0)p >的焦点为F ,准线为l.设l 与x 轴的交点为K ,P 为C 上异于O 的任意一点,P 在l 上的射影为E ,EPF ∠的外角平分线交x 轴于点Q ,过Q 作QN PE ⊥交EP 的延长线于N ,作QM PF ⊥交线段PF 于点M ,则( )A .||||PE PF =B .||||PF QF =C .||||PN MF =D .||||PN KF =【答案】ABD 【解析】由抛物线的定义,PE PF =,A 正确;∵//PN QF ,PQ 是FPN ∠的平分线,∴FQP NPQ FPQ ∠=∠=,∴||||PF QF =,B 正确; 若||||PN MF =,由PQ 是外角平分线,QN PE ⊥,QM PF ⊥得QM QN =,从而有PM PN =,于是有PM FM =,这样就有QP QF =,PFQ ∆为等边三角形,60FPQ ∠=︒,也即有60FPE ∠=︒,这只是在特殊位置才有可能,因此C 错误;连接EF ,由A 、B 知PE QF =,又//PE QF ,EPQF 是平行四边形,∴EF PQ =,显然EK QN =,∴KF PN =,D 正确.17.(2020届山东省临沂市高三上期末)已知P 是椭圆C :2216x y +=上的动点,Q 是圆D :()22115x y ++=上的动点,则( )A .CB .C 的离心率为6C .圆D 在C 的内部D .PQ 【答案】BC 【解析】2216x y +=Qa ∴=1b =c ∴===C 的焦距为6c e a ===.设(), P x y (x ≤≤, 则()()22222256441111665555x x y x x PD ⎛⎫++=++-=++≥> ⎪⎝⎭=,所以圆D 在C 的内部,且PQ 5=. 故选:BC .18.(2020届山东省烟台市高三上期末)已知抛物线2:4C y x =的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点()11,P x y ,()22,Q x y ,点P 在l 上的射影为1P ,则 ( ) A .若126x x +=,则8PQ =B .以PQ 为直径的圆与准线l 相切C .设()0,1M ,则1PM PP +≥D .过点()0,1M 与抛物线C 有且仅有一个公共点的直线至多有2条 【答案】ABC 【解析】对于选项A,因为2p =,所以122x x PQ ++=,则8PQ =,故A 正确;对于选项B,设N 为PQ 中点,设点N 在l 上的射影为1N ,点Q 在l 上的射影为1Q ,则由梯形性质可得111222PP QQ PF QF PQ NN ++===,故B 正确;对于选项C,因为()1,0F ,所以1PM PP PM PF MF +=+≥=故C 正确; 对于选项D,显然直线0x =,1y =与抛物线只有一个公共点,设过M 的直线为1y kx =+, 联立214y kx y x=+⎧⎨=⎩,可得()222410k x k x +-+=,令0∆=,则1k =,所以直线1y x =+与抛物线也只有一个公共点,此时有三条直线符合题意,故D 错误; 故选:ABC 三、填空题19.(2020届山东省九校高三上学期联考)直线y x =与圆2240x x y -+=相交于A 、B 两点,则AB =__________.【答案】【解析】圆的标准方程为22(2)4x y -+=,圆心到直线的距离d ==所以弦长:AB ==故答案为:20.(2019·北京八十中高二期中)已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.1 2 【解析】由正六边形性质得椭圆上一点到两焦点距离之和为c ,再根据椭圆定义得2c a +=,所以椭圆M的离心率为1.c a == 双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为222ππtan 333n m ∴==,,222222234 2.m n m m e e m m,++∴===∴= 21.(2020·全国高三专题练习(理))已知圆()()22212x y -+-=关于直线()10,0ax by a b +=>>对称,则21a b+的最小值为__________. 【答案】9 【解析】由题意可知直线过圆心,即21a b +=()2121222559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭ 当且仅当22a bb a=时,又()0,0a b >> 即a b =时等号成立, 故21a b+的最小值为9. 故答案为:922.(2020·山东省淄博实验中学高三上期末)双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为()12,0F -、()22,0F ,M 是C 右支上的一点,1MF 与y 轴交于点P ,2MPF ∆的内切圆在边2PF 上的切点为Q ,若=PQ C 的离心率为____.【解析】设△MPF 2的内切圆与MF 1,MF 2的切点分别为A ,B , 由切线长定理可知MA =MB ,P A =PQ ,BF 2=QF 2, 又PF 1=PF 2,∴MF 1﹣MF 2=(MA +AP +PF 1)﹣(MB +BF 2)=PQ +PF 2﹣QF 2=2PQ ,由双曲线的定义可知MF 1﹣MF 2=2a , 故而a =PQ 2=,又c =2,∴双曲线的离心率为e 2ca==. 故答案为:2.23.(2020届山东省枣庄、滕州市高三上期末)已知F 为双曲线2222:1x y C a b-=(0,0)a b >>的右焦点,过F 作C 的渐近线的垂线FD ,D 为垂足,且3||||FD OF =(O 为坐标原点),则C 的离心率为________. 【答案】2 【解析】由题意(c,0)F ,一条渐近线方程为by x a=,即0bx ay -=, ∴ 22bcFD b b a ==+,由3||||FD OF =得3b =,∴222234b c c a ==-,224c a =,∴2ce a==. 故答案为:2.24.(2020届山东省潍坊市高三上期末)已知P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标为()2,3,则PA PM +的最小值是__________. 101 【解析】设抛物线的焦点是()1,0F ,根据抛物线的定义可知1PM PF =-1PA PM PA PF ∴+=+-,PA PF AF +≥Q ,当,,A P F 三点共线时,等号成立,PA PM ∴+的最小值是1AF -,()()22213010AF =-+-=,PA PM ∴+的最小值是101-.10125.(2020届山东省临沂市高三上期末)已知P 为双曲线C :2214y x -=右支上一点,1F ,2F 分别为C 的左、右焦点,且线段12A A ,12B B 分别为C 的实轴与虚轴.若12A A ,12B B ,1PF 成等比数列,则2PF =______.【答案】6 【解析】2214y x -=Q1222A A a ∴==,1224B B b ==,12A A Q ,12B B ,1PF 成等比数列212112A A PF B B ∴⋅=,解得18PF =,2826PF a ∴=-=故答案为:626.(2020届山东省泰安市高三上期末)已知抛物线()220y px p =>的焦点为F (4,0),过F 作直线l 交抛物线于M ,N 两点,则p =_______,49NF MF-的最小值为______. 【答案】8p = 13【解析】∵ 抛物线()220y px p =>的焦点为F(4,0),∴ 8p =,∴ 抛物线的方程为216y x =,设直线l 的方程为4x my =+,设()11,M x y ,()22,N x y ,由2164y x x my ⎧=⎨=+⎩得216640y my --=, ∴1216y y m +=,1264y y =-, 由抛物线的定义得11MF NF +121144x x =+++()()21124444x x x x +++=++()()211244888my my my my ++++=++()()122121216864m y y m y y m y y ++=+++22216166412864m m m +=-++()()22161641m m +=+14=, ∴49NFMF -11494NF NF ⎛⎫=-- ⎪ ⎪⎝⎭419NF NF =+-42?19NF NF ≥-13=, 当且仅当49NF NF=即6NF =时,等号成立, 故答案为:13. 27.(2020届山东省济宁市高三上期末)已知抛物线2:8C y x =的焦点为F ,准线l ,P 是l 上一点, Q 是直线PF 与C 的一个交点,若3PF QF =u u u r u u u r,则||QF =__________.【答案】83【解析】根据题意画出图形,设l 与x 轴的交点为M ,过Q 向准线l 作垂线,垂足是N ,∵抛物线2:8C y x =,∴焦点为2,0F (),准线方程为2x =-,∵3PF QF =u u u v u u u v ,2288,4,.3333QN PQ QN QF QN FM PF ∴==∴=⨯=∴==28.(2020届山东省滨州市高三上期末)在平面直角坐标系xOy 中,A 为直线:3l y x =上在第三象限内的点,()10,0B -,以线段AB 为直径的圆C (C 为圆心)与直线l 相交于另一个点D ,AB CD ⊥,则圆C 的标准方程为________.【答案】()()227645x y +++=【解析】由题意,设点(,3),0A m m m <,因为()10,0B -,则AB 的中点为103,22m m C -⎛⎫⎪⎝⎭, 以线段AB 为直径的圆C 的方程为:(10)()(3)0x x m y y m +-+-=; 由(10)()(3)03x x m y y m y x +-+-=⎧⎨=⎩,解得:13x y =-⎧⎨=-⎩,即(1,3)D --;又AB CD ⊥,所以0AB CD ⋅=u u u r u u u r;因为(10,3)AB m m =---u u u r ,83,322m m CD -⎛⎫=-- ⎪⎝⎭u u u r 所以()83(10)33022m m m m -⎛⎫⎛⎫--+---=⎪ ⎪⎝⎭⎝⎭, 整理得:2280m m +-=,解得4m =-或2m =,因为0m <,所以4m =-, 所以圆C 的方程为:(10)(4)(12)0x x y y ++++=, 整理得:()()227645x y +++=. 故答案为:()()227645x y +++=. 四、解答题29.(2020届山东省潍坊市高三上期末)在平面直角坐标系中,()()1 ,0,1,0A B -,设ABC V 的内切圆分别与边,,AC BC AB 相切于点,,P Q R ,已知1CP =,记动点C 的轨迹为曲线E . (1)求曲线E 的方程;(2)过()2,0G 的直线与y 轴正半轴交于点S ,与曲线E 交于点,H HA x ⊥轴,过S 的另一直线与曲线E 交于M N 、两点,若6SMG SHN S S =V V ,求直线MN 的方程.【答案】(1)221(0)43x y y +=≠(2)1y x =+或1y x =+.【解析】(1)由内切圆的性质可知CP CQ =,AP AR =,BQ BR =,∴CA CB CP CQ AP BQ +=+++24CP AB AB =+=>.所以曲线E 是以,A B 为焦点,长轴长为4的椭圆(除去与x 轴的交点).设曲线2222:1(0,0)x y E a b y a b+=>>≠则1,24c a ==,即2222,3a b a c ==-=所以曲线E 的方程为221(0)43x y y +=≠.(2)因为HA x ⊥轴,所以31,2H ⎛⎫- ⎪⎝⎭,设()00,S y , 所以03223y --=-,所以01y =,则()0,1S因为2a c =,所以2SG SH =,所以1sin 2261sin 2SMG SMNSM SG MSG SM S S SN SN SH NSH ∠===∠V V 所以3SM SN=,所以3SM SN =-u u u r u u u r设()()1122,, ,,M x y N x y 则()11,1SM x y =-u u u r()22,1SN x y =-u u u r,所以123x x =-①直线MN 斜率不存在时, MN 方程为0x =此时2SM SN==+. ②直线MN 的斜率存在时,设直线MN 的方程为1y kx =+.联立221143y kx x y =+⎧⎪⎨+=⎪⎩,得()2234880,k x kx ++-=所以122122834834k x x kk x x k -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,将123x x =-代入得222228348334k x k k x k -⎧=⎪⎪+⎨⎪=⎪+⎩,所以2224833434k k k k ⎛⎫=⎪⎭+ ⎝+. 所以236,2k k ==±, 所以直线MN 的方程为61y x =+或61y x =-+. 30.(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足223220e e -+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l 的斜率为2.(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.【答案】(1)2212x y +=(2)证明见解析【解析】(1)由223220e e -+=解得22e =或2e =,∴a =,又222a b c =+,a ∴=,又()020AC k a --==-a ∴=1b ∴=,∴椭圆E 的方程为2212x y +=;(2)由题知,直线l 的斜率存在,设直线l 的方程为2y kx =-, 设()()1122,,,P x y Q x y ,由22212y kx x y =-⎧⎪⎨+=⎪⎩得()2221860k x kx +-+=, ∴12122286,2121k x x x x k k +==++, ()()22=84621k k --⨯⨯+V =216240k ->232k ∴>, ∴()121224421y y k x x k -+=+-=+, ()()121222y y kx kx =--()21212=24k x x k x x -++=224221k k -+,直线BP 的方程为1111y y x x -=+,令0y =解得111x x y =-,则11,01x M y ⎛⎫⎪-⎝⎭, 同理可得22,01x N y ⎛⎫⎪-⎝⎭,12123411BOM BCN x x S S y y ∴=--V V g =()()()12121212123341141x x x x y y y y y y =---++=22226321444212121k k k k +-++++=12,BOM BON S S ∆∴V g 为定值12. 31.(2020届山东省烟台市高三上期末)已知椭圆()222210x y a b a b +=>>F 是其右焦点,直线y kx =与椭圆交于A ,B 两点,8AF BF +=. (1)求椭圆的标准方程;(2)设()3,0Q ,若AQB ∠为锐角,求实数k 的取值范围.【答案】(1)221164x y += (2)10k >10k <- 【解析】(1)设1F 为椭圆的左焦点,连接1F B ,由椭圆的对称性可知,1AF FB =, 所以128AF BF BF BF a +=+==,所以4a =,又c e a==,222a b c =+,解得c =,2b =, 所以椭圆的标准方程为221164x y +=(2)设点1122(,),(,)A x y B x y ,则11(3,)QA x y =-u u u r ,22(3,)QB x y =-u u u r,联立221164x y y kx ⎧+=⎪⎨⎪=⎩,得22(41)160k x +-=, 所以120x x +=,1221641x x k -=+, 因为AQB ∠为锐角,所以0QA QB ⋅>u u u r u u u r,所以1212(3)(3)QA QB x x y y ⋅=--+u u u r u u u r12121293()x x x x y y =-+++ 2121293()(1)x x k x x =-+++2216(1)9041k k +=->+,解得k >k <32.(2020届山东省日照市高三上期末联考)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=()0a b >>的焦距为2,且过点1,2⎛ ⎝⎭. (1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为BMN ∆的垂心,若存在,求出直线l 的方程:若不存在,说明理由.【答案】(1)2212x y +=(2)存在,43y x =-【解析】(1)由已知可得:22222221112c a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩解得22a =,21b =,1c =,所以椭圆C :2212x y +=.(2)由已知可得,()0,1B ,()1,0F ,∴1BF k =-,∵BF l ⊥, 设直线l 的方程为:y x m =+,代入椭圆方程整理得2234220x mx m ++-=,设()11,M x y ,()22,N x y ,则1243m x x +=-,212223m x x -⋅=,∵BN MF ⊥,∴1212111y y x x -⋅=--. 即1212120y y x x y x +--=,因为11y x m =+,22y x m =+,()()()1212120x m x m x x x m x +++-+-= 即()212122(1)0x x m x x m m +-++-=.()2222421033m m m m m --+-+-=.所以2340m m +-=,43m =-或1m =. 又1m =时,直线l 过B 点,不合要求,所以43m =-. 故存在直线l :43y x =-满足题设条件. 33.(2019·山东高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,12||2F F =,过点1F 的直线与椭圆C 交于,A B 两点,延长2BF 交椭圆C 于点M ,2ABF ∆的周长为8.(1)求C 的离心率及方程;(2)试问:是否存在定点0(,0)P x ,使得·PM PB u u u u v u u u v为定值?若存在,求0x ;若不存在,请说明理由.【答案】(1)12,22143x y +=; (2)存在点P ,且0118x =.【解析】(1)由题意可知,12||=2c=2F F ,则1c =, 又2ABF ∆的周长为8,所以48a =,即2a =, 则12c e a ==,2223b a c =-=. 故C 的方程为22143x y +=.(2)假设存在点P ,使得·PM PB u u u u v u u u v为定值.若直线BM 的斜率不存在,直线BM 的方程为1x =,31,2B ⎛⎫⎪⎝⎭,31,2M ⎛⎫- ⎪⎝⎭, 则()209·14PM PB x u u u u v u u u v=--. 若直线BM 的斜率存在,设BM 的方程为()1y k x =-,设点()11,B x y ,()22,M x y ,联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩,得()22224384120k x k x k +-+-=, 根据韦达定理可得:2122843k x x k +=+,212241243k x x k -=+, 由于()202,PM x x y =-u u u u v ,()101,PB x x y =-u u u v, 则()212120012•PM PB x x x x x x y y =-+++u u u u v u u u v()()()()2220002222120122485312143x x k x k x x x k x x kx k --+-=+-++++=+因为·PM PB u u u u v u u u v 为定值,所以2200048531243x x x ---=, 解得0118x =,故存在点P ,且0118x =. 34.(2020届山东省枣庄、滕州市高三上期末)设中心在原点O ,焦点在x 轴上的椭圆C过点12A ⎫⎪⎭,F为C 的右焦点,⊙F的方程为221104x y +-+= (1)求C 的方程;(2)若直线:(l y k x =(0)k >与⊙O 相切,与⊙F 交于M 、N 两点,与C 交于P 、Q 两点,其中M 、P 在第一象限,记⊙O 的面积为()S k ,求(||||)()NQ MP S k -⋅取最大值时,直线l 的方程.【答案】(1)2214x y += (2)(2y x =-【解析】(1)解:设C 的方程为22221x y a b+=(0)a b >>.由题设知223114a b+=① 因为⊙F 的标准方程为221(3)4x y -+=, 所以F 的坐标为(3,0),半径12r =. 设左焦点为1F ,则1F 的坐标为(3,0)-. 由椭圆定义,可得12||a AF AF =+222211[3(3)]0(33)022⎛⎫⎛⎫=--+-+-+- ⎪ ⎪⎝⎭⎝⎭4=②由①②解得2,a =1b =.所以C 的方程为2214x y +=.(2)由题设可知,M 在C 外,N 在C 内,P 在⊙F 内,Q 在⊙F 外,在直线l 上的四点满足||||||,MP MN NP =-||||||NQ PQ NP =-.由2214(3)x y y k x ⎧+=⎪⎨⎪=⎩消去y 得()222214831240k x k x k +-+-= 因为直线l 过椭圆C 内的右焦点F , 所以该方程的判别式>0∆恒成立.设()11,,P x y ()22,Q x y 由韦达定理,得2122,14x x k+=+212212414k x x k -=+.||PQ =224441k k +=+ 又因为⊙F 的直径||1MN =,所以||||||||(||||)NQ MP PQ NP MN NP -=---||||PQ MN =- ||1PQ =-2341k =+.(y kx =可化为0kx y -=.因为l 与⊙O 相切,所以⊙O的半径R =,所以2()S k R π=2231k k π=+. 所以()()2229(||||)()411k NQ MP S k k k π-⋅=++ 2429451k k k π=++229145k k π=≤++π=.当且仅当2214k k =,即2k =时等号成立. 因此,直线l的方程为y x =-.35.(2020届山东省九校高三上学期联考)已知椭圆L :()222210x y a b a b +=>>为2.(1)求椭圆L 的标准方程;(2)过点()0,2Q 的直线l 与椭圆L 交于A 、B 两点,若以AB 为直径的圆恰好过坐标原点,求直线l 的方程及AB 的大小.【答案】(1) 2214x y += (2) 22y x =±+,17AB =. 【解析】解:(1)由22222222314c a b b e a a a -===-=得224a b =, 又∵短轴长为2可得1b =,24a =,∴椭圆L 的标准方程为:2214x y +=.(2)易知直线l 的斜率存在且不为零,设直线l 的斜率为()0k k ≠,设直线l 的方程为:2y kx =+,则联立222440y kx x y =+⎧⎨+-=⎩, 消元得:()224116120k x kx +++=,()()2221616484116430k k k ∆=⨯-+=->,即234k >. 设()11,A x y ,()22,B x y ,∴1221641k x x k -+=+,1221241x x k ⋅=+, 由题意可知OA OB ⊥u u u r u u u r ,0OA OB ⋅=u u ur u u u r 即:()()2121212121240x x y y k x x k x x ⋅+⋅=+⋅+++=,∴()222212132401414k k k k+-+=++,解得2344k =>,∴12x AB =-=224434651k k -=+⋅=.综上:直线l 的方程为:22y x =±+,46517AB =. 36.(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)28y x =(2)存在唯一的点()2,0P -,使直线PM ,PN 关于x 轴对称【解析】(1)当直线l 的倾斜角为45°,则l 的斜率为1,,02p F ⎛⎫⎪⎝⎭Q ,l ∴的方程为2p y x =-.由2,22,p y x y px ⎧=-⎪⎨⎪=⎩得22304p x px -+=.设()11,M x y ,()22,N x y ,则123x x p +=, ∴12416x x p M p N ++===,4p =, ∴抛物线C 的方程为28y x =.(2)假设满足条件的点P 存在,设(),0P a ,由(1)知()2,0F , ①当直线l 不与x 轴垂直时,设l 的方程为()2y k x =-(0k ≠),由()22,8,y k x y x ⎧=-⎨=⎩得()22224840k x k x k -++=,()22222484464640k k k k ∆=+-⋅⋅=+>, 212248k x xk++=,124x x =. ∵直线PM ,PN 关于x 轴对称, ∴0PM PN k k +=,()112PM k x k x a -=-,()222PN k x k x a-=-. ∴()()()()()()122112128(2)222240a k x x a k x x a k x x a x x a k+--+--=-+++=-=⎡⎤⎣⎦, ∴2a =-时,此时()2,0P -.②当直线l 与x 轴垂直时,由抛物线的对称性,易知PM ,PN 关于x 轴对称,此时只需P 与焦点F 不重合即可. 综上,存在唯一的点()2,0P -,使直线PM ,PN 关于x 轴对称.37.(2020届山东省潍坊市高三上学期统考)已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,12||2F F =,过点1F 的直线与椭圆C 交于,A B 两点,延长2BF 交椭圆C 于点M ,2ABF ∆的周长为8.(1)求C 的离心率及方程;(2)试问:是否存在定点0(,0)P x ,使得·PM PB u u u u v u u u v为定值?若存在,求0x ;若不存在,请说明理由.【答案】(1)12,22143x y +=; (2)存在点P ,且0118x =.【解析】(1)由题意可知,12||=2c=2F F ,则1c =, 又2ABF ∆的周长为8,所以48a =,即2a =, 则12c e a ==,2223b a c =-=. 故C 的方程为22143x y +=.(2)假设存在点P ,使得·PM PB u u u u v u u u v为定值.若直线BM 的斜率不存在,直线BM 的方程为1x =,31,2B ⎛⎫⎪⎝⎭,31,2M ⎛⎫- ⎪⎝⎭, 则()209·14PM PB x u u u u v u u u v =--. 若直线BM 的斜率存在,设BM 的方程为()1y k x =-,设点()11,B x y ,()22,M x y ,联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩,得()22224384120k x k x k +-+-=, 根据韦达定理可得:2122843k x x k +=+,212241243k x x k -=+,由于()202,PM x x y =-u u u u v ,()101,PB x x y =-u u u v, 则()212120012•PM PB x x x x x x y y =-+++u u u u v u u u v ()()()()22200022221201202485312143x x k x k x x x kx x k xk --+-=+-++++=+因为·PM PB u u u u v u u u v 为定值,所以2200048531243x x x ---=, 解得0118x =,故存在点P ,且0118x =. 38.(2020届山东省济宁市高三上期末)已知椭圆E :()222210y x a b a b+=>>的一个焦点为(,长轴与短轴的比为2:1.直线l y kx m =+:与椭圆E 交于P 、Q 两点,其中k 为直线l 的斜率. (1)求椭圆E 的方程;(2)若以线段PQ 为直径的圆过坐标原点O ,问:是否存在一个以坐标原点O 为圆心的定圆O ,不论直线l 的斜率k 取何值,定圆O 恒与直线l 相切?如果存在,求出圆O 的方程及实数m 的取值范围;如果不存在,请说明理由.【答案】(1) 2214y x +=(2)存在,2245x y +=.m的取值范围是,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎣⎭【解析】(1)由已知得:2222c a b a b c ⎧=⎪=⎨⎪=+⎩解得:2,1a b ==∴椭圆E 的方程为2214yx +=(2)假设存在定圆O ,不论直线l 的斜率k 取何值时,定圆O 恒与直线l 相切. 这时只需证明坐标原点O 到直线l 的距离为定值即可.设直线OP 的方程为:,y tx P =点的坐标为()00,x y ,则00y tx =,联立方程组220224414y txx y t x =⎧⎪=⎨++=⎪⎩,解得: ()()22222200024114t OP x y t x t+∴=+=+=+①Q 以线段PQ 为直径的圆过坐标原点O ,OP OQ ∴⊥,直线OQ 的方程为:1y x t=-∴在①式中以1l -换t ,得()2222214141=1414t t OQ t t ⎡⎤⎛⎫+-⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦=+⎛⎫+- ⎪⎝⎭② 又由OP OQ ⊥知:()()()()()222222222224141201414144tt tPQ OP OQ t tt t+++=+=+=++++设坐标原点O 到直线l 的距离为d ,则有PQ d OP OQ =()()()()()22222222222241414414,55201144t t OP OQ l l d d PQ t t t++⋅++∴====+++又当直线OP 与y 轴重合时,()()0,2,1,0P Q ±±此时d =由坐标原点O 到直线l的距离5d =为定值知,所以存在定圆O ,不论直线l 的斜率k 取何值时,定圆O 恒与直线l 相切,定圆O 的方程为:2245x y +=. 直线l 与y 轴交点为()0,m ,且点()0,m 不可能在圆O 内,又当k =0时,直线l 与定圆O切于点0,⎛ ⎝⎭,所以m的取值范围是,,55⎛⎡⎫-∞-⋃+∞ ⎪⎢ ⎪⎝⎦⎣⎭39.(2020届山东省滨州市高三上期末)已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,直线32y x =与椭圆E 在第一象限内的交点是M ,且2MF x ⊥轴,1294MF MF ⋅=u u u u r u u u u r . (1)求椭圆E 的方程;(2)是否存在斜率为1-的直线l 与以线段12F F 为直径的圆相交于A ,B 两点,与椭圆E 相交于C ,D 两点,且||||CD AB ⋅=l 的方程;若不存在,说明理由. 【答案】(1)22143x y +=;(2)存在,y x =-+或y x =-- 【解析】(1)设()1,0F c -,()2,0F c , 由题意,得3,2M c c ⎛⎫ ⎪⎝⎭因为123392,0,224MF MF c c c ⎛⎫⎛⎫⋅=--⋅-= ⎪ ⎪⎝⎭⎝⎭u u u u r u u u u r解得1c =,则31,2M ⎛⎫⎪⎝⎭,又点M 在椭圆上,所以222219141a ba b ⎧+=⎪⎨⎪=+⎩,解得2243a b ⎧=⎨=⎩.所以椭圆E 的方程为22143x y +=;(2)假设存在斜率为1-的直线l ,设为y x m =+, 由(1)知,12(1,0), (1,0)F F -, 所以以线段12F F 为直径的圆为221x y +=. 由题意,圆心()0,0到直线l的距离1d =<,得||m <||AB ===由22143x y y x m ⎧+=⎪⎨⎪=-+⎩消去y , 整理得22784120x mx m -+-=.由题意,()()2222(8)47412336484870m m m m ∆=--⨯⨯-=-=->,解得27m <,又||m <22m <.设()()1122,,,C x y D x y ,则212128412,77m m x x x x -+==21||77CD x =-==,若||||CD AB ⋅=,=整理得42436170m m -+=, 解得212m =,或2172m =.又22m <,所以212m =,即m =.故存在符合条件的直线l ,其方程为2y x =-+,或2y x =--.。

2020届山东省新高考高三优质数学试卷分项解析-专题03-函数及其应用(解析版)

2020届山东省新高考高三优质数学试卷分项解析-专题03-函数及其应用(解析版)

专题3 函数及其应用1.关于函数图象的考查: (1)函数图象的辨识与变换;(2)函数图象的应用问题,运用函数图象理解和研究函数的性质,数形结合思想分析与解决问题的能力; 2.关于函数性质的考查:以考查能力为主,往往以常见函数(二次函数、指数函数、对数函数)为基本考察对象,以绝对值或分段函数的呈现方式,与不等式相结合,考查函数的基本性质,如奇偶性、单调性与最值、函数与方程(零点)、不等式的解法等,考查数学式子变形的能力、运算求解能力、等价转化思想和数形结合思想.其中函数与方程考查频率较高.涉及函数性质的考查;3.常见题型,除将函数与导数相结合考查外,对函数独立考查的题目,不少于两道,近几年趋向于稳定在选择题、填空题,易、中、难的题目均有可能出现.,预测2020年将保持对数形结合思想的考查,主要体现在对函数图象、函数性质及其应用的考查,客观题应特别关注分段函数相关问题,以及与数列、平面解析几何、平面向量、立体几何的结合问题.主观题依然注意与导数的结合.一、单选题1.(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( )A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,2【答案】C 【解析】311(1)(1)()302f --=--=-<,301(0)0(102f =-=-<,@13211112()()()02228f =-=-<,31111(1)1()10222f =-=-=>,321115(2)2()80222f =-=-=>,由()1102f f ⎛⎫⋅< ⎪⎝⎭. 故选:C2.(2020届山东省泰安市高三上期末)函数()3ln xf x x=的部分图象是( ) A . B .C .D .【答案】A 【解析】:()()()33ln ln ,x xf x f x f x x x=-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x=>恒成立,排除CD 故答案选A3.(2020·河南高三月考(理))已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是( )A .2()(2)3-∞+∞,,B .2(2)3, C .22()33-,D .22()()33-∞-+∞,, 【答案】D 【解析】》因为(2)f x +是偶函数,所以()f x 关于直线2x =对称; 因此,由(0)0f =得(4)0f =;又()f x 在(]2-∞,上单调递减,则()f x 在[)2,+∞上单调递增;所以,当232x -≥即0x ≤时,由(23)0f x ->得(23)(4)f x f ->,所以234x ->, 解得23x <-; 当232x -<即0x >时,由(23)0f x ->得(23)(0)f x f ->,所以230x -<, 解得23x >; 因此,(23)0f x ->的解集是22()()33-∞-+∞,,. 》4.(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞ B .(],4-∞C .()2,4-D .(]2,4-【答案】A 【解析】令()2g x x m =-+,画出()f x 与()g x 的图象,平移直线,当直线经过()1,2时只有一个交点,此时4m =,向右平移,不再符合条件,故4m < 故选:A$5.(2020届山东省烟台市高三上期末)设0.5log 3a =,30.5b =,0.513c -⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<【答案】A 【解析】由题,因为0.5log y x =单调递减,则0.50.5log 3log 10a =<=;因为0.5xy =单调递减,则3000.50.51b <=<=;因为3xy =单调递增,则0.50.5013313c -⎛⎫==>= ⎪⎝⎭,所以01a b c <<<<,—故选:A6.(2020届山东省潍坊市高三上期中)函数ln ()xf x x x=-的大致图象为( )A .B .C .D .【答案】A 【解析】函数的定义域为(,0)(0,)-∞+∞,||||()()()ln x ln x f x x x f x x x--=--=--=--,则函数()f x 是奇函数,图象关于原点对称,排除B ,D ,"当0x >且0x →,()f x →+∞,排除C . 故选:A.7.(2020届山东省潍坊市高三上期中)已知3log 2a =,143b =,2ln 3c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .b a c >> C .c b a >>D .c a b >>【答案】B 【解析】因为3log 2(0,1)a =∈,1431b =>,203c ln =<,则a ,b ,c 的大小关系:b a c >>.|故选:B.8.(2020届山东省泰安市高三上期末)若()33log 21log a b ab +=+2+a b 的最小值为( )A .6B .83C .3D .163【答案】C 【解析】∵()3log 21a b +=+∴()33log 21log a b ab +=+()3log 3ab =, ∴23a b ab +=,且0a >,0b >,《∴123a b+=, ∴()112223a b a b a b ⎛⎫+=++ ⎪⎝⎭122143b a a b ⎛⎫=+++ ⎪⎝⎭5233b a a b ⎛⎫=++ ⎪⎝⎭5233≥+⋅3=, 当且仅当b aa b =且123a b+=即1a b ==时,等号成立; 故选:C .9.(2020届山东省日照市高三上期末联考)三个数0.87,70.8,0.8log 7的大小顺序是( )A .70.80.8log 70.87<< B .0.870.8log 770.8<<C .70.80.80.87log 7<<D .0.870.870.8log 7<<,【答案】A 【解析】0.871>,700.81<<,0.8log 70<,故70.80.8log 70.87<<.故选A.10.(2020届山东省济宁市高三上期末)若0.1212,ln 2,log 5a b c ===,则( ) A .b c a >> B .b a c >> C .c a b >> D .a b c >>【答案】D 【解析】,0.10221a =>=;0ln1ln 2ln 1b e =<=<=;221log log 105c =<=,即a b c >> 故选:D11.(2020·山东省淄博实验中学高三上期末)“0x <”是“ln(1)0x +<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】由题意得,ln(1)001110x x x +<⇔<+<⇔-<<,故是必要不充分条件,故选B .)12.(2020届山东省滨州市三校高三上学期联考)若a ,b ,c ,满足2log 3a =,25b =,3log 2c =,则( )A .b c a <<B .c a b <<C .a b c <<D .c b a <<【答案】B 【解析】2221log log 3log 242=<<=,故12a <<;又22542b =>=,故2b >; 33log 2log 31c =<=,c a b ∴<<,)故选:B.13.(2020届山东省九校高三上学期联考)若函数()y f x =的大致图像如图所示,则()f x 的解析式可以为( )A .()22x xxf x -=+B .()22x xxf x -=-C .()22x xf x x-+=D .()22x xf x x--=【答案】C 【解析】对四个选项解析式分析发现B ,D 两个均为偶函数,图象关于y 轴对称,与题不符,故排除;(极限思想分析,0,222,022xxx x xx +--→+→→+,A 错误;220,222,x xx xx x-+-+→+→→+∞,C 符合题意.故选:C14.(2020届山东省枣庄、滕州市高三上期末)函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =( ) A .2x - B .2x - C .2x -- D .2x【答案】C 【解析】`0x <时,()2xf x =.当0x >时,0x -<,()2xf x --=,由于函数()y f x =是奇函数,()()2xf x f x -∴=--=-,因此,当0x >时,()2xf x -=-,故选C.15.(2020届山东省德州市高三上期末)已知1232a b -=⋅,()212log 23c b x x -=++,则实数a ,b ,c 的大小关系是( ) A .a b c >> B .b a c >> C .c b a >> D .a c b >>【答案】A 【解析】…1232a b -=⋅,1232a b -+∴=>,11a b ∴-+>,则a b >.()2223122x x x ++=++≥,()21122log 23log 21c b x x ∴-=++≤=-,b c ∴>.因此,a b c >>. 故选:A.16.(2020·山东省淄博实验中学高三上期末)已知定义在[]5,12m m --上的奇函数()f x ,满足0x >时,()21x f x =-,则()f m 的值为( )A .-15B .-7C .3D .15【答案】A 【解析】?因为奇函数的定义域关于原点中心对称 则5120m m -+-=,解得4m =-因为奇函数()f x 当0x >时,()21xf x =-则()()()4442115f f -=-=--=-故选:A17.(2020届山东省临沂市高三上期末)函数()22xf x =-(0x <)的值域是( )A .1,2B .(),2-∞C .()0,2D .1,【答案】A$【解析】0x <,021x ∴<<, 120x ∴-<-<1222x ∴<-<. 即()()2221,xf x =-∈故选:A18.(2020届山东实验中学高三上期中)若,a b 是任意实数,且a b >,则( ))A .22a b >B .1b a<C .()10g a b ->D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】a 、b 是任意实数,且a b >,如果0a =,2b =-,显然A 不正确;如果0a =,2b =-,显然B 无意义,不正确; 如果0a =,12b =-,显然C ,102lg <,不正确;因为指数函数12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,且a b >,1122ab⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭满足条件,正确.故选:D .~19.(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】由121x⎛⎫ ⎪⎭>⎝解得0x <,所以由“21x -<<-”能推出“0x <”,反之,不能推出; 因此“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的必要不充分条件. 故选:B.~20.(2020届山东省济宁市高三上期末)已知奇函数()f x 在R 上单调,若正实数,a b 满足()()490f a f b +-=,则11a b+的最小值是( ) A .1B .92C .9D .18【答案】A 【解析】奇函数()f x 在R 上单调,()()490f a f b +-=,则()()()499f a f b f b =--=- 故49a b =-即49a b +=()()11111141452451999b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭当4b a a b =即3,32a b ==时等号成立 ~故选:A21.(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞ B .[1,)+∞C .(,1)-∞D .(,1]-∞【答案】B 【解析】1x ≥时,()ln 1f x x ==,x e =,所以函数()1y f x =-在1x ≥时有一个零点,从而在1x <时无零点,即()1f x =无解.而当1x <时,21x ->,()(2)f x f x k =-+ln(2)x k =-+,它是减函数,值域为(,)k +∞, 要使()1f x =无解.则1k.|故选:B.22.(2020届山东省潍坊市高三上期末)函数()y f x =与()y g x =的图象如图所示,则()()y f x g x =⋅的部分图象可能是( )A .B .C .D .【答案】A 【解析】由图象可知()y f x =的图象关于y 轴对称,是偶函数,()y g x =的图象关于原点对称,是奇函数,并且定义域{}0x x ≠,$()()y f x g x ∴=⋅的定义域是{}0x x ≠,并且是奇函数,排除B ,又0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >,()0g x <,()()0f x g x ∴⋅<,排除C,D.满足条件的只有A. 故选:A23.(2020届山东省滨州市高三上期末)已知31log 3aa ⎛⎫= ⎪⎝⎭,133log bb =,131log 3cc ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c << C .b c a << D .b a c <<【答案】C 【解析】/在同一直角坐标系内,作出函数13x y⎛⎫= ⎪⎝⎭,3logy x=,3xy=,13logy x=的图像如下:因为31log3aa⎛⎫=⎪⎝⎭,133logb b=,131log3cc⎛⎫=⎪⎝⎭,所以a是13xy⎛⎫= ⎪⎝⎭与3logy x=交点的横坐标;b是3xy=与13logy x=交点的横坐标;c是13xy⎛⎫= ⎪⎝⎭与13logy x=交点的横坐标;由图像可得:b c a<<.故选:C.24.(2020届山东师范大学附中高三月考)函数()312xf x x⎛⎫=- ⎪⎝⎭的零点所在区间为()A.()1,0-B.10,2⎛⎫⎪⎝⎭C.1,12⎛⎫⎪⎝⎭D.()1,2(【答案】C【解析】311(1)(1)()302f--=--=-<,301(0)0()102f=-=-<,13211112()()()022282f=-=-<,31111(1)1()10222f=-=-=>,321115(2)2()80222f =-=-=>,由()1102f f ⎛⎫⋅< ⎪⎝⎭. 故选:C25.(2020届山东省德州市高三上期末)已知()f x 为定义在R 上的奇函数,当0x ≥时,有()()1f x f x +=-,且当[)0,1x ∈时,()()2log 1f x x =+,下列命题正确的是( )A .()()201920200f f +-=B .函数()f x 在定义域上是周期为2的函数{C .直线y x =与函数()f x 的图象有2个交点D .函数()f x 的值域为[]1,1-【答案】A 【解析】函数()y f x =是R 上的奇函数,()00f ∴=,由题意可得()()100f f =-=, 当0x ≥时,()()()21f x f x f x +=-+=,()()()()()()2019202020192020100f f f f f f ∴+-=-=-=,A 选项正确;当0x ≥时,()()1f x f x +=-,则2616log 555f f ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,2449log 555f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,4462555f f f ⎛⎫⎛⎫⎛⎫∴-≠-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则函数()y f x =不是R 上周期为2的函数,B 选项错误; 若x 为奇数时,()()10f x f ==,%若x 为偶数,则()()00f x f ==,即当x ∈Z 时,()0f x =,当0x ≥时,()()2f x f x +=,若n N ∈,且当()2,21x n n ∈+时,()20,1x n -∈,()()()20,1f x f x n =-∈,当()1,2x ∈时,则()10,1x -∈,()()()11,0f x f x ∴=--∈-,当()21,22x n n ∈++时,()21,2x n -∈,则()()()21,0f x f x n =-∈-, 所以,函数()y f x =在[)0,+∞上的值域为()1,1-,由奇函数的性质可知,函数()y f x =在(),0-∞上的值域为()1,1-, 由此可知,函数()y f x =在R 上的值域为()1,1-,D 选项错误;|如下图所示:由图象可知,当11x -<<时,函数y x =与函数()y f x =的图象只有一个交点, 当1x ≤-或1x ≥时,()()1,1f x ∈-,此时,函数y x =与函数()y f x =没有交点, 则函数y x =与函数()y f x =有且只有一个交点,C 选项错误. 故选:A.26.(2020届山东实验中学高三上期中)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解12341234,,,,x x x x x x x x <<<且,则()3122341x x x x x ⋅++⋅的取值范围是( ) A .(]1,1-B .[]1,1-C .[)1,1- D .()1,1-'【答案】A 【解析】先作()f x 图象,由图象可得12343121,1.2x x x x x ⎡⎫+=-=∈⎪⎢⎣⎭,,因此()31232343112x x x x x x x ⋅++=-+⋅为1,12⎡⎫⎪⎢⎣⎭单调递减函数,从而()(] 31223411,1x x xx x⋅++∈-⋅,选A.二、多选题27.(2020届山东省临沂市高三上期末)若104a=,1025b=,则()…A.2a b+=B.1b a-=C.281g2ab>D.lg6b a->【答案】ACD【解析】由104a=,1025b=,得lg4a=,lg25b=,则lg4lg25lg1002a b∴+=+==,25lg25lg4lg4b a∴-=-=,25lg101lg lg64=>>lg6b a∴->)24lg2lg54lg2lg48lg2ab∴=>=,故正确的有:ACD故选:ACD.28.(2020届山东省日照市高三上期末联考)已知定义在R上的函数()y f x=满足条件()()2f x f x+=-,且函数()1y f x=-为奇函数,则()A.函数()y f x=是周期函数B.函数()y f x=的图象关于点()1,0-对称C .函数()y f x =为R 上的偶函数D .函数()y f x =为R 上的单调函数【答案】ABC 【解析】、因为()()2f x f x +=-,所以()()()42f x f x f x +=-+=,即4T=,故A 正确;因为函数()1y f x =-为奇函数,所以函数()1y f x =-图像关于原点成中心对称,所以B 正确; 又函数()1y f x =-为奇函数,所以()()11f x f x --=--,根据()()2f x f x +=-,令1x -代x 有()()11f x f x +=--,所以()()11f x f x +=--,令1x -代x 有()()f x f x -=,即函数()f x 为R 上的偶函数,C 正确;因为函数()1y f x =-为奇函数,所以()10f -=,又函数()f x 为R 上的偶函数,()10f =,所以函数不单调,D 不正确. 故选:ABC.29.(2020届山东省潍坊市高三上期中)已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .(3)(2019)3f f -+=-B .()f x 在区间[]4,5上是增函数》C .若方程() 1f x k x =+恰有3个实根,则11,24k ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则()61iii x f x =∑的取值范围是()0,6【答案】BCD 【解析】函数()f x 的图象如图所示:对A ,(3)963f -=-+=-,(2019)(1)(1)1f f f ==-=,所以(3)(2019)2f f -+=-,故A 错误; 对B ,由图象可知()f x 在区间[]4,5上是增函数,故B 正确;对C ,由图象可知11,24k ⎛⎫∈-- ⎪⎝⎭,直线() 1f x k x =+与函数图象恰有3个交点,故C 正确; ]对D ,由图象可得,当函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则01b <<,所以当0b →时,()610i i i x f x =→∑;当1b →时,()616i i i x f x =→∑,所以()61i i i x f x =∑的取值范围是()0,6,故D 正确. 故选:BCD.30.(2020届山东省枣庄、滕州市高三上期末)如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设24,u x x =++24v x x =+-,则( )A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h?【答案】AC 【解析】A.∵,u x =v x =,22u v u vx +-==, 由题意4uv =,4v u=在(0,)+∞上是减函数,A 正确.B.125x t -=+126510u v u v+-=+-,整理得15436t u v =++,B 错误;C.由A 、B 得1615363644t u u =++≥=,16u u =即4u =时取等号,4x =,解得31.52x ==,C 正确;D.4x =时,85t =+,7305t -===>,3t >,D 错. :故选:AC.31.(2020届山东省枣庄市高三上学期统考)下列函数既是偶函数,又在(),0-∞上单调递减的是( ) A .2xy = B .23y x-=C .1y x x=- D .()2ln 1y x =+【答案】AD 【解析】对于A 选项,2xy =为偶函数,且当0x <时,122xx y -==为减函数,符合题意. 对于B 选项,23y x -=为偶函数,根据幂函数单调性可知23y x -=在(),0-∞上递增,不符合题意. 对于C 选项,1y x x=-为奇函数,不符合题意. {对于D 选项,()2ln 1y x =+为偶函数,根据复合函数单调性同增异减可知,()2ln 1y x =+在区间(),0-∞上单调递减,符合题意. 故选:AD.32.(2020届山东省潍坊市高三上期末)把方程1169x x y y+=-表示的曲线作为函数()y f x =的图象,则下列结论正确的有( )A .()y f x =的图象不经过第一象限B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为3D .函数()()43g x f x x =+不存在零点 【答案】ACD;【解析】当0,0x y >>,方程是221169x y +=-不表示任何曲线,故A 正确;当0,0x y ≥≤ ,方程是221169x y -=-,即221916y x -= ,当0,0x y ≤≥ ,方程是221169x y -+=- ,即221169x y -=,当0,0x y ≤≤ ,方程是221169x y --=-,即221169x y+= ,如图画出图象由图判断函数在R 上单调递减,故B 不正确;、由图判断()y f x =图象上的点到原点距离的最小值点应在0,0x y ≤≤的图象上,即满足221169x y += ,设图象上的点(),P x y2222279191616x PO x y x x ⎛⎫=+=+-=+ ⎪⎝⎭当0x =时取得最小值3,故C 正确; 当()430f x x += ,即()34f x x =-, 函数()()43g x f x x =+的零点,就是函数()y f x = 和34y x =-的交点, 而34y x =-是曲线221916y x -=,0,0x y ≥≤和221169x y -=0,0x y ≤≥的渐近线,所以没有交点,由图象可知34y x =-和221169x y +=,0,0x y ≤≤没有交点,所以函数()()43g x f x x =+不存在零点,故D 正确.<故选:ACD33.(2020届山东省滨州市高三上期末)在平面直角坐标系xOy 中,如图放置的边长为2的正方形ABCD 沿x 轴滚动(无滑动滚动),点D 恰好经过坐标原点,设顶点(),B x y 的轨迹方程是()y f x =,则对函数()y f x =的判断正确的是( )A .函数()y f x =是奇函数B .对任意的x ∈R ,都有()()44f x f x +=-C .函数()y f x =的值域为0,22⎡⎣D .函数()y f x =在区间[]6,8上单调递增【答案】BCD 【解析】由题意,当42x -≤<-时,顶点(),B x y 的轨迹是以点(2,0)A -为圆心,以2为半径的14圆; ,当22x -≤<时,顶点(),B x y 的轨迹是以点(0,0)D 为圆心,以214圆;当24x ≤<时,顶点(),B x y 的轨迹是以点(2,0)C 为圆心,以2为半径的14圆; 当46x ≤<,顶点(),B x y 的轨迹是以点(4,0)A 为圆心,以2为半径的14圆,与42x -≤<-的形状相同,因此函数()y f x =在[]4,4-恰好为一个周期的图像; 所以函数()y f x =的周期是8; 其图像如下:A 选项,由图像及题意可得,该函数为偶函数,故A 错;B 选项,因为函数的周期为8,所以(8)()f x f x +=,因此(4)(4)f x f x +=-;故B 正确;·C 选项,由图像可得,该函数的值域为0,22⎡⎣;故C 正确;D 选项,因为该函数是以8为周期的函数,因此函数()y f x =在区间[]6,8的图像与在区间[]2,0-图像形状相同,因此,单调递增;故D 正确; 故选:BCD.34.(2020届山东师范大学附中高三月考)下列函数中,既是偶函数,又在(0,)+∞上单调递增的是( ) A .3y x = B .2yxC .xy e =D .2lg y x =【答案】CD 【解析】本题主要考查函数的单调性和函数的奇偶性.|A 项,对于函数3y x =,因为()33()()f x x x f x -=-=-≠,所以函数3y x =不是偶函数.故A 项不符合题意.B 项,对于函数2yx ,因为当1x =时,1y =,当2x =,14y =,所以函数2y x 在区间(0,)+∞上不是单调递增的.故B 项不符合题意.C 项,对于函数x y e =,因为定义域为R ,()()x x g x g x e e --===,所以函数xy e =为偶函数,因为函数xy e =,当0x >时,xx y e e ==,而1e >,函数x y e =在R 上单调递增,所以函数xy e =在区间(0,)+∞上为增函数.故C 项符合题意.D 项,对于函数2lg y x =,因为函数()22lg )(l ()g h x x x h x -=-==,所以函数2lg y x =是偶函数.而2yx 在(0,)+∞上单调递增,lg y x =在(0,)+∞上单调递增,所以函数2lg y x =在(0,)+∞上单调递增.故D 项符合题意. 故选:CD.35.(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a =-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( )A .12B .2C .2e D【答案】BCD—【解析】令函数21()()2T x f x x =-,因为2()()f x f x x -+=,22211()()()()()()()022T x T x f x x f x x f x f x x ∴+-=-+---=+--=,()T x ∴为奇函数,当0x 时,()()0T x f x x '='-<, ()T x ∴在(],0-∞上单调递减, ()T x ∴在R 上单调递减.存在0{|()(1)}x x T x T x ∈-,/∴得00()(1)T x T x -,001x x -,即012x ,()x g x e a =-;1()2x, 0x 为函数()y g x =的一个零点;当12x时,()0x g x e '=-, ∴函数()g x 在12x 时单调递减,由选项知0a >,取12x =<,又0g ee ⎛-=> ⎝,∴要使()g x 在12x时有一个零点,.只需使102g a ⎛⎫= ⎪⎝⎭, 解得e a, a ∴的取值范围为⎡⎫+∞⎪⎢⎪⎣⎭, 故选:BCD . 三、填空题36.(2020届山东省枣庄市高三上学期统考)若()3,0{1,0x x f x x x≤=>,则()()2f f -=__________. 【答案】9 【解析】《因为21(2)309f --==>,所以1((2))()99f f f -==,应填答案9. 37.(2020届山东省潍坊市高三上期中)已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上是减函数,10,3f ⎛⎫-= ⎪⎝⎭则不等式18log 0f x ⎛⎫> ⎪⎝⎭的解集为__________.【答案】1,22⎛⎫ ⎪⎝⎭【解析】()f x 是定义在R 上的偶函数,且在[0,)+∞上是减函数,1()03f -=,11()()033f f ∴=-=,则不等式18(log )0f x >等价为不等式181(|log |)()3f x f >,即181|log |3x <⇒1811log 33x -<<⇒122x <<,{即不等式的解集为1(,2)2, 故答案为:1(,2)2.38.(2020届山东省九校高三上学期联考)已知[]x 表示不超过x 的最大整数,如[]33=,[]1.51=,[]1.72-=-.令()2x f x x =⋅,[]()()g x f x x =-,则下列说法正确的是__________.①()g x 是偶函数 ②()g x 是周期函数③方程()0g x -=有4个根④()g x 的值域为[]0,2 【答案】②③|【解析】1111()([])()33333g f f =-==,1112()([])()33333g f f -=---== 显然11()()33g g -≠,所以()g x 不是偶函数,所以①错误;[][](1)(11)()()g x f x x f x x g x +=+-+=-=,所以()g x 是周期为1的周期函数,所以②正确; 作出函数y x =的图象和()g x 的图象:根据已推导()g x 是周期为1的周期函数,只需作出()g x 在[0,1)x ∈的图象即可,当[0,1)x ∈时[]()()()2x g x f x x f x x =-==⋅,根据周期性即可得到其余区间函数图象,如图所示:》可得()g x 值域为[0,2),函数y x =()g x 的图象一共4个交点,即方程()0g x x =有4个根, 所以③正确,④错误; 故答案为:②③39.(2020届山东省滨州市三校高三上学期联考)已知定义在R 上的函数满足(3)(3)f x f x -=-+,且()f x 图像关于1x =对称,当(1,2]x ∈时,2()log (21)f x x =+,则8252f ⎛⎫= ⎪⎝⎭________. 【答案】-2 【解析】因为()f x 图像关于1x =对称,则()(2)f x f x =-,()(2)(31)(31)(4)(8)f x f x f x f x f x f x =-=--=-++=-+=+,)故()f x 是以8为周期的周期函数,82511113851443131222222f f f f ff⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=⨯++=+=++=---=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭23log (21)22=-⨯+=-故答案为:2-.40.(2020届山东师范大学附中高三月考)已知函数()f x 是定义在R 上的奇函数,当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,若(31)(2)0f x f ++>,则x 的取值范围是________.【答案】(,1)-∞- 【解析】根据已知条件:当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,得函数()f x 是定义在R 上的减函数,…又因为函数()f x 是定义在R 上的奇函数,所以(2)(2)f f -=-,故(31)(2)0f x f ++>等价于(31)(2)(2)f x f f +>-=-,所以312x +<-,即1x <-. 故答案为:(),1-∞-.41.(2020届山东省济宁市高三上期末)2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间t (单位:年)的衰变规律满足573002tN N -=⋅(0N 表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的________;经过测定,良渚古城遗址文物样本中碳14的质量是原来的12至35,据此推测良渚古城存在的时期距今约在________年到5730年之间.(参考数据:22log 3 1.6,log 5 2.3≈≈) 【答案】124011 【解析】当5730t =时,100122N N N -=⋅=∴经过5730年后,碳14的质量变为原来的12令035N N =,则5730325t-= 2223log log 3log 50.757305t ∴-==-≈- 。

2020年山东省淄博市初级中学高三数学文上学期期末试题含解析

2020年山东省淄博市初级中学高三数学文上学期期末试题含解析

2020年山东省淄博市初级中学高三数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 执行如图所示的程序框图,若输出的结果s = 132,则判断框中可以填()A. B.C. D.参考答案:B第一次循环第二次循环结束循环,输出,所以判断框中应填选B.2. 甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示.则甲、乙、丙三人训练成绩方差的大小关系是()A. B.C.D.参考答案:A3. 若,则的大小关系为()A.B.C. D.参考答案:D∵0<a<b<1,a b∈(0,1),log b a>log b b=1,z=<0,则的大小关系为.故选:D.4. 函数的零点有A.0 B.1 C.2 D.3参考答案:C5. 已知向量=(1,1),2+=(4,2),则向量,的夹角的余弦值为()A.B.C.D.参考答案:C【考点】数量积表示两个向量的夹角.【分析】利用向量的坐标运算求出;利用向量的数量积公式求出两个向量的数量积;利用向量模的坐标公式求出两个向量的模;利用向量的数量积公式求出两个向量的夹角余弦.【解答】解:∵∴∴∵∴两个向量的夹角余弦为故选C【点评】本题考查向量的数量积公式,利用向量的数量积公式求向量的夹角余弦、考查向量模的坐标公式.6. 若函数在上单调递增,则实数的取值范围是A.B.C.D.参考答案:C7. 已知双曲线()的右焦点与抛物线的焦点相同,则此双曲线的离心率为A.6B. C . D.参考答案:C8. 一只蚂蚁从正方体的顶点处出发,经正方体的表面,按最短路线爬行到达顶点位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是()A.①② B.①③ C.③④D.②④参考答案:D略9. 设等比数列{a n}的前n项和为S n,若S10:S5=1:2,则 ( )A. B. C.D.参考答案:B10. 设是等差数列的前项和,已知,则等于A.13 B.35 C.49D.63参考答案:C在等差数列中,,选C.二、填空题:本大题共7小题,每小题4分,共28分11. 在矩形中,. 若分别在边上运动(包括端点),且满足,则的取值范围是_________.参考答案:12. 已知一个空间几何体的所有棱长均为1cm,其表面展开图如图所示,则该空间几何体的体积V= cm3.参考答案:考点:由三视图求面积、体积.专题:立体几何.分析:三视图复原几何体分两部分,下面是一个边长为1的正方体、上面是一个棱长为1的正四棱锥,分别计算出边长为1的正方体及棱长为1的正四棱锥的体积即可.解答:解:由三视图可知,该几何体下面是一个边长为1的正方体,其体积为1,上面是一个棱长为1的正四棱锥,其体积为=,故答案为:.点评:本题考查三视图与几何体的关系,考查空间想象能力、逻辑思维能力,注意解题方法的积累,属于基础题.13. 如果等比数列的前项和,则常数参考答案:-1略14. 计算__________.参考答案:31原式.15. 某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为元.参考答案:2300略16. 设a+b=﹣2,b<0,则当a= 时,﹣取得最小值.参考答案:2【考点】基本不等式.【专题】计算题;转化思想;综合法;不等式.【分析】求﹣的最小值,消去常数1,∵,a+b=﹣2,那么﹣=,从而利用基本不等式求解最小值时a的值.【解答】解:由题意:a+b=﹣2,b<0知b=﹣2﹣a<0,∴a>﹣2.∵,当a>0时,则:﹣==∵b<0,∴≥2=1,当且仅当﹣b=2a时取等号.所以≥1﹣=,此时:解得:a=2当﹣2<a<0时,则:﹣==所以≥1+=,当且仅当b=2a时取等号.此时:a=综上所述:当a=2时,﹣取得最小值为.故答案为2.【点评】本题考查了基本不等式的性质,当且仅当取等号时a,b的关系.属于基础题.17. 设集合和,其中符号表示不大于的最大整数,则.参考答案:三、解答题:本大题共5小题,共72分。

山东省淄博实验中学2020届高三上学期期末考试数学试题与答案

山东省淄博实验中学2020届高三上学期期末考试数学试题与答案

淄博实验中学高三年级第一学期模块考试 2020.01数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}(){}10,ln A x x x B x y x a =-≤==-,若A B A =I ,则实数a 的取值范围为( )A.(),0-∞ B (],0-∞ C.()1,+∞ D.[)1,+∞2.已知复数(3)13i z i +=-,i 为虚数单位,则下列说法正确的是( )A.i z =||B.i z =C.12=zD.z 的虚部为i -3.“0x <”是“ln(1)0x +<”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.己知()cos 2cos 2παπα⎛⎫-=+⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为 A .7- B .7 C .1 D .1-5.已知定义在[]m m 21,5--上的奇函数)(x f ,满足0>x 时,12)(-=x x f ,则)(m f 的值为( )A. -15B. -7C. 3D. 156.“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代入们用写“桃符”的方式来祈福避祸,而现代入们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )A .59B .49C .716D .916 7.已知23.035.02122log 5log ⎪⎭⎫ ⎝⎛====d c b a 、、、,从这四个数中任取一个数m ,使函数231)(23+++=x mx x x f 有极值点的概率为 ( ) A.41 B.21 C. 43 D.1 8.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射入,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM ∆的周长为 ( )A. 7112B. 9+C. 9+D. 8312二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.由我国引领的5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值。

山东省淄博实验中学2020届高三上学期第一次学习检测数学试题Word版含答案

山东省淄博实验中学2020届高三上学期第一次学习检测数学试题Word版含答案

7淄博实验中学高三级部第一学期学习效果检测试题数 学第I 卷(共60分)12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)、选择题(本大题共 1. 已知集合 2N |x 3 , B x|x,则AIA.0,1B .1C.0,1 D. 0,12. 已知命题 P :R , e x 1sin x .则命题A. sin xB .sinxC.x °sin x 0D. x °e x0sin x 03. 设a , b R ,则 “ a |b ”是 “ ab ”的(A. 充分不必要条件 B .必要不充分条件 C •充要条件 D •既不充分也不必要条件4. 已知 a b ,则下列成立的是( A.-.bB . a 2 b 25. 已知 a 0,b 0, a b2,则a b C•二 2e e4 —的最小值是(bD. ac 2 be 2山东中学联盟A. B .C. D. 46. 已知 a 0,b 0,a,b 的等比中项为 2,b 1的最小值为() aA.B . 4C.7. 已知等差数列 {a n }中,d 11,前7项的和S 735,则前n 项和S n 中()A. 前6项和最大B .前7项和最大C .前6项和最小D .前7项和最小《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题:把100个面包分给5个人,使每个人的所得成等差数列,且使较大的三份之和的最小一份的量为()1 、—是较小的两份之和,则752b1(a b 0)的一个焦点,若椭圆上存在点A 使AOF (。

为坐标原点)为正三角形,则椭圆的离心率为( ) A3 1B,3 1C 忑1D. 2 12211. 已知m0, xy 0 ,当x y2时,不等式-mx y4恒成立,则 m 的取值范围是A.2, B .2, C. 0, .2 D. 0,212 .已知Fi ,F2是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且 PF i PF 2,线段2 e ?PF 1的垂直平分线过 F 2,若椭圆的离心率为 0,双曲线的离心率为 €2,贝U-的最小值e 〔 2为() A.B . 3C. 6D. ;3第H 卷非选择题(共90分)二、填空题:(请把答案填在题中横线上每小题 5分,共20分).2 613. ____________________________________________ 在(3x -)的展开式中,x 2的系数为 .(用数字作答)x14.现有3位男学生3位女学生排成一排照相,若男学生站两端,3位女学生中有且只有两位相邻,则不同的排法种数是 ______ .(用数字作答)5 5 5 A.-B.-C.-243D.9. 若双曲线2x ~2 a2y b 21的一条渐近线与直线 y 2x 垂直,则该双曲线的离心率为(A.B . ,5C.D. 210•点F 为椭圆2x~2a5 2018 2 , 201815. 设(1 ax)a0a1x a2x L a2018x ,右a1 2a2 3比2018a2018 2018a a 0,则实数a ____________ .16•已知函数y f x 在R 上的图象是连续不断的一条曲线,并且关于原点对称,其导函数 为f x ,当x 0时,有不等式x f x 2xf x 成立,若对x R ,不等式e 2xf e x a 2x 2 f ax0恒成立,则正整数a 的最大值为 _________ .山东中学联盟三•解答题:(本大题共6小题,共70分•解答应写岀文字说明,证明 过程或演算步骤).217. (本小题满分10分)等差数列a n 中,公差d 0, a 5 14 , a 3 a i a ii .(1) 求a n 的通项公式;1(2)若b n ,求数列b n 的前n 项和S n .a n an 118. (本小题满分12分)如图,在四棱锥P ABCD 中,ABCD 为矩形, APB 是以 P 为直角的等腰直角三角形,平面 PAB 丄平面ABCD .(1)证明:平面PAD 丄平面PBC ;⑵ M 为直线PC 的中点,且AP2 219•已知椭圆c:%与 1(a b a 2 b 2 成的四边形的面积为 4 2 • (1)求椭圆C 的标准方程; 20 •(本小题满分12分)2020年开始,国家逐步推行全新的高考制度,新高考不再分文理科。

专题03 充分、必要、充要问题的研究(解析版)

专题03 充分、必要、充要问题的研究(解析版)

专题03 充分、必要、充要问题的研究一、题型选讲题型一 、充分、不要条件的判断充分、必要条件的三种判断方法:(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p⇒q 与非q⇒非p ,q⇒p 与非p⇒非q ,p⇔q 与非q⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 例1、【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选A .1-1、【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.1-2、(2020届浙江省台州市温岭中学3月模拟)已知,x y 是非零实数,则“x y >”是“11x y<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】D 【解析】 因为11x y <,所以00x y x y xy xy >⎧->⇒⎨>⎩或0x y xy <⎧⎨<⎩ ,所以x y >是“11x y <”的既不充分也不必要条件,选D 1-3、(2020·浙江省温州市新力量联盟高三上期末)已知0a >且1a ≠,则“()log 1a a b ->”是“()10a b -⋅<”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】由()log 1a a b ->当1a >时,a b a ->得0b <,推出()10a b -<, 当01a <<时,0a b a <-<得0b >,推出()10a b -<, 则()log 1a a b ->是()10a b -<的充分条件,但当()10a b -<时不一定能推出()log 1a a b ->(比如:01a <<,1b >,这时0a b -<无意义) 则()log 1a a b ->是()10a b -<的不必要条件, 故选:A.1-4、(2020届浙江省温丽联盟高三第一次联考)已知m 为非零实数,则“11m<-”是“1m >-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A 【解析】由11m <-,得10m m +<,解得10m -<<,故“11m<-”是“1m >-”的充分不必要条件.故选A.例2、【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】将两个条件相互推导,根据能否推导的结果判断充分必要条件. 依题意,,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选B.2-1、(2020·浙江学军中学高三3月月考)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】当“直线a 和直线b 相交”时,平面α和平面β必有公共点,即平面α和平面β相交,充分性成立; 当“平面α和平面β相交”,则 “直线a 和直线b 可以没有公共点”,即必要性不成立. 故选A.例3、【2020年高考北京】已知,αβ∈R ,则“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】(1)当存在k ∈Z 使得π(1)kk αβ=+-时,若k 为偶数,则()sin sin πsin k αββ=+=;若k 为奇数,则()()()sin sin πsin 1ππsin πsin k k αββββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2πm αβ=+或π2πm αβ+=+,m ∈Z ,即()()π12kk k m αβ=+-=或()()π121kk k m αβ=+-=+,亦即存在k ∈Z 使得π(1)kk αβ=+-.所以,“存在k ∈Z 使得π(1)kk αβ=+-”是“sin sin αβ=”的充要条件.故选C .3-1、(2020届浙江省宁波市余姚中学高考模拟)在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】由题意可得,在ABC ∆中,因为tan tan 1A B >, 所以sin sin 1cos cos A BA B>,因为0,0A B ππ<<<<,所以sin sin 0A B >,cos cos 0A B >,结合三角形内角的条件,故A,B 同为锐角,因为sin sin cos cos A B A B >, 所以cos cos sin sin 0A B A B -<,即cos()0A B +<,所以2A B ππ<+<,因此02C <<π,所以ABC ∆是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若ABC ∆是钝角三角形,也推不出“tan tan 1B C >,故必要性不成立, 所以为既不充分也不必要条件,故选D.3-2、(2020·浙江温州中学3月高考模拟)“”αβ≠是”cos cos αβ≠的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】cos cos αβαβ=⇒=所以cos cos αβαβ≠⇒≠ (逆否命题)必要性成立当cos cos αβαβ=-⇒=,不充分 故是必要不充分条件,答案选B3-3、(江苏省南通市通州区2019-2020学年高三第一次调研抽测)将函数()sin 4f x x π⎛⎫=+⎪⎝⎭的图象向右平移ϕ个单位,得到函数y g x =()的图象.则“34πϕ=”是“函数()g x 为偶函数”的________条件,(从“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”中选填一个) 【答案】充分不必要【解析】由题意,将函数()sin 4f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移ϕ个单位,可得sin 4()=πϕ⎛⎫+- ⎪⎝⎭gx x 的图像, 当34πϕ=时,可得3sin sin cos 442()=πππ⎛⎫⎛⎫+-=-=- ⎪ ⎪⎝⎭⎝⎭gx x x x ,显然()g x 为偶函数, 所以“34πϕ=”是“函数()g x 为偶函数”的充分条件; 若函数()g x 为偶函数,则,42ππϕπ-=+∈k k Z ,即,4πϕπ=--∈k k Z ,不能推出34πϕ=, 所以“34πϕ=”不是“函数()g x 为偶函数”的必要条件, 因此“34πϕ=”是“函数()g x 为偶函数”的充分不必要条件. 故答案为:充分不必要例4、【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件. 故选C.4-1、(2020届山东省日照市高三上期末联考)设,a b 是非零向量,则2a b =是a abb =成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B 【解析】由2a b =可知:a b , 方向相同,a ba b , 表示 a b , 方向上的单位向量所以a b a b=成立;反之不成立. 故选B例5、(2020届浙江省嘉兴市高三5月模拟)已知,R a b ∈,则“1a =”是“直线10ax y +-=和直线2(2)10x a y +--=垂直”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】直线10ax y +-=和直线2(2)10x a y +--=垂直, 则()220a a +-=,解得2a =-或1a =,所以,由“1a =”可以推出“直线10ax y +-=和直线2(2)10x a y +--=垂直”,由 “直线10ax y +-=和直线2(2)10x a y +--=垂直”不能推出“1a =”,故“1a =”是“直线10ax y +-=和直线2(2)10x a y +--=垂直”的充分不必要条件, 故选:A.5-1、(2020·浙江温州中学高三3月月考)“直线()1330m x y +-+=与直线220x my -+=平行”的充要条件是m =( ) A .-3 B .2 C .-3或2 D .3或2【答案】A【解析】当0m =或1m =-时,显然直线不平行, 由132m m+=,解得:3m =-或2m =, 3m =-时,直线分别为:2330x y --+=和2320x y ++=,平行, 2m =时,直线分别为:3330x y -+=和2220x y -+=,重合,故3m =-, 故选:A .例6、(2020届浙江省宁波市鄞州中学高三下期初)已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“990S >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】设等比数列{}n a 公比为q ,当1q =时,19910990a S a >⇔=>,当1q ≠时,999999111,011q q S a q q --=⋅>--, 19900a S >⇔>∴,所以“10a >”是“990S >”的充要条件. 故选:C.6-1、(2020·浙江高三)等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和,则“d =0”是“2nnS S ∈Z ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和,若d =0,则{a n }为常数列,故a n =1a , 即2112,n n S na S na ==⇒“2nnS S ∈Z ”,当2nnS S ∈Z 时,d 不一定为0, 例如,数列1,3,5,7,9,11中,631357911135S S +++++==++4,d =2, 故d =0是2nnS S ∈Z 的充分不必要条件. 故选:A .题型二、根据充分、必要条件判断含参的问题解决此类问题要注意以下两点:(1)把充分、不要条件转化为集合之间的关系;(2)根据集合之间的关系列出关于参数的不等式。

山东省淄博市2020届高三数学上学期期末考试 理(含解析)新人教A版

山东省淄博市2020届高三数学上学期期末考试 理(含解析)新人教A版

山东省淄博市2020届高三上学期期末考试数学(理)试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。

第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再改涂其它答案标号。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.全集U=R ,集合{}02|2≥+=x x x A ,则[U A= A .[]0,2-B .()0,2-C .(][)+∞⋃-∞-,02,D .[]2,0【答案】B【解析】{}2|20{02}A x x x x x x =+≥=><-或,所以{20}U A x x =-<<ð,所以选B.2.已知 ,54cos ,23,-=⎪⎭⎫ ⎝⎛∈αππα则)4tan(απ-等于 A .7 B .71 C .71-D .7-【答案】B【解析】因为 ,54cos ,23,-=⎪⎭⎫ ⎝⎛∈αππα所以3sin 5α=-,3tan 4α=。

所以3tantan 1144tan()3471tan tan 144παπαπα---===++,选B. 3.如果等差数列{}n a 中,15765=++a a a ,那么943...a a a +++等于A .21B .30C .35D .40【答案】C【解析】由15765=++a a a 得663155a a ==,。

所以3496...77535a a a a +++==⨯=,选C.4.要得到函数)23sin(-=x y 的图象,只要将函数x y 3sin =的图象 A .向左平移2个单位 B .向右平移2个单位C .向左平移32个单位 D .向右平移32个单位 【答案】D【解析】因为2sin(32)sin 3()3y x x =-=-,所以只需将函数x y 3sin =的图象向右平移32个单位,即可得到)23sin(-=x y 的图象,选D.5.“1-=m ”是“直线02)12(=+-+y m mx 与直线033=++my x 垂直”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】当210m -=,即12m =时,两直线方程为4x =-和13302x y ++=,此时两直线不垂直。

山东省淄博市北中学2020-2021学年高三数学理期末试卷含解析

山东省淄博市北中学2020-2021学年高三数学理期末试卷含解析

山东省淄博市北中学2020-2021学年高三数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 设集合,则A∩B等于()A.{1,2,5} B.{l,2,4,5} C.{1,4,5} D.{1,2,4}参考答案:B【考点】交集及其运算.【专题】计算题.【分析】由集合A={x|x=,k∈Z},当k=0时,x=1;当k=1时,x=2;当k=5时,x=4;当k=8时,x=5,由此根据B={x|x≤5,x∈Q},能求出A∩B.【解答】解:∵集合,当k=0时,x=1;当k=1时,x=2;当k=5时,x=4;当k=8时,x=5,∴A∩B={1,2,4,5}.故选B.【点评】本题考查集合的交集的运算,是基础题.解题时要认真审题,注意列举法的合理运用.2. 已知全集,则集合{1,6}= ()A. B. C. D.参考答案:C略3. 已知函数,且实数>>>0满足,若实数是函数=的一个零点,那么下列不等式中不可能成立的是()(A)(B)(C)(D)参考答案:D4. 已知关于x的不等式的解集为,在关于x的不等式的解集为()A. B.C. D.参考答案:B5.A.2011 B.2012 C.2009D.2010参考答案:B略6. 已知函数,的图像与直线的两个相邻交点的距离等于则的单调递增区间是()CA.B.C.D.参考答案:C略7. 规定,若,则函数的值域A. B.C. D.参考答案:A8. 已知为单位向量,且夹角为,则向量与的夹角大小是A.B.C.D.参考答案:D9. 已知可导函数满足,则当时,和的大小关系为()(A)(B)(C)(C)参考答案:10. 一支足球队每场比赛获胜(得3分)的概率为a,与对手踢平(得1分)的概率为b负于对手(得0分)的概率为.已知该足球队进行一场比赛得分的期望是1,则的最小值为A. B. C. D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 设x,y满足约束条件,则的最大值为______.参考答案:29【分析】由约束条件作出可行域,化目标函数为以原点为圆心的圆,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由约束条件作出可行域如图:联立,解得,目标函数是以原点为圆心,以为半径的圆,由图可知,此圆经过点A时,半径最大,此时z也最大,最大值为.所以本题答案为29.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.12. 已知实数x,y满足,则函数的最大值为▲.参考答案:略13.对于给定的函数,有下列结论:的图象关于原点对称;是上的增函数;有最小值0,其中正确命题的序号是___________参考答案:略14. 若不等式对任意的,恒成立,则实数的取值范围是.参考答案:15. 设直线和圆相交于点A 、B ,则弦AB 的垂直平分线方程是 ___________________________.参考答案:16. 二项式展开式中的常数项是(用数字做答).参考答案:2817. 设,则= 参考答案:三、解答题:本大题共5小题,共72分。

2020-- 山东省 淄博实验中学高三上学期期末 考试 数学试题

2020-- 山东省 淄博实验中学高三上学期期末 考试 数学试题

淄博实验中学高三年级第一学期模块考试 2020.01数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}(){}10,ln A x x x B x y x a =-≤==-,若A B A =I ,则实数a 的取值范围为( )A.(),0-∞ B (],0-∞ C.()1,+∞ D.[)1,+∞ 2.已知复数(3)13i z i +=-,i 为虚数单位,则下列说法正确的是( )A.i z =||B.i z =C.12=z D.z 的虚部为i - 3.“0x <”是“ln(1)0x +<”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.己知()cos 2cos 2παπα⎛⎫-=+⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为A .7-B .7C .1D .1-5.已知定义在[]m m 21,5--上的奇函数)(x f ,满足0>x 时,12)(-=xx f ,则)(m f 的值为( )A. -15B. -7C. 3D. 156.“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代入们用写“桃符”的方式来祈福避祸,而现代入们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )A .59B .49C .716D .9167.已知23.035.02122log 5log ⎪⎭⎫ ⎝⎛====d c b a 、、、,从这四个数中任取一个数m ,使函数231)(23+++=x mx x x f 有极值点的概率为 ( )A.41 B.21 C.43D.1 8.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射入,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM ∆的周长为 ( )A.712612+ B. 926+ C. 910+D.832612+ 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.由我国引领的5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值。

山东省淄博市临淄第三中学2020年高三数学文上学期期末试卷含解析

山东省淄博市临淄第三中学2020年高三数学文上学期期末试卷含解析

山东省淄博市临淄第三中学2020年高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若在()内单调递减,则的取值范围为()A.(-∞,3]B. (-∞,3)C. (3,+∞)D. [3,+∞)参考答案:D2. 下图是函数的图像,它与轴有个不同的公共点.给出下列四个区间之中,存在不能用二分法求出的零点,该零点所在的区间是()A. C. B. D.参考答案:B3.已知函数,则的反函数是()A. B.C. D.参考答案:答案:B4. 已知,那么( )A. B. C. D.参考答案:【知识点】二倍角公式;诱导公式. C6 C2【答案解析】C 解析:因为,所以,即,故选C.【思路点拨】利用二倍角公式求得值,再用诱导公式求得sin2x值.5. 如图所示的程序框图,其功能是输入x的值,输出相应的y值.若要使输入的x值与输出的y值相等,则这样的x值有()A.2个B.3个C.4个D.5个参考答案:A【考点】程序框图.【分析】由已知的程序框图,我们可得该程序的功能是计算并输出分段函数y=的值,结合输入的x值与输出的y值相等,我们分类讨论后,即可得到结论.【解答】解:由题意得该程序的功能是:计算并输出分段函数y=的值,又∵输入的x值与输出的y值相等,当|x|≤1时,x=x2,解得x=0,或x=1,当|x|>1时,x=ln|x|,无解.故满足条件的x值共有2个.故选:A.6. 若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.a+c≥b﹣c B.ac>bc C.>0 D.(a﹣b)c2≥0参考答案:D【考点】两角和与差的正弦函数;正弦定理.【分析】A、令a=﹣1,b=﹣2,c=﹣3,计算出a+c与b﹣c的值,显然不成立;B、当c=0时,显然不成立;C、当c=0时,显然不成立;D、由a大于b,得到a﹣b大于0,而c2为非负数,即可判断此选项一定成立.【解答】解:A、当a=﹣1,b=﹣2,c=﹣3时,a+c=﹣4,b﹣c=1,显然不成立,本选项不一定成立;B、c=0时,ac=bc,本选项不一定成立;C、c=0时, =0,本选项不一定成立;D、∵a﹣b>0,∴(a﹣b)2>0,又c2≥0,∴(a﹣b)2c≥0,本选项一定成立,故选D7. 已知,若,则y=,y=在同一坐标系内的大致图象是参考答案:B由知为减函数,因此可排除A、C,而在时也为减函数,故选B.8. 如果一个正方体的体积在数值上等于V,表面积在数值上等于S,且V-S-m≥0恒成立,则实数m的范围是(A)(-∞,-16] (B)(-∞,-32] (C)[-32,-16] (D)以上答案都不对参考答案:B9. 下列函数中,既是奇函数又是增函数的为( )A.B.C.D.参考答案:D【知识点】函数的奇偶性函数的单调性与最值【试题解析】因为A.不是奇函数,B.不是增函数,C.不是增函数,只有D.既是奇函数又是增函数故答案为:D10. 已知f(x)=Asin(wx+θ),(w>0),若两个不等的实数x1,x2∈,且|x1﹣x2|min=π,则f(x)的最小正周期是( )A.3πB.2πC.πD.参考答案:A考点:正弦函数的图象;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:由题意可得?=π,求得ω 的值,可得f(x)的最小正周期是的值.解答:解:由题意可得sin(wx+θ)=的解为两个不等的实数x1,x2,且?=π,求得ω=,故f(x)的最小正周期是=3π,故选:A.点评:本题主要考查正弦函数的图象特征,正弦函数的周期性,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11. 已知,,当时,,则当时,.参考答案:由,可知函数关于对称,当时,,所以.12. 如图所示的程序框图,输出的结果是_________.参考答案:13. 在矩形ABCD中,,,点F在边CD上.若,则的值是______.参考答案:【分析】由平面向量数量积的运算得:||||cos∠FAB=||||=3,即||,即||,即||,得解.【详解】因为,所以||||cos∠FAB=||||=3,所以||,所以||,所以||,故答案为:.【点睛】本题考查了平面向量数量积的运算,属中档题.14. 在中,角所对的边分别为且,则的外接圆的半径参考答案:15. 设则=.参考答案:略16. 设A、B分别是椭圆(a>b>0)的左、右顶点,点P在C上且异于A、B两点,若直线AP与BP的斜率之积为﹣,则C的离心率为__________.参考答案:略17. ,则使成立的所有值的和为。

y=Asin(ωx+φ)的图象与性质(解析版)

y=Asin(ωx+φ)的图象与性质(解析版)

考点30 y =A sin(ωx +φ)的图象与性质【命题解读】三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主 【基础知识回顾】4、与三角函数奇偶性相关的结论三角函数中,判断奇偶性的前提是定义域关于原点对称,奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.常见的结论有:(1)若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z);若为奇函数,则有φ=k π(k ∈Z). (2)若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z);若为奇函数,则有φ=k π+π2(k ∈Z). (3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z).1.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图是( )【答案】A【解析】:令x =0得y =sin ⎝⎛⎭⎫-π3=-32,排除B ,D 项,由f ⎝⎛⎭⎫-π3=0,f ⎝⎛⎭⎫π6=0,排除C 项,故选A.2.为了得到函数y =sin ⎝⎛⎭⎫2x -π6的图象,可以将函数y =sin 2x 的图象( )A .向右平移π6个单位长度 B .向右平移π12个单位长度 C .向左平移π6个单位长度 D .向左平移π12个单位长度 【答案】B【解析】:y =sin ⎝⎛⎭⎫2x -π6=sin 2⎝⎛⎭⎫x -π12,故将函数y =sin 2x 的图象向右平移π12个单位长度,可得y =sin ⎝⎛⎭⎫2x -π6的图象.3、 函数f(x)=A sin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则f ⎝⎛⎭⎫11π24的值为( )第1题图A . -62B . -32C . -22 D . -1 【答案】D【解析】 由图象可得A =2,最小正周期T =4×⎝⎛⎭⎫7π12-π3=π,则ω=2πT =2.又f ⎝⎛⎭⎫11π24=2sin ⎝⎛⎭⎫7π6+φ=-2,得φ=π3,则f(x)=2sin ⎝⎛⎭⎫2x +π3,f ⎝⎛⎭⎫11π24=2sin ⎝⎛⎭⎫11π12+π3=2sin 5π4=-1.故选D .4、(2018苏北四市期末) 若函数f(x)=A sin (ωx +φ)(A>0,ω>0)的图象与直线y =m 的三个相邻交点的横坐标分别是π6,π3,2π3,则实数ω的值为________. 【答案】、. 4【解析】、由题意得函数f(x)的最小正周期T =2π3-π6=2πω,从而ω=4.5、(2018镇江期末) 函数y =3sin ⎝⎛⎭⎫2x +π4的图象两相邻对称轴的距离为________.【答案】、 π2【解析】、由题知函数最小正周期T =2π2=π.图象两相邻对称轴间的距离是最小正周期π的一半即π2. 6、(2020江苏镇江期中考试)设函数()()(sin ,,f x A x A ωϕωϕ=+为参数,且)0,0,0A ωϕπ>><<的部分图象如图所示,则ϕ的值为______.【答案】3π【解析】由图象可得()f x 最小正周期:473126T πππ⎛⎫=⨯+= ⎪⎝⎭,即2ππω=,2ω∴=,又77sin 126f A A ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,73262k ππϕπ∴+=+,k Z ∈,23k πϕπ∴=+,k Z ∈,又0ϕπ<<,3πϕ∴=,本题正确结果:3π. 7、 已知函数()sin(2)6f x x π=-的图象C 1向左平移π4个单位得到图象C 2,则C 2在[0,π]上的单调减区间是________.【答案】:[π12,712π] 【解析】、:由题设可知C 2的曲线方程sin(2)3y x π=+,令222232k x k ππ3ππ+≤+<π+,得1212k x k π7ππ+≤<π+.令k =0得C 2在[0,π]上的单减区间为[π12,712π].考向一 函数y =Asin(ωx +φ)的图象及其变换设函数()sin (0)f x x x ωωω=>的周期为π. (1) 求它的振幅、初相;(2) 用“五点法”作出它在长度为一个周期的闭区间上的图象; (3) 说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到.【解析】:(1) ()sin f x x x ωω=12(sin )2x x ωω=+2sin()3x ωπ=+,∵ T =π,∴2πω=π,即ω=2.∴()2sin()3f x x ωπ=+.∴ 函数(x)sin f x x ωω=的振幅为2,初相为3π.(2) 令X =2x +π3,则2sin(2)2sin 3y x x π=+=. 列表,并描点画出图象:(3) (解法1)把sin y x =的图象上所有的点向左平移3π个单位,得到sin()3y x π=+的图象;再把sin()3y x π=+的图象上的点的横坐标变为原来的12(纵坐标不变),得到sin(2)3y x π=+的图象;最后把sin(2)3y x π=+上所有点的纵坐标变为原来的2倍(横坐标不变),即可得到2sin(2)3y x π=+的图象. (解法2)将sin y x =的图象上每一点的横坐标x 变为原来的12,纵坐标不变,得到sin 2y x =的图象;再将sin 2y x =的图象向左平移π6个单位,得到sin 2()sin(2)63y x x ππ=+=+的图象;再将sin(2)3y x π=+的图象上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到2sin(2)3y x π=+的图象.变式1、已知函数y =2sin ⎝⎛⎭⎫2x +π3.(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎝⎛⎭⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到.【解析】 (1)y =2sin ⎝⎛⎭⎫2x +π3的振幅A =2,周期T =2π2=π,初相φ=π3.(2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X.(3)(方法1)把y =sin x 的图象上所有的点向左平移π3个单位长度,得到y =sin ⎝⎛⎭⎫x +π3的图象;再把y =sin ⎝⎛⎭⎫x +π3的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象;最后把y=sin ⎝⎛⎭⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎫2x +π3的图象.(方法2)将y =sin x 的图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到y =sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位长度,得到y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎫2x +π3的图象上所有点的纵坐标伸长为原来的2倍(横坐标不变),即得到y =2sin ⎝⎛⎭⎫2x +π3的图象.变式2、(2020届山东师范大学附中高三月考)为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象( ) A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位【答案】A 【解析】不妨设函数2y sin x =的图象沿横轴所在直线平移ϕ个单位后得到函数23y sin x π⎛⎫=+⎪⎝⎭的图象. 于是,函数2y sin x =平移ϕ个单位后得到函数,sin 2()y x ϕ=+,即sin(22)y x ϕ=+, 所以有223k πϕπ=+,6k πϕπ=+,取0k =,6π=ϕ.答案为A . 变式3、(2020届山东省枣庄、滕州市高三上期末)将曲线()cos 2y f x x =上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移4π个单位长度,得到曲线cos 2y x =,则6f π⎛⎫= ⎪⎝⎭( )A .1B .-1C D .【答案】D 【解析】把cos 2y x =的图象向左平移4π个单位长度,得cos 2()cos(2)sin 242y x x x ππ=+=+=-的图象,再把所得图象各点的横坐标变为原来的12倍,纵坐标不变,得图象的函数式为sin(22)sin 4y x x =-⨯=-,sin 42sin 2cos2()cos2y x x x f x x =-=-=,∴()2sin 2f x x =-,∴()2sin63f ππ=-=.故选:D.变式4、(2020届山东省潍坊市高三上学期统考)将函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图象向右平移()0a a >个单位得到函数()πcos 24g x x ⎛⎫=+ ⎪⎝⎭的图象,则a 的值可以为( )A .5π12B .7π12C .19π24D .41π24【答案】C 【解析】由题意知,3()cos(2)sin(2)44g x x x ππ=+=+, 其图象向左平移a 个单位得到函数3()sin(22)4f x x a π=++, 而函数()πsin 23f x x ⎛⎫=+⎪⎝⎭,所以有32243a k πππ+=+ 5224a k ππ=-+,取1k =得1924a π=.答案选C.方法总结:1.y =A sin(ωx +φ)的图象可用“五点法”作简图得到,可通过变量代换z =ωx +φ计算五点坐标.2.由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)图象有两条途径:“先平移后伸缩”与“先伸缩后平移”.考向二 求函数y =Asin(ωx +φ)的解析式例2、下图为函数sin()y A x ωϕ=+的一段图象. (1) 请写出这个函数的一个解析式;(2) 求与(1)中函数图象关于直线2x =π对称的函数图象的解析式.【解析】:(1) 13214,,332T T ωπππ=-=π==又A =3, 由13sin()2y x ϕ=+的图象过(,0)3π,∴103sin()23ϕπ=⨯+,6ϕπ=- (φ为其中一个值). ∴13sin()26y x π=-为所求.(2) 设(,)x y 为所求函数图象上任意一点,该点关于直线2x =π的对称点为(4,)x y π-, 则点(4,)x y π-必在函数13sin()26y x π=-的图象上. ∴ 13sin[(4)]3sin(2)2626x y x ππππ=--=--, 即13sin()26y x π=-+,∴与13sin()26y x π=-的图象关于直线2x =π对称的函数图象的解析式是13sin()26y x π=-+.变式1、(2019苏北四市期末) 函数f (x )=2sin(ωx +φ)(ω>0)的部分图象如图所示,若AB =5,则ω的值为________.【答案】、 π3 【解析】、如图,过点A 作垂直于x 轴的直线AM ,过点B 作垂直于y 轴的直线BM ,直线AM 和直线BM 相交于点M ,在Rt △AMB 中,AM =4,BM =12·2πω=πω,AB =5,由勾股定理得AM 2+BM 2=AB 2,所以16+⎝⎛⎭⎫πω2=25,πω=3,ω=π3.变式2、(1)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝⎛⎭⎫12x +π4B .f (x )=2sin ⎝⎛⎭⎫12x +3π4C .f (x )=2sin ⎝⎛⎭⎫14x +3π4D .f (x )=2sin ⎝⎛⎭⎫2x +π4(2)(2019·皖南八校联考)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的一个最高点和它相邻的一个最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数f (x )=________________.【答案】、 (1)B (2)sin ⎝⎛⎭⎫π2x +π6【解析】、(1)由题图可知A =2,T =2×⎣⎡⎦⎤3π2-⎝⎛⎭⎫-π2=4π,故2πω=4π,解得ω=12.所以f (x )=2sin ⎝⎛⎭⎫12x +φ.把点⎝⎛⎭⎫-π2,2代入可得2sin ⎣⎡⎦⎤12×⎝⎛⎭⎫-π2+φ=2, 即sin ⎝⎛⎭⎫φ-π4=1,所以φ-π4=2k π+π2(k ∈Z ), 解得φ=2k π+3π4(k ∈Z ). 又0<φ<π,所以φ=3π4.所以f (x )=2sin ⎝⎛⎭⎫12x +3π4.(2)依题意得22+⎝⎛⎭⎫πω2=22,则πω=2,即ω=π2,所以f (x )=sin ⎝⎛⎭⎫π2x +φ,由于该函数图象过点⎝⎛⎭⎫2,-12,因此sin(π+φ)=-12,即sin φ=12,而-π2≤φ≤π2,故φ=π6,所以f (x )=sin ⎝⎛⎭⎫π2x +π6.方法总结:确定y =A sin(ωx +φ)+B (A >0,ω>0)的解析式的步骤(1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .(3)求φ,常用方法有以下2种:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;确定φ值时,往往以寻找“五点法”中的特殊点作为突破口考向三 三角函数图象与性质的综合问题例3、(多选题)(2020届山东省滨州市三校高三上学期联考)设函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( )A .π-是()f x 的一个周期B .()f x 的图象可由sin 2y x =的图象向右平移3π得到 C .()f x π+的一个零点为6x π=D .()y f x =的图象关于直线1712x π=对称 【答案】ACD 【解析】()sin 23f x x π⎛⎫=- ⎪⎝⎭的最小正周期为π,故π-也是其周期,故A 正确;()f x 的图象可由sin 2y x =的图象向右平移6π得到,故B 错误; ()77()()sin sin 066323f f ππππππ⎛⎫+==-== ⎪⎝⎭,故C 正确; sin sin 17175()1262sin 132f πππππ⎛⎫⎛⎫⎛⎫-=== ⎪ =⎪ ⎪⎝⎭⎝⎭⎝⎭,故D 正确. 故选:ACD变式1、(2020届山东省滨州市高三上期末)已知函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,则( ) A .把()y f x =的图象向右平移6π个单位得到函数2sin 2y x =的图象 B .函数()f x 在区间,02π⎛⎫- ⎪⎝⎭上单调递减C .函数()f x 在区间[]0,2π内有五个零点 D .函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最小值为1 【答案】D 【解析】因为函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,所以2sin 23πϕ⎛⎫+= ⎪⎝⎭,因此2,32k k Z ππϕπ+=+∈,所以2,6k k Z πϕπ=+∈,因此()2sin(2)2sin 222sin 266f x x x k x ππϕπ⎛⎫⎛⎫=+=++=+ ⎪ ⎪⎝⎭⎝⎭; A 选项,把()y f x =的图象向右平移6π个单位得到函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象,故A 错; B 选项,由3222,262k x k k Z πππππ+≤+≤+∈得2,63k x k k Z ππππ+≤≤+∈,即函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的单调递减区间是:2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,故B 错; C 选项,由()2sin 206f x x π⎛⎫=+= ⎪⎝⎭得2,6x k k Z ππ+=∈,即,122k x k Z ππ=-+∈, 因此[]0,2x π∈,所以5111723,,,12121212x ππππ=,共四个零点,故C 错; D 选项,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤+∈⎢⎥⎣⎦,因此1sin 2,162x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以[]2sin 21,26x π⎛⎫+∈ ⎪⎝⎭,即()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的最小值为1,故D 正确;故选:D.变式2、(多选题)(2020·蒙阴县实验中学高三期末)关于函数()22cos cos(2)12f x x x π=-+-的描述正确的是( )A .其图象可由2y x =的图象向左平移8π个单位得到 B .()f x 在(0,)2π单调递增C .()f x 在[]0,π有2个零点D .()f x 在[,0]2π-的最小值为【答案】ACD 【解析】由题:()22cos cos(2)1cos 2sin 2)24f x x x x x x ππ=-+-=+=+,由2y x =的图象向左平移8π个单位,得到)))84y x x ππ=+=+,所以选项A 正确;令222,242k x k k Z πππππ-≤+≤+∈,得其增区间为3[,],88k k k Z ππππ-+∈ ()f x 在(0,)8π单调递增,在(,)82ππ单调递减,所以选项B 不正确;解()0,2,4f x x k k Z ππ=+=∈,得:,28k x k Z ππ=-∈,[0,]x π∈, 所以x 取37,88ππ,所以选项C 正确;3[,0],2[,],sin(2)[24444x x x πππππ∈-+∈-+∈-,()[f x ∈, 所以选项D 正确. 故选:ACD变式3、(2020届山东省临沂市高三上期末)已知函数2()2cos 12f x x πω⎛⎫=-⎪⎝⎭(0)>ω的图象关于直线4x π=对称,则ω的最小值为( )A .13B .16C .43D .56【答案】A 【解析】2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭,()1cos 26f x x πω⎛⎫∴=+- ⎪⎝⎭,又因为2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭的图象关于4x π=对称,所以2()46k k Z ππωπ⨯-=∈,即12()3k k Z ω=+∈, 因为0>ω,所以ω的最小值为13.故选:A.方法总结:三角函数性质的综合问题:主要考查单调性、奇偶性、对称性、周期性及性质的应用. 函数零点(方程根)问题:三角函数图象与x 轴(或y =a )的交点,即数形之间的转化问题.1、【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2- B.CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=;又12π()sin ,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =,∴2A =,∴()2sin 2f x x =,3π()8f =故选C.2、【2018年高考天津理数】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A .在区间35[,]44ππ上单调递增B .在区间3[,]4ππ上单调递减C .在区间53[,]42ππ上单调递增D .在区间3[,2]2ππ上单调递减【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为ππsin 2sin2105y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦. 则函数的单调递增区间满足()ππ2π22π22k x k k -≤≤+∈Z ,即()ππππ44k x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦.函数的单调递减区间满足:()π3π2π22π22k x k k +≤≤+∈Z ,即()π3πππ44k x k k +≤≤+∈Z , 令1k =可得一个单调递减区间为:5π7π,44⎡⎤⎢⎥⎣⎦. 故选A.3、【2017年高考全国Ⅰ理数】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.4、(2020·山东省淄博实验中学高三上期末)已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中正确的是( )A .函数()f x 的值域与()g x 的值域不相同B .把函数()f x 的图象向右平移2π个单位长度,就可以得到函数()g x 的图象 C .函数()f x 和()g x 在区间,44ππ⎛⎫-⎪⎝⎭上都是增函数 D .若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点 【答案】CD【解析】∵函数f (x )=sinx ﹣cosx =(x 4π-)∴g (x )=f '(x )=cosx +sinx =(x 4π+),故函数函数f (x )的值域与g (x )的值域相同, 且把函数f (x )的图象向左平移2π个单位,就可以得到函数g (x )的图象, 存在x 0=+,4k k Z ππ-∈,使得函数f (x )在x 0处取得极值且0x 是函数()g x 的零点,函数f (x )在,44ππ⎛⎫- ⎪⎝⎭上为增函数,g (x )在,44ππ⎛⎫- ⎪⎝⎭上也为增函数,∴单调性一致, 故选:CD .5、(2020届山东省枣庄市高三上学期统考)将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度得到()g x 图象,则下列判断正确的是( ) A .函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增 B .函数()g x 图象关于直线712x π=对称 C .函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .函数()g x 图象关于点,03π⎛⎫⎪⎝⎭对称 【答案】ABD 【解析】函数()sin 23f x x π⎛⎫=+⎪⎝⎭的图象向右平移2π个单位长度得到()ππsin 223g x x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦2πsin 23x ⎛⎫=- ⎪⎝⎭.由于7π7π2ππsin sin 112632g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故7π12x =是()g x 的对称轴,B 选项正确.由于π2π2πsin sin 00333g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故,03π⎛⎫⎪⎝⎭是()g x 的对称中心,D 选项正确.由π2ππ2232x -≤-≤,解得π7π1212x ≤≤,即()g x 在区间π7π,1212⎡⎤⎢⎥⎣⎦上递增,故A 选项正确、C 选项错误. 故选:ABD.6、【2020江苏南京上学期开学考试】函数()Asin()f x x ωϕ=+(A >0,ω>0)的部分图象如图所示.若函数()y f x =在区间[m ,n ]上的值域为[2],则n ﹣m 的最小值是_______.【答案】3.【解析】由图象知:()max 2f x =,2A ∴=,又()22628T πω==⨯-=,4πω∴=,()22sin 22f πϕ⎛⎫=+= ⎪⎝⎭,2k ϕπ∴=,k Z ∈,()2sin 22sin 44f x x k x πππ⎛⎫∴=+= ⎪⎝⎭,当()f x =时,1244x k πππ=-+或15244x k πππ=+,1k Z ∈,181x k ∴=-或185x k =+,1k Z ∈; 当()2f x =时,2242x k πππ=+,2k Z ∈,282x k ∴=+,若n m -最小,则12k k =,()min 3n m ∴-=,本题正确结果:3.7、【2017年高考山东卷理数】设函数ππ()sin()sin()62f x x x ωω=-+-,其中.已知π()06f =.(1)求;(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数的图象,求在π3π[,]44-上的最小值. 【答案】(1);(2)最小值为.【解析】(1)因为ππ()sin()sin()62f x x x ωω=-+-,所以03ω<<ω()y f x =()y g x =()g x 2ω=32-1()cos cos 2f x x x x ωωω=--π)3xω=-.由题设知π()06f=,所以πππ63k-=ω,k∈Z.故,k∈Z,又,所以.(2)由(1)得()23f x xπ⎛⎫=-⎪⎝⎭.所以()4312g x x xπππ⎛⎫⎛⎫=+-=-⎪ ⎪⎝⎭⎝⎭.因为π3π[,]44x∈-,所以2,1233xπππ⎡⎤-∈-⎢⎥⎣⎦,所以当123xππ-=-,即4xπ=-时,取得最小值.3cos2x xωω=-1sin cos)22x xωω=-62kω=+03ω<<2ω=()g x32-。

山东省淄博市外国语实验学校2020-2021学年高三数学文上学期期末试卷含解析

山东省淄博市外国语实验学校2020-2021学年高三数学文上学期期末试卷含解析

山东省淄博市外国语实验学校2020-2021学年高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知向量向量若则实数等于()A. B. C. D. 0参考答案:C略2. 已知双曲线C:﹣=1(a>0,b>0)的右焦点与抛物线y2=20x的焦点重合,且其渐近线方程为y=±x,则双曲线C的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1参考答案:A【考点】KC:双曲线的简单性质.【分析】求出抛物线的焦点坐标,根据双曲线的焦点坐标和抛物线的焦点关系,得到c=5,根据双曲线的渐近线方程得到=,联立方程组求出a,b即可.【解答】解:抛物线的焦点坐标为(5,0),双曲线焦点在x轴上,且c=5,∵又渐近线方程为y=±x,可得=,即b=a,则b2=a2=c2﹣a2=25﹣a2,则a2=9,b2=16,则双曲线C的方程为﹣=1,故选A3. 已知集合,集合,则A. B. C. D.参考答案:D,,4. 已知集合A=,若,则实数a的取值范围是()A. B. C. D.参考答案:【知识点】解不等式;集合关系及运算. A1 E3【答案解析】C 解析:因为A=,所以B时成立,此时;时,即时,要使,需使,即,综上得实数a的取值范围是,所以选C.【思路点拨】先由已知求得集合A,再由知需要讨论与两种情况.5. 若z=1﹣i,则复数z+z2在复平面上对应的点的坐标为()A.(1,﹣3)B.(﹣3,1)C.(1,1)D.(﹣1,1)参考答案:A【考点】A4:复数的代数表示法及其几何意义.【分析】把z=1﹣i代入z+z2,然后利用复数代数形式的乘法运算化简得答案.【解答】解:∵z=1﹣i,∴z+z2=1﹣i+(1﹣i)2=1﹣i﹣2i=1﹣3i,则复数z+z2在复平面上对应的点的坐标为(1,﹣3).故选:A.6. 不等式组表示的平面区域的面积等于A.B.2 C.D.参考答案:C7. 若函数在区间内单调递增,则的取值范围是()A., B.(1,) C. [,1) D. [,1)参考答案:C8. 函数f(x)=ln|x+cosx|的图象为()A.B.C.D.参考答案:A【考点】3O:函数的图象.【分析】利用特殊点,结合排除法,可得结论、【解答】解:由题意,x=0,f(0)=0,排除C,D;x=,f()=ln||>0,排除B,故选A.9. 的外接圆半径和的面积都等于1,则()A.B.C.D.参考答案:D10. 已知集合,,若集合有且仅有一个元素,则实数的取值范围是A. B. C. D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11. 如果关于的不等式和的解集分别为,和,,那么称这两个不等式为“对偶不等式”.如果不等式与不等式为“对偶不等式”,且,,那么= .参考答案:12. (几何证明选讲选做题)如图ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E.下面的结论正确的是.①CE·CB=AD·DB;②CE·CB=AD·AB;③AD·AB=CD2参考答案:13. 若函数则不等式的解集为____________参考答案:略14. 已知是实数,且(其中i是虚数单位),则=_____.参考答案:15. 若实数x,y满足不等式组则x+y的最大值为A 9BC 1 D参考答案:A 16. 已知实数x,y满足,则的取值范围为.参考答案:画出不等式组表示的平面区域如图所示,表示可行域内的点与点连线的斜率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淄博实验中学2020届高三年级第一学期模块考试数 学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}(){}10,ln A x x x B x y x a =-≤==-,若A B A =I ,则实数a 的取值范围为( )A.(),0-∞ B (],0-∞ C.()1,+∞ D.[)1,+∞2.已知复数(3)13i z i +=-,i 为虚数单位,则下列说法正确的是( ) A.i z =|| B.i z = C.12=z D.z 的虚部为i -3.“0x <”是“ln(1)0x +<”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 4.己知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为A .7-B .7C .1D .1-5.已知定义在[]m m 21,5--上的奇函数)(x f ,满足0>x 时,12)(-=xx f ,则)(m f 的值为( ) A. -15B. -7C. 3D. 156.“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代入们用写“桃符”的方式来祈福避祸,而现代入们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )A .59B .49C .716D .9167.已知23.035.02122log 5log ⎪⎭⎫ ⎝⎛====d c b a 、、、,从这四个数中任取一个数m ,使函数231)(23+++=x mx x x f 有极值点的概率为 ( ) A.41 B.21 C.43D.1 8.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射入,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM ∆的周长为 ( ) A.712612+ B. 926+ C. 910+D.832612+ 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.由我国引领的5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值。

如图是某单位结合近年数据,对今后几年的5G 经济产出所做的预测.结合右图,下列说法正确的是( ) A .5G 的发展带动今后几年的总经济产出逐年增加 B .设备制造商的经济产出前期增长较快,后期放缓 C .设备制造商在各年的总经济产出中一直处于领先地位 D .信息服务商与运营商的经济产出的差距有逐步拉大的趋势10.已知函数)(cos sin )(x g x x x f ,-=是)(x f 的导函数,则下列结论中正确的是( ) A. 函数)(x f 的值域与)(x g 的值域不相同 B. 把函数)(x f 的图象向右平移2π个单位长度,就可以得到函数)(x g 的图象 C. 函数)(x f 和)(x g 在区间⎪⎭⎫⎝⎛-4,4ππ上都是增函数 D. 若0x 是函数)(x f 的极值点,则0x 是函数)(x g 的零点 11.下列判断正确的是A.若随机变量ξ服从正态分布()()21,,40.79N P σξ≤=,则()20.21P ξ≤-=;B.已知直线l ⊥平面α,直线//m 平面β,则””是““m l ⊥βα//的充分不必要条件;C.若随机变量ξ服从二项分布: 414,B ξ⎛⎫~ ⎪⎝⎭, 则()1E ξ=; D.22am bm >是a b >的充分不必要条件.12.关于函数x xx f ln 2)(+=,下列判断正确的是 A.2=x 是)(x f 的极大值点B.函数x x f y -=)(有且只有1个零点C.存在正实数k ,使得kx x f >)(成立D.对任意两个正实数21,x x ,且21x x >,若)()(21x f x f =,则421>+x x . 三、填空题:本题共4小题,每小题5分,共20分.13.若非零向量,a b r r 满足=a b r r ,向量2+a b r r 与b r 垂直,则与a b r r的夹角为_______. 14.设()()201,,>⎧-≤⎪=⎨+⎪⎩x a x f x x x x . (1)当12a =时,)(x f 的最小值是_____;(2)若)0(f 是)(x f 的最小值,则a 的取值范围是_____.15.双曲线()2222:10,0-=>>x y C a b a b的左、右焦点分别为()12,0-F 、()22,0F ,M 是C 右支上的一点,1MF 与y 轴交于点P ,2∆MPF 的内切圆在边2PF 上的切点为Q ,若2=PQ C 的离心率为____.16.已知函数x x a x f ln 2)1)(2()(---=.若函数)(x f 在⎪⎭⎫ ⎝⎛210,上无零点,则a 的最小值为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(满分10分)在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知4cos cos cos a A c B b C =+(1)若4a =, ABC V 15求,b c 的值;(2)若sin sin (0)B k C k =>,,且C 角为钝角,求实数k 的取值范围.18.(满分12分)已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满足()()1126n n n S a a =++,并且2a ,4a ,9a 成等比数列. (1)求数列{}n a 的通项公式; (2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .19.(满分12分)如图,点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心(1)求证:平面OPG ⊥平面 PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.20.(满分12分)近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示: 土地使用面积x (单位:亩) 1 2 3 4 5 管理时间y (单位:月)810132524愿意参与管理 不愿意参与管理 男性村民 150 50 女性村民50r y x (2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为X ,求X 的分布列及数学期望.参考公式:1122111()(),()()nii nni i i x x y y r x x y y ===--=--∑∑∑22(),()()()()n ad bc k a b c d a c b d -=++++其中n a b c d =+++.临界值表:20()P K k ≥0.100 0.050 0.025 0.010 0.001 0k2.7063.8415.0246.63510.828参考数据:63525.2≈21.(满分12分)如图,已知椭圆C :x 2a 2+y2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,|F 1F 2|=2,过点F 1的直线与椭圆C 交于A ,B 两点,延长BF 2交椭圆C 于点M ,△ABF 2的周长为8.(1)求椭圆C 的离心率及方程;(2)试问:是否存在定点P(x 0,0),使得PM →·PB →为定值?若存在,求出x 0;若不存在,请说明理由.22.(满分12分)设函数2)()(,)1ln()(bx x f x g bx ax x f -=++= (1)若1,1-==b a ,求函数)(x f 的单调区间;(2)若曲线)(x g y =在点)3ln ,1(处的切线与直线0311=-y x 平行. (i)求b a ,的值;(ii)求实数)3(≤k k 的取值范围,使得)()(2x x k x g ->对),0(+∞∈x 恒成立. 高三数学参考答案 ABBBABBBABD CDABCD BD13.120o14.14 [0,2](1)当12a =时,当x ≤0时,f (x )=(x 12-)2≥(12-)214=,当x >0时,f (x )=x 1x +≥21x x ⋅=2,当且仅当x =1时取等号,则函数的最小值为14,(2)由(1)知,当x >0时,函数f (x )≥2,此时的最小值为2,若a <0,则当x =a 时,函数f (x )的最小值为f (a )=0,此时f (0)不是最小值,不满足条件.若a ≥0,则当x ≤0时,函数f (x )=(x ﹣a )2为减函数,则当x ≤0时,函数f (x )的最小值为f (0)=a 2,要使f (0)是f (x )的最小值,则f (0)=a 2≤2,即0≤a 2≤, 即实数a 的取值范围是[0,2]15.2如图所示,由题意2c =,12PF PF =,由双曲线定义得122MF MF a -=, 由圆的切线长定理可得22222MP PF MF PQ +-==,所以,12122222MF MF MP PF MF MP PF MF -=+-=+-=,222a ∴=, 即2a =,所以,双曲线的离心率2ce a==,故选:A.16. 2-4ln 2因为f (x )<0在区间⎝ ⎛⎭⎪⎫0,12上恒成立不可能,故要使函数f (x )在⎝ ⎛⎭⎪⎫0,12上无零点,只要对任意的x ∈⎝ ⎛⎭⎪⎫0,12,f (x )>0恒成立,即对任意的x ∈⎝ ⎛⎭⎪⎫0,12,a >2-2ln x x -1恒成立. 令l (x )=2-2ln x x -1,x ∈⎝ ⎛⎭⎪⎫0,12,则l ′(x )=2ln x +2x -2(x -1)2, 再令m (x )=2ln x +2x -2,x ∈⎝ ⎛⎭⎪⎫0,12,则m ′(x )=-2x 2+2x =-2(1-x )x 2<0, 故m (x )在⎝ ⎛⎭⎪⎫0,12上为减函数,于是m (x )>m ⎝ ⎛⎭⎪⎫12=2-2ln 2>0, 从而l ′(x )>0,于是l (x )在⎝ ⎛⎭⎪⎫0,12上为增函数,所以l (x )<l ⎝ ⎛⎭⎪⎫12=2-4ln 2, 故要使a >2-2ln xx -1恒成立,只要a ∈[2-4ln 2,+∞),综上,若函数f (x )在⎝ ⎛⎭⎪⎫0,12上无零点,则a 的最小值为2-4ln 2.17.解4cos cos cos a A c B b C =+Q∴4sin A cos A =sin C cos B +sin B cos C =sin(C +B )=sin A , ∴cosA=14, ∴sinA=1−cos2A(1)a =4,∴a 2=b 2+c 2−2bc ⋅cos A = b 2+c 2−12bc =16①; 又△ABC 的面积为:S △ABC =12bc ⋅sin A =12bc 154=15,∴bc =8②;由①②组成方程组,解得b =4,c =2或b =2,c =4; (2)当sin B =k sin C (k >0),b =kc ,∴a 2=b 2+c 2−2bc ⋅cos A =(kc )2+c 2−2kc ⋅c ⋅14=(k 2−12k +1)c 2; Q 角C 为钝角,∴ a 2+b 2<c 2,即(k 2−12k +1)+k 2<1,解得0<k <14;k 的取值范围是10,4⎛⎫ ⎪⎝⎭. 18.解.(1)Q 对任意*n ∈N ,有()()126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2.当2n ≥时,有()()1111126n n n S a a ---=++.② ①-②并整理得()()1130n n n n a a a a --+--=.而数列{}n a 的各项均为正数,13n n a a -∴-=. 当11a =时,()13132n a n n =+-=-, 此时2429a a a =成立;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成立,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=L 12233445221n n a a a a a a a a a a +-+-+-L()()()21343522121n n n a a a a a a a a a -+=-+-++-L242666n a a a =----L ()2426n a a a =-+++L ()246261862n n n n +-=-⨯=--.19.解.(1)如图,延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点.因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥.因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥.又PA ⊂平面PAC ,AC ⊂平面,PAC PA AC ⋂=A ,所以OM ⊥ 平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG ,所以平面OPG ⊥平面PAC .(2)以点C 为原点,CB u u u r ,CA u u u r ,AP u u u r方向分别为x ,y ,z 轴正方向建立空间直角坐标系C xyz -,则()0,0,0C ,()0,1,0A ,()3,0,0B,31,,022O ⎛⎫ ⎪ ⎪⎝⎭,()0,1,2P ,10,,02M ⎛⎫⎪⎝⎭,则3,0,02OM ⎛⎫=- ⎪ ⎪⎝⎭u u u u r ,31,,222OP ⎛⎫=- ⎪ ⎪⎝⎭u u u r .平面OPG 即为平面OPM ,设平面OPM 的一个法向量为(),,n x y z =r,则30,2{3120,2n OM x n OP x y z ⋅=-=⋅=-++=u u u ur r u u u r r 令1z =,得()0,4,1n =-r .过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又PA AB A ⋂=,所以CH ⊥平面PAB ,即CH u u u r为平面PAO 的一个法向量.在Rt ABC ∆中,由2AB AC =,得30ABC ∠=︒,则60HCB ∠=︒,1322CH CB ==.所以3cos 4H x CH HCB =∠=,3sin 4H y CH HCB =∠=.所以33,,04CH ⎛⎫= ⎪ ⎪⎝⎭u u u r .设二面角A OP G --的大小为θ,则cos CH n CH n θ⋅==⋅u u u r r u u u rr =. 20.解:依题意:123458101325243,1655x y ++++++++==== 故51()()(2)(8)(1)(6)192847i x x y y =--=-⨯-÷-⨯-+⨯+⨯=∑552211()411410,()643698164254i i x x y y ==-=+++=-=++++=∑∑则5()()0.933x x y y r --===≈∑,故管理时间与土地使用面积线性相关。

相关文档
最新文档