二叉树实验内容
实验三--二叉树的基本运算
实验三二叉树的基本运算一、实验目的1、使学生熟练掌握二叉树的逻辑结构和存储结构。
2、熟练掌握二叉树的各种遍历算法。
二、实验内容1、问题描述建立一棵二叉树,试编程实现二叉树的如下基本操作:(1). 按先序序列构造一棵二叉链表表示的二叉树T;(2). 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历,分别输出结点的遍历序列;(3). 求二叉树的深度/结点数目/叶结点数目;(选做)(4). 将二叉树每个结点的左右子树交换位置。
(选做)2、基本要求从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立)。
3、测试数据如输入:abc00de0g00f000(其中ф表示空格字符)则输出结果为:先序:a->b->c->d->e->g->f中序:a->b->c->d->e->g->f后序:a->b->c->d->e->g->f三、程序代码#include<malloc.h>#include<iostream.h>#define OK 1#define ERROR -1typedef char TElemType;int i;typedef struct BiTNode{TElemType data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;int CreateBiTree(BiTree&T) //创建二叉树{char a;cin>>a;if(a=='0') T=NULL;else{if(!(T=(BiTNode*)malloc(sizeof(BiTNode)))) {return ERROR;}T->data=a;CreateBiTree(T->lchild);CreateBiTree(T->rchild);}return OK;}int PreOrderTraverse(BiTree&T) //先序遍历二叉树{if(T){//cout<<"此为先序遍历"<<endl;cout<<T->data<<"->";if(PreOrderTraverse(T->lchild))if(PreOrderTraverse(T->rchild))return OK;return ERROR;}else return OK;}int InOrderTraverse(BiTree&T) //中序遍历二叉树{if(T){//cout<<"此为中序遍历"<<endl;if(InOrderTraverse(T->lchild)){cout<<T->data<<"->";if(InOrderTraverse(T->rchild))return OK;}return ERROR;}else return OK;}int PostOrderTraverse(BiTree&T) //后序遍历二叉树{if(T){//cout<<"此为后序遍历"<<endl;if (PostOrderTraverse(T->lchild))if(PostOrderTraverse(T->rchild)){cout<<T->data<<"->";i++;return (OK);}return (ERROR);}elsereturn (OK);}int CountDepth(BiTree&T) //计算二叉树的深度{if(T==NULL){return 0;}else{int depl=CountDepth(T->lchild);int depr=CountDepth(T->lchild);if(depl>depr){return depl+1;}else{return depr+1;}}}void main() //主函数{BiTree T;cout<<"请输入二叉树节点的值以创建树"<<endl;CreateBiTree(T);cout<<"此为先序遍历";PreOrderTraverse(T);cout<<"end"<<endl;cout<<"此为中序遍历";InOrderTraverse(T);cout<<"end"<<endl;cout<<"此为后序遍历";PostOrderTraverse(T);cout<<"end"<<endl<<"此树节点数是"<<i<<endl<<"此树深度是"<<CountDepth(T)<<endl;}四、调试结果及运行界面:五、实验心得通过这次程序上机实验让我认识到了以前还不太了解的二叉树的性质和作用,这次实验的的确确的加深了我对它的理解。
二叉树实验报告
实验内容:
用递归的方法实现以下算法: 1.以二叉链表表示二叉树,建立一棵二叉树; 2.输出二叉树的前序遍历结果; 3.输出二叉树的中序遍历结果; 4.输出二叉树的后序遍历结果; 5.统计二叉树的叶结点个数; 6.统计二叉树的结点个数; 7.计算二叉树的深度。 8.交换二叉树每个结点的左孩子和右孩子;
(二)实验结果 1、选择操作一:
2、创建二叉树
3、前序遍历结果
4、中序遍历结果
5、ห้องสมุดไป่ตู้序遍历结果
6、总结点数
7、叶节点数
8、二叉树深度
9、对换左右孩子
10、退出
11、输入错误检测
(三)结论分析 1. 问题与解决方法 在编写程序时, 遇到了一个程序保存后编译正确却运行不了, 之后请教了我们班的同学, 才知道是第一个函数出了问题,改了之后就好了。 2. 收获和体会 做程序编写时,必须要细心,有时候问题出现了,可能会一直查不出来。自己也不容易 发现。在编写这个程序时,我就出现了这个问题,之后一定要尽量避免此类问题出现。 3. 尚存在的问题 这几个子函数的名称都是边看着书边写的, 还没有完全脱离书本, 真正变成自己建的东 西。还要加强记忆。
实现方法、实验结果及结论分析等:
(一)实现方法 1. 所用数据结构的定义及其相关说明(相关结构体或类的定义及其含义) 实验采用二叉树的数据结构,以二叉链表存储,主程序中采用 switch 函数调用各 个子程序以实现各个功能。0 结束程序,输入错误时返回主函数重新输入。 2. 自定义函数的名称及其功能说明 (1)void CreateBiTree 以二叉链表表示二叉树,建立一棵二叉树; (2)void PreOrderTraverse 输出二叉树的前序遍历结果; (3)void InOrderTraverse 输出二叉树的中序遍历结果; (4)void PostOrderTraverse 输出二叉树的后序遍历结果; (5)int LeafNodeCount 统计二叉树的叶结点个数;
实验报告:二叉树
实验报告:二叉树第一篇:实验报告:二叉树实验报告二叉树一实验目的1、进一步掌握指针变量,动态变量的含义;2、掌握二叉树的结构特性以及各种存储结构的特点及适用范围。
3、掌握用指针类型描述、访问和处理二叉树的运算。
4、熟悉各种存储结构的特征以及如何应用树结构解决具体问题。
二实验原理树形结构是一种应用十分广泛和重要的非线性数据结构,是一种以分支关系定义的层次结构。
在这种结构中,每个数据元素至多只有一个前驱,但可以有多个后继;数据元素之间的关系是一对多的层次关系。
树形结构主要用于描述客观世界中具有层次结构的数据关系,它在客观世界中大量存在。
遍历二叉树的实质是将非线性结构转为线性结构。
三使用仪器,材料计算机 2 Wndows xp 3 VC6.0四实验步骤【问题描述】建立一个二叉树,请分别按前序,中序和后序遍历该二叉树。
【基本要求】从键盘接受输入(按前序顺序),以二叉链表作为存储结构,建立二叉树(以前序来建立),并采用递归算法对其进行前序,中序和后序遍历,将结果输出。
【实现提示】按前序次序输入二叉树中结点的值(一个整数),0表示空树,叶子结点的特征是其左右孩子指针为空。
五实验过程原始记录基本数据结构描述; 2 函数间的调用关系;用类C语言描述各个子函数的算法;附录:源程序。
六试验结果分析将实验结果分析、实验中遇到的问题和解决问题的方法以及关于本实验项目的心得体会,写在实验报告上。
第二篇:数据结构-二叉树的遍历实验报告实验报告课程名:数据结构(C语言版)实验名:二叉树的遍历姓名:班级:学号:时间:2014.11.03一实验目的与要求1.掌握二叉树的存储方法2.掌握二叉树的三种遍历方法3.实现二叉树的三种遍历方法中的一种二实验内容• 接受用户输入一株二叉树• 输出这株二叉树的前根, 中根, 后根遍历中任意一种的顺序三实验结果与分析//*********************************************************** //头文件#include #include //*********************************************************** //宏定义#define OK 1 #define ERROR 0 #define OVERFLOW 0//*********************************************************** typedef struct BiTNode { //二叉树二叉链表存储结构char data;struct BiTNode *lChild,*rChild;}BiTNode,*BiTree;//******************************** *************************** int CreateBiTree(BiTree &T){ //按先序次序输入二叉中树结点的值,空格表示空树//构造二叉链表表示的二叉树T char ch;fflush(stdin);scanf(“%c”,&ch);if(ch==' ')T=NULL;else{ if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))return(OVERFLOW);T->data=ch;Creat eBiTree(T->lChild);CreateBiTree(T->rChild);} return(OK);} //********************************************************* void PreOrderTraverse(BiTree T){ //采用二叉链表存储结构,先序遍历二叉树的递归算法if(T){ printf(“%c”,T->data);PreOrderTraverse(T->lChild);PreOrd erTraverse(T->rChild);} } /***********************************************************/ void InOrderTraverse(BiTree T){ //采用二叉链表存储结构,中序遍历二叉树的递归算法if(T){ InOrderTraverse(T->lChild);printf(“%c”,T->data);InOrderT raverse(T->rChild);} }//*********************************************************** void PostOrderTraverse(BiTree T){ //采用二叉链表存储结构,后序遍历二叉树的递归算法if(T){ PostOrderTraverse(T->lChild);PostOrderTraverse(T->rChild) ;printf(“%c”,T->data);} }//*********************************************************** void main(){ //主函数分别实现建立并输出先、中、后序遍历二叉树printf(“please input your tree follow the PreOrder:n”);BiTNode *Tree;CreateBiTree(Tree);printf(“n先序遍历二叉树:”);PreOrderTraverse(Tree);printf(“n中序遍历二叉树:”);InOrderTraverse(Tree);printf(“n后序遍历二叉树:”);PostOrderTraverse(Tree);}图1:二叉树的遍历运行结果第三篇:数据结构二叉树操作验证实验报告班级:计算机11-2 学号:40 姓名:朱报龙成绩:_________实验七二叉树操作验证一、实验目的⑴ 掌握二叉树的逻辑结构;⑵ 掌握二叉树的二叉链表存储结构;⑶ 掌握基于二叉链表存储的二叉树的遍历操作的实现。
华科数据结构二叉树实验报告
华科数据结构二叉树实验报告一、实验目的本实验旨在通过实践操作,加深对数据结构中二叉树的理解,掌握二叉树的基本操作和应用。
二、实验内容1. 实现二叉树的创建和初始化。
2. 实现二叉树的插入操作。
3. 实现二叉树的删除操作。
4. 实现二叉树的查找操作。
5. 实现二叉树的遍历操作:前序遍历、中序遍历、后序遍历。
6. 实现二叉树的层次遍历。
7. 实现二叉树的销毁操作。
8. 进行实验测试,并分析实验结果。
三、实验步骤1. 创建二叉树的数据结构,包括节点的定义和指针的初始化。
2. 实现二叉树的创建和初始化函数,根据给定的数据构建二叉树。
3. 实现二叉树的插入操作函数,将新节点插入到二叉树的合适位置。
4. 实现二叉树的删除操作函数,删除指定节点,并保持二叉树的结构完整。
5. 实现二叉树的查找操作函数,根据给定的值查找对应的节点。
6. 实现二叉树的遍历操作函数,包括前序遍历、中序遍历、后序遍历。
7. 实现二叉树的层次遍历函数,按照层次顺序遍历二叉树。
8. 实现二叉树的销毁操作函数,释放二叉树的内存空间。
9. 编写测试程序,对上述函数进行测试,并分析实验结果。
四、实验结果与分析经过测试,实验结果如下:1. 创建和初始化函数能够正确构建二叉树,并初始化节点的值和指针。
2. 插入操作函数能够将新节点插入到二叉树的合适位置,并保持二叉树的结构完整。
3. 删除操作函数能够正确删除指定节点,并保持二叉树的结构完整。
4. 查找操作函数能够根据给定的值找到对应的节点。
5. 遍历操作函数能够按照指定的顺序遍历二叉树,并输出节点的值。
6. 层次遍历函数能够按照层次顺序遍历二叉树,并输出节点的值。
7. 销毁操作函数能够释放二叉树的内存空间,防止内存泄漏。
根据实验结果分析,二叉树的基本操作和应用都能够正常实现,达到了预期的效果。
五、实验总结通过本次实验,我进一步加深了对数据结构中二叉树的理解,并掌握了二叉树的基本操作和应用。
通过实践操作,我更加熟悉了二叉树的创建、插入、删除、查找和遍历等操作,同时也学会了如何进行层次遍历和销毁二叉树。
二叉树遍历的实习报告
实习报告实习内容:二叉树遍历实习时间:2023实习单位:某高校计算机实验室一、实习目的本次实习的主要目的是通过实现二叉树的遍历,加深对二叉树数据结构的理解,掌握二叉树的常见操作,提高编程能力。
二、实习内容1. 理解二叉树的基本概念和性质,包括节点之间的关系、树的深度、高度等。
2. 掌握二叉树的存储结构,包括顺序存储和链式存储。
3. 实现二叉树的前序遍历、中序遍历和后序遍历。
4. 通过实际编程,验证二叉树遍历的正确性。
三、实习过程1. 二叉树的基本概念和性质:二叉树是一种非线性的数据结构,每个节点最多有两个子节点。
节点之间的关系包括父子关系、兄弟关系等。
树的深度是指从根节点到最远叶子节点的最长路径上的边数,高度是指从根节点到最远叶子节点的最长路径上的边数加1。
2. 二叉树的存储结构:二叉树可以用顺序存储结构或链式存储结构表示。
顺序存储结构使用数组来实现,每个节点存储在数组的一个位置中,节点之间的父子关系通过数组下标来表示。
链式存储结构使用链表来实现,每个节点包含数据域和两个指针域,分别指向左子节点和右子节点。
3. 二叉树的遍历:二叉树的遍历是指按照一定的顺序访问树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历是指先访问根节点,然后递归遍历左子树,最后递归遍历右子树。
中序遍历是指先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
后序遍历是指先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
4. 编程实现:根据二叉树的存储结构和遍历方法,编写C语言程序实现二叉树的前序遍历、中序遍历和后序遍历。
程序中使用递归函数来实现遍历操作,通过建立链式存储结构,验证遍历的正确性。
四、实习心得通过本次实习,我对二叉树的数据结构有了更深入的了解,掌握了二叉树的存储方式和常见操作。
在实现二叉树遍历的过程中,我学会了如何使用递归函数解决问题,提高了编程能力。
同时,通过实际编程验证了二叉树遍历的正确性,增强了对算法理解的信心。
[精品]【数据结构】二叉树实验报告
[精品]【数据结构】二叉树实验报告二叉树实验报告一、实验目的:1.掌握二叉树的基本操作;2.理解二叉树的性质;3.熟悉二叉树的广度优先遍历和深度优先遍历算法。
二、实验原理:1.二叉树是一种树形结构,由n(n>=0)个节点组成;2.每个节点最多有两个子节点,称为左子节点和右子节点;3.二叉树的遍历分为四种方式:前序遍历、中序遍历、后序遍历和层次遍历。
三、实验环境:1.编程语言:C++;2.编译器:Dev-C++。
四、实验内容:1.定义二叉树节点结构体:struct BinaryTreeNode{int data; // 节点数据BinaryTreeNode *leftChild; // 左子节点指针BinaryTreeNode *rightChild; // 右子节点指针};2.初始化二叉树:queue<BinaryTreeNode *> q; // 使用队列存储节点q.push(root);int i = 1; // 创建子节点while (!q.empty() && i < length){BinaryTreeNode *node = q.front();q.pop();if (data[i] != -1) // 创建左子节点 {BinaryTreeNode *leftChild = new BinaryTreeNode;leftChild->data = data[i];leftChild->leftChild = nullptr;leftChild->rightChild = nullptr;node->leftChild = leftChild;q.push(leftChild);}i++;if (data[i] != -1) // 创建右子节点 {BinaryTreeNode *rightChild = new BinaryTreeNode;rightChild->data = data[i];rightChild->leftChild = nullptr;rightChild->rightChild = nullptr;node->rightChild = rightChild;q.push(rightChild);}i++;}return root;}3.前序遍历二叉树:五、实验结果:输入:int data[] = {1, 2, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8};输出:前序遍历结果:1 2 4 5 3 6 7 8中序遍历结果:4 2 5 1 6 3 7 8后序遍历结果:4 5 2 6 8 7 3 1层次遍历结果:1 2 3 4 5 6 7 8通过本次实验,我深入理解了二叉树的性质和遍历方式,并掌握了二叉树的基本操作。
二叉树的各种基本运算的实现实验报告
二叉树的各种基本运算的实现实验报告
一、实验目的
实验目的为了深入学习二叉树的各种基本运算,通过操作实现二叉树的建立、存储、查找、删除、遍历等各种基本运算操作。
二、实验内容
1、构造一个二叉树。
我们首先用一定的节点来构建一棵二叉树,包括节点的左子节点和右子节点。
2、实现查找二叉树中的节点。
在查找二叉树中的节点时,我们根据二叉树的特点,从根节点开始查找,根据要查找的节点的值与根节点的值的大小的关系,来决定接下来查找的方向,直到找到要查找的节点为止。
3、实现删除二叉树中的节点。
在删除二叉树节点时,我们要做的是找到要删除节点的父节点,然后让父节点的链接指向要删除节点的子节点,有可能要删除节点有一个子节点,有可能有两个极点,有可能没有子节点,我们要根据每种情况进行处理,来保持二叉树的结构不变。
4、对二叉树进行遍历操作。
二叉树的遍历有多种方法,本实验使用的是先序遍历。
首先从根节点出发,根据先序遍历的顺序,先访问左子树,然后再访问右子树,最后访问根节点。
三、实验步骤
1、构建二叉树:
我们用一个数组代表要构建的二叉树,第一项为根节点,第二项和第三项是根节点的子节点。
数据结构实验报告—二叉树
数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。
在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。
实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。
2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。
3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。
4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。
5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。
二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。
节点被表示为一个由数据和指向其左右子节点的指针组成的结构。
二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。
二叉树可以用链式存储结构或顺序存储结构表示。
- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。
- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。
二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。
我们可以通过手动输入或读取外部文件中的数据来创建二叉树。
对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。
对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。
一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。
2. 创建子节点,并到父节点。
3. 重复步骤2,直到创建完整个二叉树。
二叉树 实验报告
二叉树实验报告二叉树实验报告引言:二叉树是一种常见的数据结构,它由节点和边组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。
在本次实验中,我们将探索二叉树的基本概念、特性以及应用。
一、二叉树的定义与性质1.1 二叉树的定义二叉树是一种递归定义的数据结构,它可以为空,或者由一个根节点和两个二叉树组成,分别称为左子树和右子树。
1.2 二叉树的性质(1)每个节点最多有两个子节点,分别称为左子节点和右子节点。
(2)左子树和右子树也是二叉树。
(3)二叉树的子树之间没有关联性,它们是相互独立的。
二、二叉树的遍历方式2.1 前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左子树和右子树。
2.2 中序遍历中序遍历是指先遍历左子树,然后访问根节点,最后遍历右子树。
2.3 后序遍历后序遍历是指先遍历左子树,然后遍历右子树,最后访问根节点。
2.4 层次遍历层次遍历是指按照从上到下、从左到右的顺序遍历二叉树的每个节点。
三、二叉树的应用3.1 二叉搜索树二叉搜索树是一种特殊的二叉树,它的每个节点的值大于其左子树的所有节点的值,小于其右子树的所有节点的值。
这种特性使得二叉搜索树可以高效地进行查找、插入和删除操作。
3.2 哈夫曼树哈夫曼树是一种带权路径长度最短的二叉树,它常用于数据压缩中。
哈夫曼树的构建过程是通过贪心算法,将权值较小的节点放在离根节点较远的位置,从而实现最优编码。
3.3 表达式树表达式树是一种用于表示数学表达式的二叉树,它的叶节点是操作数,而非叶节点是操作符。
通过对表达式树的遍历,可以实现对表达式的求值。
结论:通过本次实验,我们对二叉树的定义、性质、遍历方式以及应用有了更深入的了解。
二叉树作为一种重要的数据结构,在计算机科学和算法设计中发挥着重要的作用。
在今后的学习和工作中,我们应该进一步探索二叉树的高级应用,并灵活运用于实际问题的解决中。
二叉树实验报告
实验报告实验:树和二叉树一、实验目的:1.掌握二叉树的存储实现2.掌握二叉树的遍历思想3.掌握二叉树的常见算法的程序实现二、实验内容:1.编写函数,输入字符序列,建立二叉树的二叉链表。
2.编写函数,实现二叉树的中序递归遍历算法。
(最好也能实现前缀和后缀遍历算法)3.编写函数,实现二叉树的中序非递归遍历算法。
4.编写函数,借助队列实现二叉树的层次遍历算法。
5.编写函数,求二叉树的高度。
6.编写函数,求二叉树的结点个数。
7.编写函数,求二叉树的叶子个数。
8.编写函数,交换二叉树每个结点的左子树和右子树。
9.编写一个主函数,在主函数中设计一个简单的菜单,分别调试上述算法。
三、方法与步骤:详见源代码。
四、小结:1.注意并理解了递归算法的执行步骤,使得编写程序时比较顺利,而且得到同学的帮助,减少了发生错误的次数,才使得报告能够顺利完成。
2.注意字符类型数据在输入时的处理,使输入没有错误。
3.重点理解利用栈结构实现非递归算法。
五、实验结果:实验报告源代码:#include"stdio.h"#include"malloc.h"#include"math.h"#define maxsize 100typedef struct btnode{char data;struct btnode *lc,*rc;}bitree;bitree *creat_bitree(bitree *p){char a;scanf("%c",&a);if(a!='#'){ p=(bitree *)malloc(sizeof(bitree));p->data=a;p->lc=creat_bitree(p->lc);p->rc=creat_bitree(p->rc);}elsep=NULL;return p;}void print1_bitree1(bitree *p){if(p==NULL)return ;printf("%c",p->data);print1_bitree1(p->lc);print1_bitree1(p->rc);}void print1_bitree2(bitree *p){if(p==NULL)return ;print1_bitree2(p->lc);printf("%c",p->data);print1_bitree2(p->rc);}void print1_bitree3(bitree *p) {if(p==NULL)return ;print1_bitree3(p->lc);print1_bitree3(p->rc);printf("%c",p->data);}int print2_bitree(bitree *p){int top=-1;bitree *a[maxsize];if(p==NULL) return 0;while(p!=NULL||top!=-1){while(p!=NULL){a[++top]=p;p=p->lc;}if(top<0)return 0;else{p=a[top--];printf("%c",p->data);p=p->rc;}}return 1;}int print3_bitree(bitree *p){int front=-1,rear=0;bitree *b[maxsize];if(p==NULL)return 0;b[rear]=p;while(front!=rear){p=b[++front];printf("%c",p->data);if(p->lc!=NULL)b[++rear]=p->lc;if(p->rc!=NULL)b[++rear]=p->rc;}return 1;}int jiedian_bitree(bitree *p,int a){if(p==NULL)return a;a++;a=jiedian_bitree(p->lc,a);a=jiedian_bitree(p->rc,a);return a;}int yezi_bitree(bitree *p){if(p==NULL)return 0;if(p->lc==NULL&&p->rc==NULL)return 1;return (yezi_bitree(p->lc)+yezi_bitree(p->rc)); }int depth(bitree *p){if(!p)return 0;else{int m=depth(p->lc);int n=depth(p->rc);return (m>n?m:n)+1;}}void change(bitree *p){bitree *q;if(!p)return;else{q=p->lc;p->lc=p->rc;p->rc=q;change(p->lc);change(p->rc);}}int main(){int x=8,a=0,i,j=0;bitree *p;p=NULL;while(x==8){printf("建立二叉链树,请输入字符\n");if(j==1){getchar();j=0;}p=creat_bitree(p);x=0;while(x!=8){ printf("***************************************************** *************************\n");printf("1.递归遍历\t2.中序非递归遍历\t3.层次遍历\t\t4.二叉树高度\n5.结点个数\t6.叶子个数\t\t7.交换每个结点左右子树\t8.重建二叉链树\n9.退出\n");scanf("%d",&x);switch(x){case 1:printf("1.先序2.中序3.后序");printf("\n");scanf("%d",&x);if(x==1)print1_bitree1(p);if(x==2)print1_bitree2(p);if(x==3)print1_bitree3(p);break;case 2:print2_bitree(p);break;case 3:print3_bitree(p);break;case 4:i=depth(p);printf("%d",i);break;case 5:a=jiedian_bitree(p,a);printf("%d",a);break;case 6:i=yezi_bitree(p);printf("%d",i);break;case 7:change(p);break;case 8:j=1;break;}if(x==9)break;printf("\n\n");}}return 0;}。
二叉树实验报告
二叉树实验报告1. 引言二叉树是一种常用的数据结构,广泛应用于计算机科学和信息技术领域。
本实验旨在通过对二叉树的理解和实现,加深对数据结构与算法的认识和应用能力。
本报告将介绍二叉树的定义、基本操作以及实验过程中的设计和实现。
2. 二叉树的定义二叉树是一个有序树,其每个节点最多有两个子节点。
树的左子节点和右子节点被称为二叉树的左子树和右子树。
3. 二叉树的基本操作3.1 二叉树的创建在实验中,我们通过定义一个二叉树的节点结构来创建一个二叉树。
节点结构包含一个数据域和左右指针,用于指向左右子节点。
创建二叉树的过程可以通过递归或者迭代的方式来完成。
3.2 二叉树的插入和删除二叉树的插入操作是将新节点插入到树中的合适位置。
插入时需要考虑保持二叉树的有序性。
删除操作是将指定节点从树中删除,并保持二叉树的有序性。
在实验中,我们可以使用递归或者循环的方式实现这些操作。
3.3 二叉树的遍历二叉树的遍历是指按照某种次序访问二叉树的所有节点。
常见的遍历方式包括前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,然后按照左孩子-右孩子的顺序递归遍历左右子树。
中序遍历按照左孩子-根节点-右孩子的顺序递归遍历左右子树。
后序遍历按照左孩子-右孩子-根节点的顺序递归遍历左右子树。
3.4 二叉树的查找查找操作是指在二叉树中查找指定的值。
可以通过递归或者循环的方式实现二叉树的查找操作。
基本思路是从根节点开始,通过比较节点的值和目标值的大小关系,逐步向左子树或者右子树进行查找,直到找到目标节点或者遍历到叶子节点。
4. 实验设计和实现在本实验中,我们设计并实现了一个基于Python语言的二叉树类。
具体实现包括二叉树的创建、插入、删除、遍历和查找操作。
在实验过程中,我们运用了递归和迭代的方法实现了这些操作,并进行了测试和验证。
4.1 二叉树类的设计我们将二叉树的节点设计为一个类,其中包括数据域和左右子节点的指针。
另外,我们设计了一个二叉树类,包含了二叉树的基本操作方法。
数据结构二叉树实验报告总结
数据结构二叉树实验报告总结一、实验目的本次实验的主要目的是通过对二叉树的学习和实践,掌握二叉树的基本概念、性质和遍历方式,加深对数据结构中树形结构的理解。
二、实验内容1. 二叉树的基本概念和性质在本次实验中,我们首先学习了二叉树的基本概念和性质。
其中,二叉树是由节点组成的有限集合,并且每个节点最多有两个子节点。
同时,我们还学习了二叉树的高度、深度、层数等概念。
2. 二叉树的遍历方式在了解了二叉树的基本概念和性质之后,我们开始学习如何遍历一个二叉树。
在本次实验中,我们主要学习了三种遍历方式:前序遍历、中序遍历和后序遍历。
其中,前序遍历指先访问节点自身再访问左右子节点;中序遍历指先访问左子节点再访问自身和右子节点;后序遍历指先访问左右子节点再访问自身。
3. 二叉搜索树除了以上内容之外,在本次实验中我们还学习了一种特殊的二叉树——二叉搜索树。
二叉搜索树是一种特殊的二叉树,它的每个节点都满足左子节点小于该节点,右子节点大于该节点的性质。
由于这个性质,二叉搜索树可以被用来进行快速查找、排序等操作。
三、实验过程1. 实现二叉树的遍历方式为了更好地理解和掌握二叉树的遍历方式,我们首先在编程环境中实现了前序遍历、中序遍历和后序遍历。
在代码编写过程中,我们需要考虑如何递归地访问每个节点,并且需要注意访问顺序。
2. 实现二叉搜索树为了更好地理解和掌握二叉搜索树的特性和操作,我们在编程环境中实现了一个简单的二叉搜索树。
在代码编写过程中,我们需要考虑如何插入新节点、删除指定节点以及查找目标节点等操作。
3. 实验结果分析通过对代码运行结果进行分析,我们可以清晰地看到每个遍历方式所得到的结果以及对应的顺序。
同时,在对二叉搜索树进行操作时,我们也可以看到不同操作所产生的不同结果。
四、实验总结通过本次实验,我们进一步加深了对二叉树的理解和掌握,学习了二叉树的遍历方式以及二叉搜索树的特性和操作。
同时,在编程实践中,我们也进一步熟悉了代码编写和调试的过程。
二叉树的基本操作与实现实验报告
二叉树的基本操作与实现实验报告二叉树是一种重要的数据结构,在计算机科学领域中被广泛应用。
本实验将介绍二叉树的基本操作与实现,并给出相应的实验报告。
一、引言二叉树是一种特殊的树状结构,每个节点至多有两个子节点。
二叉树有许多重要的特性,如平衡二叉树、二叉树等,应用广泛。
在本实验中,我们将介绍二叉树的基本操作和实现。
二、实验目的1.掌握二叉树的基本概念和特性;2.熟悉二叉树的基本操作,包括创建、插入、删除、遍历等;3.学会使用编程语言实现二叉树的基本操作。
三、实验内容本实验主要包括以下内容:1.二叉树的定义和基本概念;2.二叉树的基本操作,包括创建、插入、删除、遍历等;3.使用编程语言实现二叉树的基本操作;4.测试和验证二叉树的基本操作的正确性。
四、实验步骤1.二叉树的定义和基本概念二叉树是一种树状结构,每个节点至多有两个子节点。
二叉树的每个节点包含一个数据项和指向左子树和右子树的指针。
二叉树的特性有很多,如完全二叉树、平衡二叉树、二叉树等。
2.二叉树的基本操作(1)创建二叉树:可以通过手动输入节点数据来创建二叉树,也可以通过读取文件中的数据来创建二叉树。
(2)插入节点:在指定位置插入一个新节点。
(3)删除节点:删除指定位置的节点。
(4)遍历二叉树:有前序遍历、中序遍历和后序遍历三种遍历方式。
3.使用编程语言实现二叉树的基本操作实现二叉树的基本操作可以使用编程语言来完成。
我们可以定义一个二叉树的结构体,包含节点数据和指向左右子树的指针。
然后根据具体的需求,实现相应的操作函数。
4.测试和验证二叉树的基本操作的正确性在完成二叉树的基本操作后,我们可以编写测试代码来验证操作的正确性。
通过创建二叉树,并进行插入、删除和遍历操作,观察输出结果是否符合预期。
五、实验结果与分析在完成二叉树的基本操作后,我们可以进行测试和验证。
通过输出二叉树的遍历结果,比对预期结果来判断操作是否正确。
同时,我们还可以观察二叉树的结构和特性,如是否满足平衡二叉树或二叉树的条件。
二叉树的基本操作实验报告
二叉树的基本操作实验报告二叉树的基本操作实验报告引言:二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。
二叉树的基本操作包括创建、遍历、插入和删除等。
本实验旨在通过实践来深入了解二叉树的基本操作,并通过实验结果验证其正确性和有效性。
一、创建二叉树创建二叉树是二叉树操作中的第一步。
在本实验中,我们使用了递归算法来创建二叉树。
递归算法是一种重要的算法思想,通过将问题划分为更小的子问题来解决复杂的问题。
在创建二叉树时,我们首先创建根节点,然后递归地创建左子树和右子树。
二、遍历二叉树遍历二叉树是对二叉树中的每个节点进行访问的过程。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,然后递归遍历左子树和右子树;中序遍历先递归遍历左子树,然后访问根节点,最后递归遍历右子树;后序遍历先递归遍历左子树和右子树,最后访问根节点。
三、插入节点插入节点是向二叉树中添加新节点的操作。
插入节点的过程需要遵循二叉树的特性,即左子节点的值小于父节点的值,右子节点的值大于父节点的值。
在插入节点时,我们需要找到合适的位置,将新节点插入到正确的位置上。
四、删除节点删除节点是从二叉树中移除节点的操作。
删除节点的过程相对复杂,需要考虑多种情况。
如果要删除的节点是叶子节点,直接删除即可。
如果要删除的节点只有一个子节点,将其子节点连接到父节点上。
如果要删除的节点有两个子节点,我们需要找到其后继节点或前驱节点来替代被删除的节点。
实验结果:通过实验,我们成功地实现了二叉树的基本操作。
创建二叉树的递归算法能够正确地创建出符合要求的二叉树。
遍历二叉树的算法能够按照指定的顺序遍历每个节点。
插入节点和删除节点的操作也能够正确地修改二叉树的结构。
讨论与总结:二叉树的基本操作是数据结构中的重要内容,对于理解和应用其他数据结构具有重要意义。
通过本次实验,我们深入了解了二叉树的创建、遍历、插入和删除等操作,并通过实验验证了其正确性和有效性。
二叉树操作实验报告
二叉树操作实验报告一、实验背景二叉树是一种常用的数据结构,它由节点和连接节点的边组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。
在二叉树的操作中,常用的操作包括创建二叉树、插入节点、删除节点、查找节点、遍历等。
本次实验旨在通过对二叉树的操作,加强对二叉树数据结构的理解,并熟练掌握其操作方法。
二、实验目的1.掌握二叉树的创建方法,能够编写代码创建一个二叉树;2.了解二叉树的插入节点操作,掌握节点的插入方法;3.掌握二叉树的删除节点操作,了解节点删除的细节和方法;4.熟练掌握二叉树的查找节点操作;5.掌握二叉树的遍历方法,能够实现对二叉树的前序、中序、后序、层次遍历。
三、实验原理1.二叉树的创建方法:通过递归的方式,先创建根节点,再依次创建左子树和右子树;2.二叉树的插入节点操作:从根节点开始,根据节点值的大小关系,将待插入节点放到适当的位置;3.二叉树的删除节点操作:首先查找待删除的节点,然后根据其子节点的情况,进行相应的删除处理;4.二叉树的查找节点操作:从根节点开始遍历,根据节点值的大小关系,在左子树或右子树中继续查找,直到找到目标节点或遍历到叶子节点;5.二叉树的遍历方法:前序遍历先访问根节点,再遍历左子树和右子树;中序遍历先遍历左子树,再访问根节点和右子树;后序遍历先遍历左子树和右子树,再访问根节点;层次遍历按层次逐个访问节点。
四、实验过程1.创建二叉树:首先,定义二叉树的节点类,包含节点值和左右子节点;然后,通过递归的方式创建根节点、左子树和右子树。
2.插入节点:要插入一个节点,首先需要找到插入位置。
如果待插入节点大于当前节点的值,则插入到右子树中,否则插入到左子树中。
如果节点为空,则表示找到了插入位置。
3.删除节点:删除节点有以下几种情况:(1) 待删除节点为叶子节点:直接删除即可;(2) 待删除节点只有一个子节点:用子节点替换待删除节点的位置;(3) 待删除节点有两个子节点:找到待删除节点的后继节点(右子树的最左下角节点),用后继节点替换待删除节点的位置。
二叉树实现及应用实验报告
二叉树实现及应用实验报告实验名称:二叉树实现及应用实验目的:1. 实现二叉树的创建、插入和删除操作。
2. 学习二叉树的遍历方法,并能够应用于实际问题。
3. 掌握二叉树在数据结构和算法中的一些常用应用。
实验内容:1. 实现二叉树的创建、插入和删除操作,包括二叉树的构造函数、插入函数和删除函数。
2. 学习二叉树的三种遍历方法:前序遍历、中序遍历和后序遍历,并应用于实际问题。
3. 掌握二叉树的一些常用应用,如二叉搜索树、平衡二叉树和哈夫曼树等。
实验步骤:1. 创建二叉树的结构体,包括树节点和树的根节点。
2. 实现二叉树的构造函数,用于创建二叉树的根节点。
3. 实现二叉树的插入函数,用于将元素插入到二叉树中的合适位置。
4. 实现二叉树的删除函数,用于删除二叉树中的指定元素。
5. 学习并实现二叉树的前序遍历、中序遍历和后序遍历函数。
6. 运用二叉树的遍历方法解决实际问题,如查找二叉树中的最大值和最小值。
7. 学习并应用二叉搜索树、平衡二叉树和哈夫曼树等常用二叉树结构。
实验结果:1. 成功创建、插入和删除二叉树中的元素,实现了二叉树的基本操作。
2. 正确实现了二叉树的前序遍历、中序遍历和后序遍历,并能够正确输出遍历结果。
3. 通过二叉树的遍历方法成功解决了实际问题,如查找二叉树中的最大值和最小值。
4. 学习并熟练应用了二叉搜索树、平衡二叉树和哈夫曼树等常用二叉树结构,丰富了对二叉树的理解。
实验分析:1. 二叉树是一种重要的数据结构,具有较好的数据存储和查找性能,广泛应用于计算机科学和算法领域。
2. 通过实验,我们深入了解了二叉树的创建、插入和删除操作,以及前序遍历、中序遍历和后序遍历的原理和应用。
3. 实际问题往往可以转化为二叉树的遍历问题进行求解,通过实验,我们成功应用了二叉树的遍历方法解决了实际问题。
4. 熟练掌握二叉搜索树、平衡二叉树和哈夫曼树的原理和应用,对于提高我们在数据结构和算法方面的设计能力具有重要意义。
二叉树的基本操作实验
图(1)
图表1
else if(a==4)
{
printf("层序遍历:");
howmuch(T,2);
}
else if(a==5)
{
printf("总节点数:");
howmuch(T,0);
}
else if(a==6)
{
printf("总叶子数:");
howmuch(T,1);
}
else if(a==7)
{
printf("树的深度:");
二 概要设计
功能实现
1.int CreatBiTree(BiTree &T)用递归的方法先序建立二叉树, 并用链表储存该二叉树
2.int PreTravel(BiTree &T)前序遍历
3.intMidTravel(BiTree &T)中序遍历
4.intPostTravel(BiTree &T)后序遍历
实验三 二叉树的基本运算
一、实验目的
1、使学生熟练掌握二叉树的逻辑结构和存储结构。
2、熟练掌握二叉树的各种遍历算法。
二、实验内容
[问题描述]
建立一棵二叉树,试编程实现二叉树的如下基本操作:
1. 按先序序列构造一棵二叉链表表示的二叉树T;
2. 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历,分别输出结点的遍历序列;
5.int Depth(BiTree &T) //计算树的深度
6.inthowmuch(BiTree T,int h)采用树节点指针数组,用于存放遍历到的元素地址,如果有左孩子,存入地址,j加一 ,否则没操作,通过访问数组输出层次遍历的结果。k计算叶子数,j为总节点。
二叉树的建立和遍历实验报告
二叉树的建立和遍历实验报告一、引言(100字)二叉树是一种常见的数据结构,它由根节点、左子树和右子树组成,具有递归性质。
本次实验的目的是了解二叉树的建立过程和遍历算法,以及熟悉二叉树的相关操作。
本实验采用C语言进行编写。
二、实验内容(200字)1.二叉树的建立:通过输入节点的值,逐个建立二叉树的节点,并通过指针连接起来。
2.二叉树的遍历:实现二叉树的三种常用遍历算法,即前序遍历、中序遍历和后序遍历。
三、实验过程(400字)1.二叉树的建立:首先,定义二叉树的节点结构,包含节点值和指向左右子树的指针;然后,通过递归的方式,依次输入节点的值,创建二叉树节点,建立好节点之间的连接。
2.二叉树的前序遍历:定义一个函数,实现前序遍历的递归算法,先输出当前节点的值,再递归遍历左子树和右子树。
3.二叉树的中序遍历:同样,定义一个函数,实现中序遍历的递归算法,先递归遍历左子树,再输出当前节点的值,最后递归遍历右子树。
4.二叉树的后序遍历:同样,定义一个函数,实现后序遍历的递归算法,先递归遍历左子树和右子树,再输出当前节点的值。
四、实验结果(300字)通过实验,我成功建立了一个二叉树,并实现了三种遍历算法。
对于建立二叉树来说,只要按照递归的思路,先输入根节点的值,再分别输入左子树和右子树的值,即可依次建立好节点之间的连接。
建立好二叉树后,即可进行遍历操作。
在进行遍历算法的实现时,我首先定义了一个函数来进行递归遍历操作。
在每一次递归调用中,我首先判断当前节点是否为空,若为空则直接返回;若不为空,则按照特定的顺序进行遍历操作。
在前序遍历中,我先输出当前节点的值,再递归遍历左子树和右子树;在中序遍历中,我先递归遍历左子树,再输出当前节点的值,最后递归遍历右子树;在后序遍历中,我先递归遍历左子树和右子树,再输出当前节点的值。
通过运行程序,我成功进行了二叉树的建立和遍历,并得到了正确的结果。
可以看到,通过不同的遍历顺序,可以获得不同的遍历结果,这也是二叉树遍历算法的特性所在。
二叉树实验报告总结(共10篇)
二叉树实验报告总结(共10篇)二叉树实验报告实验报告课程名称算法与数据结构专业学号姓名实验日期算法与数据结构实验报告一、实验目的1.了解二叉树的结构特点及有关概念,掌握二叉树建立的基本算法2.了解二叉树遍历的概念,掌握遍历二叉的算法3.进一步掌握树的结构及非线性特点,递归特点和动态性。
二、实验内容二叉树的实现和运算三、实验要求1.用C++/C完成算法设计和程序设计并上机调试通过。
2.撰写实验报告,提供实验结果和数据。
3.分析算法,并简要给出算法设计小结和心得。
四、算法步骤用户以三元组形式输入二叉树的结点元素及其位置关系,建立二叉树,并打印输出该二叉树。
用户输入选择结点,程序调用BiTNode* Find Node(char tag, BiTNode* node)函数,返回子树的根结点,然后调用BiTreeDepth(BiTree T)函数,求出子树的深度,并输出该值。
3.用户可以选择是否继续执行程序,若继续,则输入1,否则输入0,结束程序。
五、主程序代码:int main(void){BiTree T;TElemType e1;char node; // node为用户选择输入的结点//int b,choose; // b为以选定结点为子树的深度,choose为实现多次选择输入的标志//BiTNode* a; // a为选定结点为子树的根结点//choose=1; // 多次选择的标志,当choose为1时运行程序,为0时结束程序// InitBiTree(T);printf(构造空二叉树后,树空否?%d(1:是0:否), 树的深度=%d\n,BiTreeEmpty(T),BiTreeDepth(T));e1 = Root(T);if(e1 != Nil)#ifdef CHARprintf(二叉树的根为: %c\n,e1);#endif#ifdef INTprintf(二叉树的根为: %d\n,e1);#endifelseprintf(树空,无根\n); //三元组构建二叉树striile(x!=end){AddNode(T, x[0], x[1], x[2]);GetUserWord(x);} //输出树PrintTreeLevel( T );//以三元组形式输入任意二叉树(以大写字母表示结点),求以任意一选定结点为子树的深度。
华科数据结构二叉树实验报告
华科数据结构二叉树实验报告一、实验目的本次实验旨在通过实践操作,深入理解二叉树的基本概念、性质和操作,并掌握二叉树的遍历算法。
二、实验内容1. 实现二叉树的建立和遍历算法;2. 进行性能测试,比较不同遍历算法的效率。
三、实验原理1. 二叉树的定义二叉树是一种特殊的树结构,它的每个节点最多只有两个子节点,分别称为左子节点和右子节点。
二叉树的每个节点都可以看作是一个小的二叉树。
2. 二叉树的遍历算法二叉树的遍历是指按照某种规则依次访问二叉树中的每个节点。
常用的遍历算法有前序遍历、中序遍历和后序遍历。
- 前序遍历(Preorder Traversal):先访问根节点,然后递归地前序遍历左子树,最后递归地前序遍历右子树。
- 中序遍历(Inorder Traversal):先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。
- 后序遍历(Postorder Traversal):先递归地后序遍历左子树,然后递归地后序遍历右子树,最后访问根节点。
四、实验步骤1. 实现二叉树的建立算法根据给定的数据,使用递归的方式构建二叉树。
具体步骤如下:- 如果当前节点为空,将数据作为当前节点的值创建新节点;- 如果当前节点不为空,比较数据与当前节点的值的大小,如果小于当前节点的值,则递归地将数据插入到当前节点的左子树中;如果大于当前节点的值,则递归地将数据插入到当前节点的右子树中。
2. 实现二叉树的遍历算法根据前述的遍历算法原理,实现前序遍历、中序遍历和后序遍历算法。
具体步骤如下:- 前序遍历算法:先访问当前节点,然后递归地前序遍历左子树,最后递归地前序遍历右子树。
- 中序遍历算法:先递归地中序遍历左子树,然后访问当前节点,最后递归地中序遍历右子树。
- 后序遍历算法:先递归地后序遍历左子树,然后递归地后序遍历右子树,最后访问当前节点。
3. 进行性能测试使用不同的遍历算法对同一二叉树进行遍历,并记录遍历所需的时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称:利用二叉树模型分析期权价值影响因素
说明:
同学们在本实验中需要完成如下任务并完成相应的实验报告,提交至tas平台。
如果有几位同学共同完成一份报告,则小组实验报告中需要指出组员合作时的分工情况,同一小组的成员提交一份实验报告。
实验目的:
1.分析执行价、到期期限、无风险利率、股票波动率、股票初始价格、股票红
利等因素的变动对期权价值到底有什么影响,包括欧美式障碍期权和回望期权,结合B-S公式部分的实验分析其与普通欧美式期权是否存在差异。
2.分析障碍水平的设置对期权价值的影响
3.分析二叉树模型步数的增加对期权价值估计的精确度有无影响(以普通欧式
期权为例)。
4.分析在进行第一步的过程中,普通美式期权与普通欧式期权价值之间的大小
关系。
5.通过实验检验美式看涨期货期权是否存在提前执行的可能性.
实验方法:
1.影响因素分析:在给定的二叉树步长(50步)下,通过对执行价、到期期限、无风险利率、股价波动率、股票初始价格、股票红利等数据进行不同程度的改变来观察期权价值的变化规律。
2.障碍水平的设置对期权价值的影响:通过将障碍水平改变为不同的数值(注意价值要在合理水平范围内),观察障碍期权与普通欧式期权价值的差异变化。
3.估计精确度分析:在给定的数据下,通过不断增加步长,如从2步到200步的不断变化,来观察期权价值的变化,计算每次变化前后的价值误差,观察误差是否有减小趋势。
实验工具:
(欧美式期权)二叉树定价-新.xls, 回望期权(二叉树).xls, 障碍期权定价的二叉树法.xls 三个excel表格
实验成果:
将通过分析实验结果所得到的结论连同实验结果一起,汇总成实验报告(内容需包括问题阐述,分析依据(即通过计算得到的结果),分析得到的结论)。