第9章_直梁
工程力学第九章杆件变形及结构的位移计算
(1)竖标要在直线段弯矩图上取得; (2)每一个面积只对应一条直线段的弯矩图。
当与在杆的同一侧时,两者乘积取正号,反之取 负号。
§9–4 图乘法
二、几种常见图形的面积和形心位置的确定方法
二次抛物线
§9–4 图乘法
例1:求图示梁(EI=常数,跨长为l)B截面转角 B
(
1 2
l 2
1 2
2 3
Pl 4
B l l 1 Pl 1 l 1 1 Pl) 2 22 4 2223 4
l/2
l/2
Pl2 ( ) 16EI
1
Mi
1/ 2
取 yc的图形必
须是直线,不能是曲
B
1 EI
(1 2
l
Pl 4
1) 2
Pl 2 16 EI
(
)
线或折线.
§9–4 图乘法
q
A
B
1
2
1
MP 图
解:
1 ql2
M图
8
B
1 EI
[(2 3
l
1 8
ql2 )
1] 2
1 ql3 ( )
24 EI
§9–4图乘法
例2. 试求图示结构B点竖向位移.
P
1
Pl
l
EI
B
l EI MP
Mi
l
解:
By
MM P EI
ds
yc
EI
§9–4 图乘法
解:
yc
EI
1 ( 1 Pl l 2 l Pl l l)
ql3 ( 24 EI
)
第9章 梁的应力
中性层
中 性 轴
6
3.假设和推论 (1)平面假设:横截面变形后仍为平面,只是绕中性轴发生
转动.
(2)假设纵向纤维之间无挤压,各条纤维仅发生简单的拉伸
或压缩。材料服从虎克定律σ=Eε。
推论: (1)距中性轴等高处,变形相等。 (2) 横截面上只有正应力。
F
F
m
n
4、梁的正应力公式推导
m
n
中性轴
B
L 2 L 2
A
F
h 6
a
b
C
h 2
h
c
b
3
FL
1
a
M B ya IZ
FL
h
MB
1 2
FL
IZ
bh
12
2 3 3 1.65MPa bh 12 1 h
b 0
c
M B yc IZ
FL
2 3 2 bh 12
2.47MPa
(压)
12
例题2
试计算图示简支矩形截面木梁平放与竖放时的最大 正应力,并加以比较。
F A
F
cos
2
同一点在斜截面上时:
2
sin 2
即使同一点在不同方位截面上,它的应力也各不相同
45
3、梁上任一点应力状态的分析
符号规定: 正应力:拉应力为正,压应力为负 切应力:使单元体顺时针方向转动为正;反之为负 α自x轴开始到斜截面的外法线方向逆时针转向为正,反之为负
第九章 梁的应力
1
概
述
钢筋混凝土梁拉裂破坏 1、弯曲构件横截面上的应力 剪力V 内力 剪应力τ
梁的应力
ac
M
⑵、纵向线:由直线变为曲
线,且靠近上部的纤维缩短,
靠近下部的纤维伸长。
b
d
3、假设:
(1)弯曲平面假设:梁变形前原为平面的横截面变形后仍为平 面,且仍垂直于变形后的轴线。
第九章 梁的应力
梁是由许多纵向纤维组成的
凹入一侧纤维缩短
突出一侧纤维伸长
根据变形的连续性可知, 梁弯曲时从其凹入一侧的 纵向线缩短区到其凸出一 侧的纵向线伸长区,中间 必有一层纵向无长度改变
z
A2 20120mm2 y2 80mm
yc
80 2010 120 2080 80 20 120 20
52mm
(2)求截面对中性轴z的惯性矩
Iz
Hale Waihona Puke 80 203 1280 20 422
y
201203 20120 282
12
7.64106 m4
第九章 梁的应力
横截面上应力分布
b
d2
c,m ax
h yt,max yc,max d1
oz y
Oz
y b
t,m ax
中性轴 z 不是横截面的对称轴时,其横截面上最大拉
应力值和最大压应力值为
t,m ax
My t ,m a x Iz
c,m ax
Myc ,m a x Iz
第九章 梁的应力
例 对于图示 T形截面梁,求横截面上的最大拉应力和最大压 应力.已知: I z 290 .6 10 8 m4
d
在弹性范围内, E E Ey ...... (2)
O
O1
A1
B1 x
y
第九章 梁的应力
应力的分布图:
梁的弯曲
第九章梁的弯曲第一节平面弯曲一、平面弯曲的概念当杆件受到垂直于杆轴的外力作用或在纵向平面内受到力偶作用时(图9-1),杆轴由直线弯成曲线,这种变形称为弯曲。
以弯曲变形为主的杆件称为梁。
图9-1 受弯杆件的受力形式弯曲变形是工程中最常见的一种基本变形。
例如房屋建筑中的楼面梁,受到楼面荷载和梁自重的作用,将发生弯曲变形(9-2a、b),阳台挑梁(9-2 c、d)等,都是以弯曲变形为主的构件。
工程中常见的梁,其横截面往往有一根对称轴,如图9-3所示,这根对称轴与梁轴所组成的平面,称为纵向对称平面(图9-4)。
如果作用在梁上的外力(包括荷载和支座反力)和外力偶都位于纵向对称平面内,梁变形后,轴线将在此纵向对称平面内弯曲。
这种梁的弯曲平面与外力作用平面相重合的弯曲,称为平面弯曲。
平面弯曲是一种最简单,也是最常见的弯曲变形,本章将主要讨论等截面直梁的平面弯曲问题。
图9-2 工程中常见的受弯构件图9-3 梁常见的截面形状图9-4平面弯曲的特征二、单跨静定梁的几种形式工程中对于单跨静定梁按其支座情况分为下列三种形式:1.悬臂梁: 梁的一端为固定端,另一端为自由端(图9-5a )。
2.简支梁: 梁的一端为固定铰支座,另一端为可动铰支座(图9-5b )。
3.外伸梁: 梁的一端或两端伸出支座的简支梁(图9-5c )。
(a ) (b ) (c )图9-5 三种静定梁第二节 梁的弯曲内力——剪力和弯矩为了计算梁的强度和刚度问题,在求得梁的支座反力后,就必须计算梁的内力。
下面将着重讨论梁的内力的计算方法。
一、截面法求内力1、剪力和弯矩图9-6 用截面法求梁的内力图9-6a 所示为一简支梁,荷截F 和支座反力R A 、R B 是作用在梁的纵向对称平面内的平衡力系。
现用截面法分析任一截面m-m 上的内力。
假想将梁沿m-m 截面分为两段,现取左段为研究对象,从图9-6b 可见,因有座支反力R A 作用,为使左段满足Σ Y =0,截面m-m 上必然有与R A 等值、平行且反向的内力Q 存在,这个内力Q ,称为剪力;同时,因R A 对截面m-m 的形心O 点有一个力矩R A · a 的作用,为满足Σ M o =0,截面m-m 上也必然有一个与力矩R A · a 大小相等且转向相反的内力偶矩M存在,这个内力偶矩M 称为弯矩。
九、 材料力学位移分析(2)
5、梁的刚度计算
解:1、作强度设计
[ ]; W ql 2 1 M max 10103 4 2 40kNm; 4 4 40103 4 3 W 4 10 m ; 100106 单个槽钢W 2 10 4 m 3 200cm3 ;
22a槽钢满足刚度要求。
课外练习:9-18;9-19;
6、简单的静不定问题
关于静不定的基本概念
求解静不定问题的基本方法
拉压静不定问题
扭转静不定问题 简单的静不定梁 静不定结构的特性
6、简单的静不定问题
关于静不定的基本概念
静定问题与静定结构——未知力(内力或外力)个数等于独立的平衡方程数 静不定问题与静不定结构——未知力个数多于独立的平衡方程数
对转角的限制 轴的类型 滑动轴承 向心轴承 向心球面轴承 圆柱滚子轴承 圆锥滚子轴承 安装齿轮的轴 许用转角[θ]/rad
0.001 0.005 0.005 0.0025 0.0025 0.001
5、梁的刚度计算
例题9-10、图示钢制圆轴,已知
20kN C
2000
Fp=20kN,E=206GPa,轴承B 处的
4、铝杆应力:σ =FNA/AA=128.8MPa 5、铝杆长度:l =300+0.936-0.552=300.38mm;
6、简单的静不定问题
扭转静不定问题 例题9-15、两端固定的圆轴受力如图,已知Mx,GIp,l, 求A、B两端的约束力。
y
x Mx z A l C l Mx D l B
6、简单的静不定问题
解:1、轴受力如图,由平衡方程:
M
x
0;
M x 4 M x M x M x 3 0;
第十章弯曲强度和刚度
截h/面b=设3b/2计应尽可h 能使 h/b=1
b
材料远离中性b 轴。
b
Wz =bh 2/6 =3b 3/8
Wz=b3/6
强度条件:
强度条件:
3 b3 M max
8 [s ]
b3 Mmax
6 [s ]
M
h/b=2/3 h O
sbmax
W z=2b 3/27
强度条件:
2b 3 Mmax
M
o_
x
Fl
弯矩图
3) 画内力图。 悬臂梁在固定端A处弯矩值最大。
5
例2 求外伸梁AB的内力。y F FAy 3F
解:1)求约束反力: 受力如图。
0
A
FAx
aa
FB 45 B x
a
有平衡方程:
SMA(F)=2aFBcos45+Fa-3Fa=0 SFx=FAx-FBsin45=0 SFy=FAy+FBcos45-F-3F=0
d
M
AB aa bb AB
变形后
中性轴
中性层与横截面的交线称为中性
轴。
中性层(面)
15
y
M
z
中性轴 x
smax压
smax拉
横截面上各点的正应力s 的大小与该点到中性
轴的距离y成正比。
中性轴以上,s为负,是压应力,纤维缩短。 中性轴以下, s为正,是拉应力,纤维伸长。
到中性轴距离相同各处,应力相等。
Fa +
M=F(3a-x)
-
x
Fa
8
作梁的内力图的 一般步骤
y F
FAy
3F
0
A
第九章梁的应力
中间层与横截面 的交线
--中性轴
梁的弯曲变形实际上是各截面绕各自的中性轴转
动了一个角度,等高度的一层纤维的变形完全相同。
4、纵向线应变的变化规律
(纵向线段的变化规律)
A1B1 AB
AB
A1B1 OO1 OO1
(y)dd d
y
y (1)
——横截面上各点的纵向线应变 与它到中性轴的距离成正比
三、纯弯曲理论的推广
纯弯曲时梁横截面上 My
正应力的计算公式
Iz
横力弯曲时
1、由于切应力的存在,梁 的横截面发生翘曲;
2、横向力还使各纵向线之 间发生挤压。
A
B
1m
2m
平面假设和纵向线之 间无挤压的假设实际上都 不再成立。
实验和弹性理论的研究结果表明:
对于细长梁(跨高比 l / h > 5 ),剪力的影响可以忽 略,纯弯曲时的正应力计算公式用于横力弯曲情况,其结
a
c
o
o1
AB
b
d
dx
中性层
y
中
性
层
曲
率
d
半
径
y
A1
B1
E Ey
——横截面上各点的正应力沿截面高度 按线性规律变化
梁弯曲时横截面上正应力分布图: M
中性层
σmax
Z
σmax
y
中性轴的位置?
梁变形后中性层的曲率 1 ?
M Z
M
E
Ey
y
(三)、静力平衡条件
zdAdA x 由横截面上的弯矩和正应力的关系
只是相对转动了一个角度
且仍与纵向线正交。 3、假设:
第十三讲:第九章 梁的弯曲-变形刚度计算概要
例11
求图示梁的挠曲线方程和转角方程。EI为常量。
Me A
x
e
解:
1.列微分方程并积分
B
M e Me x e M e FAy= M M EIy xx M l l l Me 2 EIy x Me x C 2l Me 3 Me 2 EIy x x Cx D 6l 2
33 5 Fl Fl Fl 2 l 6EI EI 2 EI 3
五、 叠加法求梁的变形
基本原理 由几个外力同时作用时所引起的梁的变形 转角和挠度 等于
由各个外力单独作用时所引起的梁的变形的代数和
q F M
e
y yq y F y M e
例13 求B和yB 解: 1. Me单独作用时 2Mel BM e EI 2 2 2 M l M 2 l e y BM e e EI 2 EI 2. F单独作用时 2 Fl BF CF 2 EI yBF yCF CF l
一、梁的变形度量——挠度与转角
x
1 1'
F
A
C
B
x
y
C'
y
1'
1
y f ( x)
——挠曲线方程
一、梁的变形度量——挠度与转角
x
1 1'
F
A
C
B
x
y
1'
y
C'
1
在小变形下: 即:
dy y tan dx
——转角方程
任一横截面的转角 = 挠曲线在该截面形心处切线的斜率
2.数学方面
A
第9章 梁的应力
本章主要讨论梁在外力作用下横截面上的应力和强
度条件及其应用。
工程中的弯曲杆件
9.1 梁内正应力、正应力强度条件
9.1.1 纯弯曲时梁内的正应力
纯弯曲:梁的横截面上只有弯矩 而无剪力的弯曲(横截面上只有 正应力而无切应力的弯曲),这 种弯曲称为纯弯曲。
横力弯曲:梁的横截面上既有弯
矩又有剪力的弯曲(横截面上既 有正应力又有切应力的弯曲), 这种弯曲称为横力弯曲。
3 3
压应力
3
3. C截面上最大正应力
C max
MC MC 60 10 6 92.6MPa 2 2 9 Wz bh 6 120 180 10
上压下拉
4.全梁上最大正应力
ql 2 60 32 M max 8 8 67.5kN m M max M max max 2 Wz bh 6
矩形截面:
bh 3 Iz 12
bh 2 Wz 6
圆形截面:
I y Iz
I y Iz
d
4
64
4
Wy Wz W
d
3
32
圆环截面:
D
64
(1 )
4
4
Wy Wz W
D3
32
(1 )
d D
②截面关于中性轴不对称Байду номын сангаас最大拉应力:
y1 yC 96.4mm
y2 200 50 96.4 153.6mm
4、计算弯矩最大截面 上的最大拉应力和最大压应力
拉 max
M max y2 Iz
16 103 153.6 103 1.02 108 1012 24.09 106 Pa 24.09 MPa
第9章-梁的弯曲变形与刚度计算
y
M
M
M<0 w’’<0
O O
x
曲线向下凸 时: w’’>0, M>0
因此, M与w’’的正负号相同。 y
M
M
w
M (x)
(1 w2 )32 EI
M>0 w’’>0
x
w
(1
w2
)
3 2
M (x) EI
由于挠曲线是一条非常平坦的曲线, w'2远比1小, 可以略去不计, 于是上式可写成
w M (x) EI
转角(): 横截面 y
绕中性轴(即Z轴)转 A 过的角度(或角位 移), 称为该截面 的 转 角 (Slope rotation angle) 。
F CBx
w(挠度)
C1
(转角)
9.1 工程实际中的弯曲变形问题
挠度和转角符号的规定:
挠度:在图示坐标系中, 向上为正, 向下为负。
转角: 逆时针转向为正,顺时针转向为负。
在这种情况下, 梁在几项载荷 (如集中力、集中力 偶或分布力)同时作用下某一横截面的挠度和转角, 就 分别等于每项载荷单独作用下该截面的挠度和转角的 叠加。此即为叠加原理。
例1:一抗弯刚度为EI的简支梁受荷载如图所示。
试按叠加原理求梁跨中点的挠度wC 和支座处横
截面的转角A ,B 。
q Me
解:将梁上荷载分为两项 A
C
B
简单的荷载。
l
wC wCq wCM
5ql4 M el2 384EI 16EI
A Aq AM
ql3 M el 24EI 3EI
B
Bq BM
ql3 M el 24EI 6EI
例2:试利用叠加法, 求图示抗弯刚度为EI的简支
工程力学(第二版)第9章武汉理工大学出版社 李卓球 朱四荣 侯作富
q 2
lx2 (
2
x3 3
)
C1
C2
q
0
(l 3
6lx2
EIw
4x3)
q 2
lx3 (
6
x4 )
12
C1x
C2
24EI
w qx (l3 2lx2 x3 ) 24EI
由对称性可知, 在两 端支座x=0和x=l 处, 转角的绝对值相 等且都是最大值
y
A
A
l/2
q wmax B
受一集中力F作用。试求梁的挠曲线方程和转角
方程, 并确定其最大挠度wmax和最大转角max 。
解:以梁左端A为原点, y
取直角坐标系, 令x轴
向右, y轴向上为正。
A
F
B x
(1) 列弯矩方程
x
l
M (x) F (l x) Fl Fx
(2) 列挠曲线近似微分方程并积分
EIw M (x) Fl Fx
q
FB
梁的两个支反力为
A
B x
FA
FB
ql 2
x l
梁的弯矩方程及挠曲线微分方程分别为
M (x) ql x 1 qx2 q (lx x2 ) (a)
22
2
EIw M (x) q (lx x2 )
(b)
2
y
FA
q
FB
A x
B x
l
EIw M (x) q (lx x2 )
C
B
简单的荷载。 l
wC wCq wCM
工程力学题目
1 静力学公理.受力图1[是非题]如物体相对于地面保持静止或匀速运动状态,则物体处于平衡。
( )2[是非题]作用在同一物体上的两个力,使物体处于平衡的必要和充分条件是:这两个力大小相等、方向相反、沿同一条直线。
( )3[是非题]静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ) 4[是非题]静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
( ) 5[是非题]二力构件是指两端用铰链连接并且指受两个力作用的构件。
( ) 6[选择题]刚体受三力作用而处于平衡状态,则此三力的作用线( )。
A必汇交于一点 B必互相平行C必都为零 D必位于同一平面内7[选择题]如果力FR是F1、F2二力的合力,用矢量方程表示为FR=F1+F2,则三力大小之间的关系为( )。
A必有FR=F1+F2 B不可能有FR=F1+F2C必有FR>F1,FR>F2 D可能有FR<F1,FR<F28[填空题]作用在刚体上的力可沿其作用线任意移动,而_______________力对刚体的作用效果.所以,在静力学中,力是________________的矢量.9[填空题]力对物体的作用效果一般分为__________效应和___________效应.10[填空题]对非自由体的运动所预加的限制条件为_____________;约束反力的方向总是与约束所能阻止的物体的运动趋势的方向_____________;约束反力由_____力引起,且随_______________力的改变而改变2.平面力系1 [是非题]成力偶的两个力F=-F,所以力偶的合力等于零. ( )2[是非题]已知一刚体在五个力作用下处于平衡,如其中四个力的作用线汇交于O点,则第五个力的作用线必过O点. ( )3[是非题]图示平面平衡系统中,若不计定滑轮和细绳的重量,且忽略摩擦,则可以说作用在轮上的矩为M的力偶与重物的重力FP相平衡. ( )4[是非题]如图所示,刚体在A/B/C三点受F1,F2,F3三个力的作用,则该刚体处.与处于平衡状态。
第9章_直梁
max
IZ 1.067106 ymax
M max 141 MN/m2 150MN/m2 WZ
故压板的强度足够
第九章 直梁弯曲
例9-8 一起重量原为 50kN 的吊车,其跨度l = 10.5m (如图),由 45a号工字钢制成。为发挥其潜力,现欲将 起重量提高到Q =70kN,试校核梁的强度;若强度不足, 再计算其可能承载的起重量。设梁的材料为 Q235钢, 许用应力[σ]=140MN/m2,电葫芦自重G = 15kN,梁
第九章 直梁弯曲
推断和假设
假设:(1) 梁在纯弯曲时,各横截 面始终保持为平面,并垂直于梁轴。
此即弯曲变形的平面假设。
(2) 纵向纤维之间没有相互挤压,每 根纵向纤维只受到简单拉伸或压缩。 中性层:从伸长到缩短区,中间必有一层纤维既不伸长也不缩短。这 一长度不变的过渡层称为中性层。 中性轴:中性层与横截面的交线 在纯弯曲的条件下,所有横截面仍保持平面,只是绕中性轴作 相对转动,横截面之间并无互相错动的变形,而每根纵向纤维 则处于简单的拉伸或压缩的受力状态。
Q max P M max Pl
Q O
x P
第九章 直梁弯曲
例9-3
一简支梁 AB ,受均布载荷 q 的作用,试作此梁的弯矩图。
解: 1、求支反力
由对称性知: ql FA FB 2
2、建立剪力方程和弯矩方程
ql Q = FA qx = qx (0 < x < 1) 2 qx2 qlx qx2 M = FA x = (0 ≤x < 1) 2 2 2
非对称弯曲:若梁不具有纵向对称面,或梁有纵向对称面上但 外力并不作用在纵向对称面内的弯曲。
第九章 直梁弯曲
工程力学 第九章 梁的强度刚度计算
由结果知,梁的强度不满足要求。
返回 下一张 上一张
y2
z
例9-6 试为图示钢轨枕木选择矩形截面。已知矩形截面尺寸的比 例为b:h=3:4,枕木的弯曲许用正应力[]=15.6MPa,许用剪应力 P P 0 0 .2 m 1 .6 m []=1.7MPa,钢轨传给枕木的压力P=49KN。 .2 m
a
M D ya Iz
返回 下一张 上一张
10.7
第二节 梁横截面上的剪应力
一、矩形截面梁:
矩形截面剪应力计算公式: τ沿截面高度按抛物线规律变化:
2Iz 4
3
QS
* z
I zb
bh
4
τ m ax
2 3
y
h 2
, 0 ; y 0 , max
6 Qh 4 bh
校核梁的正应力强度。
解:(1) 内力及抗弯截面模量计算: MC=3.0KN.m; MD=-4.8KN.m
W1 W2
P1
A
a C a
P2
D
a B
y1
z
763 5 .2
146 . 7 cm
3
y1
z
763 8 .8
86 . 7 cm
3
4 .8 k N m
y2
(2)C截面的正应力强度校核:
4 Q 3 A1
max 2
Q A2
返回 下一张 上一张
例9-3 矩形截面简支梁如图,已知:l=2m,h=15cm,b=10cm, h1=3cm,q=3kN/m。试求A支座截面上K点的剪应力及该截面的最 b q 大剪应力。 解:1.求剪力:QA=3kN
材料力学第9章 梁的挠度和刚度计算
x
x
0,
l 2
x
l 2
,
3l 2
EIw1
1 24
qx4
C1x
D1
EIw2
1 48
ql
3l 2
3
x
C2 x
D2
x
0,
l 2
x
l 2
,
3l 2
EIw1
1 6
qx3
C1
EIw2
1 16
ql
3l 2
2
x
C2
x
0,
l 2
x
l 2
,
3l 2
4 边界条件、连续条件 5 梁的转角方程和挠曲线方程
2
2 EIw(l) 0
EIw
1 6
qx3
ql 4
x2
C1
1 24
ql 4
ql 12
l3
C1l
D1
0
EIw
1 24
qx 4
ql 12
x3
C1x
D1
C1
ql 2 24
5 梁的转角方程和挠曲线方程
EIq 1 qx3 ql x2 ql3
6
4 24
EIw 1 qx4 ql x3 ql3 x 24 12 24
[f] L ~ L 500 600
普通机车主轴
[q ] 0.30
3,影响变形的因素
L 10时, Q的影响只有M的3% h
由小变形条件, x不计
4,计算变形的方法
积分法、 叠加法、 能量法、
………
9.2 挠曲线近似微分方程
1、挠曲线近似微分方程
1 M z (x)
EI z
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均布荷载
q(x)
集中力偶
任意分布荷载
第九章 直梁弯曲
梁的支座
固定铰支座 这种支座可阻止梁 在支承处沿水平和垂直方向的移动, 但不能阻止梁绕铰链中心的转动。 活动铰支座(辊轴支座) 这种 支座能阻止梁沿垂直于支承面方向 的移动,但不能阻止梁沿着支承面 的移动,也不能阻止梁绕铰链中心 的转动。
固定端 这种支座使梁的端截 面即不能沿水平方向和垂直方向 移动,也不能绕某一点转动。
M P 200 1.5 103 200103 1 300N m
(2) 计算 1-1 截面惯性矩
bh2 1.8 32 Ix 4.05103 m 4 12 12
(3) 计算1-1截面上各指定点的正应力
M1 y A 3001.5 102 A 111106 N/m2 拉应力 2 Ix 4.0510
在集中力作用处,弯矩图上在此出现折角(即两侧斜率不同)。
梁上集中力偶作用处,弯矩图有突变,突变的值即为该处集中力 偶的力偶矩。 若力偶为顺时针转向,弯矩图向上突变,反之弯矩图 向下突变(自左至右)。 绝对值最大的弯矩总是出现在下述截面上;集中力作用处;集中 力偶作用处和剪力等于零的截面上。
第九章 直梁弯曲
第九章 直梁弯曲
主要内容:
弯曲的概念与实例
梁的计算简图—静定梁的形式
弯曲内力—剪力和弯矩 剪力图和弯矩图 梁弯曲正应力 梁弯曲正应力强度条件 梁的弯曲变形计算和刚度校核 简单超静定梁的解法
提高梁承载能力的措施
第九章 直梁弯曲
§9-1 弯曲的概念与实例
P
横向力:作用于杆件 上且都垂直于杆的轴 线的外力。 弯曲:在横向力作用 下,杆的轴线将弯曲 成一条曲线的变形形 式。 梁:凡是以弯曲变 形为主的杆件。
非对称弯曲:若梁不具有纵向对称面,或梁有纵向对称面上但 外力并不作用在纵向对称面内的弯曲。
第九章 直梁弯曲
§9-2 梁的计算简图—静定梁的形式
梁的载荷
集中力(或集中载荷) 当外力在梁上 的分布范围远远小于梁的长度时,便可简 化为作用于一点的集中力。 分布载荷 沿梁全长或部分长度连续 分布的横向力。通常以沿梁轴每单位长 度上所受的力,即载荷密度 q 来表示 集中力偶 作用在微小梁段的外力 偶称为集中力偶。 M F1 集中力 q
§9-5
梁弯曲正应力
纯弯曲时梁横截面上的正应力
各横截面上同时有弯矩M和剪力Q,称为剪切弯曲。
各横截面只有弯矩M,而无剪力Q,称为纯弯曲。
第九章 直梁弯曲
梁在纯弯曲时的实验观察
当梁发生纯弯曲变形时,可 观察到下列一些现象: (1)两条纵线都弯成曲线 a’a’ 和 b’b’ ,且靠近底面的纵线bb伸长了, 而靠近顶面的纵线aa 缩短了。 (2)两条横线仍保持为直线,只 是相互倾斜了一个角度,但仍垂 直于弯成曲线的纵线。 (3)在纵线伸长区,梁的宽度减小;在纵线缩短区,梁的宽度增大。情况 与轴向拉伸、压缩时的变形相似。
0
Q FA 6.25kN M FA 0.8 5kN m
0
若以右部分为研究对 象,结果相同。
第九章 直梁弯曲
§9-4
梁的剪力和弯矩方程
剪力图和弯矩图
剪力图和弯矩图绘制的基本方法
Q Q(x)
M M (x)
x表示横截面在梁 轴线上的位置
剪力和弯矩图:根据剪力方程和弯矩方程用图线把剪力和弯矩 沿梁轴线的变化情况表示出来的图线。 作图时,要选择一个适当的比例尺,以横截面位置 x 为横坐标, 剪力和弯矩 M 值为纵坐标,并将正剪力和正弯矩画在x轴的上 边,负的画在下面。
M1 yB 3001.5 102 B 111106 N/m2 Ix 4.05102
M y M 0 A 1 C 1 0 N/m2 Ix Ix
压应力 压应力
M1 yD 3001.5 102 D 74.1106 N/m2 2 Ix 4.0510
M ( x1 ) FA x
x1 FA x2 FB
Pb x1 (0 ≤ x1 ≤a) l
Pab/l
M ( x2 ) FA x2 P( x2 a) Pa (l x2 ) (a ≤x2 l ) l Pab M max l
(3) 画弯矩图
第九章 直梁弯曲
弯矩图的特点
梁上没有均布载荷作用的部分,弯矩图为倾斜直线。而且若均布 载荷q向下时, 弯矩图自左而右向下斜;反之, 自左而右向上斜 。 梁上有均布载荷作用的一段,弯矩图为抛物线,而且若均布载 荷q向下时,抛物线开口向下。反之,抛物线开口向上。
的自重不计。
第九章 直梁弯曲
解 可将吊车简化为一简支梁
当电葫芦行至梁中点时所引起的弯 矩最大,这时的弯矩图如图。 在中点处横截面上的弯矩为
Q max P M max Pl
Q O
x P
第九章 直梁弯曲
例9-3
一简支梁 AB ,受均布载荷 q 的作用,试作此梁的弯矩图。
解: 1、求支反力
由对称性知: ql FA FB 2
2、建立剪力方程和弯矩方程
ql Q = FA qx = qx (0 < x < 1) 2 qx2 qlx qx2 M = FA x = (0 ≤x < 1) 2 2 2
FA
FB
(3) 画剪力图和弯矩图
Q max M max ql 2 ql 2 8
第ห้องสมุดไป่ตู้章 直梁弯曲
例 9-4 简支梁AB,在C 点处受集中力P 作用, 如图所 示。试作此梁的弯矩图。
解 (1)求支座反力
M B 0 Pb FAl 0
Y 0 FA FB P 0
(2) 列弯矩方程 距A端为x1和x2两截面处截开 AC 段 CB 段
第九章 直梁弯曲
静定梁的基本形式
简支梁 梁的一端为固定铰 支座,另一端为活动铰支座。 外伸梁 梁有一个固定铰支座和 一个活动铰支座,而梁的一端或两 端伸出支座之外。 悬臂梁 端自由。 梁的一端固定,另一
简支梁或外伸梁的两个铰支座之间的距离称为跨度 悬臂梁的跨度是固定端到自由端的距离
第九章 直梁弯曲
第九章 直梁弯曲
推断和假设
假设:(1) 梁在纯弯曲时,各横截 面始终保持为平面,并垂直于梁轴。
此即弯曲变形的平面假设。
(2) 纵向纤维之间没有相互挤压,每 根纵向纤维只受到简单拉伸或压缩。 中性层:从伸长到缩短区,中间必有一层纤维既不伸长也不缩短。这 一长度不变的过渡层称为中性层。 中性轴:中性层与横截面的交线 在纯弯曲的条件下,所有横截面仍保持平面,只是绕中性轴作 相对转动,横截面之间并无互相错动的变形,而每根纵向纤维 则处于简单的拉伸或压缩的受力状态。
第九章 直梁弯曲
解:(1)求支座反力 由静力平衡方程
M
A
0 FB 4 P 1.5 0
FB 3.75kN
Y 0
FA FB P 0
FA 6.25kN
( 2 ) 求 截 面 n-n 上 的 弯 矩 剪 力 和 弯 矩,以 n-n 以左部分为研究对象
Y 0 m
§9-3
弯曲内力—剪力和弯矩
截面法过程:切取、替代、平衡
Y 0 : F
A
P Q 0 1 Q FA P 1
剪力
M
C
0 : FAx P ( x a) M 0 1 M FAx P ( x a) 1
弯矩
第九章 直梁弯曲
剪力Q的符号:若被保留的梁段的截面上的剪力Q对该
P P P
P P P
工程力学中的梁,包括结构物中的各种梁,也 包括机械中的转轴和轮齿轴等。
第九章 直梁弯曲
基本概念
轴线是直线的称为直梁,轴线是曲线的称为曲梁。 有对称平面的梁称为对称梁,没有对称平面的梁称为非对称梁。
平面弯曲(对称弯曲):若梁上所有外力都作用在纵向对称面内,
梁变形后轴线形成的曲线也在该平面内的弯曲。
IZ
64
d4
IZ / 64d 4 3 WZ d ymax d /2 32
常见简单几何形状截面的惯性矩和抗弯 截面模量等,几何参数可查阅资料。
第九章 直梁弯曲
例 9-5
一矩形截面梁,如图所示。计算1-1截面上A、B、C、D各点处
的正应力,并指明是拉应力还是压应力。 解 (1)计算1-1截面上弯矩
第九章 直梁弯曲
例 9-7
一螺旋压板夹紧装置 ( 如图) ,已知压紧力 P = 3 kN,a=
50mm,材料的许用弯曲应力[σ]= 150MN/m2。试校核压板AC的强度。 解:压板可简化为一简支梁 绘制弯矩图如图 最大弯矩在截面B上 M max Pa 150N m 校核压板的强度 30 203 14 203 需计算B处截面 I Z 10.67 109 m 4 12 12 对其中性轴的惯 性矩 抗弯截面 系数为 最大正应 力则为
Iz——横截面对中性轴z的惯性矩
第九章 直梁弯曲
梁弯曲时任一截面上弯曲正应力的最大值。
横截面对称于中性轴的梁,当y=ymax时弯曲正应力最大。
max
max
My max IZ
抗弯截面系数 单位:长度的三次方
M M I Z / y max WZ
横截面不对称于中性轴的梁:
i max
My I
Z
1
y max
My 2 IZ
y1和y2分别代表中性轴到最大拉应 力点和最大压应力点的距离。
T形截面梁
第九章 直梁弯曲
截面的轴惯性矩和抗弯截面横量
截面的轴惯性矩和抗弯模量是衡量截面抗弯能力的 几何参数,可以用积分法和有关定理推导出公式计算。 直径为d的实心圆截面, 其对中性轴z的惯性矩: 抗弯模量: