三角函数辅助角公式化简

合集下载

三角函数辅助角公式化简

三角函数辅助角公式化简

三角函数辅助角公式化简一、解答题1.已知函数()22sin cos 3f x x x π⎛⎫=-+⎪⎝⎭, x R ∈ (1)讨论()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上的单调性.2.已知函数()4sin cos 3f x x x π⎛⎫=+⎪⎝⎭(1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期; (2)求()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值及取得最值时x 的值.3.已知函数()4tan sin cos 23f x x x x ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期; (2)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间及最大值与最小值.4.设函数()2sin cos f x x x x =+. (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间.5.已知函数()πππcos 22sin sin 344f x x x x ⎛⎫⎛⎫⎛⎫=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122⎡⎤-⎢⎥⎣⎦上的值域.6.已知函数()21cos cos 2f x x x x =--. (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[]0,π上的单调区间.7.已知函数()4cos sin 16f x x x π⎛⎫=+- ⎪,求(1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.8.设函数()()sin ?cos 2tan x x x f x xπ⎛⎫+- ⎪⎝⎭=.(1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π⎛⎫⎪⎝⎭上的单调性.9.已知函数()2cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[]0,π上的单调性。

辅助角公式例题及解析十道

辅助角公式例题及解析十道

辅助角公式例题及解析十道辅助角公式是解决三角函数问题的一种重要工具,它可以将复杂的三角函数表达式化简为更易于处理的形式。

以下是十道辅助角公式的例题及解析:1. 例题:求函数y = 2sin(x + π/3) + cos(x - π/6) 的值域。

解析:利用辅助角公式将原函数化简为y = √3sinx + cosx + 1,再进一步化简为y = 2sin(x + π/6) + 1。

由于正弦函数的值域为 [-1, 1],因此原函数的值域为 [-1, 3]。

2. 例题:求函数 y = sin(2x - π/3) + cos(2x - π/6) 的单调递增区间。

解析:利用辅助角公式将原函数化简为y = √3sin(2x - π/6),再利用正弦函数的性质,求得单调递增区间为[kπ - π/6, kπ + π/3],其中 k 是整数。

3. 例题:求函数 y = sin(x) + cos(x) 的最大值和最小值。

解析:利用辅助角公式将原函数化简为y = √2sin(x + π/4),正弦函数的最大值为 1,最小值为 -1,因此原函数的最大值为√2,最小值为 -√2。

4. 例题:已知sinθ + sin(θ + π/3) = 1,求cos(θ + π/6) 的值。

解析:利用辅助角公式和已知条件,将原问题转化为求sin(2θ + π/6) 的值,再利用三角恒等式化简求解。

5. 例题:已知sinαcosβ = 1/2,求cosαsinβ 的取值范围。

解析:利用辅助角公式将原问题转化为求sin(α + β) 的取值范围,再利用三角恒等式和已知条件求解。

6. 例题:求函数 y = sin(x) + cos(x) 在区间[0, π] 上的最大值和最小值。

解析:利用辅助角公式将原函数化简为y = √2sin(x + π/4),再利用正弦函数的性质求解。

7. 例题:已知sinαcosβ = 1/3,求(sinαcosβ)^2 + (cosαsinβ)^2 的值。

三角函数辅助角公式化简

三角函数辅助角公式化简

三角函数辅助角公式化简三角函数辅助角公式是解决三角函数运算中相关角的问题的重要工具。

通过辅助角公式的运用,可以将一些复杂的三角函数表达式化简为更简单的形式,使得计算更加便捷和高效。

本文将从基本的辅助角公式开始,逐步介绍其运用和推导过程,并通过具体的例子进行说明,以帮助理解和掌握辅助角公式的应用。

首先,我们来介绍一些基本的辅助角公式。

在三角函数中,我们常用的几个基本函数是正弦函数、余弦函数和正切函数。

下面是它们的辅助角公式:1.正弦函数的辅助角公式:sin(a + b) = sin(a)cos(b) + cos(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)2.余弦函数的辅助角公式:cos(a + b) = cos(a)cos(b) - sin(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)3.正切函数的辅助角公式:tan(a + b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b))tan(a - b) = (tan(a) - tan(b)) / (1 + tan(a)tan(b))这些辅助角公式是我们解决三角函数运算中的关键。

通过运用这些公式,我们可以将一个复杂的三角函数表达式化简为更简单的形式,从而更方便地进行计算。

接下来,我们将通过一些具体的例子来说明辅助角公式的应用。

例1:化简sin(105°)我们知道sin(105°)可以表示为sin(60° + 45°),然后根据正弦函数的辅助角公式sin(a + b) = sin(a)cos(b) + cos(a)sin(b),可以得到:sin(105°) = sin(60°)cos(45°) + cos(60°)sin(45°)=√3/2*√2/2+1/2*√2/2=(√6+√2)/4所以,sin(105°)化简为(√6 + √2) / 4例2:化简cos(165°)同样地,我们知道cos(165°)可以表示为cos(180° - 15°),然后根据余弦函数的辅助角公式cos(a - b) = cos(a)cos(b) +sin(a)sin(b),可以得到:cos(165°) = cos(180°)cos(15°) + sin(180°)sin(15°)=-1*√3/4+0*1/4=-√3/4所以,cos(165°)化简为-√3/4通过这些例子,我们可以看到,通过辅助角公式的运用,我们可以将复杂的三角函数表达式化简为更简单的形式,使得计算更加高效和便捷。

三角函数辅助角公式化简

三角函数辅助角公式化简

三角函数辅助角公式化简三角函数中的辅助角公式是将一个角的三角函数值用另一个角的三角函数值来表示的公式。

辅助角公式在解决三角函数的复杂计算和证明中起到重要的作用。

在本篇文章中,我们将讨论辅助角公式的化简,以便更方便地应用。

辅助角公式的化简方法有很多种,我们将介绍其中的一些常见的方法。

1.和差角公式:和差角公式是三角函数中最基本的公式之一、它可以将两个角的三角函数值的和或差表示为一个角的三角函数值的乘积。

```sin(A + B) = sinAcosB + cosAsinBsin(A - B) = sinAcosB - cosAsinBcos(A + B) = cosAcosB - sinAsinBcos(A - B) = cosAcosB + sinAsinB```通过和差角公式,我们可以将一个角的三角函数值表示成两个角的三角函数值的和或差,这在计算复杂的三角函数时非常有用。

2.倍角公式:倍角公式是将一个角的三角函数值用两倍角的三角函数值表示的公式。

```sin2A = 2sinAcosAcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A```倍角公式在证明和计算中经常使用,可以方便地将复杂的三角函数值表示为简单的角函数值。

3.半角公式:半角公式是将一个角的三角函数值表示为另一个角的三角函数值的公式。

```sin(A/2) = ±√[(1 - cosA)/2]cos(A/2) = ±√[(1 + cosA)/2]tan(A/2) = ±√[(1 - cosA)/(1 + cosA)]```半角公式在解决弧度的运算和计算中经常使用,能够将一个角的三角函数值表示为另一个角的三角函数值,便于计算。

4.和差积公式:和差积公式是将两个角的三角函数值的乘积表示为一个角的三角函数值的和或差。

```sinA + sinB = 2sin[(A + B)/2]cos[(A - B)/2]sinA - sinB = 2sin[(A - B)/2]cos[(A + B)/2]cosA + cosB = 2cos[(A + B)/2]cos[(A - B)/2]cosA - cosB = -2sin[(A + B)/2]sin[(A - B)/2]```和差积公式在处理角度和三角函数计算时非常有用,能够将复杂的三角函数值表示为简单的角函数值的乘积。

三角函数辅助角公式化简

三角函数辅助角公式化简

三角函数辅助角公式化简一、解答题1.已知函数()22sin cos 3f x x x π⎛⎫=-+ ⎪⎝⎭, x R ∈(1)求()f x 的对称中心;(2)讨论()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上的单调性.2.已知函数()4sin cos 3f x x x π⎛⎫=++ ⎪⎝⎭(1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期;(2)求()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值及取得最值时x 的值.3.已知函数()4tan sin cos 23f x x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间及最大值与最小值.4.设函数()2sin cos f x x x x =+.(1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间. 5.已知函数()πππcos 22sin sin 344f x x x x ⎛⎫⎛⎫⎛⎫=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122⎡⎤-⎢⎥⎣⎦上的值域. 6.已知函数()21cos cos 2f x x x x =--. (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[]0,π上的单调区间. 7.已知函数()4cos sin 16f x x x π⎛⎫=+- ⎪⎝⎭,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 8.设函数()()sin ?cos 2tan x x x f x x π⎛⎫+- ⎪⎝⎭=. (1)求()f x 的最小正周期;(2)讨论()f x 在区间0,2π⎛⎫ ⎪⎝⎭上的单调性.9.已知函数()223sin cos 2cos 1f x x x x =-+,(I )求()f x 的最大值和对称中心坐标;(Ⅱ)讨论()f x 在[]0,π上的单调性。

三角恒等变换之辅助角公式

三角恒等变换之辅助角公式

辅助角公式sin cos )a b θθθϕ+=+在三角函数中,有一种常见而重要的题型,即化sin cos a b θθ+为一个角的一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生记忆和掌握这种题型的解答方法,教师们总结出公式sin cos a b θθ+)θϕ+或sin cos a b θθ+cos()θϕ-,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式. 一.教学中常见的的推导方法 教学中常见的推导过程与方法如下 1.引例 例1α+cos α=2sin (α+6π)=2cos (α-3π). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出结论: 可见,α+cos α可以化为一个角的三角函数形式.一般地,asin θ+bcos θ 是否可以化为一个角的三角函数形式呢? 2.辅助角公式的推导例2 化sin cos a b θθ+为一个角的一个三角函数的形式.解: asin θ+bcos θsin θcos θ),①=cos ϕϕ,则asin θ+bcos θθcos ϕ+cos θsin ϕ)θ+ϕ),(其中tan ϕ=b a) ②=sin ϕ=cos ϕ,则asin θ+bcos θθsin ϕ+cos θcos ϕ(θ-ϕ),(其中tan ϕ=a b) 其中ϕ的大小可以由sin ϕ、cos ϕ的符号确定ϕ的象限,再由tan ϕ的值求出.或由tan ϕ=ba和(a,b)所在的象限来确定.推导之后,是配套的例题和大量的练习. 但是这种推导方法有两个问题:一是为什么要令=cos ϕϕ?让学生费解.二是这种 “规定”式的推导,学生难记易忘、易错! 二.让辅助角公式sin cos a b θθ+)θϕ+来得更自然能否让让辅助角公式来得更自然些?这是我多少年来一直思考的问题.2009年春.我又一次代2008级学生时,终于想出一种与三角函数的定义衔接又通俗易懂的教学推导方法.首先要说明,若a=0或b=0时,sin cos a b θθ+已经是一个角的一个三角函数的形式,无需化简.故有ab ≠0. 1.在平面直角坐标系中,以a 为横坐标,b 为纵坐标描一点P(a,b)如图1所示,则总有一个角ϕ,它的终边经过点P .设OP=r,r=由三角函数的定义知sin ϕ=b rcos ϕ=a r=.所以asin θ+bcos θϕ sin θϕcos θ)θϕ+.(其中tan ϕ=ba)2.若在平面直角坐标系中,以b 为横坐标,以a 为纵坐标可以描点P(b,a),如图2所示,则总有一个角ϕ的终边经过点P(b,a),设OP=r,则由三角函数的定义知sin ϕ=ar,cos ϕ=br.asin θ+bcos θsin cos ϕθϕθ+s()θϕ-. (其中tan ϕ=ab)例3cosθθ+为一个角的一个三角函数的形式.解:在坐标系中描点P(,1),设角ϕ的终边过点P,则OPϕ=12,cosϕ=2.∴cosθθ+=2cosϕsinθ+2sinϕcosθ=2sin(θϕ+).tanϕ=3.26kπϕπ=+,cosθθ+=2sin(6πθ+).经过多次的运用,同学们可以在教师的指导下,总结出辅助角公式asinθ+bcosθ=(sinθ+cosθ)=)θϕ+,(其中tanϕ=ba).或者asinθ+bcosθ=(sinθ+cosθ)=)θϕ-,(其中tanϕ=ab)我想这样的推导,学生理解起来会容易得多,而且也更容易理解asinθ+bcosθsinθcosθ)的道理,以及为什么只有两种形式的结果.例4 化sinαα-为一个角的一个三角函数的形式.解法一:点(1,-)在第四象限.OP=2.设角ϕ过P点.则sin2ϕ=-,1cos2ϕ=.满足条件的最小正角为53π,52,.3k k Z ϕππ=+∈1sin 2(sin cos )2(sin cos cos sin )22552sin()2sin(2)2sin().33k αααααϕαϕαϕαππαπ∴-=-=+=+=++=+解法二:点P(-,1)在第二象限,OP=2,设角ϕ过P 点.则1sin 2ϕ=,cos 2ϕ=-.满足条件的最小正角为56π,52,.6k k Z ϕππ=+∈1sin 2(sin cos )2(sin sin cos cos )22552cos()2cos(2)2cos().66k αααααϕαϕαϕαππαπ∴-=-=+=-=--=-三.关于辅助角的范围问题由sin cos )a b θθθϕ+=+中,点P(a,b)的位置可知,终边过点P(a,b)的角可能有四种情况(第一象限、第二象限、第三象限、第四象限).设满足条件的最小正角为1ϕ,则12k ϕϕπ=+.由诱导公式(一)知1sin cos ))a b θθθϕθϕ+=+=+.其中1(0,2)ϕπ∈,1tan baϕ=,1ϕ的具体位置由1sin ϕ与1cos ϕ决定,1ϕ的大小由1tan baϕ=决定.类似地,sin cos )a b θθθϕ+=-,ϕ的终边过点P(b,a),设满足条件的最小正角为2ϕ,则22.k ϕϕπ=+由诱导公式有2sin cos cos())a b θθθϕθϕ+=-=-,其中2(0,2)ϕπ∈,2tan abϕ=,2ϕ的位置由2sin ϕ和2cos ϕ确定,2ϕ的大小由2tan abϕ=确定. 注意:①一般地,12ϕϕ≠;②以后没有特别说明时,角1ϕ(或2ϕ)是所求的辅助角.四.关于辅助角公式的灵活应用引入辅助角公式的主要目的是化简三角函数式.在实际中结果是化为正弦还是化为余弦要具体问题具体分析,还有一个重要问题是,并不是每次都要化为1sin cos )a b θθθϕ+=+的形式或2sin cos )a b θθθϕ+=-的形式.可以利用两角和与差的正、余弦公式灵活处理.例5 化下列三角函数式为一个角的一个三角函数的形式.cos αα-;(2)sin()cos()6363ππαα-+-. 解:(1)1cos sin cos )222(sin coscos sin )2sin()666ααααπππααα-=-=-=-(2)sin()cos()63631[sin()cos()]32323[sin()cos cos()sin ]333332sin()33ππααππααππππααπα-+-=-+-=-+-=-在本例第(1)小题中,a =1b =-1),而取的是点P1).也就是说,当a 、b 中至少有一个是负值时.我们可以取P(a ,b ),或者P(b ,a ).这样确定的角1ϕ(或2ϕ)是锐角,就更加方便.例6 已知向量(cos(),1)3ax π=+,1(cos(),)32b x π=+-,(sin(),0)3c x π=+,求函数()h x =2a b b c ⋅-⋅+的最大值及相应的x的值.解:21()cos ()sin()cos()23233h x x x x πππ=+--+++=21cos(2)1233sin(2)2232x x ππ++-++=1212cos(2)sin(2)22323x x ππ+-++=22[cos(2)sin(2)]222323x x ππ+-++=11cos(2)2212x π++max()22h x ∴=+这时111122,.1224x k x k k Z ππππ+==-∈.此处,若转化为两角和与差的正弦公式不仅麻繁,而且易错,请读者一试. 五.与辅助角有关的应用题与辅助角有关的应用题在实际中也比较常见,而且涉及辅角的范围,在相应范围内求三角函数的最值往往是个难点.例7 如图3,记扇OAB 的中心角为45︒,半径为1,矩形PQMN 内接于这个扇形,求矩形的对角线l 的最小值.解:连结OM,设∠AOM=θ.则MQ=sin θ,OQ=cos θ,OP=PN=sin θ.PQ=OQ-OP=cos sin θθ-.222l MQ PQ =+=22sin (cos sin )θθθ+-=31(sin 2cos 2)22θθ-+=13sin(2)22θϕ-+,其中11tan 2ϕ=,1(0,)2πϕ∈,11arctan 2ϕ=. 04πθ<<,111arctan2arctan .222πθϕ∴<+<+2min322l∴=-,min 12l -=. θNBMAQPO图3所以当11arctan 422πθ=-时, 矩形的对角线l的最小值为12-.。

辅助角公式

辅助角公式

辅助角公式Revised on November 25, 2020推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。

又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。

例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。

疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。

而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。

提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。

出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。

生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。

[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。

[1]在19世纪把西方近代知识翻译为中文的传播工作中﹐李善兰作出了重大贡献。

辅助角公式

辅助角公式

辅助角公式集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。

又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。

例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦的系数b 在分母)。

疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)?其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。

而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。

提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。

出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。

生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。

[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。

三角函数辅助角公式化简

三角函数辅助角公式化简

(2)若

,求
的值。
标准文案
19.已知 f x 2cosx sin x 6
3sinx cosx sin 2x ,
(1)求函数 y f x 的单调递增区间;
(2)设 △ABC的内角 A 满足 f A 2 ,而 AB AC 3 ,求边 BC的最小值.
20.已知函数 f x
cos x 2
3cosx cosx
( 2)函数 得到函数
的图象向右平移 个单位后, 再将得到的图象上各点的横坐标伸长到原来的 的图象,求 的单调递减区间 .
4 倍,纵坐标不变,
23.已知函数 f x cos4 x sin2x sin4 x . ( 1)求函数 f x 的递减区间; ( 2)当 x 0, 时,求函数 f x 的最小值以及取最小值时 x 的值 .
f (x)= a ?b 且 f ( -x)=f ( x). 3
(Ⅰ)求 f (x)的解析式及单调递增区间;
(Ⅱ)将 f( x)的图象向右平移 单位得 g(x)的图象, 若 g(x)+1≤ ax+cosx 在 x∈[0 , ]
3
4
上恒成立,求实数 a 的取值范围.
18. 已知函数
(1)求函数
在 上的单调递增区间;
2
24.已知函数 f x 2 3sinxcosx 2sin2x 1.
( 1)求函数 f x 的对称中心和单调递减区间;
( 2)若将函数 f x 图象上每一点的横坐标都缩短到原来的
1(纵坐标不变) ,然后把所得图象向左平移

2
6
单位长度,得到函数 g x 的图象,求函数 g x 的表达式 .
标准文案
实用文档
17.已知函数 f x Asin x ( 1) 求函数 f x 的解析式;

三角函数辅助角公式化简

三角函数辅助角公式化简

三角函数辅助角公式化简三角函数辅助角公式是三角函数中的基本公式之一,它可以帮助我们化简和简化复杂的三角函数表达式。

在三角函数辅助角公式中,我们可以利用角度和距离的关系来简化三角函数的计算。

辅助角公式包括正弦函数的辅助角公式,余弦函数的辅助角公式以及正切函数的辅助角公式。

下面分别对这三个公式进行详细讲解。

1.正弦函数的辅助角公式正弦函数的辅助角公式是sin(a+b) = sin a cos b + cos a sin b。

该公式可以用来化简正弦函数的和角。

要使用这个公式,我们需要确定两个角度a和b,并且知道这两个角度的正弦和余弦值。

首先,我们可以使用sin(a) = cos(90°-a)和cos(a) = sin(90°-a)的关系,来得到a或90°-a的正弦和余弦值。

之后,我们可以使用sin(a+b) = sin a cos b+ cos a sin b来合并这两个角度的正弦和余弦值。

最终,我们可以得到sin(a+b)的值,从而简化和角的计算。

2.余弦函数的辅助角公式余弦函数的辅助角公式是cos(a+b) = cos a cos b - sin a sin b。

该公式可以用来化简余弦函数的和角。

与正弦函数的辅助角公式类似,我们需要确定两个角度a和b,并且知道这两个角度的正弦和余弦值。

首先,我们可以使用cos(a) = sin(90°-a)和sin(a) = cos(90°-a)的关系,来得到a或90°-a的正弦和余弦值。

之后,我们可以使用cos(a+b) =cos a cos b - sin a sin b来合并这两个角度的正弦和余弦值。

最终,我们可以得到cos(a+b)的值,从而简化和角的计算。

3.正切函数的辅助角公式正切函数的辅助角公式是tan(a+b) = (tan a + tan b) / (1 - tan a tan b)。

该公式可以用来化简正切函数的和角。

《辅助角公式》 讲义

《辅助角公式》 讲义

《辅助角公式》讲义一、引入在三角函数的学习中,我们常常会遇到形如\(a\sin x +b\cos x\)这样的式子。

为了更方便地对其进行分析和处理,我们引入了一个非常重要的公式——辅助角公式。

二、什么是辅助角公式辅助角公式的一般形式为:\(a\sin x + b\cos x =\sqrt{a^2 +b^2} \sin(x +\varphi)\),其中\(\varphi\)满足\(\tan\varphi=\frac{b}{a}\)。

这个公式的作用在于将两个不同的三角函数\(\sin x\)和\(\cos x\)合并成一个单一的三角函数\(\sin(x +\varphi)\),从而简化计算和分析。

三、辅助角公式的推导为了推导辅助角公式,我们可以利用三角函数的和角公式:\(\sin(\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta\)令\(a\sin x + b\cos x = R\sin(x +\varphi)\)则\(R\sin(x +\varphi) = R(\sin x\cos\varphi +\cosx\sin\varphi) = R\cos\varphi\sin x + R\sin\varphi\cos x\)所以\(R\cos\varphi = a\),\(R\sin\varphi = b\)两边平方相加可得:\(R^2(\cos^2\varphi +\sin^2\varphi) =a^2 + b^2\)因为\(\cos^2\varphi +\sin^2\varphi = 1\),所以\(R =\sqrt{a^2 + b^2}\)则\(\tan\varphi =\frac{\sin\varphi}{\cos\varphi} =\frac{b}{a}\)这样就得到了辅助角公式:\(a\sin x + b\cos x =\sqrt{a^2 +b^2} \sin(x +\varphi)\),其中\(\varphi\)满足\(\tan\varphi=\frac{b}{a}\)四、辅助角公式的应用(一)化简三角函数表达式例 1:化简\(\sqrt{3}\sin x +\cos x\)首先,\(R =\sqrt{(\sqrt{3})^2 + 1^2} = 2\)\(\tan\varphi =\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\),所以\(\varphi =\frac{\pi}{6}\)则\(\sqrt{3}\sin x +\cos x = 2\sin(x +\frac{\pi}{6})\)例 2:化简\(5\sin x 12\cos x\)\(R =\sqrt{5^2 +(-12)^2} = 13\)arctan\frac{12}{5}\)则\(5\sin x 12\cos x = 13\sin(x \arctan\frac{12}{5})\)(二)求三角函数的最值例 3:求函数\(y = 2\sin x + 2\sqrt{3}\cos x\)的最大值和最小值先将其化为辅助角公式的形式:\(R =\sqrt{2^2 +(2\sqrt{3})^2} = 4\)\(\tan\varphi =\sqrt{3}\),所以\(\varphi =\frac{\pi}{3}\)则\(y = 4\sin(x +\frac{\pi}{3})\)因为\(\sin(x +\frac{\pi}{3})\)的最大值为\(1\),最小值为\(-1\)所以\(y\)的最大值为\(4\),最小值为\(-4\)(三)求解三角函数方程例 4:求解方程\(3\sin x + 4\cos x = 2\)将左边化为辅助角公式:\(R =\sqrt{3^2 + 4^2} = 5\)arctan\frac{4}{3}\)则\(3\sin x + 4\cos x = 5\sin(x +\arctan\frac{4}{3})\)原方程变为\(5\sin(x +\arctan\frac{4}{3})= 2\)\(\sin(x +\arctan\frac{4}{3})=\frac{2}{5}\)则\(x +\arctan\frac{4}{3} = k\pi +(-1)^k\arcsin\frac{2}{5}\),\(k\in Z\)\(x = k\pi +(-1)^k\arcsin\frac{2}{5} \arctan\frac{4}{3}\),\(k\in Z\)五、使用辅助角公式的注意事项(一)正确确定辅助角\(\varphi\)要根据\(\tan\varphi =\frac{b}{a}\)来确定\(\varphi\)的值,同时要注意\(\varphi\)所在的象限。

三角函数辅助角公式 推导过程是什么

三角函数辅助角公式 推导过程是什么

三角函数辅助角公式推导过程是什么辅助角公式是一种高等三角函数公式,下面小编整理了三角函数辅助角公式公式及推导过程,供大家参考!1 三角函数辅助角公式是什幺辅助角公式是一种高等三角函数公式,使用代数式表达为asinx+bcosx=√(a²+b²)sin[x+\arctan(b/a)](a>0)。

虽然该公式已经被写入中学课本,但其几何意义却鲜为人知。

设要证明的公式为asinA+bcosA=√(a +b )sin(A+M) (tanM=b/a)以下是证明过程:设asinA+bcosA=xsin(A+M)∴asinA+bcosA=x((a/x)sinA+(b/x)cosA)由题,(a/x) +(b/x) =1,sinM=a/x,cosM=b/x∴x=√(a +b )∴asinA+bcosA=√(a +b )sin(A+M) ,tanM=sinM/cosM=b/a1 三角函数辅助角公式推导过程三角函数辅助角公式推导:asinx+bcosx=√(a²+b²)[asinx/√(a²+b²)+bcosx/√(a²+b²)]令a/√(a²+b²)=cosφ,b/√(a²+b²)=sinφasinx+bcosx=√(a²+b²)(sinxcosφ+cosxsinφ)=√(a²+b²)sin(x+φ)其中,tanφ=sinφ/cosφ=b/a,φ的终边所在象限与点(a,b)所在象限相同. 简单例题:(1)化简5sina-12cosa5sina-12cosa=13(5/13sina-12/13cosa)。

三角函数辅助角公式化简

三角函数辅助角公式化简

三角函数辅助角公式化简三角函数辅助角公式化简一、解答题1.已知函数()22sin cos 3f x x x π⎛⎫=-+ ⎪⎝⎭, x R ∈ (1)求()f x 的对称中心; (2)讨论()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上的单调性、 2.已知函数()4sin cos 33f x x x π⎛⎫=++ ⎪⎝⎭、 (1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期; (2)求()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值及取得最值时x 的值、 3.已知函数()4tan sin cos 323f x x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期; (2)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间及最大值与最小值. 4.设函数()233cos sin cos 2f x x x x =+-、 (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间、 5.已知函数()πππcos 22sin sin 344f x x x x ⎛⎫⎛⎫⎛⎫=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (Ⅰ)求函数()f x 的最小正周期与图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122⎡⎤-⎢⎥⎣⎦上的值域、 6.已知函数()213sin cos cos 2f x x x x =--、 (Ⅰ)求函数()f x 的对称中心;(Ⅱ)求()f x 在[]0,π上的单调区间、 7.已知函数()4cos sin 16f x x x π⎛⎫=+- ⎪⎝⎭,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值、 8.设函数()()sin 3cos ?cos 2tan x x x f x xπ⎛⎫+- ⎪⎝⎭=、(1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π⎛⎫⎪⎝⎭上的单调性、 9.已知函数()223sin cos 2cos 1f x x x x =-+, (I)求()f x 的最大值与对称中心坐标; (Ⅱ)讨论()f x 在[]0,π上的单调性。

三角函数辅助角公式化简57567

三角函数辅助角公式化简57567
得: 、
∴函数 的单调增区间为 , 、
(2)∵ ,即 、
∴ 、
可得 , 、
∵ ,
∴ 、
由 ,且 的面积为 ,即 、
∴ 、
由余弦定理可得: 、
∴ 、
13.(1) , (2)a最小值为1、
【解析】试题分析:(1)利用二倍角公式与两角与差公式将原式子化一;(2)由 得
到 , ;由余弦定理得 最小为1;
(1)
14.已知 ,其中 ,若 的最小正周期为 、
(1)求函数 的单调递增区间;
(2)锐角三角形 中, ,求 的取值范围、
15.已知 =(sinx,cosx), =(cosφ,sinφ)(|φ|< ).函数
f(x)= • 且f( -x)=f(x).
(Ⅰ)求f(x)的解析式及单调递增区间;
(Ⅱ)将f(x)的图象向右平移 单位得g(x)的图象,若g(x)+1≤ax+cosx在x∈[0, ]上恒成立,求实数a的取值范围.
∴ +φ= +kπ,k∈Z,又|φ|< ,∴φ=
∴f(x)=sin(x+ ),
由2kπ- ≤x+ ≤2kπ+ 可得2kπ- ≤x≤ 2kπ+ ,
∴函数的递增区间为[2kπ- ,2kπ+ ],k∈Z;
(Ⅱ)由图象平移易知g(x)=sinx,即sinx+1≤ax+cosx在x∈[0, ]上恒成立.
也即sinx-cosx≤ax-1在x∈[0, ]上恒成立、
【解析】试题分析:
(1)整理函数的解析式可得 ,则函数的最小正周期为 ;对称轴方程为 ;
(2)结合函数的定义域与(1)中整理的函数的解析式可得函数的值域为 、
试题解析:

简单的三角恒等变换-人教版高中数学

简单的三角恒等变换-人教版高中数学

知识图谱-三角恒等变换的应用三角恒等变换公式三角函数式的化简和求解第02讲_简单的三角恒等变换错题回顾三角恒等变换的应用知识精讲一.三角函数式的化简辅助角公式:,二.用三角函数解决问题设函数1.求最小正周期2.求单调性(方法:脱衣服)单调递增区间的求法,设,解得的范围即为的单调递增区间;单调递减区间的求法,设,解得的范围即为的单调递减区间.3. 求对称轴(方法:脱衣服)设,解得的的范围即为的对称轴.4. 求值域(方法:穿衣服)已知的取值范围,求得的范围,根据三角函数图像求出的范围,进而求得的范围,即为的值域.三点剖析一.注意事项:1. 运用辅助角公式求解的时候,一定要注意取值范围,2. 关于求值域和求单调性,一个是穿衣服,一个是脱衣服,不要记反了.二.必备公式题模精讲题模一三角恒等变换公式例1.1、函数f(x)=sin(x+φ)-2sinφcosx的最大值为____.例1.2、函数y=sin2x+2sin 2x 最小正周期T为____.例 1.3、函数f (x )=sin (sin -cos )的最小正周期为____.题模二 三角函数式的化简和求解例2.1、sin15°+cos15°的值为( )A 、B 、C 、D 、例2.2、若函数为偶函数,则( )A 、 f (x )的最小正周期为π,且在上为增函数B 、 f (x )的最小正周期为,且在上为增函数C 、 f (x )的最小正周期为,且在上为减函数D 、 f (x )的最小正周期为π,且在上为减函数例2.3、已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.随堂练习随练1.1、函数f(x)=sin(x+2φ)-2sinφcos(x+φ)的最大值为____.随练1.2、函数f(x)=sinax+cosax(a>0)的最小正周期为π,最大值为b,则log a b=____.随练1.3、函数y=sin(x+15°)+cos(x+60°)的最大值____.随练1.4、设函数f(x)=sin(ωx+φ)-cos(ωx+φ)(ω>0,|φ|<)的最小正周期为π,且f(-x)=f(x),则()A、f(x)在(0,)单调递减B、f(x)在()单调递减C、f(x)在(0,)单调递增D、f(x)在()单调递增随练1.5、关于函数f(x)=2sin2x+2cos2x,下面结论正确的是()A 、在区间单调递减B 、在区间单调递增C 、在区间单调递减D 、在区间单调递增随练1.6、已知函数f (x )=4cosxsin (x+)-1.(1)求f (x )的最小正周期;(2)求f (x )在区间[-,]上的最大值和最小值.自我总结 课后作业作业1、化简:cos(+α)+sin(+α)=____.作业2、设函数f (x )=sin (2x+φ)+cos (2x+φ)(|φ|<),且其图像关于直线x=0对称,则( )A 、y=f (x )的最小正周期为π,且在(0,)上为增函数B 、y=f (x )的最小正周期为,且在(0,)上为增函数C 、y=f (x )的最小正周期为π,且在(0,)上为减函数D 、y=f (x )的最小正周期为,且在(0,)上为减函数作业3、函数y=的单调递增区间是 .作业4、若f (x )=sin (ωx+φ)+cos (ωx+φ)(ω>0)的最小正周期为π,f (0)=,则( )A 、f (x )在单调递增B 、f (x )在单调递减C 、f (x )在单调递增D 、f (x )在单调递减作业5、已知函数f(x)=cos 2-sin cos -.(Ⅰ)求函数f (x )的最小正周期和值域;(Ⅱ)若f(α)=,求sin2α的值.作业6、已知函数f (x )=-sin 2x+sinxcosx .(Ⅰ)求f()的值;(Ⅱ)设α∈(0,π),f()=-,求sinα的值.作业7、已知函数f(x)=2cos2ωx+2sinωxcosωx+1(x∈R,ω>0)的最小值正周期是.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.作业8、设函数f(x)=cos(2x+)+sin2x(Ⅰ)求f(x)的最小正周期;(Ⅱ)设函数g(x)对任意x∈R,有g(x+)=g(x),且当x∈[0,]时,g(x)=-f(x),求g(x)在区间[-π,0]上的解析式.作业9、已知=(5cosx,cosx),=(sinx,2cosx),设函数f(x)=•+||2+.(Ⅰ)当x∈[,],求函数f(x)的值域;(Ⅱ)当x∈[,]时,若f(x)=8,求函数f(x-)的值.。

辅助角公式

辅助角公式

推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ〈π/2)终边上得点,则,因此就就是所求辅助角公式。

又因为,且-π/2〈φ<π/2,所以,于就是上述公式还可以写成该公式也可以用余弦来表示(针对b>0得情况),设点(b,a)为某一角θ(-π/2〈θ<π/2)终边上得点,则,因此同理,,上式化成若正弦与余弦得系数都就是负数,不妨写成f(x)=—asinx-bcosx,则再根据诱导公式得记忆很多人在利用辅助角公式时,经常忘记反正切到底就是b/a还就是a/b,导致做题出错、其实有一个很方便得记忆技巧,就就是不管用正弦还就是余弦来表示asinx+bcosx,分母得位置永远就是您用来表示函数名称得系数、例如用正弦来表示asinx+bcosx,则反正切就就是b/a(即正弦得系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦得系数b在分母)。

疑问为什么在推导辅助角公式得时候要令辅助角得取值范围为(-π/2,π/2)?其实就是在分类讨论a>0或b>0得时候,已经把辅助角得终边限定在一、四象限内了,此时辅助角得范围就是(2kπ—π/2,2kπ+π/2)(k就是整数)。

而根据三角函数得周期性可知加上2kπ后函数值不变,况且在(—π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了、提出者李善兰,原名李心兰,字竟芳,号秋纫,别号壬叔。

出身于读书世家,其先祖可上溯至南宋末年京都汴梁(今河南开封)人李伯翼。

生于1811年 1月22日,逝世于1882年12月9日,浙江海宁人,就是中国近代著名得数学家、天文学家、力学家与植物学家,创立了二次平方根得幂级数展开式、[1] (就就是现在得自然数幂求与公式)她研究各种三角函数,反三角函数与对数函数得幂级数展开式,这就是李善兰也就是19世纪中国数学界最重大得成就、[1]在19世纪把西方近代物理学知识翻译为中文得传播工作中﹐李善兰作出了重大贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用文档7.已知函数()4cos sin 16f x x x π⎛⎫=+- ⎪⎝⎭,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.8.设函数()()sin 3cos ?cos 2tan x x x f x xπ⎛⎫+- ⎪⎝⎭=.(1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π⎛⎫⎪⎝⎭上的单调性.9.已知函数()223sin cos 2cos 1f x x x x =-+,(I )求()f x 的最大值和对称中心坐标;(Ⅱ)讨论()f x 在[]0,π上的单调性。

10.已知函数.(1)求的最小正周期;(2)若关于 的方程在上有两个不同的实根,求实数 的取值范围.11.设()2sin cos cos 4f x x x x π⎛⎫=-+⎪⎝⎭. (1)求()f x 的单调递增区间;(2)锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若02A f ⎛⎫= ⎪⎝⎭, 1a =, 3bc =,求b c +的值.12.已知函数.(1)求函数的单调增区间;实用文档(2)的内角,,所对的边分别是,,,若,,且的面积为,求的值.13.设函数.(1)求的最大值,并写出使取最大值时的集合;(2)已知中,角的边分别为,若,求的最小值.14.已知()()13sin cos cos 2f x x x x ωωω=+-,其中0ω>,若()f x 的最小正周期为4π.(1)求函数()f x 的单调递增区间;(2)锐角三角形ABC 中, ()2cos cos a c B b C -=,求()f A 的取值范围.15.已知a r=(sinx ,cosx ),b r =(cos φ,sin φ)(|φ|<).函数f (x )=a r •b r 且f (3π-x )=f (x ).(Ⅰ)求f (x )的解析式及单调递增区间;(Ⅱ)将f (x )的图象向右平移3π单位得g (x )的图象,若g (x )+1≤ax +cosx 在x ∈[0, 4π]上恒成立,求实数a 的取值范围.16.已知向量a v =(2cos 2x ω, 3sin 2x ω),b v =(cos 2x ω,2cos 2x ω),(ω>0),设函数f (x )=a v •b v,且f (x )的最小正周期为π.(1)求函数f (x )的表达式; (2)求f (x )的单调递增区间.17.已知函数()()sin (0,0,)2f x A x A πωϕωϕ=+>><的部分图象如图所示.(1) 求函数()f x 的解析式;(2) 如何由函数2sin y x =的通过适当图象的变换得到函数()f x 的图象, 写出变换过程; (3) 若142f α⎛⎫= ⎪⎝⎭,求sin 6πα⎛⎫- ⎪⎝⎭的值.18.已知函数(1)求函数在上的单调递增区间; (2)若且,求的值。

19.已知()22cos sin 3sin cos sin 6f x x x x x x π⎛⎫=⋅++⋅- ⎪⎝⎭, (1)求函数()y f x =的单调递增区间;(2)设△ABC 的内角A 满足()2f A =,而3AB AC ⋅=u u u v u u u v,求边BC 的最小值.20.已知函数()cos 3cos cos 2f x x x x π⎡⎤⎛⎫=--⎪⎢⎥⎝⎭⎣⎦(1)求()f x 的最小正周期和最大值; (2)讨论()f x 在3,44ππ⎡⎤⎢⎥⎣⎦上的单调性.21.已知()223cos sin231f x x x =+-+ ()x R ∈,求:(1)()f x 的单调增区间; (2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域.22.已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.(1)求的值;(2)函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.23.已知函数()44cos sin2sin f x x x x =--.(1)求函数()f x 的递减区间; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最小值以及取最小值时x 的值.24.已知函数()223sin cos 2sin 1f x x x x =+-.(1)求函数()f x 的对称中心和单调递减区间;(2)若将函数()f x 图象上每一点的横坐标都缩短到原来的12(纵坐标不变),然后把所得图象向左平移6π个单位长度,得到函数()g x 的图象,求函数()g x 的表达式.参考答案1.(1)对称中心为,0212k ππ⎛⎫+⎪⎝⎭,k Z ∈;(2)增区间为,64ππ⎡⎤-⎢⎥⎣⎦,减区间为,36ππ⎡⎤--⎢⎥⎣⎦. 【解析】试题分析:利用降幂公式和辅助角公式将已知函数解析式转化为正弦型函数,根据正弦函数的性质来求对称中心,其对称中心能使函数值为0,从而角的终边在x 轴上;(2)首先求出函数的单调区间,再根据自变量的取值范围来求落在给定范围上的的单调区间. 试题解析:1)由已知()21cos 21cos2113cos2sin 222426x x f x x x x ππ⎛⎫++ ⎪-⎛⎫⎝⎭=-=-=- ⎪⎝⎭令26x k ππ-=,得,212k x k Z ππ=+∈,对称中心为,0212k ππ⎛⎫+ ⎪⎝⎭, k Z ∈. (2)令222262k x k πππππ-≤-≤+, k Z ∈得63k x k ππππ-≤≤+, k Z ∈,增区间为,,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦令3222262k x k πππππ+≤-≤+, k Z ∈ 得536k x k ππππ+≤≤+, k Z ∈,增区间为5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ ,34ππ⎡⎤-⎢⎥⎣⎦上的增区间为,64ππ⎡⎤-⎢⎥⎣⎦,减区间为,36ππ⎡⎤--⎢⎥⎣⎦. 2.(1)()f x 2sin 23x π⎛⎫=+⎪⎝⎭, T π=;(2)4x π=-时, ()min 1f x =-, 12x π=时,()max 2f x =.【解析】试题分析:(1)由三角函数的公式化简可得()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,由周期公式可得答案;(2)由x 的范围可得22633x πππ-≤+≤的范围,可得f (x )的范围,结合三角函数在该区间的单调性,可得最值及对应的x 值. 试题解析:(1)()24sin cos cossin sin2sin cos 33f x x x x x x x ππ⎛⎫=-+=- ⎪⎝⎭sin22sin 23x x x π⎛⎫=+=+ ⎪⎝⎭所以22T ππ==. (2)因为46x ππ-≤≤,所以22633x πππ-≤+≤所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭,所以()12f x -≤≤, 当236x ππ+=-,即4x π=-时, ()min 1f x =-,当232x ππ+=,即12x π=时, ()min 2f x =.3.(1) π (2) ()f x 最大值为-2,最小值为1.【解析】试题分析:(1)化简函数的解析式得()2sin 23f x x π⎛⎫=-⎪⎝⎭,根据22T ππ==求周期;(2)先求出函数()f x 的单调递增区间,再求其与区间,44ππ⎡⎤-⎢⎥⎣⎦的交集即可;根据23x π-的取值范围确定函数在,44ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值。

试题解析:(1)()4tan cos cos 3f x x x x π⎛⎫=-⎪⎝⎭4sin cos 3x x π⎛⎫=- ⎪⎝⎭14sin cos 2x x x ⎛⎫= ⎪ ⎪⎝⎭22sin cos x x x =+ )sin21cos2x x =-sin22sin 23x x x π⎛⎫==- ⎪⎝⎭.所以()f x 的最小正周期22T ππ==. (2)令23z x π=-,函数2sin y z =的单调递增区间是2,222k k ππππ⎡⎤-++⎢⎥⎣⎦, k Z ∈. 由222232k x k πππππ-+≤-≤+,得51212k x k ππππ-+≤≤+, k Z ∈. 设,44A ππ⎡⎤=-⎢⎥⎣⎦, 5{|,}1212B x k x k k Z ππππ=-+≤≤+∈,易知,124A B ππ⎡⎤⋂=-⎢⎥⎣⎦.所以,当,44x ππ⎡⎤∈-⎢⎥⎣⎦时, ()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增。

∵44x ππ-≤≤,∴52636x πππ-≤-≤, ∴1sin 2123x π⎛⎫-≤-≤ ⎪⎝⎭, ∴12sin 223x π⎛⎫-≤-≤ ⎪⎝⎭∴()f x 最大值为2,最小值为-1.点睛:解题的关键是将函数化成f (x )=A sin(ωx +φ)的形式后,把ωx +φ看成一个整体去处理,特别是在求单调区间的时候,要注意复合函数单调性规律“同增异减”, 如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. 4.(1)T π=,最大值为1(2)()5,Z 1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦【解析】试题分析:(1)先根据二倍角公式以及辅助角公式将函数化为基本三角函数形式,再根据正弦函数性质求最小正周期T 及最大值;(2)根据正弦函数性质列不等式()222Z 232k x k k πππππ-+≤+≤+∈,解得函数()f x 的单调递增区间.试题解析:解:())1cos21sin222x f x x +=+1sin2sin 2223x x x π⎛⎫=+=+ ⎪⎝⎭ (1)T π= 当2232x k πππ+=+即()Z 12x k k ππ=+∈时()f x 取最大值为1(2)令()222Z 232k x k k πππππ-+≤+≤+∈∴()f x 的单调增区间为()5,Z 1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦5.(1)答案见解析;(2) ,12⎡⎤-⎢⎥⎣⎦. 【解析】试题分析:(1)整理函数的解析式可得()26f x sin x π⎛⎫=- ⎪⎝⎭,则函数的最小正周期为T π=;对称轴方程为()3x k k Z ππ=+∈;(2)结合函数的定义域和(1)中整理的函数的解析式可得函数的值域为⎡⎤⎢⎥⎣⎦.试题解析:(1)()22344f x cos x sin x sin x πππ⎛⎫⎛⎫⎛⎫=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q()()1222cos x x sinx cosx sinx cosx =++-+221222cos x x sin x cos x =++-122222cos x sin x cos x =+- 26sin x π⎛⎫=- ⎪⎝⎭ 22T ππ∴==周期 由()()2,6223k x k k Z x k Z πππππ-=+∈=+∈得 ∴函数图象的对称轴方程为 ()3x k k Z ππ=+∈(2)5,,2,122636x x πππππ⎡⎤⎡⎤∈-∴-∈-⎢⎥⎢⎥⎣⎦⎣⎦Q因为()26f x sin x π⎛⎫=- ⎪⎝⎭在区间,123ππ⎡⎤-⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以 当3x π=时, ()f x 取最大值 1又 11222f f ππ⎛⎫⎛⎫-=<= ⎪ ⎪⎝⎭⎝⎭Q ,当12x π=-时, ()f x 取最小值-所以 函数 ()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的值域为,12⎡⎤-⎢⎥⎣⎦6.(1) ,1,212k k Z ππ⎛⎫+-∈⎪⎝⎭(2) 50,,36πππ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦【解析】试题分析:(1) ()21cos cos sin 2126f x x x x x π⎛⎫=--=-- ⎪⎝⎭,令26x k ππ-=解得x 即可(Ⅱ) 求()f x 在[]0,π上的单调区间,则令222262k x k πππππ-≤-≤+解得x,对k 赋值得结果.试题解析:(Ⅰ) ()1cos21sin 21226x f x x x π+⎛⎫=--=-- ⎪⎝⎭ 令26x k ππ-=,得212k x ππ=+, 故所求对称中心为,1,212k k Z ππ⎛⎫+-∈ ⎪⎝⎭(Ⅱ)令222262k x k πππππ-≤-≤+,解得,63k x k k Z ππππ-≤≤+∈又由于[]0,x π∈,所以50,,36x πππ⎡⎤⎡⎤∈⋃⎢⎥⎢⎥⎣⎦⎣⎦故所求单调区间为50,,36πππ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦. 点睛:三角函数的大题关键是对f(x)的化简,主要是三角恒等变换的考查,化简成()sin y A wx ϕ=+ 类型,把wx+ ϕ 看成整体进行分析.7.(1)T π=;(2)单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(3)()min 1f x =-, ()2miax f x =.【解析】试题分析:(1)由和差角公式及二倍角公式化简得: ()2sin 26f x x π⎛⎫+ ⎪⎝⎭,进而得最小正周期; (2)由2k 22,62x k k Z ππππ≤+≤+∈可得增区间;(3)由64x ππ-≤≤得22663x πππ∴-≤+≤,根据正弦函数的图象可得最值. 试题解析: (1)()214cos sin 14cos cos 1cos 2cos 162f x x x x x x x x x π⎫⎛⎫=+-=+-=+-⎪ ⎪⎪⎝⎭⎝⎭Qcos2x x =+ 2sin 26x π⎛⎫=+ ⎪⎝⎭.()f x ∴的最小正周期T π=.(2)由2k 22,62x k k Z ππππ≤+≤+∈解得k ,36x k k Z ππππ-≤≤+∈∴函数()f x 的单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(3) 64x ππ-≤≤Q232x ππ∴-≤≤22663x πππ∴-≤+≤∴当266x ππ+=-时, x 6π=-, ()min 1f x =-当262x ππ+=时, x 6π=, ()2miax f x =.点睛:三角函数式的化简要遵循“三看”原则 (1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”; (3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.8.(1)T π=(2)()f x 在区间0,12π⎛⎫ ⎪⎝⎭上单调递增,在区间,122ππ⎛⎫⎪⎝⎭上单调递减. 【解析】试题分析:(1)先根据诱导公式、二倍角公式以及辅助角公式将函数化为基本三角函数,再根据正弦函数性质得()f x 的最小正周期;(2)根据正弦函数性质求0,)2π上单调区间,即得()f x 在区间0,2π⎛⎫⎪⎝⎭上的单调性.试题解析:(1)()()2sin 3cos ?cos sin cos 3cos f x x x x x x x =+=+11cos232sin23sin 22232x x x T πππ+⎛⎫=+=++⇒== ⎪⎝⎭ (2)令222232k x k πππππ-+<+<+,解得51212k x k ππππ-+<<+(k Z ∈) ∵0,2x π⎛⎫∈ ⎪⎝⎭,∴ ()f x 在区间0,12π⎛⎫ ⎪⎝⎭上单调递增,在区间,122ππ⎛⎫⎪⎝⎭上单调递减.9.(Ⅰ) 最大值为2,对称中心为: (),0212k k Z ππ⎛⎫+∈⎪⎝⎭;(Ⅱ) 递增区间: 0,3π⎡⎤⎢⎥⎣⎦和5,6ππ⎡⎤⎢⎥⎣⎦;递减区间: 5,36ππ⎡⎤⎢⎥⎣⎦. 【解析】试题分析:(1)由正弦的倍角公式和降幂公式,f(x)可化简为()2sin 26f x x π⎛⎫=- ⎪⎝⎭,可知最大值为2,对称中心由26x k ππ-=,解得x 可求。

相关文档
最新文档