高中数学经典例题 错题详解

合集下载

唐山市高考数学易错解答题含解析

唐山市高考数学易错解答题含解析

唐山市高考数学易错解答题解答题含答案有解析1.已知函数()sin y A ωx φ=+0,0,02A πωϕ⎛⎫>><<⎪⎝⎭的图象如图所示.(1)求这个函数的解析式,并指出它的振幅和初相; (2)求函数在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值,并指出取得最值时的x 的值. 2.已知ABC ∆的顶点()5,1A ,AB 边上的中线CM 所在直线方程为250x y --=,B 的平分线BN 所在直线方程为250x y --=,求: (Ⅰ)顶点B 的坐标; (Ⅱ)直线BC 的方程3.已知向量()()4,3,1,2a b ==-. (1)求a 与b 的夹角θ的余弦值;(2)若向量a b λ-与2a b +垂直,求λ的值.4.在ABC ∆中,已知内角,,A B C 所对的边分别为,,a b c ,已知1a =,45B =,ABC ∆的面积2S =. (1)求边c 的长;(2)求ABC ∆的外接圆的半径R . 5.已知函数()3cos 22f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的最小正周期; (2)求函数()f x 的单调区间.6.据某市供电公司数据,2019年1月份市新能源汽车充电量约270万度,同比2018年增长220%,为了增强新能源汽车的推广运用,政府加大了充电桩等基础设施的投入.现为了了解该城市充电桩等基础设施的使用情况,随机选取了200个驾驶新能源汽车的司机进行问卷调查,根据其满意度评分值(百分制)按照[)50,60,[)60,70,…,[)90,100分成5组,制成如图所示的频率分布直方图.(1)求图中x 的值并估计样本数据的中位数;(2)已知满意度评分值在[)50,60内的男女司机人数比为3:2,从中随机抽取2人进行座谈,求2人均为女司机的概率.7.如图,在△ABC 中,cosC =35,角B 的平分线BD 交AC 于点D ,设∠CBD =θ,其中tanθ=2﹣1.(1)求sinA 的值;(2)若21CA CB ⋅=,求AB 的长.8.已知直线:(0)l y kx k =≠与圆22:230C x y x +--=相交于A ,B 两点. (1)若||14AB =,求k ;(2)在x 轴上是否存在点M ,使得当k 变化时,总有直线MA 、MB 的斜率之和为0,若存在,求出点M 的坐标:若不存在,说明理由. 9.设函数.(1)当时,函数的图像经过点,试求的值,并写出(不必证明)的单调递减区间; (2)设,,,若对于任意的,总存在,使得,求实数的取值范围.10.设等差数列的前n 项和为n S ,已知312a =,120S >,130S <; (1)求公差d 的取值范围;(2)判断67a a ⋅与0的大小关系,并说明理由; (3)指出1S 、2S 、⋅⋅⋅、12S 中哪个最大,并说明理由; 11.已知数列{}n a 满足11a =,121n n a a +=+,*n N ∈. (1)求证数列{}1n a +是等比数列,并求数列{}n a 的通项公式; (2)设()221log 1n n b a +=+,数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T,求证:11156nT ≤< 12.已知函数2()23sin cos 2cos 1f x x x x =+-. (1)求函数()y f x =的最小正周期和值域; (2)设,,A B C 为ABC ∆的三个内角,若1cos 3B =,()22C f =,求cos A 的值.13.已知1a =,2b =,且向量a 与b 的夹角为θ. (1)若3πθ=,求a b ⋅;(2)若a b -与a 垂直,求θ.14.已知集合{}2230A x x x =--<,集合{}2680B x x x =-+>. (1)求AB ;(2)若不等式20x ax b ++<的解集为AB ,求不等式20ax x b +-<的解集.15.已知函数()()212cos 1sin 2cos 42f x x x x =-⋅+. (1)求()f x 的最小正周期及单调递减区间; (2)若()0,απ∈,且248f απ⎛⎫-=⎪⎝⎭,求tan 3πα⎛⎫+ ⎪⎝⎭的值. 16.如图,直三棱柱111ABC A B C -中,90ACB ∠=,12AB BB ==,1BC =,11A E AC ⊥,E 为垂足.(1)求证:11A E AB ⊥(2)求三棱锥11B AB C -的体积.17.已知()()log 1a f x x =+,()()log 1a g x x =-,(0a >且)1a ≠ (1)求()()()F x f x g x =+的定义域.(2)判断()()()F x f x g x =+的奇偶性,并说明理由.18.某制造商3月生产了一批乒乓球,从中随机抽样133个进行检查,测得每个球的直径(单位:mm ),将数据分组如下:分组频数 频率 [1.95,1.97)13 [1. 97,1.99)23 [1.99,2.31)53 [2.31,2.33] 23 合计133(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;(Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为2.33 mm ,试求这批球的直径误差不超过3.33 mm 的概率;(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[1.99,2.31)的中点值是2.33作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).19.(6分)已知圆C :()2219x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点. (1)当弦AB 被点P 平分时,写出直线l 的方程; (2)当直线l 的倾斜角为45º时,求弦AB 的长.20.(6分)已知离心率为22的椭圆2222:1(0)x y C a b a b +=>>过点(2,1)M .(1)求椭圆C 的方程;(2)过点(1,0)作斜率为2直线l 与椭圆相交于,A B 两点,求||AB 的长.21.(6分)已知ABC ∆的顶点()3,4B ,AB 边上的高所在的直线方程为30x y +-=,E 为BC 的中点,且AE 所在的直线方程为370x y +-=. (1)求顶点A 的坐标;(2)求过E 点且在x 轴、y 轴上的截距相等的直线l 的方程. 22.(8分)已知数列{}n a 满足:123(1)(41)236n n n n a a a na +-+++⋯+=,*n N ∈(1)求1a ,2a 的值; (2)求数列{}n a 的通项公式; (3)设11n n n b a a +=⋅,数列{}n b 的前n 项和n T ,求证:12n T <23.(8分)如图,AB 是O 的直径,PA O ⊥所在的平面,C 是圆上一点,60BAC ∠=︒,PA AB =.(1)求证:平面PAC ⊥平面PBC ; (2)求直线PC 与平面ABC 所成角的正切值.24.(10分)如图,在四棱锥S ABCD -中,底面ABCD 为菱形,E 、P 、Q 分别是棱AD 、SC 、AB 的中点,且SE ⊥平面ABCD .(1)求证:PQ ∥平面SAD ; (2)求证:AC ⊥平面SEQ .25.(10分)已知圆M 的方程为22430x y y +-+=,直线l 的方程为30x y -=,点P 在直线l 上,过点P 作圆M 的切线PA ,PB ,切点为A ,B. (1)若60APB ∠=︒,求点P 的坐标;(2)求证:经过A ,P ,M 三点的圆必经过异于M 的某个定点,并求该定点的坐标.26.(12分)已知数列{}n a 的前n 项和292n S n n =-++(*n N ∈);(1)判断数列{}n a 是否为等差数列; (2)设123||||||||n n R a a a a =++++,求n R ;(3)设1(12)n n b n a =-(*n N ∈),123n n T b b b b =++++,是否存在最小的自然数0n ,使得不等式32n n T <对一切正整数n 总成立?如果存在,求出0n ;如果不存在,说明理由; 27.(12分)在公差是整数的等差数列{}n a 中,17a =-,且前n 项和4n S S ≥. (1)求数列{}n a 的通项公式n a ;(2)令n n b a =,求数列{}n b 的前n 项和n T .28.假设关于某设备的使用年限x 和支出的维修费y(万元)有如下表的统计资料(1)画出数据的散点图,并判断y 与x 是否呈线性相关关系(2)若y 与x 呈线性相关关系,求线性回归方程y b x a ∧∧∧=+的回归系数a ∧,b ∧(3)估计使用年限为10年时,维修费用是多少? 参考公式及相关数据:2122111ˆ,,90,112.3ni in ni i i i ni i ii x y nxyb ay bx x x y xnx ====-==-==-∑∑∑∑ 29.在平面直角坐标系xOy 中,以Ox 轴为始边,作两个角,αβ,它们终边分别经过点P 和Q ,其中21,cos 2P θ⎛⎫⎪⎝⎭,()2sin ,1,Q θθ-∈R ,且4sin 5α.(1)求cos2θ的值; (2)求tan()αβ+的值.30.已知数列{}n a 为等差数列,n S 为{}n a 前n 项和,11a =,39S = (1)求{}n a 的通项公式n a ; (2)设12231111n n n T a a a a a a +=++⋅⋅⋅+,比较n T与2log (3)设函数,(),2n a n f n n f n ⎧⎪=⎨⎛⎫⎪⎪⎝⎭⎩为奇数为偶数,()()*24n n C f n N =+∈,求1C ,2C 和数列{}n C 的前n 项和n M . 参考答案解答题含答案有解析1.(1)函数的解析式为2sin 26y x π⎛⎫=+⎪⎝⎭,其振幅是2,初相是6π(2)12x π=-时,函数取得最大值0;3x π=-时,函数取得最小值勤-2【解析】 【分析】(1)根据图像写出A ,由周期求出ω,再由点,26π⎛⎫⎪⎝⎭确定ϕ的值.(2)根据x 的取值范围确定26x π+的取值范围,再由2sin y t = 的单调求出最值【详解】(1)由图象知,函数的最大值为2,最小值为-2,∴2A =, 又∵4612T ππ⎛⎫=-- ⎪⎝⎭,∴T π=,2ππω=,∴2ω=.∴函数的解析式为()2sin2y x ϕ=+.∵函数的图象经过点,26π⎛⎫⎪⎝⎭,∴2sin 23πϕ⎛⎫+=⎪⎝⎭,∴sin 13πϕ⎛⎫+= ⎪⎝⎭,又∵02πϕ<<,∴6π=ϕ. 故函数的解析式为2sin 26y x π⎛⎫=+⎪⎝⎭,其振幅是2,初相是6π. (2)∵,212x ππ⎡⎤∈--⎢⎥⎣⎦,∴52,066x ππ⎡⎤+∈-⎢⎥⎣⎦. 于是,当206x π+=,即12x π=-时,函数取得最大值0;当262x ππ+=-,即3x π=-时,函数取得最小值为-2.【点睛】本题考查由图像确定三角函数、给定区间求三角函数的最值,属于基础题. 2.(Ⅰ)(1,3)B --(Ⅱ)617450x y --= 【解析】 【分析】(Ⅰ)设()00,B x y ,可得AB 中点坐标,代入直线250x y --=可得00210x y --=;将B 点坐标代入直线250x y --=得00250x y --=,可构造出方程组求得B 点坐标;(Ⅱ)设A 点关于250x y --=的对称点为(),A x y ''',根据点关于直线对称点的求解方法可求得293,55A ⎛⎫'- ⎪⎝⎭,因为A '在直线BC 上,根据两点坐标可求得直线方程. 【详解】(Ⅰ)设()00,B x y ,则AB 中点坐标为:0051,22x y ++⎛⎫⎪⎝⎭ 005125022x y ++∴⨯--=,即:00210x y --= 又00250x y --=,解得:01x =-,03y =-()1,3B ∴--(Ⅱ)设A 点关于250x y --=的对称点为(),A x y '''则1255125022y x x y -⎧=-⎪⎪-⎨++⎪-'''⋅-=⎩'⎪,解得:293,55A ⎛⎫'-⎪⎝⎭ BC ∴边所在的直线方程为:()335312915y x -++=++,即:617450x y --=【点睛】本题考查直线方程、直线交点的求解;关键是能够熟练应用中点坐标公式和点关于直线对称点的求解方法,属于常考题型.3.(1(2)529λ= 【解析】 【分析】(1)分别求出a ,b ,a b ⋅,再代入公式cos a b a bθ⋅=求余弦值;(2)由向量互相垂直,得到数量积为0,从而构造出关于λ的方程,再求λ的值. 【详解】(1) 2435a =+=,21b =-+=14322a b ⋅=-⨯+⨯=,∴cos 2555a b a bθ⋅===⨯. (2) ()()()4,3,24,32a b λλλλλ-=--=+-.()()()28,61,27,8a b +=+-=若()()2a b a b λ-⊥+, 则()()748320λλ++-=, 解得529λ=. 【点睛】本题考查向量数量积公式的应用及两向量垂直求参数的值,考查基本的运算求解能力.4.(1)c =(2)R = 【解析】 【分析】(1)由三角形面积公式可构造方程求得结果;(2)利用余弦定理可求得b ;利用正弦定理即可求得结果. 【详解】(1)由1sin 2S ac B =得:1222c ⨯=,解得:c =(2)由余弦定理得:2222cos 132252b ac ac B =+-=+-= 5b ∴=由正弦定理得:2sin b R B ===2R ∴= 【点睛】本题考查利用正弦定理、余弦定理和三角形面积公式解三角形的问题,考查学生对于解三角形部分的公式掌握的熟练程度,属于基础应用问题.5. (1) ()f x 的最小正周期为2π (2) ()f x 的单调增区间为()72,266k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【解析】试题分析:(1)化简函数的解析式得()2sin 3f x x π⎛⎫=+⎪⎝⎭,根据周期公式求得函数的周期;(2)由()22232k x k k Z πππππ-+≤+≤+∈,求得x 的取值范围即为函数的单调增区间,由()322232k x k k Z ,πππππ+≤+≤+∈求得x 取值范围即为函数的单调减区间。

高中数学必修一第四章指数函数与对数函数易错题集锦(带答案)

高中数学必修一第四章指数函数与对数函数易错题集锦(带答案)

高中数学必修一第四章指数函数与对数函数易错题集锦单选题1、若ln2=a,ln3=b,则log818=()A.a+3ba3B.a+2b3aC.a+2ba3D.a+3b3a答案:B分析:先换底,然后由对数运算性质可得.log818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a3a.故选:B2、设函数f(x)=lg(x2+1),则使得f(3x−2)>f(x−4)成立的x的取值范围为()A.(13,1)B.(−1,32)C.(−∞,32)D.(−∞,−1)∪(32,+∞)答案:D分析:方法一 :求出f(3x−2),f(x−4)的解析式,直接带入求解.方法二 : 设t=x2+1,则y=lgt,判断出f(x)=lg(x2+1)在[0,+∞)上为增函数,由f(3x−2)>f(x−4)得|3x−2|>|x−4|,解不等式即可求出答案.方法一 :∵f(x)=lg(x2+1)∴由f(3x−2)>f(x−4)得lg[(3x−2)2+1]>lg[(x−4)2+1],则(3x−2)2+1>(x−4)2+1,解得x<−1或x>32.方法二 :根据题意,函数f(x)=lg(x2+1),其定义域为R,有f(−x)=lg(x2+1)=f(x),即函数f(x)为偶函数,设t=x2+1,则y=lgt,在区间[0,+∞)上,t=x2+1为增函数且t≥1,y=lgt在区间[1,+∞)上为增函数,则f(x)=lg(x2+1)在[0,+∞)上为增函数,f(3x−2)>f(x−4)⇒f(|3x−2|)>f(|x−4|)⇒|3x−2|>|x−4|,解得x <−1或x >32, 故选:D .3、Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I(t)=K1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A .60B .63C .66D .69答案:C分析:将t =t ∗代入函数I (t )=K 1+e −0.23(t−53)结合I (t ∗)=0.95K 求得t ∗即可得解. ∵I (t )=K 1+e −0.23(t−53),所以I (t ∗)=K 1+e −0.23(t ∗−53)=0.95K ,则e 0.23(t∗−53)=19, 所以,0.23(t ∗−53)=ln19≈3,解得t ∗≈30.23+53≈66.故选:C. 小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.4、若x 1,x 2是二次函数y =x 2−5x +6的两个零点,则1x 1+1x 2的值为( )A .−12B .−13C .−16D .56答案:D分析:解方程可得x 1=2,x 2=3,代入运算即可得解.由题意,令x 2−5x +6=0,解得x =2或3,不妨设x 1=2,x 2=3,代入可得1x 1+1x 2=12+13=56. 故选:D.5、已知9m =10,a =10m −11,b =8m −9,则( )A .a >0>bB .a >b >0C .b >a >0D .b >0>a答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出.[方法一]:(指对数函数性质)由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b .[方法二]:【最优解】(构造函数)由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1,令f ′(x)=0,解得x 0=m 11−m ,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b ,又因为f(9)=9log 910−10=0 ,所以a >0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、若2x =3,2y =4,则2x+y 的值为( )A .7B .10C .12D .34答案:C分析:根据指数幂的运算性质直接进行求解即可.因为2x =3,2y =4,所以2x+y =2x ⋅2y =3×4=12,故选:C7、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,90050=18,故至少需要志愿者18名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.8、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.多选题9、已知函数f(x)=log2x,g(x)=2x+a,若存在x1,x2∈[1,2],使得f(x1)=g(x2),则a的取值可以是()A.-4B.-2C.2D.3答案:AB分析:根据条件求出两个函数的值域,结合若存在x1,x2∈[1,2],使得f(x1)=g(x2),等价为两个集合有公共元素,然后根据集合的关系进行求解即可.当1≤x≤2时,0≤log2x≤1,即0≤f(x)≤1,则f(x)的值域为[0,1],当1≤x≤2时,2+a≤g(x)≤4+a,则g(x)的值域为[2+a,4+a],若存在x1,x2∈[1,2],使得f(x1)=g(x2),则[2+a,4+a]∩[0,1]≠∅,若[2+a,4+a]∩[0,1]=∅,则2+a>1或4+a<0,解得a>−1或a<−4.所以当[2+a,4+a]∩[0,1]≠∅时,a的取值范围为−4≤a≤−1.故选:AB10、已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是()A.a>1B.0<a<1C.c>1D.0<c<1答案:BD分析:根据对数函数的图象判断.由图象知0<a<1,可以看作是y=log a x向左移动c个单位得到的,因此0<c<1,故选:BD .11、已知函数f (x )={(12)x−1,x ≤0x 12,x >0,则下列结论中错误的是( ) A .f (x )的值域为(0,+∞)B .f (x )的图象与直线y =2有两个交点C .f (x )是单调函数D .f (x )是偶函数答案:ACD分析:利用指数函数、幂函数的性质画出f (x )的图象,由图象逐一判断即可.函数f (x )的图象如图所示,由图可知f (x )的值域为[0,+∞),结论A 错误,结论C ,D 显然错误,f (x )的图象与直线y =2有两个交点,结论B 正确.故选:ACD填空题12、函数f (x )=log 12(x 2−5x +6)的单调递减区间为___________.答案:(3,+∞)分析:利用对数型复合函数性质求解即可.由题知:x 2−5x +6>0,解得x >3或x <2.令t =x 2−5x +6,则y =log 12t 为减函数.所以t ∈(−∞,2),t =x 2−5x +6为减函数,f (x )=log 12(x 2−5x +6)为增函数,t ∈(3,+∞),t =x 2−5x +6为增函数,f (x )=log 12(x 2−5x +6)为减函数.所以函数f (x )=log 12(x 2−5x +6)的单调递减区间为(3,+∞).所以答案是:(3,+∞)13、解指数方程2x+3=3x 2−9:__________.答案:x =−3或x =3+log 32分析:直接对方程两边取以3为底的对数,讨论x +3=0和x +3≠0,解出方程即可. 由2x+3=3x2−9得log 32x+3=log 33x 2−9,即(x +3)log 32=(x −3)(x +3),当x +3=0即x =−3时,0=0显然成立;当x +3≠0时,log 32=x −3,解得x =log 32+3;故方程的解为:x =−3或x =3+log 32. 所以答案是:x =−3或x =3+log 32.14、设x 13=2,则√x 53⋅x −1=___________.答案:4分析:由根式与有理数指数幂的关系,结合指数幂的运算性质,求值即可.由√x 53⋅x −1=x 53⋅x −1=x 23=(x 13)2=22=4. 所以答案是:4.解答题15、证明:函数f (x )=log 3(1+x )的图象与g (x )=log 2x 的图象有且仅有一个公共点. 答案:证明见解析分析:把要证两函数的图象有且仅有一个公共点转化为证明方程log 3(1+x )=log 2x 有且仅有一个实根.易观察出x =2为其一根,再假设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点,然后得出矛盾即可. 要证明两函数f (x )和g (x )的图象有且仅有一个公共点,只需证明方程log 3(1+x )=log 2x 有且仅有一个实根,观察上述方程,显然有f (2)=g (2),则两函数的图象必有交点(2,1).设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点.则log 3(1+x 0)=log 2x 0,1+x 0=3y 0,x 0=2y 0,∴1+2y 0=3y 0,即(13)y 0+(23)y 0=1, 令M (x )=(13)x +(23)x ,易知函数M (x )=(13)x +(23)x 为指数型函数.显然M (x )在(−∞,+∞)内是减函数,且M (1)=1,故方程(13)y 0+(23)y 0=1有唯一解y 0=1,从而x 0=2,与x 0≠2矛盾, 从而知两函数图象仅有一个公共点.。

高中数学错题集及解析

高中数学错题集及解析

高中数学错题集及解析1. 题目:如图所示,已知AD∥CF,DE∥CF,∠ADE=40°,∠FCD=120°,求∠BCF的度数。

A B C DE F解析:根据题目所给的已知条件,我们可以得到如下信息:AD∥CF,DE∥CF,∠ADE=40°,∠FCD=120°。

要求∠BCF的度数,我们可以利用几何知识进行推理和计算。

首先,根据平行线的性质,我们知道∠ADE=∠FCD=40°。

由于∠FCD=120°,所以∠DCF=180°-120°=60°。

接下来,我们观察四边形ADCF,可以发现∠CAF和∠ADF是对顶角,因此它们的度数相等。

∠ADE和∠DCF是共顶角,它们的度数也相等。

由此,我们可以得到以下等式:∠CAF=∠ADF=40°∠ADE=∠DCF=60°现在我们来考虑三角形BCF。

已知∠CAF=∠ADF=40°,∠BCF为所求。

我们知道,三角形内角和为180°,因此有:∠CAF+∠ADF+∠BCF=180°带入已知信息,得到:40°+40°+∠BCF=180°化简得:80°+∠BCF=180°再进一步,我们可以得到:∠BCF=180°-80°∠BCF=100°因此,∠BCF的度数为100°。

2. 题目:已知函数f(x)=2x^3-3x^2+x-5,求f(-1)和f(2)的值。

解析:我们可以使用给定的函数,将x的值代入函数中进行计算,从而得到f(x)的值。

首先,计算f(-1)的值。

将x=-1代入函数f(x)中,有:f(-1)=2(-1)^3-3(-1)^2+(-1)-5化简得:f(-1)=-2-3+(-1)-5=-2-3-1-5=-11因此,f(-1)的值为-11。

接下来,计算f(2)的值。

高考数学复习点拨 《抛物线》错解四例.doc

高考数学复习点拨 《抛物线》错解四例.doc

《抛物线》错解四例例1.已知抛物线的方程为y=2ax 2(a<0),则它的焦点坐标为( )A (,02a -)B (2a ,0)C (0,18a) D ( 0,18a -)错解一:由已知抛物线的方程为y=2ax 2,得它表示的曲线是对称轴为x 轴,开口向左的抛物线,其中2p= —2a ,所以p= —a , 22p a =-,所以它的焦点坐标为(2a,0),所以选B.错解二:将已知方程变形为x 2=2ya,它表示的曲线是对称轴为y 轴,开口向下的抛物线,其中2p= 12a ,p=14a , 128p a =,所以它的焦点坐标为( 0,18a-),所以选D. 错解分析: 两种答案均是错误的.错误的原因在于解法一中没有认识到抛物线的标准方程应为y 2=±2px,x 2=±2py(p>0)的形式,从而将y=2ax 2误认为是标准方程y 2=—2px,误认为它表示的曲线是对称轴为x 轴、开口向左的抛物线,即有2p= —2a 的结论,再推导出焦点坐标为(—2a,0),当然错了。

解法二中没有注意到焦参数p 表示焦点到准线的距离,所以应有p>0。

故出现只从形式上考虑2p=12a ,从而得出p=14a <0的错误,进而推出焦点坐标为(0,18a-)的错误。

正解 :将抛物线方程变形为:x 2=2ya,因为a<0,所以它表示的曲线是对称轴为y 轴、开口向下的抛物线,其标准方程应为x 2=—2py(p>0)的形式,即有2p= —12a,p=—14a ,128p a =-,再推导出焦点坐标为(0,18a ), 所以选C. 例2:若动点 P 到定点 F (1,1)的距离与到直线l :3x + y - 4 = 0的距离相等,则动点 P 的轨迹是() (A )椭圆 (B )双曲线 (C )抛物线 (D )直线错解:因为动点 P 到定点F 的距离与到直线l 的距离相等,所以由抛物线的定义知动点 P 的轨迹是抛物线,故选(C ).错解分析:错误的原因在于:一是没有确切地掌握抛物线的定义;二是没有仔细地分析题设中的点与直线的位置关系 .抛物线定义中的定点在定直线之外,而题设中的定点 F (1,1)在定直线 l :3x + y - 4 = 0上,错误地套用了抛物线定义而错选了(C ).解此类题一定要从已知条件出发,正确列式求解 .正解 1:设动点 P ( x ,y ),∵ 点 P 到点 F 的距离和到定直线 l 的距离相等,=两边平方,整理得 x 2+ 9y 2- 6xy + 4x - 12y + 4= 0.∴( x - 3y + 2)2= 0,即 x - 3y + 2 = 0.∴ 动点 P 的轨迹是直线 .故选(D ).正解 2:因为点 F (1,1)在直线 l :3x+ y- 4 = 0上,所以动点 P 到定点F 的距离和到定直线 l 的距离相等的点一定在过点 F 且和直线 l 垂直的直线上,即 点 P 的 轨 迹 是 一 条 直线 .故选(D ).例3:平面上的动点P 到定点F(1,0)的距离比P 到y 轴的距离大1,则动点P 的轨迹方程为( )A y 2=2xB y 2=2x 和 ⎩⎨⎧≤=0x yC y 2=4xD y 2=4x 和 ⎩⎨⎧≤=00x y 错解:由平面上的动点P 到定点F(1,0)的距离比P 到y 轴的距离大1,可知:平面上的动点P 到定点F(1,0)的距离与P 到1x =-的距离相等。

高中数学高频错题总结 (含例题答案)

高中数学高频错题总结 (含例题答案)

高一上学期易错陷阱总结1、 对数型函数中,(易忽略真数位置大于0)5.已知y =log a (2-ax )在[0,1]上为减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 2、 集合中,空集的特殊性(易忘记讨论空集)13.已知集合A ={x |2a +1≤x ≤3a -5},B ={x |x <-1,或x >16},分别根据下列条件求实数a 的取值范围. (1)A ∩B =∅; (2)A ⊆(A ∩B ). 3、集合中,元素的互异性(易忽略导致取值错误)[例2] 已知集合⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },求a 2 019+b 2 020的值.跟踪探究 2.已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.4、集合中,元素的特殊要求(比如:易忽略x等条件)跟踪探究 1.若集合A ={x |1≤x ≤3,x ∈N },B ={x |x ≤2,x ∈N },则A ∩B =( )A.{x |1≤x ≤2} B .{x |x ≥1} C .{2,3}D .{1,2}5、抽象函数的定义域问题(定义域仅代表x ,括号内取值范围一致)14、函数的定义域为,则的定义域是___;函数的定义域为___.6、 区间中默认a<b14.已知函数f (x )=, x是偶函数,则a+b=7、 换元法求值域类问题(易忽略换元后,t 的取值范围)(1)f (x +1)=x +2x ,求f (x )的值域;8、动轴定区间类问题(分类讨论不重不漏)典型案例:求函数y =x 2-2ax -1在[0,2]上的最值.9同增异减求单调区间问题(对数型时不能忽略真数位置大于0)(多个区间,隔开)跟踪探究 2.求函数y =log 2(x 2-5x +6)的单调区间.10、分段函数单调性问题。

(易忽略结点处)13.已知函数f (x )=⎩⎪⎨⎪⎧x 2-ax +4,(x ≤1),-ax +3a -4,(x >1)且f (x )在R 上递减,则实数a 的取值范围________.11.解分式不等式。

高三数学错题整理与解析

高三数学错题整理与解析

高三数学错题整理与解析在高三数学学习过程中,学生经常会遇到各种错题。

对于这些错题,我们需要进行仔细的整理与解析,以提高学生的数学水平。

本文将对高三数学错题进行整理分类,并给出详细的解答和解析。

一、代数与函数1. 题目:已知函数$f(x) = \frac{1}{x}$,求函数$f(f(x))$的表达式。

解析:将$f(x) = \frac{1}{x}$代入$f(f(x))$中,得到$f(f(x)) =\frac{1}{f(x)} = \frac{1}{\frac{1}{x}} = x$。

2. 题目:已知二次函数$f(x) = ax^2 + bx + c$的图像关于$x$轴对称,且顶点在直线$y = 2x + 1$上。

求$a$、$b$、$c$的值。

解析:由于图像关于$x$轴对称,所以顶点的纵坐标为0。

将顶点的横坐标代入直线方程$y = 2x + 1$中,得到$0 = 2x_0 + 1$,解得$x_0 = -\frac{1}{2}$。

将$x_0 = -\frac{1}{2}$代入二次函数$f(x)$中的横坐标,得到$a\left(-\frac{1}{2}\right)^2 + b\left(-\frac{1}{2}\right) + c = 0$。

根据顶点坐标的性质,我们知道顶点的横坐标为$-\frac{b}{2a}$,因此$-\frac{b}{2a} = -\frac{1}{2}$,解得$b = a$。

将$b = a$代入上述方程,得到$a\left(-\frac{1}{2}\right)^2 + a\left(-\frac{1}{2}\right) + c = 0$,整理得$c = \frac{1}{4}$。

综上所述,$a = b$,$c = \frac{1}{4}$。

二、几何与三角学1. 题目:已知$\triangle ABC$中,$AB = 7$,$AC = 9$,$BC = 5$,$D$为边$BC$上一点,且$\angle BAD = \angle CAD$。

高中数学易错题举例解析学生版

高中数学易错题举例解析学生版

高中数学易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。

也就是在转化过程中,没有注意转化的等价性,会经常出现错误。

下面通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。

加强思维的严密性训练。

● 忽视等价性变形,导致错误。

⎩⎨⎧ x >0 y >0 ⇔ ⎩⎨⎧ x + y >0 xy >0 ,但 ⎩⎨⎧ x >1 y >2 与 ⎩⎨⎧ x + y >3 xy >2不等价。

【例1】已知f(x) = a x + x b,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围。

●忽视隐含条件,导致结果错误。

【例2】(1) 设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是不存在)D (18)C (8)B (449)A (-(2) 已知(x+2)2+ y 24 =1, 求x 2+y 2的取值范围。

●忽视不等式中等号成立的条件,导致结果错误。

【例3】已知:a>0 , b>0 , a+b=1,求(a+ 1a )2+(b+ 1b)2的最小值。

●不进行分类讨论,导致错误【例4】(1)已知数列{}n a 的前n 项和12+=nn S ,求.n a(2)实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点。

●以偏概全,导致错误以偏概全是指思考不全面,遗漏特殊情况,致使解答不完全,不能给出问题的全部答案,从而表现出思维的不严密性。

【例5】(1)设等比数列{}n a 的前n 项和为n S .若9632S S S =+,求数列的公比q . (2)求过点)1,0(的直线,使它与抛物线x y 22=仅有一个交点。

《章节易错训练题》1、已知集合M = {直线} ,N = {圆} ,则M ∩N 中元素个数是 (A) 0 (B) 0或1 (C) 0或2 (D) 0或1或22、已知A = {}x | x 2+ tx + 1 = 0 ,若A ∩R *= Φ ,则实数t 集合T = ___。

高中数学易错题举例解析

高中数学易错题举例解析

高中数学易错题举例分析高中数学中有很多题目,求解的思路不难,但解题时,对某些特别情况的议论,却很简单被忽视。

也就是在转变过程中,没有注意转变的等价性,会常常出现错误。

本文经过几个例子,分析致错原由,希望能对同学们的学习有所帮助。

增强思想的严实性训练。

●忽视等价性变形,以致错误。

x>0x +y>0x>1x +y>3y>0xy>0,但y>2与xy>2不等价。

【例 1】已知 f(x) =a x +x3 f (1)0, 3 f (2) 6, 求 f (3) 的范围。

b ,若3 a b0①错误会法由条件得32a b6②2②× 2-①6a15③①× 2-②得8b2④333③+④得103a b43,即10 f (3)43.33333x 错误会析采纳这类解法,忽视了这样一个事实:作为知足条件的函数 f ( x) ax,b 其值是同时受 a和b 限制的。

当a取最大(小)值时, b 不必定取最大(小)值,因此整个解题思路是错误的。

f (1) a b正确解法由题意有f ( 2)b,解得:2a2a1[ 2 f (2) f (1)], b2[ 2 f (1)f (2)],33f (3)3a b16f (2)5f (1).把 f (1) 和 f (2) 的范围代入得39916 f (3)37.33在本题中能够检查出解题思路错误,并给出正确解法,就表现了思想拥有反省性。

只有坚固地掌握基础知识,才能反省性地看问题。

●忽视隐含条件,以致结果错误。

【例 2】(1)设、是方程 x 22kx k 6 0 的两个实根,则 (1) 2(1) 2的最小值是( A )49(B)8(C) 18(D)不存在4思路分析 本例只有一个答案正确,设了3 个圈套,很简单受骗。

利用一元二次方程根与系数的关系易得:2k,k6,( 1) 2(1) 222 1 2 21( ) 2 22() 24( k3) 2 49 .44有的学生一看到49,常受选择答案( A )的迷惑,盲从附和。

高考数学高频易错题举例解析,DOC

高考数学高频易错题举例解析,DOC

高考数学高频易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。

也就是在转化过程中,没有注意转化的等价性,会经常出现错误。

本文通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。

加强思维的严密性训练。

● 忽视等价性变形,导致错误。

?,但与不等价。

【例1时受a 和)3(f =∴●忽视隐含条件,导致结果错误。

【例2】(1) 设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是思路分析本例只有一个答案正确,设了3个陷阱,很容易上当。

利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα有的学生一看到449-,常受选择答案(A )的诱惑,盲从附和。

这正是思维缺乏反思性的体现。

如果能以反思性的态度考察各个选择答案的来源和它们之间的区别,就能从中选出正确答案。

原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆?.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18。

这时就可以作出正确选择,只有(B )正确。

(2)已知(x+2)2+=1,求x 2+y 2的取值范围。

错解分析从而当 【例错解∴分析21,第二 由ab ≤(2b a +)2=41得:1-2ab ≥1-21=21,且221b a ≥16,1+221ba ≥17, ∴原式≥21×17+4=225(当且仅当a=b=21时,等号成立), ∴(a+a 1)2+(b+b1)2的最小值是。

●不进行分类讨论,导致错误【例4】(1)已知数列{}n a 的前n 项和12+=n n S ,求.n a错误解法.222)12()12(1111----=-=+-+=-=n n n n n n n n S S a错误分析显然,当1=n 时,1231111=≠==-S a 。

高中数学经典错题深度剖析及针对训练 独立事件、独立重复试验的概率和条件概率

高中数学经典错题深度剖析及针对训练 独立事件、独立重复试验的概率和条件概率

高中数学经典错题深度剖析及针对训练 独立事件、独立重复试验的概率和条件概率【标题01】把独立重复试验的概率定性为古典概型了【习题01】某食品厂为了检查一条自动包装流水线的生产情况,从该流水线上随机抽取40件产品作为样本,测得它们的重量(单位:克),将重量按如下区间分组:(490,495],(495,500],(500,505],(505,510],(510,515],得到样本的频率分布直方图(如图所示).若规定重量超过495克但不超过510克的产品为合格产品,且视频率为概率,回答下列问题:(1)在上述抽取的40件产品中任取2件,设X 为合格产品的数量,求X 的分布列和数学期望EX ; (2)若从流水线上任取3件产品,求恰有2件合格产品的概率.【经典错解】(1)由样本的频率分布直方图得,合格产品的频率为0.0450.0750.0550.8⨯+⨯+⨯=.所以抽取的40件产品中,合格产品的数量为400.832⨯=. 则X 可能的取值为0,1,2,所以()2824070195C P X C ===,()11832240641195C C P X C ===,()2322401242195C P X C ===, 因此X 的分布列为故X 数学期望76412431280121951951951955EX =⨯+⨯+⨯==. (2)由题得从流水线上任取3件产品,求恰有2件合格产品的概率213283404961235C C P C == 【详细正解】(1)同上;(2)因为从流水线上任取1件产品合格的概率为40.85=, 所以从流水线上任取3件产品,恰有2件合格产品的概率为223144855125P C ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.【习题01针对训练】某工厂在试验阶段大量生产一种零件,这种零件有A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响.若仅有A ,A 、B 两项技术指标都不达标的(1)求一个零件经过检测为合格品的概率;(2)若任意抽取该种零件4个,设ξ表示其中合格品的个数,求ξ的分布列及数学期望E ξ.【标题02】把独立重复试验的概率定性为独立事件的概率了【习题02】某次数学考试中有三道选做题,分别为选做题1,2,3.规定每位考生必须且只须在其中选做一 题.甲、乙、丙三名考生选做这一题中任意一题的可能性均为13,每位学生对每题的选择是相互独立的,各 学生的选择相互之间没有影响.求这三个人选做的是同一道题的概率.【经典错解】由题得设这三个人选做的是同一道题为事件A ,则1111()33327P A =鬃=【详细正解】由题得设这三个人选做的是同一道题为事件A ,则131111()3339P A C =鬃?.【深度剖析】(1)经典错解错在把独立重复试验的概率定性为独立事件的概率了.(2)这三个人选做的是同一道题为事件A ,则A 实际上是三个互斥事件和和事件,因为甲乙丙可能同时选做第一题或第二题或第三题,而每一个互斥事件的概率又是三个独立事件同时发生的概率.错解把事件A 直接定性为独立事件同时发生的概率了,是错的.(3)解答概率题时,要先定性(六大概型:古典概型、几何概型、互斥事件的概率、独立事件同时发生的概率、独立重复试验的概率和条件概率),后定量.在定性时,要仔细分析,不要把事件定性错了.【习题02针对训练】某市公租房的房源位于A 、B 、C 三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中: (1)恰有2人申请A 片区房源的概率;(2)申请的房源所在片区的个数的ξ分布列与期望.【标题03】对事件)4,3,2,1(0=≥i S i 且28=S 理解错误【习题03】某人抛掷一枚均匀骰子,构造数列}{n a ,使⎩⎨⎧-=)(,1)(,1次掷出奇数当第次掷出偶数当第n n a n ,记n n a a a S +++= 21 求)4,3,2,1(0=≥i S i 且28=S 的概率.【经典错解】记事件A :28=S ,即前8项中,5项取值1,另3项取值-1,∴28=S 的概率858)21()(⋅=C A P记事件B :)4,3,2,1(0=≥i S i ,将)4,3,2,1(0=≥i S i 分为两种情形: (1)若第1、2项取值为1,则3,4项的取值在1和-1中任意取值;(2)若第1项为1,第2项为-1,则第3项必为1,第四项在1和-1中任意取值. ∴()P B =83)21()21(32=+ ∴所求事件的概率为()()P P A P B =⋅ =858)21(83⋅⋅C 【详细正解】∵)4,3,2,1(0=≥i S i ∴前4项的取值分为两种情形①若1、3项为1;则余下6项中3项为1,另3项为-1即可.即8361)21(⋅=C P ;②若1、2项为正,为避免与第①类重复,则第3项必为-1,则后5项中只须3项为1,余下2项为-1,即8352)21(⋅=C P ,∴所求事件的概率为783536215)21()(=⋅+=C C P【习题03针对训练】一种电脑屏幕保护画面,只有符号""""X O 和随机地反复出现,每秒钟变化一次,每次变化只出现""""X O 和之一,其中出现""O 的概率为p ,出现""X 的概率为q ,若第k 次出现""O ,则记1=k a ;出现""X ,则记1-=k a ,令n n a a a S +⋅⋅⋅++=21. (1)时,求3S 的分布列及数学期望. (2)时,求),,,且4321(028=≥=i S S i 的概率.【标题04】对事件“A B 、两组中有一组恰有两支弱队”没有理解清楚【习题04】已知8支球队中有3支弱队,以抽签方式将这8支球队分为A B 、两组,每组4支,求A B 、两组中有一组恰有两支弱队的概率.【经典错解】将8支球队均分为A B 、两组,共有4448C C 种方法:A B 、两组中有一组恰有两支弱队的分法为:先从3支弱队取2支弱队,又从5支强队取2支强队,组成这一组共有2325C C 种方法,其它球队分在另一组,只有一种分法.∴所求事件的概率为:7344482225=C C C C . 【详细正解】将8支球队均分为A B 、两组,共有4448C C 种方法:A B 、两组中有一组恰有两支弱队的分法为:先从3支弱队取2支弱队,又从5支强队取2支强队,组成这一组共有2325C C 种方法.再把这这组队伍分给A 组或B 组,有12C种方法,所以所求事件的概率P=76244482225=C C C C .【习题04针对训练】某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门.该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同. (1)求恰有2门选修课这3个学生都没有选择的概率;(2)设随机变量ξ为甲、乙、丙这三个学生选修数学史这门课的人数,求ξ的分布列及期望、方差.【标题05】概型判断错误【习题05】某人有5把不同的钥匙,逐把地试开某房门锁,试问他恰在第3次打开房门的概率.【经典错解】由于此人第一次不能开房门的概率为45,若第一次未开,第2次不能打开房门的概率应为34;所以此人第3次打开房门的概率为31. 【详细正解】第1次未打开房门的概率为54;第2次未开房门的概率为43;第3次打开房门的概率为31,所求概率为:51314354=⨯⨯=P .【习题05针对训练】某种项目的射击比赛,开始时在距目标100米处射击,如果命中记3分,且停止射击,若第一次射击未命中,可以进行第二次射击,但目标已经在150米处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200米处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分,已知射手甲在100m 处击中目标的概率为,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.(1)求这名射手在三次射击中命中目标的概率;(2)求这名射手比赛中得分的均值.【标题06】没有注意事件的先后顺序导致遗漏了一些情况 【习题06】某运动员射击一次所得环数x 的分布列如下:现进行两次射击,以该运动员两次射击中最高的环数作为他的成绩记为ξ,求ξ的分布列.【经典错解】ξ的取值为8,9,10.ξ=7,两次环数为7,7;ξ=8,两次成绩为7,8或8,8;ξ=9,两次成绩7,9或8,9或9,9;ξ=10,两次队数为7,10或8,10或9,10或10,10. ∴04.02.02.0)7(=⨯==ξP 15.03.03.02.0)8(2=+⨯==ξP23.03.03.03.03.02.0)9(2=+⨯+⨯==ξP 2.02.03.03.02.03.02.0)10(2=+⋅+⋅⨯==ξP (分布列略)【详细正解】8=ξ,即两次成绩应为7,8或8,7或8,8实际为三种情形,21.03.03.02.02)8(2=+⨯⨯==ξP 9=ξ两次环数分别为7,9(或9,7);8,9(或9,8),9.9∴39.03.03.03.023.02.02)9(2=+⨯⨯+⨯⨯==ξP ,同理36.02.042.03.0212.0)10(22=+⨯⨯+⨯==ξP 【深度剖析】(1)经典错解错在没有注意事件的先后顺序导致遗漏了一些情况.(2)8=ξ,即两次成绩应为7,8或8,7或8,8实际为三种情形,21.03.03.02.02)8(2=+⨯⨯==ξP9=ξ两次环数分别为7,9(或9,7);8,9(或9,8),9.9 ∴39.03.03.03.023.02.02)9(2=+⨯⨯+⨯⨯==ξP ,同理36.02.042.03.0212.0)10(22=+⨯⨯+⨯==ξP .【习题06针对训练】学校要用三辆校车从南校区把教职工接到校本部,已知从南校区到校本部有两条公路,校车走公路①堵车的概率为14,不堵车的概率为34;校车走公路②堵车的概率为p ,不堵车的概率为1p -.若甲、乙两辆校车走公路①,丙校车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.(Ⅰ)若三辆校车中恰有一辆校车被堵的概率为716,求走公路②堵车的概率;(Ⅱ)在(1)的条件下,求三辆校车中被堵车辆的辆数ξ的分布列和数学期望.【标题07】把独立事件的概率定性为互斥事件的概率了【习题07】甲投篮命中概率为0.8,乙投篮命中概率为0.7,每人投3次,两人恰好都命中2次的概率是多少?【经典错解】设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B ,则两人恰好投中2次为A B +.所以()()()P A B P A P B +=+ =825.03.07.02.08.0223223=⨯+⨯C C .【详细正解】设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B ,则两人恰好都投中2次为AB .所以()()()P AB P A P B =⋅ =2222330.80.20.70.3C C ⨯⨯⨯0.169=【习题07针对训练】地为绿化环境,移栽了银杏树2棵,梧桐树3棵.它们移栽后的成活率分别为23、12,每棵树是否存活互不影响,在移栽的5棵树中:(1)求银杏树都成活且梧桐树成活2棵的概率;(2)求成活的棵树ξ的分布列与期望.【标题08】把独立事件同时发生的概率定性为独立重复试验了【习题08】某射手射击一次,击中目标的概率是0.5,现该射手连射4次,(1)求恰好前3次击中的概率;(2)恰好第3次击中的概率.【经典错解】(1)由题得334111()()224P C ==;(2P =(10.5)(10.5)0.5(10.5)-⨯-⨯⨯-0.0625= 【详细正解】(1)由题得3111()2216P ==;(2)P =(10.5)(10.5)0.5(10.5)-⨯-⨯⨯-0.0625=【习题08针对训练】甲、乙两人进行乒乓球比赛,采用“五局三胜制”,即五局中先胜三局为赢,若每场比赛甲获胜的概率是23,乙获胜的概率是13,则比赛以甲三胜一负而结束的概率为________.【标题09】把古典概型定性为独立重复试验了【习题09】某产品100件,其中恰有5件次品,现从中任意抽取5件,求恰有一件次品的概率. 【经典错解】由题得145595(A)()()100100P C = 【详细正解】由题得145955100()0.2144C C P A C == 【深度剖析】(1)经典错解错在把古典概型定性为独立重复试验了.(2)所求事件的概型应该是一个古典概型,而错解把它当作是独立重复试验了.因为已知中的抽取,是一次性地从100件产品中抽取5件,所以没有抽多次,所以根本上不是独立重复试验.如果有的同学分5次来抽,每次抽取一件,也不是独立重复.因为第一次抽取时,抽到次品的概率是5100,第二次抽取时,只有99件产品,此时抽到次品的概率肯定不是5100,由于概率不同,所以也不是独立重复试验.【习题09针对训练】现有一批产品共有10件,其中8件为正品,2件为次品. (1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率; (2)如果从中一次取3件,求3件都是正品的概率. 【标题10】把条件概率定性为古典概型了【习题10】一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意抽取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是________.【经典错解】由题得228622108151()453C C P A C C ===【详细正解】记事件“甲取到2个黑球”为A ,“乙取到2个黑球”为B ,则有(|)P B A =()()P AB P A =22862288C C C C ⋅⋅=1528,即事件“甲取到2个黑球,乙也取到2个黑球”的概率是1528.【习题10针对训练】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.【标题11】审题不清忽略了“有放回地取”这个关键词【习题11】一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取1个.求连续取两次都是白球的概率;【经典错解】由题得22241()6A P A A ==.【详细正解】记事件A 为“连续取两次都是白球”,所以()P A 14.【深度剖析】(1)经典错解错在审题不清,忽略了“有放回地取”这个关键词.(2)抽样常用的有“有放回抽样”和“不放回抽样”两种,所以在解题时一定要注意抽样的方法.【习题11针对训练】一个袋中装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取1个,直到取出....3.次红球即停止........(1)从袋中不放回地取球,求恰好取4次停止的概率1P ; (2)从袋中有放回地取球;①求恰好取5次停止的概率2P ;②记5次之内(含5次)取到红球的个数为ξ,求随机变量ξ的分布列及数学期望.【标题12】对事件“某位顾客返券的金额为30元”没有理解透彻【习题12】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.求某位顾客返券的金额为30元的概率.【经典错解】设A =某位顾客返券的金额为30元,则111()236P A ==.【详细正解】设A =某位顾客返券的金额为30元,则11111()23323P A =+= .【习题12针对训练】某运动员射击一次所得环数x 的分布列如下:现进行两次射击,以该运动员两次射击中最高的环数作为他的成绩记为ξ,求(8)P x =.【标题13】把此种条件概率和“丢开法”条件概率混淆了【习题13】10名同学中,有7个人获得了全国数学联赛一等奖,3人没有获得.现在从中任选2名同学,已知其中1名同学获得全国一等奖,求另外一名同学也获得全国一等奖的概率. 【经典错解】由题得6293P ==. 【详细正解】设A =2名同学中有1人获得全国一等奖,B =2名同学中另外一个同学也获得全国一等奖,由题得27112737()211(|)(A)422C n AB P B A n C C C ====+,所以另外一名同学也获得全国一等奖的概率为12.【习题13针对训练】抛掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”.当已知蓝色骰子的点数为3或6时,则两颗骰子的点数之和大于8的概率为________.【标题14】把古典概型定性为独立重复试验概率了【习题14】某产品100件,其中恰有5件次品,现从中任意抽取5件,求恰有一件次品的概率. 【经典错解】由题得145595(A)()()100100P C = 【详细正解】由题得145955100()0.2144C C P A C == 【深度剖析】(1)经典错解错在把古典概型定性为独立重复试验概率了.(2)所求事件的概型应该是一个古典概型,而错解把它当作是独立重复试验了.因为已知中的抽取,是一次性地从100件产品中抽取5件,所以没有抽多次,所以根本上不是独立重复试验.如果有的同学分5次来抽,每次抽取一件,也不是独立重复.因为第一次抽取时,抽到次品的概率是5100,第二次抽取时,只有99件产品,此时抽到次品的概率肯定不是5100,由于概率不同,所以也不是独立重复试验. 【习题14针对训练】现有一批产品共有10件,其中8件为正品,2件为次品. (1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率. (2)如果从中一次取3件,求3件都是正品的概率.【标题15】概率定性定错了【习题15】某射手射击一次,击中目标的概率是0.5,现该射手连射4次,(1)求恰好前3次击中的概率;(2)恰好第3次击中的概率.【经典错解】(1)由题得334111()()224P C ==;(2)P= (10.5)(10.5)0.5(10.5)-⨯-⨯⨯-0.0625=【详细正解】(1)由题得3111()2216P ==;(2)P=(10.5)(10.5)0.5(10.5)-⨯-⨯⨯-0.0625=【习题15针对训练】甲、乙两人进行乒乓球比赛,采用“五局三胜制”,即五局中先胜三局为赢,若每场比赛甲获胜的概率是23,乙获胜的概率是13,则比赛以甲三胜一负而结束的概率为________.高中数学经典错解深度剖析及针对训练第29讲: 独立事件的概率、独立重复试验的概率和条件概率参考答案【习题01针对训练答案】(1(2满足条件的事件是恰有2人申请A 片区房源,共有2242C C ∴根据等可能事件的概率公式得到224248327C C P == (2)由题意知ξ的可能取值是1,2,3.431(1)327P ξ=== 231222341423414(2)327A C C C C C P ξ+=== 234344(3)39C A P ξ=== ∴ξ的分布列是:∴1144651232727927E ξ=⨯+⨯+⨯= 【习题03针对训练答案】(1)详见解析;(2)218780. 【习题03针对训练解析】(1)3,1,1,33--=S()()0318183=⨯+⨯+⨯-+⨯-=EX(2)前4次有2次出现""O 的概率是前4次有3次出现""O 的概率是前4次有4次出现""O 的概率是P (ξ= 0 ) =P (ξ= 1) =P (ξ= 2 ) =P (ξ= 3 ) =∴ξ的分布列为:E np ξ=34416D npq ξ==⨯⨯=【习题05针对训练答案】(1)95144;(2)8548.【习题05针对训练解析】记第一、二、三次射击命中目标分别为事件,,A B C三次均未命中目标的事件为D.依题意1 ()2P A=.(Ⅱ)依题意,设射手甲得分为ξ,则1121(3)(2)2299P Pξξ====⨯=171749(1)(0)298144144P Pξξ==⨯⨯===∴ξ的分布列为∴32102914414448Eξ=⨯+⨯+⨯+⨯=.【习题06针对训练答案】(Ⅰ; (Ⅱ【习题06针对训练解析】(1)由已知条件得即31p=,则所以p的值为(2)解:ξ可能的取值为0,1,2,3所以ξ的分布列为:,【习题7针对训练答案】(1)6;(2)详见解析.ξ∴的分布列为6E ξ∴=. 【习题08针对训练答案】827【习题08针对训练解析】甲三胜一负即前3次中有2次胜1次负,而第4次胜,∴P=C3223⎛⎫⎪⎝⎭2·13⎛⎫⎪⎝⎭·23=827,∴甲三胜一负而结束的概率为827.【习题09针对训练答案】(1)0.512;(2)7 15.【习题10针对训练答案】(1)0.55 ; (2)311;(3)1.23.【习题10针对训练解析】(1)记A为事件:“一续保人本年度的保费不高于基本保费”.则()0.200.200.100.050.55P A=+++=(2)记B为事件:“一续保人本年度的保费比基本保费60%”.()0.100.050.15P B=+=所以()()0.153 (|A)()()0.5511P AB P BP BP A P A====,所以一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率为3 11.(3)续保人本年度的平均保费估计值为0.850.300.15 1.250.20 1.50.20 1.750.1020.05 1.23 EX a a a a a a a =⨯+⨯+⨯+⨯+⨯+⨯=所以续保人本年度的平均保费与基本保费的比值为1.23.【习题11针对训练答案】(1)128;(2) ①881②13181.【习题11针对训练解析】(1)113363149128C C APA==(2)①22224121833381 P C⎛⎫⎛⎫=⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭②随机变量ξ的取值为0,1,2,3; 由n 次独立重复试验概率公式()()1n kk kn n P k C p p -=-,得()505132013243P C ξ⎛⎫==⨯-= ⎪⎝⎭ ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()231511802133243P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭()328080173124381P ξ++==-=随机变量ξ的分布列是ξ的数学期望是 3280801713101232432432438181E ξ=⨯+⨯+⨯+⨯=∴()P B =1036=518. 当蓝色骰子的点数为3或6时,两颗骰子的点数之和大于8的结果有5个,故()P AB =536.∴(|)P B A =()()P AB P A =53613=512.【习题14针对训练答案】(1)0.512;(2)715. 【习题14针对训练解析】(1)有放回地抽取3次,按抽取顺序(,,)x y z 记录结果,则,,x y z 都有10种可能,所以基本事件总数为10×10×10=103(种);设事件A 为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此338()0.51210P A ==.(2)可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(,,)x y z ,。

高中数学第四章指数函数与对数函数重点易错题(带答案)

高中数学第四章指数函数与对数函数重点易错题(带答案)

高中数学第四章指数函数与对数函数重点易错题单选题1、若√4a 2−4a +1=√(1−2a)33,则实数a 的取值范围是( ) A .[12,+∞)B .(−∞,12]C .[−12,12]D .R 答案:B分析:根据根式与指数幂的运算性质,化简得到√(2a −1)2=√(1−2a)33,即可求解. 根据根式和指数幂的运算性质,因为√4a 2−4a +1=√(1−2a)33, 可化为√4a 2−4a +1=√(1−2a)33,即√(2a −1)2=√(1−2a)33, 可得|2a −1|=1−2a ,所以1−2a ≥0,即a ≤12.故选:B.2、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞)答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x 2+2=f(x),则f(x)为偶函数,当x ⩾0时,f(x)=3x +x 2+2,又y =3x ,y =x 2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x −1)>f(3−x),即|2x −1|>|3−x|,解得x <−2或x >43,所以f(2x −1)>f(3−x)的解集为(−∞,−2)∪(43,+∞). 故选:D.3、函数f(x)={a x ,(x <0)(a −2)x +3a,(x ≥0),满足对任意x 1≠x 2,都有f (x 1)−f (x 2)x 1−x 2<0成立,则a 的取值范围是( )A.a∈(0,1)B.a∈[13,1)C.a∈(0,13]D.a∈[13,2)答案:C分析:根据条件可知f(x)在R上单调递减,从而得出{0<a<1a−2<03a⩽1,解出a的范围即可.解:∵f(x)满足对任意x1≠x2,都有f(x1)−f(x2)x1−x2<0成立,∴f(x)在R上是减函数,因为f(x)={a x,(x<0)(a−2)x+3a,(x≥0)∴{0<a<1a−2<0(a−2)×0+3a⩽a0,解得0<a⩽13,∴a的取值范围是(0,13].故选:C.4、已知函数y=a x、y=b x、y=c x、y=d x的大致图象如下图所示,则下列不等式一定成立的是()A.b+d>a+c B.b+d<a+c C.a+d>b+c D.a+d<b+c答案:B分析:如图,作出直线x=1,得到c>d>1>a>b,即得解.如图,作出直线x=1,得到c>d>1>a>b,所以b+d<a+c.故选:B5、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,900=18,故至少需要志愿者18名.50故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.6、函数y=log2(2x−x2)的单调递减区间为()A.(1,2)B.(1,2]C.(0,1)D.[0,1)答案:A分析:先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果由2x −x 2>0,得0<x <2, 令t =2x −x 2,则y =log 2t ,t =2x −x 2在(0,1)上递增,在(1,2)上递减, 因为y =log 2t 在定义域内为增函数,所以y =log 2(2x −x 2)的单调递减区间为(1,2), 故选:A7、化简√−a 3·√a 6的结果为( ) A .−√a B .−√−a C .√−a D .√a 答案:A分析:结合指数幂的运算性质,可求出答案. 由题意,可知a ≥0,∴√−a 3·√a 6=(−a )13⋅a 16=−a 13⋅a 16=−a 13+16=−a 12=−√a .故选:A.8、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a =5,b =log 83=13log 23,即23b =3,所以4a−3b =4a 43b=(2a )2(23b )2=5232=259.故选:C. 多选题9、若实数a ,b 满足2a +3a =3b +2b ,则下列关系式中可能成立的是( ) A .0<a <b <1B .b <a <0C .1<a <b D .a =b 答案:ABD解析:根据题目实数a ,b 满足2a +3a =3b +2b ,设f (x )=2x +3x ,g (x )=3x +2x ,画出函数图象,逐段分析比较解:因为实数a,b满足2a+3a=3b+2b.设f(x)=2x+3x,g(x)=3x+2x由图象可知①当x<0时,f(x)<g(x),所以2a+3a=3b+2b,即b<a<0,故B正确和②当x=0时,f(x)=g(x),所以2a+3a=3b+2b,即a=b=0,故D正确③当0<x<1时,f(x)>g(x),所以2a+3a=3b+2b,即0<a<b<1,故A正确④当x=1时,f(x)=g(x),所以2a+3a=3b+2b,即a=b=1,故D正确⑤当x>1时,f(x)<g(x),所以2a+3a=3b+2b,即1<b<a,故C错误.故选:ABD小提示:本题考查指数函数的图象和根据函数值大小比较指数,属于中档题.10、已知a>b>1>c>0,则()A.1a−c >1b−cB.log c(a−c)>log c(b−c)C.(a−c)c−1<(b−c)c−1D.(1−c)a−c<(1−c)b−c分析:由条件可知a −c >b −c >0,再利用函数的单调性,判断选项. 因为a −c >b −c >0,A :故1a−c <1b−c ,A 错误;B :y =log c x 为减函数,故B 错误;C :幂函数y =x c−1在(0,+∞)上为减函数,故C正确;D :函数y =(1−c )x 为减函数,故D 正确. 故选:CD11、若函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,则必有( ). A .0<a <1B .a >1C .b >0D .b <0 答案:BC分析:对底数a 分情况讨论即可得答案.解:若0<a <1,则y =a x −(b +1)的图像必过第二象限,而函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,所以a >1.当a >1时,要使y =a x −(b +1)的图像过第一、三、四象限,则b +1>1,即b >0. 故选:BC小提示:此题考查了指数函数的图像和性质,属于基础题.12、若f (x )满足对定义域内任意的x 1,x 2,都有f (x 1)+f (x 2)=f (x 1⋅x 2),则称f (x )为“好函数”,则下列函数是“好函数”的是( )A .f (x )=2xB .f (x )=(12)xC .f (x )=log 12x D .f (x )=log 3x答案:CD分析:利用“好函数”的定义,举例说明判断A ,B ;计算判断C ,D 作答.对于A ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=6,f (x 1⋅x 2)=4, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),A 不是;对于B ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=34,f (x 1⋅x 2)=14, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),B 不是;对于C ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 12x 1+log 12x 2=log 12(x 1x 2)=f (x 1⋅x 2),对于D ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 3x 1+log 3x 2=log 3(x 1x 2)=f (x 1⋅x 2),D 是. 故选:CD13、下列运算(化简)中正确的有( ). A .(a 16)−1⋅(a−2)−13=a 12B .(x a −1y)a⋅(4y −a )=4x C .[(1−√2)2]12−(1+√2)−1+(1+√2)0=3−2√2D .2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=−52a 73b −23 答案:ABD分析:根据指数幂的运算法则逐一验证即可 对于A :(a 16)−1⋅(a −2)−13=a −16+23=a12,故A 正确;对于B :(x a −1y)a⋅(4y −a )=4x 1a ×a y a−a =4xy 0=4x ,故B 正确; 对于C :[(1−√2)2]12−(1+√2)−1+(1+√2)0=[(√2−1)2]12−1+√2+1=√2−1−(√2−1)+1=1,故C 错误;对于D :2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=[2×(−5)÷4]a3+23−43b23+13−53=−52a 73b −23,故D 正确;故选:ABD 填空题14、已知5a =2,5b =3,则log 2594=___________(用a 、b 表示). 答案:b −a ##−a +b分析:根据对数的运算性质可得log 2594=log 53−log 52,再由指对数关系有a =log 52,b =log 53,即可得答案.由log 2594=log 532=log 53−log 52,又5a =2,5b =3,∴a=log52,b=log53,故log2594=b−a.所以答案是:b−a.15、已知函数f(x)是指数函数,且f(2)=9,则f(12)=______.答案:√3分析:依题意设f(x)=a x(a>0且a≠1),根据f(2)=9即可求出a的值,从而求出函数解析,再代入计算可得.解:由题意,设f(x)=a x(a>0且a≠1),因为f(2)=9,所以a2=9,又a>0,所以a=3,所以f(x)=3x,所以f(12)=√3.所以答案是:√316、当x∈[k−12,k+12),k∈Z时,f(x)=k.若函数g(x)=xf(x)−mx−1没有零点,则正实数m的取值范围是___________.答案:[1,43)∪[85,2)分析:将问题转化为函数f(x)与ℎ(x)=1x+m图象的交点问题,结合图象得出正实数m的取值范围. 当x=0时,g(0)=−1≠0当x≠0时,xf(x)−mx−1=0可化为f(x)=1x+m作出函数f(x)与ℎ(x)=1x+m的图象由图可知当x <0时,要使得函数g(x)=xf(x)−mx −1没有零点 必须满足−1≤ℎ(−12)<0,解得1≤m <2当x >0时,要使得函数g(x)=xf(x)−mx −1没有零点必须满足1≤ℎ(32)<2或者2≤ℎ(52)<3,解得13≤m <43或85≤m <135综上,m ∈[1,43)∪[85,2) 所以答案是:[1,43)∪[85,2)小提示:关键点睛:解决本题的关键在于将问题转化为函数图象的交点问题,结合数形结合的思想方法解决问题. 解答题17、给出下面两个条件:①函数f (x )的图象与直线y =−1只有一个交点;②函数f (x )的两个零点的差的绝对值为2.在这两个条件中选择一个,将下面问题补充完整,使函数f (x )的解析式确定. 已知二次函数f (x )=ax 2+bx +c 满足f (x +1)−f (x )=2x −1,且______. (1)求f (x )的解析式;(2)若对任意x ∈[19,27],2f (log 3x )+m ≤0恒成立,求实数m 的取值范围;(3)若函数g (x )=(2t −1)f (3x )−2×3x −2有且仅有一个零点,求实数t 的取值范围. 答案:(1)选①f (x )=x 2−2x ,选②f (x )=x 2−2x (2)(−∞,−16] (3){−√3+12}∪(12,+∞) 分析:(1)利用已知条件求出a 、b 的值,可得出f (x )=x 2−2x +c .选①,由题意可得出f (1)=−1,可得出c 的值,即可得出函数f (x )的解析式; 选②,由根与系数的关系求出c 的值,即可得出函数f (x )的解析式;(2)ℎ=log 3x ,ℎ∈[−2,3],由参变量分离法可得出m ≤[−2f (ℎ)]min ,结合二次函数的基本性质可求得实数m 的取值范围;(3)令n =3x >0,所以关于n 的方程(2t −1)f (n )−2n −2=0有且仅有一个正实根,对实数t 的取值进行分类讨论,结合二次函数的零点分布可得出关于实数n 的不等式组,综合可解得实数t 的取值范围. (1)解:因为二次函数f (x )=ax 2+bx +c 满足f (x +1)−f (x )=2x −1,f (x +1)−f (x )=a (x +1)2+b (x +1)+c −ax 2−bx −c =2ax +a +b =2x −1, 所以{2a =2a +b =−1,解得{a =1b =−2,所以f (x )=x 2−2x +c .选①,因为函数f (x )的图象与直线y =−1只有一个交点,所以f (1)=1−2+c =−1,解得c =0, 所以f (x )的解析式为f (x )=x 2−2x .选②,设x 1、x 2是函数f (x )的两个零点,则|x 1−x 2|=2,且Δ=4−4c >0,可得c <1, 由根与系数的关系可知x 1+x 2=2,x 1x 2=c ,所以|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√4−4c =2,解得c =0, 所以f (x )的解析式为f (x )=x 2−2x . (2)解:由2f (log 3x )+m ≤0,得m ≤−2f (log 3x ),当x ∈[19,27]时,log 3x ∈[−2,3],令ℎ=log 3x ,则ℎ∈[−2,3],所以对任意x ∈[19,27],2f (log 3x )+m ≤0恒成立,等价于m ≤−2f (ℎ)在ℎ∈[−2,3]上恒成立, 所以m ≤[−2f (ℎ)]min =−2f (−2)=−16,所以实数m 的取值范围为(−∞,−16]. (3)解:因为函数g (x )=(2t −1)f (3x )−2×3x −2有且仅有一个零点,令n =3x >0,所以关于n 的方程(2t −1)f (n )−2n −2=0有且仅有一个正实根, 因为f (x )=x 2−2x ,所以(2t −1)n 2−4tn −2=0有且仅有一个正实根, 当2t −1=0,即t =12时,方程可化为−2n −2=0,解得n =−1,不符合题意;当2t −1>0,即t >12时,函数y =(2t −1)x 2−4tx −2的图象是开口向上的抛物线,且恒过点(0,−2), 所以方程(2t −1)n 2−4tn −2=0恒有一个正实根;当2t −1<0,即t <12时,要使得(2t −1)n 2−4tn −2=0有且仅有一个正实根,{�=16t 2+8(2t −1)=02t 2t−1>0,解得t =−√3+12. 综上,实数t 的取值范围为{−√3+12}∪(12,+∞).18、大西洋鲑鱼每年都要逆流而上,游回产地产卵.记鲑鱼的游速为V (m/s),鲑鱼的耗氧量的单位数为Q ,研究中发现V 与log 3Q 100成正比,且当Q =900时,V =1.(1)求出V 关于Q 的函数解析式;(2)计算一条鲑鱼的游速是1.5 m/s 时耗氧量的单位数.答案:(1)V =12log 3Q 100;(2)2700个单位.分析:(1)根据成正比的性质,结合代入法进行求解即可;(2)利用代入法,结合对数与指数式互化公式进行求解即可.解:(1)设V =k ·log 3Q 100,∵当Q =900时,V =1,∴1=k ·log 3900100, ∴k =12,∴V 关于Q 的函数解析式为V =12log 3Q 100;(2)令V =1.5,则1.5=12log 3Q 100⇒log 3Q 100=3⇒Q 100=33=27,∴Q =2 700,即一条鲑鱼的游速是1.5 m/s 时耗氧量为2700个单位.。

高中数学易错题举例解析2

高中数学易错题举例解析2

高中数学易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。

也就是在转化过程中,没有注意转化的等价性,会经常出现错误。

本文通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。

加强思维的严密性训练。

● 忽视等价性变形,导致错误。

⎩⎨⎧ x >0 y >0 ⇔ ⎩⎨⎧ x + y >0 xy >0 ,但 ⎩⎨⎧ x >1 y >2与 ⎩⎨⎧ x + y >3 xy >2不等价。

【例1】已知f(x) = a x + x b,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围。

错误解法 由条件得⎪⎩⎪⎨⎧≤+≤≤+≤-622303ba b a ②① ②×2-① 156≤≤a ③①×2-②得 32338-≤≤-b ④ ③+④得 .343)3(310,34333310≤≤≤+≤f b a 即 错误分析 采用这种解法,忽视了这样一个事实:作为满足条件的函数bxax x f +=)(,其值是同时受b a 和制约的。

当a 取最大(小)值时,b 不一定取最大(小)值,因而整个解题思路是错误的。

正确解法 由题意有⎪⎩⎪⎨⎧+=+=22)2()1(b a f b a f , 解得:)],2()1(2[32)],1()2(2[31f f b f f a -=-=).1(95)2(91633)3(f f b a f -=+=∴ 把)1(f 和)2(f 的范围代入得.337)3(316≤≤f 在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性。

只有牢固地掌握基础知识,才能反思性地看问题。

●忽视隐含条件,导致结果错误。

【例2】(1) 设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是不存在)D (18)C (8)B (449)A (-思路分析 本例只有一个答案正确,设了3个陷阱,很容易上当。

高中数学易错题举例解析学生版

高中数学易错题举例解析学生版

高中数学易错题举例解析学生版SANY GROUP system office room 【SANYUA16H-高中数学易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。

也就是在转化过程中,没有注意转化的等价性,会经常出现错误。

下面通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。

加强思维的严密性训练。

● 忽视等价性变形,导致错误。

⎩⎪⎨⎪⎧ x >0 y >0 ? ⎩⎪⎨⎪⎧ x + y >0xy >0 ,但 ⎩⎪⎨⎪⎧ x >1y >2 与 ⎩⎪⎨⎪⎧ x + y >3xy >2 不等价。

【例1】已知f(x) = a x + xb,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围。

●忽视隐含条件,导致结果错误。

【例2】(1) 设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是不存在)D (18)C (8)B (449)A (-(2) 已知(x+2)2+ y 24 =1, 求x 2+y 2的取值范围。

●忽视不等式中等号成立的条件,导致结果错误。

【例3】已知:a>0 , b>0 , a+b=1,求(a+ 1a )2+(b+ 1b)2的最小值。

●不进行分类讨论,导致错误【例4】(1)已知数列{}n a 的前n 项和12+=n n S ,求.n a (2)实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点。

●以偏概全,导致错误以偏概全是指思考不全面,遗漏特殊情况,致使解答不完全,不能给出问题的全部答案,从而表现出思维的不严密性。

【例5】(1)设等比数列{}n a 的前n 项和为n S .若9632S S S =+,求数列的公比q .(2)求过点)1,0(的直线,使它与抛物线x y 22=仅有一个交点。

(完整版)高中数学易错题(含答案)

(完整版)高中数学易错题(含答案)

高中数学易错题一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.52.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=06.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是_________.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=_________.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是_________.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是_________.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为_________.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为_________.13.△ABC中,AB=AC,,则cosA的值是_________.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为_________.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为_________.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=_________.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.高中数学易错题参考答案与试题解析一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.5考点:三角形中的几何计算.专题:计算题.分析:设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,进而求得x和y的关系式,进而表示出xy的表达式,利用二次函数的性质求得xy的最大值.解答:解:如图,设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,即=4,所以4x=12﹣3y,y=,求xy最大,也就是那个矩形面积最大.xy=x•=﹣•(x2﹣3x),∴当x=时,xy有最大值3故选B.点评:本题主要考查了三角函数的几何计算.解题的关键是通过题意建立数学模型,利用二次函数的性质求得问题的答案.2.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.考点:三角形中的几何计算.专题:计算题.分析:直接利用正弦定理,两角差的正弦函数,即可求出三角形的外接圆的直径即可.解答:解:由正弦定理可知:====.故选D.点评:本题是基础题,考查三角形的外接圆的直径的求法,正弦定理与两角差的正弦函数的应用,考查计算能力.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.考点:三角形中的几何计算.专题:数形结合;转化思想.分析:画出图形,利用点到直线的距离之间的转化,三角形两边之和大于第三边,求出最小值与最大值.解答:解:由题意△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,在图(1)中,d=CE+PE+PF>CD==,在图(2)中,d=CE+EP+FP<CE+EG<AC=4;∴d的取值范围是;故选D.点评:本题是中档题,考查不等式的应用,转化思想,数形结合,逻辑推理能力,注意,P为△ABC内任一点,不包含边界.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.考点:三角形中的几何计算.专题:计算题.分析:由题意可知双曲线的焦点坐标就是A,B,利用正弦定理以及双曲线的定义化简即可得到答案.解答:解:由题意可知双曲线的焦点坐标就是A,B,由双曲线的定义可知BC﹣AB=2a=10,c=6,===;故选D.点评:本题是基础题,考查双曲线的定义,正弦定理的应用,考查计算能力,常考题型.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=0考点:三角形中的几何计算.专题:计算题.分析:通过向量求出直线的斜率,利用点斜式方程求出最新的方程即可.解答:解:过点A(1,﹣2),且与向量平行的直线的斜率为﹣,所以所求直线的方程为:y+2=﹣(x﹣1),即:3x+4y+5=0.故选C.点评:本题是基础题,考查直线方程的求法,注意直线的方向向量与直线的斜率的关系,考查计算能力.6.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④考点:三角形中的几何计算;恒过定点的直线.专题:应用题.分析:①由于基本不等式等号成立的条件不具备,故的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程,求出它与两坐标轴的交点,根据条件可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条.③将函数y=cos2x的图象向右平移个单位,可以得到函数y﹣sin(2x﹣)的图象,故③不正确.④若△ABC中,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形.解答:解:①∵≥2=2,(当且仅当x=0时,等号成立),故当x>0时,的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程为y﹣3=k(x﹣2),它与两坐标轴的交点分别为(2﹣,0),(0,3﹣2k),根据直线与两坐标轴围成的面积为13=,化简可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条,故②正确.③将函数y=cos2x的图象向右平移个单位,可以得到函数y=cos2(x﹣)=sin[﹣(2x﹣)]=sin()=﹣sin(2x﹣)的图象,故③不正确.④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形,故④正确.故选B.点评:本题基本不等式取等号的条件,过定点的直线,三角函数的图象变换,诱导公式的应用,检验基本不等式等号成立的条件,是解题的易错点.二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是[,4].考点:向量在几何中的应用;三角形中的几何计算.专题:综合题.分析:设三边分别为a,b,c,利用正弦定理和余弦定理结合向量条件利用三角形面积公式即可求出三边长.欲求x+y+z的取值范围,利用坐标法,将三角形ABC放置在直角坐标系中,通过点到直线的距离将求x+y+z的范围转化为,然后结合线性规划的思想方法求出范围即可.解答:解:△ABC为Rt△ABC,且∠C=90°,设三角形三内角A、B、C对应的三边分别为a,b,c,∵(1)÷(2),得,令a=4k,b=3k(k>0)则∴三边长分别为3,4,5.以C为坐标原点,射线CA为x轴正半轴建立直角坐标系,则A、B坐标为(3,0),(0,4),直线AB方程为4x+3y﹣12=0.设P点坐标为(m,n),则由P到三边AB、BC、AB的距离为x,y,z.可知,且,故,令d=m+2n,由线性规划知识可知,如图:当直线分别经过点A、O时,x+y+z取得最大、最小值.故0≤d≤8,故x+y+z的取值范围是.故答案为:[].点评:本题主要考查了解三角形中正弦定理、余弦定理、平面向量数量积的运算、简单线性规划思想方法的应用,综合性强,难度大,易出错.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=4.考点:二倍角的余弦;三角形中的几何计算.专题:计算题.分析:首先根据三角形的面积公式求出b的值,然后将所给的式子写成+=3进而得到acosC+ccosA+a+c=6,再根据在三角形中acosC+ccosA=b=2,即可求出答案.解答:解:∵S=absinC=asinC∴b=2∴acos2+ccos2=3∴+=3即a(cosC+1)+c(cosA+1)=6∴acosC+ccosA+a+c=6∵acosC+ccosA=b=2∴2+a+c=6∴a+c=4故答案为:4.点评:本题考查了二倍角的余弦以及三角形中的几何运算,解题的关键是巧妙的将所给的式子写成+=3的形式,属于中档题.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是.考点:三角形中的几何计算.专题:计算题.分析:先根据求得sin(A+B)的值,进而求得sinC的值,根据同角三角函数的基本关系求得cosC,根据韦达定理求得a+b和ab的值,进而求得a2+b2,最后利用余弦定理求得c的值.解答:解:∵,∴sin(A+B)=∴sinC=sin(π﹣A﹣B)=sin(A+B)=∴cosC==∵a,b是方程的两根∴a+b=2,ab=2,∴a2+b2=(a+b)2﹣2ab=8∴c===故答案为:点评:本题主要考查了三角形中的几何计算,余弦定理的应用,韦达定理的应用.考查了考生综合运用基础知识的能力.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是.考点:三角形中的几何计算;正弦定理.专题:计算题;解三角形.分析:构造以BC为正三角形的外接圆,如图满足,即可观察推出|AM|的取值范围.解答:解:构造以BC为正三角形的外接圆,如图,显然满足题意,由图可知红A处,|AM|值最大为,A与B(C)接近时|AM|最小,所以|AM|∈.故答案为:.点评:本题考查三角形中的几何计算,构造法的应用,也可以利用A的轨迹方程,两点减距离公式求解.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.考点:棱柱的结构特征;三角形中的几何计算.专题:计算题.分析:由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.解答:解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.点评:本小题主要考查棱柱的结构特征、三角形中的几何计算等基础知识,考查空间想象力.属于基础题.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为1或.考点:三角形中的几何计算.专题:计算题.分析:先利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2;再分∠A=30°以及∠C=30°两种情况分别求出对应的面积.解答:解:因为2,转化为边长和角所以有2acosB=c可得:cosB==⇒a2=b2⇒a=b=2.当∠A=30°=∠B时,∠C=120°,此时S△ABC=×2×2×sinC=;当∠C=30°时,∠A=∠B=75°,此时S△ABC=×2×2×sinC=1.故答案为:或1.点评:本题主要考查余弦定理的应用以及三角形中的几何计算.解决本题的关键在于利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2.13.△ABC中,AB=AC,,则cosA的值是.考点:三角形中的几何计算.专题:计算题.分析:根据AB=AC可推断出B=C,进而利用三角形内角和可知cosA=cos(π﹣2B)利用诱导公式和二倍角公式化简整理,把cosB的值代入即可.解答:解:∵AB=AC,∴B=C∴cosA=cos(π﹣2B)=cos2B=2cos2B﹣1=﹣1=﹣故答案为:﹣点评:本题主要考查了三角形中的几何计算,二倍角公式的应用.考查了学生综合运用三角函数基础知识的能力.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为x+y+z=3.考点:三角形中的几何计算.专题:计算题.分析:设等边三角形的边长为a,高为h将P与三角形的各顶点连接,进而分别表示出三角形三部分的面积,相加应等于总的面积建立等式求得x+y+z的值.解答:解:设等边三角形的边长为a,高为h将P与三角形的各顶点连接根据面积那么:ax+ay+az=ah所以x+y+z=h因为等边三角形的边长为2,所以高为h=3所以x.y.z所满足的关系是为:x+y+z=3故答案为:3点评:本题主要考查了三角形中的几何计算.考查了学生综合分析问题的能力和转化和化归的思想.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为.考点:三角形中的几何计算.专题:计算题.分析:根据已知可得△AOC是等边三角形,从而得到OA=AC=2,则可以利用勾股定理求得AD的长.解答:解:(2)∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴OA=AC=2,∵∠OAD=90°,∠D=30°,∴AD=•AO=.故答案为:.点评:本题考查和圆有关的比例线段,考查同弧所对的圆周角等于弦切角,本题在数据运算中主要应用含有30°角的直角三角形的性质,本题是一个基础题.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=.考点:三角形中的几何计算.专题:计算题.分析:先利用三个内角成等差数列求得A,根据,∠B=30°求得C,然后利用tan30°=表示出a,代入三角形面积公式求得b.解答:解:三角形ABC中,三个内角A,B,C成等差数列A+B+C=3A=180°∴∠A=60°∵∠A=30°,∴C=90S=ab=∵tan30°=∴a=∴b=故答案为:点评:本题主要考查了三角形的几何计算.考查了学生基础知识综合运用的能力.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.考点:三角形中的几何计算.专题:计算题.分析:设出BD,利用余弦定理分别在△ABC,△ABD中表示出AB,进而建立等式求得b﹣x=2acosC代入四边形ABCD的面积表达式中,利用正弦函数的性质求得问题的答案.解答:解:设BD=x,则由余弦定理可知b2+a2﹣2abcosC=AB2=a2+x2+2axcosC∴b﹣x=2acosC.∵S=(absinC)﹣(axsinC)=a(b﹣x)sinC=a2•sin2C,∴当C=时,S有最大值.点评:本题主要考查了三角形的几何计算.注意灵活利用正弦定理和余弦定理以及其变形公式.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.考点:三角形中的几何计算;二倍角的正弦.专题:计算题.分析:(1)利用同角三角函数关系及三角形内角的范围可求;(2)利用正弦定理可知b=2a,再利用余弦定理,从而求出a、b的值,进而可求面积.解答:解:(1)由题意,,∴(2)由sinB=2sinA可知b=2a,又22=a2+b2﹣2abcosC,∴a=1,b=2,∴点评:此题考查学生灵活运用三角形的面积公式,灵活运用正弦、余弦定理求值,是一道基础题题.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.考点:三角形中的几何计算;正弦定理的应用;余弦定理的应用.专题:计算题;综合题.分析:(1)由三角形的面积公式,结合余弦定理求出的值,进而有sinA=.(2)利用,结合正弦定理,求出b+c的值,利用三角形的面积公式和基本不等式求出面积的最大值.解答:解:(1)得进而有(2)∵,∴即所以故当b=c=8时,S最大=.点评:本题是中档题,考查三角函数的化简,正弦定理、余弦定理的应用,三角形的面积公式以及基本不等式的应用,考查计算能力,逻辑推理能力.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.考点:三角形中的几何计算;正弦定理.专题:计算题.分析:(1)利用余弦定理和题设等式求得cosA的值,进而求得A.(2)利用正弦定理把题设中的正弦转化成边的关系,进而求得bc的值,最后利用三角形面积公式求得答案.解答:解:(1)因为b2+c2﹣a2=2bccosA=bc所以所以(2)因为sin2B+sin2C=2sin2A所以b2+c2=2a2=2因为b2+c2﹣a2=bc所以bc=1所以=点评:本题主要考查了正弦定理和余弦定理的应用.注意挖掘题设中关于边,角问题的联系.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?考点:三角形中的几何计算.专题:综合题.分析:(1)由题意画出简图,设CN=x,则QD=5﹣x,路灯高BD为h,利用三角形相似建立方程解德;(2)由题意当小迪移到BD所在线上(设为DH),连接AH交地面于E,则DE长即为所求的影长,利用三角形相似建立方程求解即可.解答:解:如图所示,设A、B为两路灯,小迪从MN移到PQ,并设C、D分别为A、B灯的底部.由题中已知得MN=PQ=1.6m,NQ=5m,CD=10m(1)设CN=x,则QD=5﹣x,路灯高BD为h∵△CMN∽△CBD,即⇒又△PQD∽△ACD即⇒由①②式得x=2.5m,h=6.4m,即路灯高为6.4m.(2)当小迪移到BD所在线上(设为DH),连接AH交地面于E.则DE长即为所求的影长.∵△DEH∽△CEA⇒⇒解得DE=m,即他在A路灯下的身影长为m.点评:此题考查了学生理解题意的能力,还考查了利用三角形相似及方程思想求解变量及学生的计算能力.22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.考点:三角形中的几何计算.专题:计算题.分析:(1)求AB长,关键是求sinB,sinC,利用已知条件可求;(2)根据三角形的面积公式,故关键是求sinA的值,利用sinA=sin(B+C)=sinBcosC+cosBsinC可求解答:解:(1)设AB、BC、CA的长分别为c、a、b,,∴,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)因为.∴sinA=sin(B+C)=sinBcosC+cosBsinC=﹣﹣﹣﹣﹣﹣﹣(12分)故所求面积﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题的考点是三角形的几何计算,主要考查正弦定理得应用,考查三角形的面积公式,关键是正确记忆公式,合理化简.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②考点:三角形中的几何计算.专题:计算题;分类讨论.分析:(1)先根据正弦定理以及大角对大边求出角C,再根据三角形内角和为180°即可求出角A.(2)分情况分别代入三角形的面积计算公式即可得到答案;(3)直接根据前两问的结论填写即可.解答:解:(1)∵,…(2分)∵c>b,C>B,∴C=60°,此时A=90°,或者C=120°,此时A=30°…(2分)(2)∵S=bcsinA∴A=90°,S=bcsinA=;A=30°,S=bcsinA=.…(2分)(3)点评:本题主要考查三角形中的几何计算.解决本题的关键在于根据正弦定理以及大角对大边求出角C.24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.考点:三角形中的几何计算;解三角形.专题:计算题;数形结合.分析:(1)由正弦定理知===2R,根据题目中所给的条件,不难得出弦AB的长;(2)若∠C是钝角,故其余弦值小于0,由余弦定理得到a2+b2<c2<(2R)2,即可证得结果;(3)根据图形进行分类讨论判断三角形的形状与两边a,b的关系,以及与直径的大小的比较,分成三类讨论即可.解答:解:(1)在△ABC中,BC=2,∠ABC=45°===2R⇒b=2sinA=∵A为锐角∴A=30°,B=45°∴C=75°∴AB=2Rsin75°=4sin75°=;(2)∠C为钝角,∴cosC<0,且cosC≠1cosC=<0∴a2+b2<c2<(2R)2即a2+b2<4R2(8分)(3)a>2R或a=b=2R时,△ABC不存在当时,A=90,△ABC存在且只有一个∴c=当时,∠A=∠B且都是锐角sinA=sinB=时,△ABC存在且只有一个∴c=2RsinC=2Rsin2AC=当时,∠B总是锐角,∠A可以是钝角,可是锐角∴△ABC存在两个∠A<90°时,c=∠A>90°时,c=点评:本题考查三角形中的几何计算,综合考查了三角形形状的判断,解三角形,三角形的外接圆等知识,综合性很强,尤其是第三问需要根据a,b两边以及直径的大小比较确定三角形的形状.再在这种情况下求第三边的表达式,本解法主观性较强.难度较大.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.考点:三角形中的几何计算.专题:计算题.分析:(Ⅰ)根据∥和两向量的坐标可求得,利用正弦定理把边转化成角的正弦,然后利用两角和公式化简整理求得cosA的值,进而求得A(Ⅱ)把A的值代入,利用两角和公式整理后,利用正弦函数的性质求得2cos2B+sin(A﹣2B)的最小值.解答:解:(Ⅰ)由得.由正弦定理得,.∴.∵A,B∈(0,π),∴sinB≠0,,∴.(Ⅱ)解:∵∴2cos2B+sin(A﹣2B)==,.2cos2B+sin(A﹣2B)的最小值为点评:本题主要考查了三角形中的几何计算,正弦定理的应用和两角和公式的化简求值.注意综合运用三角函数的基础公式,灵活解决三角形的计算问题.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.考点:正弦定理的应用;三角形中的几何计算.专题:计算题.分析:(1)由已知结合正弦与余弦定理=化简可求b,由余弦定理可得,cosA=代入可求cosA,及A(2)代入三角形的面积公式可求解答:解:(1)∵∵∴=化简可得,b2﹣2b﹣8=0∴b=4由余弦定理可得,cosA==∴;(2)==点评:本题主要考查了解三角形的基本工具:正弦定理与余弦定理的应用,解题的关键是具备综合应用知识解决问题的能力27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.考点:三角函数中的恒等变换应用;三角形中的几何计算.专题:计算题.分析:(Ⅰ)利用正弦定理化简(2a+c)cosB+bcosC=0,得到三角形的角的关系,通过两角和与三角形的内角和,求出B的值;(Ⅱ)通过S=,利用B=以及a+c=4,推出△ABC面积S的表达式,通过平方法结合a的范围求出面积的最大值.解答:解(Ⅰ)由正弦定理得(2sinA+sinC)cosB+sinBcosC=0,即2sinAcosB+sinCcosB+cosCsinB=0得2sinACcosB+sin(C+B)=0,因为A+B+C=π,所以sin(B+C)=sinA,得2sinAcosB+sinA=0,因为sinA≠0,所以cosB=﹣,又B为三角形的内角,所以B=.(Ⅱ)因为S=,由B=及a+c=4得S===,又0<a<4,所以当a=2时,S取最大值…(3分)点评:本题是中档题,考查三角形面积的最值,三角形的边角关系,三角函数的公式的灵活应用,考查计算能力.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.考点:三角函数的恒等变换及化简求值;三角形中的几何计算.专题:综合题.分析:(1)由,推出,利用坐标表示化简表达式,结合余弦定理求角C;(2)利用(1)中c2=a2+b2﹣ab,应用正弦定理和基本不等式,求三角形ABC的面积S的最大值.解答:解答:解:(1)∵∴且,由正弦定理得:化简得:c2=a2+b2﹣ab由余弦定理:c2=a2+b2﹣2abcosC∴,∵0<C<π,∴(2)∵a2+b2﹣ab=c2=(2RsinC)2=6,∴6=a2+b2﹣ab≥2ab﹣ab=ab(当且仅当a=b时取“=”),所以,.点评:本题考查数量积判断两个平面向量的垂直关系,正弦定理,余弦定理的应用,考查学生分析问题解决问题的能力,是中档题.。

高中数学例题错题详解

高中数学例题错题详解

高中数学经典例题、错题详解【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是M NA M NBM NCM ND映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射;函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数;函数的本质是建立在两个非空数集上的特殊对应映射与函数的区别与联系:函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应;映射与函数特殊对应的共同特点:错误!可以是“一对一”;错误!可以是“多对一”;错误!不能“一对多”;错误!A中不能有剩余元素;错误!B中可以有剩余元素;映射的特点:1多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;2方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;3映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;4唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;5一一映射是一种特殊的映射方向性上题答案应选C分析根据映射的特点错误!不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数特殊对应的全部5个特点;本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题;【例2】已知集合A=R,B={x、y︱x、y∈R},f是从A到B的映射fx:→x+1、x2,1求2在B中的对应元素;22、1在A中的对应元素分析1将x=2代入对应关系,可得其在B中的对应元素为2+1、1;2由题意得:x+1=2,x2=1 得出x=1, 即2、1在A中的对应元素为1【例3】设集合A={a、b},B={c、d、e},求:1可建立从A到B的映射个数;2可建立从B到A的映射个数分析如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8例4 若函数fx为奇函数,且当x﹥0时,fx=x-1,则当x﹤0时,有A、fx ﹥0B、fx ﹤0C、fx·f-x≤0D、fx-f-x ﹥0奇函数性质:1、图象关于原点对称;2、满足f-x = - fx;3、关于原点对称的区间上单调性一致;4、如果奇函数在x=0上有定义,那么有f0=0;5、定义域关于原点对称奇偶函数共有的偶函数性质:1、 图象关于y 轴对称;2、满足f-x = fx ;3、关于原点对称的区间上单调性相反;4、如果一个函数既是奇函数有是偶函数,那么有fx=0;5、定义域关于原点对称奇偶函数共有的 基本性质:唯一一个同时为奇函数及偶函数的函数为其值为0的常数函数即对所有x,fx=0; 通常,一个偶函数和一个奇函数的相加不会是奇函数也不会是偶函数;如x + x 2; 两个偶函数的相加为偶函数,且一个偶函数的任意常数倍亦为偶函数; 两个奇函数的相加为奇函数,且一个奇函数的任意常数倍亦为奇函数; 两个偶函数的乘积为一个偶函数; 两个奇函数的乘积为一个偶函数;一个偶函数和一个奇函数的乘积为一个奇函数; 两个偶函数的商为一个偶函数; 两个奇函数的商为一个偶函数;一个偶函数和一个奇函数的商为一个奇函数; 一个偶函数的导数为一个奇函数; 一个奇函数的导数为一个偶函数;两个奇函数的复合为一个奇函数,而两个偶函数的复合为一个偶函数; 一个偶函数和一个奇函数的复合为一个偶函数分析 fx 为奇函数,则f-x = -fx,当X ﹤0时,fx = -f-x = ---x – 1 = -x+1>0,所以A 正确,B 错误; fx·f-x=x-1-x+1﹤0,故C 错误; fx-f-x= x-1--x+1﹤0,故D 错误例5 已知函数fx 是偶函数,且x ≤0时,fx=xx-+11,求:1f5的值; 2fx=0时x 的值;3当x >0时,fx 的解析式考点 函数奇偶性的性质 专题计算题,函数的性质及应用 分析及解答1根据题意,由偶函数的性质fx= f-x,可得f5= f-5=)()(5--15-1+=—322当x ≤0时,fx=0 可求x,然后结合fx= f-x,即可求解满足条件的x, 即当x ≤0时,xx-+11=0 可得x=—1;又f1= f-1,所以当fx=0时,x=±1 3当x >0时,根据偶函数性质fx= f-x=)(1)(1x x ---+=xx+-11例6 若fx=e x +ae -x 为偶函数,则fx-1<ee 12+的解集为A.2,+∞B.0,2C.-∞,2D.-∞,0∪2,+∞考点 函数奇偶性的性质 专题转化思想;综合法;函数的性质及应用 分析及解答根据函数奇偶性的性质先求出a 值,结合函数单调性的性质求解即可∵fx=e x +ae -x 为偶函数,∴f-x=e -x +ae x = fx= e x +ae -x ,∴a=1, ∴fx=e x +e -x 在0,+∞上单调递增,在-∞,0上单调递减,则由fx-1<ee 12+=e+e 1, ∴ -1 <x-1<1, 求得 0 <x <2 故B 正确点评 本题主要考查不等式的求解,根据函数奇偶性的性质先求出a 值是解题关键 例7 函数fx=21xb ax ++是定义在-1,1上的奇函数,且f 21=52,1确定函数fx 的解析式;2证明fx 在-1,1上为增函数;3解不等式f2x-1+ fx <0考点 函数奇偶性与单调性的综合 专题函数的性质及应用 分析及解答(1) 因为fx 为-1,1上的奇函数,所以f0=0,可得b=0,由f 21=52,所以2)21(121+a=52,得出a=1,所以fx= 21x x + (2) 根据函数单调性的定义即可证明任取-1 <x 1<x 2<1,fx 1—fx 2=2111x x +—2221x x +=)1)(1()1)((22212121x x x x x x ++--因为-1 <x 1<x 2<1,所以x 1-x 2<0,1—x 1x 2>0,所以fx 1—fx 2 <0, 得出fx 1 <fx 2,即fx 在-1,1上为增函数(3) 根据函数的奇偶性、单调性可去掉不等式中的符号“f ”,再考虑到定义域可得一不等式组,解出即可:f2x-1+ fx= <0,f2x-1 <—fx,由于fx 为奇函数,所以f2x-1 <f —x,因为fx 在-1,1上为增函数,所以2x-1<—x 错误!, 因为-1 <2x-1<1错误!,-1 <x <1错误!,联立错误!错误!错误!得0 < x <31,所以解不等式f2x-1+ fx <0的解集为0,31 点评 本题考查函数的奇偶性、单调性及抽象不等式的求解,定义是解决函数单调性、奇偶性的常用方法,而抽象不等式常利用性质转化为具体不等式处理;例8 定义在R 上的奇函数fx 在0,+∞上是增函数, 又f-3=0,则不等式x fx <0的解集为 考点 函数单调性的性质 专题综合题;函数的性质及应用分析及解答 易判断fx 在-∞,0上的单调性及fx 图像所过特殊点,作出fx 草图,根据图像可解不等式; 解:∵ fx 在R 上是奇函数,且fx 在0,+∞上是增函数,∴ fx 在-∞,0上也是增函数,由f-3=0,可得- f3=0,即f3=0,由f-0=-f0,得f0=0 作出fx 的草图,如图所示:由图像得:x fx <0⇔⎩⎨⎧〈〉0)(0x f x 或⎩⎨⎧〉〈0)(0x f x ⇔0﹤x ﹤3或-3﹤x ﹤0,∴ x fx <0的解集为:-3,0∪0,3,故答案为:-3,0∪0,3点评 本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键; 例9 已知fx+1的定义域为-2,3,则f2x+1的定义域为抽象函数定义域求法总结:1函数y=fgx 的定义域是a,b,求fx 的定义域:利用a <x <b,求得gx 的范围就是fx 的定义域;2函数y=fx 的定义域是a,b,求y=fgx 的定义域:利用a <gx <b,求得x 的范围就是y=fgx 的定义域;考点 函数定义域极其求法分析及解答 由fx+1的定义域为-2,3,求出 fx 的定义域,再由2x+1在函数fx 的定义域内求解x 的取值集合,得到函数f2x+1的定义域;解:由fx+1的定义域是-2,3,得-1≤x+1≤4 ;再由-1≤2x+1≤4 0≤x ≤25 ∴ f2x+1的定义域是0,25,故选A 点评 本题考查了复合函数定义域的求法,给出函数fgx 的定义域是a,b,求函数fx 的定义域,就是求x ∈a,b 内的gx 的值域;给出函数fx 的定义域是a,b,只需由a <gx <b,求解x 的取值集合即可; 例10 已知函数fx=x 7+ax 5+bx-5,且f-3= 5,则f3=A. -15B. 15 考点 函数的值;奇函数分析及解答 令gx= x 75当时,函数图像如图,由图知:只有当时,函数的图像在x 轴上方,即时,因为函数收偶函数,偶函数的图像关于y 轴对称,所以时,函数的图像在x 轴上方时,只有则不等式的解集为故选D 18、如果函数fx=x2+2a-1x+2在区间-∞,4行单调递减,那么实数a 的取值范围是 ≦-3 ≧-3 ≦5 ≧519、定义在R 上的函数)(x f 对任意两个不相等实数a,b,总有ba b f a f --)()(>0成立,则必有_______ A. )(x f 在R 上是增函数 B. )(x f 在R 上是减函数 C.函数)(x f 是先增加,后减少 D.函数)(x f 是先减少,后增加解:利用函数单调性定义,在定义域上任取x 1,x 2∈R,且x 1<x 2,因为ba b f a f --)()(>0 所以fa-fb<0,所以)(x f 在R 上是增函数;20、对于定义域R 上的函数fx,有下列命题:1若fx 满足f2>f1,则fx 在R 上时减函数;2若fx 满足f-2=f2,则函数fx 不是奇函数;3若函数fx 在区间-∞,0上是减函数,在区间0,+∞也是减函数,则fx在R 上也是减函数;4若fx 满足f-2=f2,则函数fx 不是偶函数;其中正确的是_____________________21、函数fx=x ∣x-2∣,1求作函数Y=fx 的图象;2写出函数fx 的单调区间并指出在各区间上是增函数还是减函数不必证明3已知fx=1,求x 的值22、函数Fx 是定义域为R 的偶函数,当x ≧0 时,fx=x2-x,1画出函数fx 的图象不列表;2求函数fx的解析式;3讨论方程fx-k=0的根的情况23、已知fx 的定义域为-2,3,则f2x-1的定义域为A.0,5/2B.-4,4C.-5,5D.-3,724、已知函数⎪⎩⎪⎨⎧〉-≤++=)0(10)0(63)(2x x x x a x f 且fa=10,则a= 或125、已知函数fx=x7+ax 5+bx-5,则f3=26、若函数fx=4x 2-kx-8在区间5,8上是单调函数,则k 的取值范围是A.-∞,0B.40,64C.- ∞,40∪64,+∞D.64,+ ∞27、已知二次函数fx=x 2+x+aa>0,若fm<0,则fm+1的值为A.正数B.负数C.零D.符号与a 有关 28、函数fx=∣x 2-2x ∣-m 有两个零点,m 的取值范围__________29、已知函数fx 和gx 均为奇函数,hx=afx+bgx+2,在区间0,+∞有最大值5,那么hx 在区间0,+∞的最小值为________30、对于每个实数x,设fx 取y=x+1,y=2x+1,y=-2x 三个函数中的最大值,用分段函数的形式写出fx 的解析式,求出fx 的最小值由方程组y=x+1,y=2x+1,解得x=0,y=1,得到交点A0,1;由方程组y=x+1,y=-2x,解得x=-1/3,y=2/3,得到交点B-1/3,2/3;由方程组y=2x+1,y=-2x,解得x=-1/4,y=1/2,得到交点C-1/4,1/2.由图像容易看出:1x <-1/3时,三直线的最大值是y=-2x,所以在此时fx=-2x;2-1/3≤x ≤0时,三直线的最大值是y=x+1,所以此时的fx=x+1;3x >0时,三直线中最大值是y=2x+1,所以此时的fx=2x+1.所以fx=-2x ;x <-1/3,x+1;-1/3≤x ≤0,2x+1.x >01考察函数的图像由射线—线段—射线组成的折线可以看出函数的最小值是x=1/3时的y=2/3.31、已知函数fx=x 2+ax+3,1当X ∈R 时,fx ≧a 恒成立,求a 的取值范围;2当X ∈-2,2时,fx ≧a 恒成立,求a 的取值范围;3若对一切a ∈-3,3,不等式fx ≥a 恒成立,那么实数x 的取值范围是什么 1fx ≥a 即x 2+ax+3-a ≥0,要使x ∈R 时,x 2+ax+3-a ≥0恒成立,应有△=a 2-43-a ≤0,即a 2+4a-12≤0,解得-6≤a ≤2;2当x ∈-2,2时,令gx=x 2+ax+3-a,当x ∈-2,2时,fx ≥a 恒成立,转化为gx min ≥a,分以下三种情况讨论:①当-a/2≤-2,即a ≥4时,gx 在-2,2上是增函数,∴gx 在-2,2上的最小值为g-2=7-3a,∴a ≤4 7-3a ≥0,解得a 无解②当-a/2≥-2,即a ≤4时,gx 在-2,2上是递减函数,∴gx 在-2,2上的最小值为g2=7+a,∴a ≤-4 7+a ≥0 解得-7≤a ≤-4③当-2<a/2<2时,即-4<a <4时,gx 在-2,2上的最小值为34)2(22+--=a a a g ⇒ ⇒⎪⎩⎪⎨⎧〈〈-+-4434a -2a a -4<a ≤2,解得-4<a ≤2,综上所述,实数a 的取值范围是-7≤a ≤2;3不等式fx ≥a 即x 2+ax+3-a ≥0.令ha=x-1a+x 2+3,要使ha ≥0在-3,3上恒成立,只需⎩⎨⎧≥≥-0)3(0)3(h h 即⎩⎨⎧≥+≥+-030632x x x x 解得:x ≥0或x ≤-3。

高一数学必修5不等式易错题及错解分析

高一数学必修5不等式易错题及错解分析

必修5不等式易错题及错解分析一、选择题:1.设()lg ,f x x =若0<a<b<c,且f(a)>f(b)>f(c),则下列结论中正确的是A (a-1)(c-1)>0B ac>1C ac=1D ac>1错解原因是没有数形结合意识,正解是作出函数()lg f x x =的图象,由图可得出选D. 2.设,,1x y R x y ∈+>则使成立的充分不必要条件是A 1x y +≥B 1122x y >>或 C 1x ≥ D x<-1 错解:选B,对充分不必要条件的概念理解不清,“或”与“且”概念不清,正确答案为D 。

3.不等式(0x -≥的解集是A {|1}x x >B {|1}x x ≥C {|21}x x x ≥-≠且D {|21}x x x =-≥或 错解:选B ,不等式的等价转化出现错误,没考虑x=-2的情形。

正确答案为D 。

4.某工厂第一年的产量为A ,第二年的增长率为a,第三年的增长率为b ,这两年的平均增长率为x,则A 2a b x +=B 2a b x +≤C 2a b x +>D 2a bx +≥ 错解:对概念理解不清,不能灵活运用平均数的关系。

正确答案为B 。

5.已知1324a b a b -<+<<-<且,则2a+3b 的取值范围是A 1317(,)22-B 711(,)22-C 713(,)22-D 913(,)22- 错解:对条件“1324a b a b -<+<<-<且”不是等价转化,解出a,b 的范围,再求2a+3b的范围,扩大了范围。

正解:用待定系数法,解出2a+3b=52(a+b)12-(a-b),求出结果为D 。

6.若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( )A a ≤-21或a ≥21B a <21C -21≤a ≤21D a ≥ 21正确答案:D 错因:学生对一元二次不等式与二次函数的图象之间的关系还不能掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学经典例题、错题详解【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是()M NA M NBM NCM ND映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。

(函数的本质是建立在两个非空数集上的特殊对应)映射与函数的区别与联系:函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。

映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。

映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性上题答案应选C【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。

本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。

【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B中的对应元素;(2)(2、1)在A中的对应元素【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数()【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有()A、f(x) ﹥0B、f(x) ﹤0C、f(x)·f(-x)≤0D、f(x)-f(-x) ﹥0奇函数性质:1、图象关于原点对称;2、满足f(-x) = - f(x) ;3、关于原点对称的区间上单调性一致;4、如果奇函数在x=0上有定义,那么有f(0)=0;5、定义域关于原点对称(奇偶函数共有的)偶函数性质:1、图象关于y轴对称;2、满足f(-x) = f(x) ;3、关于原点对称的区间上单调性相反;4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0;5、定义域关于原点对称(奇偶函数共有的)基本性质:唯一一个同时为奇函数及偶函数的函数为其值为0的常数函数(即对所有x,f(x)=0)。

通常,一个偶函数和一个奇函数的相加不会是奇函数也不会是偶函数;如x + x 2。

两个偶函数的相加为偶函数,且一个偶函数的任意常数倍亦为偶函数。

两个奇函数的相加为奇函数,且一个奇函数的任意常数倍亦为奇函数。

两个偶函数的乘积为一个偶函数。

两个奇函数的乘积为一个偶函数。

一个偶函数和一个奇函数的乘积为一个奇函数。

两个偶函数的商为一个偶函数。

两个奇函数的商为一个偶函数。

一个偶函数和一个奇函数的商为一个奇函数。

一个偶函数的导数为一个奇函数。

一个奇函数的导数为一个偶函数。

两个奇函数的复合为一个奇函数,而两个偶函数的复合为一个偶函数。

一个偶函数和一个奇函数的复合为一个偶函数【分析】 f(x)为奇函数,则f(-x) = -f(x),当X ﹤0时,f(x) = -f(-x) = -[-(-x) – 1] = -x+1>0,所以A 正确,B 错误; f(x)·f(-x)=(x-1)(-x+1)﹤0,故C 错误; f(x)-f(-x)= (x-1)-(-x+1)﹤0,故D 错误【例5】 已知函数f(x)是偶函数,且x ≤0时,f(x)=xx-+11,求:(1)f(5)的值; (2)f(x)=0时x 的值;(3)当x >0时,f(x)的解析式【考点】 函数奇偶性的性质 【专题】计算题,函数的性质及应用 【分析及解答】(1)根据题意,由偶函数的性质f(x)= f(-x),可得f(5)= f(-5)=)()(5--15-1+=—32(2)当x ≤0时,f(x)=0 可求x ,然后结合f(x)= f(-x),即可求解满足条件的x , 即当x ≤0时,xx-+11=0 可得x=—1;又f(1)= f(-1),所以当f(x)=0时,x=±1 (3)当x >0时,根据偶函数性质f(x)= f(-x)=)(1)(1x x ---+=xx+-11【例6】 若f(x)=e x +ae -x 为偶函数,则f(x-1)<ee 12+的解集为( )A.(2,+∞)B.(0,2)C.(-∞,2)D.(-∞,0)∪(2,+∞) 【考点】 函数奇偶性的性质 【专题】转化思想;综合法;函数的性质及应用 【分析及解答】根据函数奇偶性的性质先求出a 值,结合函数单调性的性质求解即可 ∵f(x)=e x +ae -x 为偶函数,∴f(-x)=e -x +ae x = f(x)= e x +ae -x ,∴a=1, ∴f(x)=e x +e -x 在(0,+∞)上单调递增,在(-∞,0)上单调递减,则由f(x-1)<ee 12+=e+e 1, ∴ -1 <x-1<1, 求得 0 <x <2 故B 正确【点评】 本题主要考查不等式的求解,根据函数奇偶性的性质先求出a 值是解题关键 【例7】 函数f(x)=21xb ax ++是定义在(-1,1)上的奇函数,且f(21)=52,(1)确定函数f(x)的解析式;(2)证明f(x)在(-1,1)上为增函数;(3)解不等式f(2x-1)+ f(x) <0【考点】 函数奇偶性与单调性的综合 【专题】函数的性质及应用 【分析及解答】(1) 因为f(x)为(-1,1)上的奇函数,所以f(0)=0,可得b=0,由f(21)=52,所以2)21(121+a=52,得出a=1,所以f(x)= 21x x +(2) 根据函数单调性的定义即可证明任取-1 <x 1<x 2<1,f(x 1)—f(x 2)=2111x x +—2221x x +=)1)(1()1)((22212121x x x x x x ++--因为-1 <x 1<x 2<1,所以x 1-x 2<0,1—x 1x 2>0,所以f(x 1)—f(x 2) <0, 得出f(x 1) <f(x 2),即f(x)在(-1,1)上为增函数(3) 根据函数的奇偶性、单调性可去掉不等式中的符号“f ”,再考虑到定义域可得一不等式组,解出即可:f(2x-1)+ f(x)= <0,f(2x-1) <—f(x),由于f(x)为奇函数,所以f(2x-1) <f(—x),因为f(x)在(-1,1)上为增函数,所以2x-1<—x ○1, 因为-1 <2x-1<1○2,-1 <x <1○3,联立○1○2○3得 0 < x <31,所以解不等式f(2x-1)+ f(x) <0的解集为(0,31) 【点评】 本题考查函数的奇偶性、单调性及抽象不等式的求解,定义是解决函数单调性、奇偶性的常用方法,而抽象不等式常利用性质转化为具体不等式处理。

【例8】 定义在R 上的奇函数f(x)在(0,+∞)上是增函数, 又f(-3)=0,则不等式x f(x) <0的解集为( ) 【考点】 函数单调性的性质 【专题】综合题;函数的性质及应用【分析及解答】 易判断f(x)在(-∞,0)上的单调性及f(x)图像所过特殊点,作出f(x)草图,根据图像可解不等式。

解:∵ f(x)在R 上是奇函数,且f(x)在(0,+∞)上是增函数,∴ f(x)在(-∞,0)上也是增函数,由f(-3)=0,可得- f(3)=0,即f(3)=0,由f(-0)=-f(0),得f(0)=0 作出f(x)的草图,如图所示:由图像得:x f(x) <0⇔⎩⎨⎧〈〉0)(0x f x 或⎩⎨⎧〉〈0)(0x f x ⇔0﹤x ﹤3或-3﹤x ﹤0,∴ x f(x) <0的解集为:(-3,0)∪(0,3),故答案为:(-3,0)∪(0,3)【点评】 本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键。

【例9】 已知f (x+1)的定义域为[-2,3],则f (2x+1)的定义域为( ) 抽象函数定义域求法总结:(1)函数y=f[g(x)]的定义域是(a ,b ),求f (x )的定义域:利用a <x <b ,求得g (x )的范围就是f (x )的定义域;(2)函数y=f (x )的定义域是(a ,b ),求y=f[g(x)]的定义域:利用a <g(x)<b ,求得x 的范围就是y=f[g(x)]的定义域。

【考点】 函数定义域极其求法【分析及解答】 由f (x+1)的定义域为[-2,3],求出 f (x )的定义域,再由2x+1在函数f (x )的定义域内求解x 的取值集合,得到函数f (2x+1)的定义域。

解:由f (x+1)的定义域是[-2,3],得-1≤x+1≤4 ;再由-1≤2x+1≤4 ⇒0≤x ≤25 ∴ f (2x+1)的定义域是[0,25],故选A 【点评】 本题考查了复合函数定义域的求法,给出函数f[g(x)]的定义域是(a ,b ),求函数f (x )的定义域,就是求x ∈(a ,b )内的g(x)的值域;给出函数f (x )的定义域是(a ,b ),只需由a <g(x) <b ,求解x 的取值集合即可。

【例10】 已知函数f(x)=x 7+ax 5+bx-5,且f(-3)= 5,则f(3)= ( )A. -15B. 15C.10D.-10 【考点】函数的值;奇函数75解:由题意方程ax 2+bx+c=0的两个根为x 1=-1/3,x 2=2即⎪⎩⎪⎨⎧-==⋅=-=+32352121a c x x a b x x 不等式cx 2+bx+a<0,转化为x 2+(b/c)x+c/a<0,即x 2+5/2x-3/2<0,解得方程x 2+5/2x-3/2=0的两个根为x 1=-3,x 2=1/2),因为x 2+(b/c)x+c/a<0,则解集为(-3,1/2)13、不等式ax 2+bx+c>0的解集为(-3,4),求b x 2+2ax-c-3b<0的解集14、关于x 的不等式(1+m )x 2+mx+m<x 2+1对x ∈R 恒成立,求实数x 的取值 解:由(1+m )x 2+mx+m<x 2+1⇒mx 2+mx+m-1<015、函数bx ax x f +=2)( (a ≠0)满足f(-3)=2,则f (3)的值为( ) 16、函数14--)(2+=x x x f (-3≦x ≦3)的值域是( ) 解:14--)(2+=x x x f =—(x+2)2+5 (-3≦x ≦3) 当x=-2时,函数最大值为5,当x=3时函数有最小值为-2017、偶函数f(x)的定义域[-5,5],其在[0,5]的图象如图所示,则f(x)的解集为( ) 本题考查偶函数的性质,函数的单调性及应用和不等式的解法,数形结合思想.当时,函数图像如图,由图知:只有当时,函数的图像在x 轴上方,即时,因为函数收偶函数,偶函数的图像关于y 轴对称,所以时,函数的图像在x 轴上方时,只有则不等式的解集为故选D18、如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]行单调递减,那么实数a 的取值范围是( )A.a ≦-3 B.a ≧-3 C.a ≦5 D.a ≧519、定义在R 上的函数)(x f 对任意两个不相等实数a ,b ,总有ba b f a f --)()(>0成立,则必有_______ A.)(x f 在R 上是增函数 B. )(x f 在R 上是减函数 C.函数)(x f 是先增加,后减少 D.函数)(x f 是先减少,后增加解:利用函数单调性定义,在定义域上任取x 1,x 2∈R ,且x 1<x 2,因为ba b f a f --)()(>0所以f(a)-f(b)<0,所以)(x f 在R 上是增函数。

相关文档
最新文档