牛顿运动定律中的疑难问题

合集下载

备战2024年高考物理考试易错点03 牛顿运动定律(3大陷阱)(解析版)

备战2024年高考物理考试易错点03 牛顿运动定律(3大陷阱)(解析版)

易错点03牛顿运动定律目录01易错陷阱(3大陷阱)02举一反三【易错点提醒一】对牛顿第二定律瞬时性的理解【易错点提醒二】对牛顿第二定律矢量性的理解【易错点提醒三】不会用整体法隔离法求解连接体问题【易错点提醒四】不会运动程序法分析的多过程【易错点提醒五】不会分析传送带模型【易错点提醒六】不会分析板块模型03易错题通关易错点一:对牛顿运动第二定律性质认识不足1.对牛顿第二定律的理解2.求解瞬时加速度的步骤易错点二:不会分析的多体、多过程问题1.求解各部分加速度都相同的连接体问题时,要优先考虑整体法;如果还需要求物体之间的作用力,再用隔离法.求解连接体问题时,随着研究对象的转移,往往两种方法交叉运用.一般的思路是先用其中一种方法求加速度,再用另一种方法求物体间的作用力或系统所受合力.无论运用整体法还是隔离法,解题的关键还是在于对研究对象进行正确的受力分析.2.当物体各部分加速度相同且不涉及求内力的情况,用整体法比较简单;若涉及物体间相互作用力时必须用隔离法.整体法与隔离法在较为复杂的问题中常常需要有机地结合起来运用,这将会更快捷有效.3.常见连接体的类型(1)同速连接体(如图)特点:两物体通过弹力、摩擦力作用,具有相同速度和相同加速度.处理方法:用整体法求出a与F合的关系,用隔离法求出F内力与a的关系.(2)关联速度连接体(如图)特点:两连接物体的速度、加速度大小相等,方向不同,但有所关联.处理方法:分别对两物体隔离分析,应用牛顿第二定律进行求解.4.用程序法解多过程问题程序法就是按时间的先后顺序对题目给出的物体运动过程(或不同的状态)进行分析(包括列式计算)的解题方法,运用程序法解题的基本思路是:(1)分析题意划分出题目中有多少个不同的过程或多少个不同状态;(2)对各个过程或各个状态进行具体分析(包括受力分析和运动分析),(3)分别由牛顿第二定律和运动学公式分过程列方程;(4)抓住不同过程的联系,前一个过程的结束是后一个过程的开始,两个过程的交接点是问题的关易错点三:不会分析的传送带和板块模型模型2.传送带问题的解题思路2.分析“板块”模型时要抓住一个转折和两个关联3.处理“滑块—木板”问题思维模板【易错点提醒一】对牛顿第二定律的瞬时性理解不透彻【例1】(2023·湖北卷·第9题)如图所示,原长为l 的轻质弹簧,一端固定在O 点,另一端与一质量为m 的小球相连。

牛顿运动定律典型问题总结

牛顿运动定律典型问题总结

牛顿运动定律典型问题总结问题1:牛顿第二定律的矢量性。

牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。

在解题时,可以利用正交分解法进行求解。

1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?问题2:牛顿第二定律的瞬时性。

牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。

物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。

当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。

2、如图2(a )所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。

现将L 2线剪断,求剪断瞬时物体的加速度。

(2)若将图2(a)中的细线L 1改为长度相同、质量不计的轻弹簧,如图2(b)所示,其他条件不变,求剪断L 2线瞬时物体的加速度。

问题3:牛顿第二定律的独立性。

当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理),而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。

那个方向的力就产生那个方向的加速度。

3、如图3所示,一个劈形物体M 放在固定的斜面上,上表面水平,在水平面上放有光滑小球m ,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是:A .沿斜面向下的直线B .抛物线C .竖直向下的直线 D.无规则的曲线。

4:牛顿第二定律的同体性。

加速度和合外力(还有质量)是同属一个物体的,所以解题时一定要把研究对象确定好,把研究对象全过程的受力情况都搞清楚。

4、一人在井下站在吊台上,用如图4所示的定滑轮装置拉绳把吊台和自己提升上来。

高考物理牛顿运动定律易错剖析含解析

高考物理牛顿运动定律易错剖析含解析

高考物理牛顿运动定律易错剖析含解析一、高中物理精讲专题测试牛顿运动定律1.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.2.近年来,随着AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以v 0=2m/s 的恒定速率顺时针运行,传送带的长度为L =7.6m.机械手将质量为1kg 的包裹A 轻放在传送带的左端,经过4s 包裹A 离开传送带,与意外落在传送带右端质量为3kg 的包裹B 发生正碰,碰后包裹B 在水平面上滑行0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹A 、B 与水平面间的动摩擦因数均为0.1,取g =10m/s 2.求:(1)包裹A 与传送带间的动摩擦因数; (2)两包裹碰撞过程中损失的机械能; (3)包裹A 是否会到达分拣通道口.【答案】(1)μ1=0.5(2)△E =0.96J (3)包裹A 不会到达分拣通道口 【解析】 【详解】(1)假设包裹A 经过t 1时间速度达到v 0,由运动学知识有01012v t v t t L +-=() 包裹A 在传送带上加速度的大小为a 1,v 0=a 1t 1包裹A 的质量为m A ,与传输带间的动摩檫因数为μ1,由牛顿运动定律有:μ1m A g =m A a 1 解得:μ1=0.5(2)包裹A 离开传送带时速度为v 0,设第一次碰后包裹A 与包裹B 速度分别为v A 和v B , 由动量守恒定律有:m A v 0=m A v A +m B v B包裹B 在水平面上滑行过程,由动能定理有:-μ2m B gx =0-12m B v B 2 解得v A =-0.4m/s ,负号表示方向向左,大小为0.4m/s 两包裹碰撞时损失的机械能:△E =12m A v 02 -12m A v A 2-12m B v B 2 解得:△E =0.96J(3)第一次碰后包裹A 返回传送带,在传送带作用下向左运动x A 后速度减为零,由动能定理可知-μ1m A gx A=0-12m A v A2解得x A=0.016m<L,包裹A在传送带上会再次向右运动.设包裹A再次离开传送带的速度为v A′μ1m A gx A=12m A v A′2解得:v A′ =0.4m/s设包裹A再次离开传送带后在水平面上滑行的距离为x A-μ2m A gx A′=0-12m A v A2解得x A′=0.08mx A′=<0.32m包裹A静止时与分拣通道口的距离为0.24m,不会到达分拣通道口.3.某研究性学习小组利用图a所示的实验装置探究物块在恒力F作用下加速度与斜面倾角的关系。

高中物理牛顿运动定律的应用易错剖析及解析

高中物理牛顿运动定律的应用易错剖析及解析

高中物理牛顿运动定律的应用易错剖析及解析一、高中物理精讲专题测试牛顿运动定律的应用1.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0,从t=0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度内,重力加速度大小为g .求:(1)弹簧的劲度系数; (2)物块b 加速度的大小;(3)在物块a 、b 分离前,外力大小随时间变化的关系式.【答案】(1)08sin 5mg x θ (2)sin 5g θ(3)22084sin sin 2525mg F mg x θθ=+【解析】 【详解】(1)对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有:kx 0=(m+35m )gsinθ 解得:k=8 5mgsin x θ(2)由题意可知,b 经两段相等的时间位移为x 0;由匀变速直线运动相邻相等时间内位移关系的规律可知:1014x x = 说明当形变量为0010344x x x x =-=时二者分离; 对m 分析,因分离时ab 间没有弹力,则根据牛顿第二定律可知:kx 1-mgsinθ=ma 联立解得:a=15gsin θ(3)设时间为t ,则经时间t 时,ab 前进的位移x=12at 2=210gsin t θ则形变量变为:△x=x 0-x对整体分析可知,由牛顿第二定律有:F+k △x-(m+35m )gsinθ=(m+35m )a解得:F=825mgsinθ+22425mg sinxθt2因分离时位移x=04x由x=04x=12at2解得:052xtgsinθ=故应保证0≤t<052xgsinθ,F表达式才能成立.点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.2.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示.0t=时刻开始,小物块与木板一起以共同速度向右运动,直至1t s=时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s时间内小物块的v t-图线如图(b)所示.木板的质量是小物块质量的15倍,重力加速度大小g取10m/s2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ;(2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m(3)6.5m【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v4m/s=碰撞后木板速度水平向左,大小也是v4m/s=木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sgsμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s=,位移 4.5x m=,末速度v4m/s=其逆运动则为匀加速直线运动可得212x vt at=+带入可得21/a m s=木块和木板整体受力分析,滑动摩擦力提供合外力,即1g aμ=可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s = 滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁3.如图,有一质量为M =2kg 的平板车静止在光滑的水平地面上,现有质量均为m =1kg 的小物块A 和B (均可视为质点),由车上P 处开始,A 以初速度=2m/s 向左运动,同时B 以=4m/s 向右运动,最终A 、B 两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。

牛顿定律重难点解析,还不转走

牛顿定律重难点解析,还不转走

牛顿定律重难点解析牛顿第一定律一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止.(1)运动是物体的一种属性,物体的运动不需要力来维持. (2)定律说明了任何物体都有惯性.(3)不受力的物体是不存在的.牛顿第一定律不能用实验直接验证.但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的.它告诉了人们研究物理问题的另一种新方法: 通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律.(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系.惯性物体保持匀速直线运动状态或静止状态的性质.(1)惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关. 因此说,人们只能“利用”惯性而不能“克服”惯性.(2)质量是物体惯性大小的量度.牛顿第二定律物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式 F 合=ma(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础.(2)对牛顿第二定律的数学表达式 F 不能把ma 看作是力.(3)牛顿第二定律揭示的是力的瞬间效果.即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度.(4)牛顿第二定律 F 合=ma,合是矢量,也是矢量,ma 与 F F ma 且可以进行合成与分解,ma 也可以进行合成与分解.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上.(1)牛顿第三运动定律指出了两物体之间的作用是相互的,因而力总是成对出现的,它们总是同时产生,同时消失.(2)作用力和反作用力总是同种性质的力.(3)作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可叠加.适用范围宏观低速的物体和在惯性系中.超重和失重(1)超重:物体有向上的加速度称物体处于超重.处于超重的物体对支持面的压力 F N (或对悬挂物的拉力)大于物体的重力mg,即 F N =mg+ma.(2)失重:物体有向下的加速度称物体处于失重.处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg.即FN=mg-ma.当a=g 时F N =0,物体处于完全失重.(3)对超重和失重的理解应当注意的问题①不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物合合=ma,F 合是力,ma 是力的作用效果,特别要注意的方向总是一致的.F 合的压力(或对悬挂物的拉力)不等于物体本身的重力.②超重或失重现象与物体的速度无关,只决定于加速度的方向.“加速上升”和“减速下降”都是超重;“加速下降”和“减速上升”都是失重.③在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等.。

高考物理牛顿运动定律的应用易错剖析及解析

高考物理牛顿运动定律的应用易错剖析及解析

高考物理牛顿运动定律的应用易错剖析及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC 方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图所示,一速度v =4m/s 顺时针匀速转动的水平传送带与倾角θ=37°的粗糙足长斜面平滑连接,一质量m =2Kg 的可视为质点的物块,与斜面间的动摩擦因数为μ1=0.5,与传送带间的动摩擦因数为µ2=0.4,小物块以初速度v 0=10m/s 从斜面底端上滑求:(g =10m/s 2) (1)小物块以初速度v 0沿斜面上滑的最大距离?(2)要使物块由斜面下滑到传送带上时不会从左端滑下,传送带至少多长?(3)若物块不从传送带左端滑下,物块从离传送带右侧最远点到再次上滑到斜面最高点所需时间?【答案】(1) x 1=5m (2) L =2.5m (3)t =1.525s【解析】(1)小物块以初速度v 0沿斜面上滑时,以小物块为研究对象,由牛顿第二定律得: 1sin cos mg mg ma θμθ+=,解得2110/a m s =设小物块沿沿斜面上滑距离为x 1,则211020a x v -=-,解得15x m =(2)物块沿斜面下滑时以小物块为研究对象,由牛顿第二定律得:2sin cos mg mg ma θμθ-=,解得: 222/a m s =设小物块下滑至斜面底端时的速度为v 1,则21212v a x =解得: 125/v m s =设小物块在传送带上滑动时的加速度为a 3, 由牛顿第二定律得: 23µmg ma =,解得: 234/a m s =设物块在传送带向左滑动的最大距离为L ,则23120a L v -=-,解得: 2.5L m = 传送带至少2.5m 物块不会由传送带左端滑下(3)设物块从传送带左端向右加速运动到和传送带共速运动的距离为x 2,则222ax v =,解得: 22 2.5x m m =<,故小物体先加速再随传送带做匀速运动。

牛顿运动定律典型问题分析(精品)

牛顿运动定律典型问题分析(精品)

牛顿运动定律【知识要点】 一、牛顿定律1.牛顿第一定律:惯性定律;惯性;平衡。

2.牛顿第三定律:一对相互作用力和一对平衡力的区别。

3.牛顿第二定律:因果性;瞬时性;矢量性;∑∑F m a F m a x xy y==⎧⎨⎪⎩⎪·· 二、隔离法和整体法:是解动力学习题的基本方法。

但用这一基本技巧解题时,应注意: 1、当用隔离法时,必须按题目的需要进行恰当的选择隔离体,否则将增加运算过程的繁琐程度。

2、只要有可能,要尽量运用整体法。

因为整体法的好处是,各隔离体之间的许多未知力,都作为内力而不出现在牛顿第二定律方程式中,对整体列一个方程即可。

3、用整体法解题时,必须满足一个条件,即连结体各部分加速度的值是相同的。

如果不是这样,便只能用隔离法求解。

4、往往是一道题中要求几个量,所以更多的情况是整体 三、有关牛顿运动定律应用的问题,常见以下两种类型:1、已知物体受力情况,求物体的运动情况(如位移、时间、速度等)。

2、已知物体的运动情况,求物体受力情况。

但不管哪种类型,一般都应先由已知条件求出加速度,然后再由此求解。

解题的一般步骤是:(1)理解题意,弄清物理图景和物理过程;(2)恰当选取研究对象;(3)分析它的受力情况,画出被研究对象的受力图。

对于各阶段运动中受力不同的物体,必须分段分析计算;(4)按国际单位制统一各个物理量的单位;(5)根据牛顿运动定律和运动学规律建立方程求解。

【典例分析】例1.下列说法正确的是 ( E )A .运动得越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大B .物体匀速运动时,存在惯性;物体变速运动时,不存在惯性C .把一个物体竖直向上抛出后,能继续上升,是因为物体仍受到一个向上的推力D .同一物体,放在赤道上比放在北京惯性大E .物体的惯性只与物体的质量有关,与其他因素无关例2.用计算机辅助实验系统(DIS )做验证牛顿第三定律的实验,如图所示是把两个测力探头的挂钩钩在一起,向相反方向拉动,观察显示器屏幕上出现的结果。

高考物理牛顿运动定律的应用易错剖析

高考物理牛顿运动定律的应用易错剖析

高考物理牛顿运动定律的应用易错剖析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC 方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

高考物理牛顿运动定律易错剖析含解析

高考物理牛顿运动定律易错剖析含解析

高考物理牛顿运动定律易错剖析含解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v ta = 解得:t 2=2s 工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

高考物理纠错笔记牛顿运动定律含解析

高考物理纠错笔记牛顿运动定律含解析

牛顿运动定律一、不能用物理规律解题不能用牛顿运动定律解题,或不善于用牛顿运动定律解复杂问题,遇到难题想当然地进行分析.二、不清楚模型的分析关键1.弹簧模型和绳线(杆)模型,尤其是其弹力突变问题。

在因为某部分断裂而导致的弹簧或绳线(杆)连接体失去一部分约束时,弹簧的弹力不会突变,而是缓慢变化,而绳线(杆)的弹力会发生突变,变化情况需要具体进行运动分析和受力分析。

2.不会分析超重和失重。

超重和失重的“重"指的是物体本身受到的重力,当支持面对物体向上的作用力(测量工具的测量值,即视重)大于或小于实际的重力时,就是超重或失重。

若不能抓住分析关键——超重物体的加速度向上、失重物体的加速度向下,就容易分析错误。

三、运动状态分析和受力分析问题1.未明确分析的对象。

多分析或少分析受力,导致运动状态的分析错误。

2.对运动状态的分析错误。

运动状态的分析要点是速度和加速度,速度关系决定相对运动关系,涉及物体间的相互作用力的分析,加速度则可根据牛顿第二定律列式,直接计算力的大小和有无。

四、复杂问题、难题的分析1.临界问题的分析关键是找到临界条件。

不能只注重表面的关键词“相等"、“恰好”等,还要挖掘隐含的临界条件,如加速度相等、弹力为零、静摩擦力达到最大、摩擦力为零(即将反向)等.2.多物体相互牵连(不一定有直接的牵连关系)要注意,只有部分直接牵连的物体(具有相同的运动状态)才能用整体法,其他情况一般需要明确物体间的受力关系隔离分析,物体间的相互作用力可能大小相等,但速度不同,也可能具有相同的速度,但加速度不同。

3.分析多过程问题切忌急躁,应根据速度和加速度的关系逐个过程进行分析,多过程问题的分析关键就是分析清楚速度相等、速度为零、加速度相等和加速度为零这四种情况,它们往往是多过程中各子过程的分界点。

4.复杂模型,如传送带往返问题、快–板模型,应结合以上3点的注意事项进行综合分析.下列说法正确的是A.在水平面上运动的物体最终停下来,是因为水平方向没有外力维持其运动的结果B.运动的物体惯性大,静止的物体惯性小C.作用力与反作用力可以作用在同一物体上D.物体所受的合外力减小,加速度一定减小,而速度不一定减小本题易错选A,原因是没意识到运动状态不需要力来维持。

高考物理最新力学知识点之牛顿运动定律难题汇编及答案解析

高考物理最新力学知识点之牛顿运动定律难题汇编及答案解析

高考物理最新力学知识点之牛顿运动定律难题汇编及答案解析一、选择题1.在光滑水平轨道上有两个小球A 和B (均可看做质点),质量分别为m 和2m ,当两球间的距离大于L 时,两球间无相互作用;当两球间的距离等于或小于L 时,两球间存在恒定斥力,若A 球从距离B 球足够远处以初速度0v 沿两球连线向原来静止的B 球运动,如图所示,结果两球恰好能接触,则该斥力的大小为( )A .20mv LB .202mv LC .202mv LD .203mv L2.随着人们生活水平的提高,高尔夫球将逐渐成为普通人的休闲娱乐运动.如图所示,某人从高出水平地面h 的坡上水平击出一个质量为m 的高尔夫球,由于恒定的水平风力作用,高尔夫球竖直地落入距击球点水平距离为L 的A 穴,则( )A .球被击出后做平抛运动B 2h gC .球被击出后受到的水平风力大小为mgLhD .球被击出时的初速度大小为2g h3.起重机通过一绳子将货物向上吊起的过程中(忽略绳子的重力和空气阻力),以下说法正确的是( )A .当货物匀速上升时,绳子对货物的拉力与货物对绳子的拉力是一对平衡力B .无论货物怎么上升,绳子对货物的拉力大小都等于货物对绳子的拉力大小C .无论货物怎么上升,绳子对货物的拉力大小总大于货物的重力大小D .若绳子质量不能忽略且货物匀速上升时,绳子对货物的拉力大小一定大于货物的重力 4.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的v -t 图象如图所示.取g =10m/s 2,则物体与水平面间的动摩擦因数μ和水平推力F 的大小分别为( )A .0.2,6NB .0.1,6NC .0.2,8ND .0.1,8N5.如图,倾斜固定直杆与水平方向成60角,直杆上套有一个圆环,圆环通过一根细线与一只小球相连接.当圆环沿直杆下滑时,小球与圆环保持相对静止,细线伸直,且与竖直方向成30角.下列说法中正确的A .圆环不一定加速下滑B .圆环可能匀速下滑C .圆环与杆之间一定没有摩擦D .圆环与杆之间一定存在摩擦6.如图是塔式吊车在把建筑部件从地面竖直吊起的a t -图,则在上升过程中( )A .3s t =时,部件属于失重状态B .4s t =至 4.5s t =时,部件的速度在减小C .5s t =至11s t =时,部件的机械能守恒D .13s t =时,部件所受拉力小于重力7.如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力A .方向向左,大小不变B .方向向左,逐渐减小C .方向向右,大小不变D .方向向右,逐渐减小8.关于一对平衡力、作用力和反作用力,下列叙述正确的是( ) A .平衡力应是分别作用在两个不同物体上的力B .平衡力可以是同一种性质的力,也可以是不同性质的力C .作用力和反作用力可以不是同一种性质的力D .作用力施加之后才会产生反作用力,即反作用力总比作用力落后一些9.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m 的小球,若升降机在匀速运行过程中突然停止, 并以此时为零时刻,在后面一段时间内传 感器显示弹簧弹力F 随时间t 变化的图象 如图乙所示,g 为重力加速度,则( )A .升降机停止前在向下运动B .10t -时间内小球处于失重状态,12t t -时间内小球处于超重状态C .13t t -时间内小球向下运动,动能先增大后减小D .34t t -时间内弹簧弹性势能变化量小于小球动能变化量10.2018 年 11 月 6 日,第十二届珠海航展开幕.如图为某一特技飞机的飞行轨迹,可见该飞机先俯冲再抬升,在空中画出了一个圆形轨迹,飞机飞行轨迹半径约为 200 米,速度约为 300km/h .A .若飞机在空中定速巡航,则飞机的机械能保持不变.B .图中飞机飞行时,受到重力,空气作用力和向心力的作用C.图中飞机经过最低点时,驾驶员处于失重状态.D.图中飞机经过最低点时,座椅对驾驶员的支持力约为其重力的 4.5 倍.11.有时候投篮后篮球会停在篮网里不掉下来,弹跳好的同学就会轻拍一下让它掉下来.我们可以把篮球下落的情景理想化:篮球脱离篮网静止下落,碰到水平地面后反弹,如此数次落下和反弹.若规定竖直向下为正方向,碰撞时间不计,空气阻力大小恒定,则下列图象中可能正确的是( )A.B.C.D.12.2020年5月5日,长征五号B运载火箭在海南文昌首飞成功,正式拉开我国载人航天工程“第三步”任务的序幕。

高考物理新力学知识点之牛顿运动定律难题汇编及答案

高考物理新力学知识点之牛顿运动定律难题汇编及答案

高考物理新力学知识点之牛顿运动定律难题汇编及答案一、选择题1.如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图像如图(乙)所示,则A.1t时刻小球动能最大B.2t时刻小球动能最大C.2t~3t这段时间内,小球的动能先增加后减少D.2t~3t这段时间内,小球增加的动能等于弹簧减少的弹性势能2.在匀速行驶的火车车厢内,有一人从B点正上方相对车厢静止释放一个小球,不计空气阻力,则小球()A.可能落在A处B.一定落在B处C.可能落在C处D.以上都有可能3.如图,倾斜固定直杆与水平方向成60角,直杆上套有一个圆环,圆环通过一根细线与.当圆环沿直杆下滑时,小球与圆环保持相对静止,细线伸直,且与竖直方一只小球相连接向成30角.下列说法中正确的A.圆环不一定加速下滑B.圆环可能匀速下滑C.圆环与杆之间一定没有摩擦D.圆环与杆之间一定存在摩擦4.如图所示,质量为m 的小球用水平轻质弹簧系住,并用倾角θ=37°的木板托住,小球处于静止状态,弹簧处于压缩状态,则( )A .小球受木板的摩擦力一定沿斜面向上B .弹簧弹力不可能为34mg C .小球可能受三个力作用D .木板对小球的作用力有可能小于小球的重力mg5.质量为2kg 的物体做匀变速直线运动,其位移随时间变化的规律为222(m)x t t =+。

该物体所受合力的大小为( )A .2NB .4NC .6ND .8N 6.如图所示,A 、B 两物块质量均为m ,用一轻弹簧相连,将A 用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B 物块恰好与水平桌面接触而没有挤压,此时轻弹簧的伸长量为x .现将悬绳剪断,则( )A .悬绳剪断瞬间A 物块的加速度大小为2gB .悬绳剪断瞬间A 物块的加速度大小为gC .悬绳剪断瞬间B 物块的加速度大小为2gD .悬绳剪断瞬间B 物块的加速度大小为g7.如图所示,在水平地面上有一辆小车,小车内底面水平且光滑,侧面竖直且光滑。

高考物理力学知识点之牛顿运动定律难题汇编含解析

高考物理力学知识点之牛顿运动定律难题汇编含解析

高考物理力学知识点之牛顿运动定律难题汇编含解析一、选择题1.某人在地面上用弹簧秤称得体重为490N 。

他将弹簧秤移至电梯内称其体重,0t 至3t 时间段内,弹簧秤的示数如图所示,电梯运行的v -t 图可能是(取电梯向上运动的方向为正)( )A .B .C .D .2.如图所示,弹簧测力计外壳质量为0m ,弹簧及挂钩的质量忽略不计,挂钩吊着一质量为m 的重物,现用一竖直向上的拉力F 拉着弹簧测力计,使其向上做匀加速直线运动,弹簧测力计的读数为0F ,则拉力F 大小为( )A .0m m mg m +B .00m m F m+C.m mmgm+D.00m mFm+3.下列关于超重和失重的说法中,正确的是()A.物体处于超重状态时,其重力增加了B.物体处于完全失重状态时,其重力为零C.物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了D.物体处于超重或失重状态时,其质量及受到的重力都没有变化4.如图是塔式吊车在把建筑部件从地面竖直吊起的a t-图,则在上升过程中()A.3st=时,部件属于失重状态B.4st=至 4.5st=时,部件的速度在减小C.5st=至11st=时,部件的机械能守恒D.13st=时,部件所受拉力小于重力5.滑雪运动员由斜坡高速向下滑行过程中其速度—时间图象如图乙所示,则由图象中AB 段曲线可知,运动员在此过程中A.做匀变速曲线运动B.做变加速运动C.所受力的合力不断增大D.机械能守恒6.下列对教材中的四幅图分析正确的是A.图甲:被推出的冰壶能继续前进,是因为一直受到手的推力作用B.图乙:电梯在加速上升时,电梯里的人处于失重状态C .图丙:汽车过凹形桥最低点时,速度越大,对桥面的压力越大D .图丁:汽车在水平路面转弯时,受到重力、支持力、摩擦力、向心力四个力的作用7.质量为M 的人站在地面上,用绳通过光滑定滑轮将质量为m 的重物从高处放下,如图所示,若重物以加速度a 下降(a g <),则人对地面的压力大小为( )A .()M m g ma +-B .()M g a ma --C .()M m g ma -+D .Mg ma -8.下列说法符合历史事实的是 A .伽利略的“冲淡”重力实验,证明了自由落体运动是匀加速直线运动B .牛顿开创了以实验检验、猜想和假设的科学方法C .牛顿第一定律是实验定律D .爱因斯坦先提出,物体具有保持原来匀速直线运动状态或静止状态的性质的观点9.在机场和火车站可以看到对行李进行安全检查用的水平传送带如图所示,当旅客把行李放在正在匀速运动的传送带上后,传送带和行李之间的滑动摩擦力使行李开始运动,随后它们保持相对静止,行李随传送带一起匀速通过检测仪器接受检查,设某机场的传送带匀速前进的速度为0.4 m/s ,某行李箱的质量为5 kg ,行李箱与传送带之间的动摩擦因数为0.2,当旅客把这个行李箱小心地放在传送带上,通过安全检查的过程中,g 取10 m/s 2,则下列说法不正确的是( )A .开始时行李的加速度为2 m/s 2B .行李到达B 点时间为2 sC .传送带对行李做的功为0.4 JD .传送带上将留下一段摩擦痕迹,该痕迹的长度是0.04 m10.如图所示,用平行于光滑斜面的力F 拉着小车向上做匀速直线运动。

高中考试资料牛顿运动定律易错点精解

高中考试资料牛顿运动定律易错点精解

牛顿运动定律易错点精解牛顿运动定律在高中物理考察中占比较大,此部分内容不算太难,题目往往也不算太复杂,但往往有同学因为没能把握牛顿运动定律的应用技巧、易错点而失分。

掌握牛顿运动定律易错点,是与其他同学拉开分数差距非常重要的一步。

在牛顿运动定律知识应用的过程中,同学们常犯的错误主要表现在:1、对物体受力情况不能进行正确的分析,其原因通常出现在对弹力和摩擦力的分析与计算方面,特别是对摩擦力(尤其是对静摩擦力)的分析;2、对运动和力的关系不能准确地把握,如在运用牛顿第二定律和运动学公式解决问题时,常表现出用矢量公式计算时出现正、负号的错误,其本质原因就是对运动和力的关系没能正确掌握,误以为物体受到什么方向的合外力,则物体就向那个方向运动。

下面以例题的形式对牛顿运动定律中的易错点进行归纳:例1、如图2-1所示,一木块放在水平桌面上,在水平方向上共受三个力,F1,F2和摩擦力,处于静止状态。

其中F1=10N,F2=2N。

若撤去力F1则木块在水平方向受到的合外力为()A.10N向左B.6N向右C.2N向左D.0【错解分析】错解:木块在三个力作用下保持静止。

当撤去F1后,另外两个力的合力与撤去力大小相等,方向相反。

故A正确。

造成上述错解的原因是不加分析生搬硬套运用“物体在几个力作用下处于平衡状态,如果某时刻去掉一个力,则其他几个力的合力大小等于去掉这个力的大小,方向与这个力的方向相反”的结论的结果。

实际上这个规律成立要有一个前提条件,就是去掉其中一个力,而其他力不变。

本题中去掉F1后,由于摩擦力发生变化,所以结论不成立。

【正确解答】由于木块原来处于静止状态,所以所受摩擦力为静摩擦力。

依据牛二定律有F1-F2-f=0此时静摩擦力为8N方向向左。

撤去F1后,木块水平方向受到向左2N的力,有向左的运动趋势,由于F2小于最大静摩擦力,所以所受摩擦力仍为静摩擦力。

此时-F2+f′=0即合力为零。

故D选项正确。

【小结】摩擦力问题主要应用在分析物体运动趋势和相对运动的情况,所谓运动趋势,一般被解释为物体要动还未动这样的状态。

牛顿运动定律中的疑难问题

牛顿运动定律中的疑难问题

3.2 牛顿运动定律的中的疑难问题★【传送带模型】1.模型特点:物体在传送带上运动时,往往会牵涉到摩擦力的突变和相对运动问题.(1)当物体与传送带相对滑动时,物体与传送带间有滑动摩擦力;(2)当物体与传送带相对静止时,水平传送带上的物体不受摩擦力;倾斜传送带上的物体会受静摩擦力当物体速度与传送带速度相等时,物体所受的摩擦力发生突变.2.水平传送带问题:判断摩擦力时要注意比较物体的运动速度与传送带的速度,当物体的速度与传送带的速度相等时,物体所受的摩擦力突变为零,之后物体与传送带保持相对静止一起匀速运动.3.倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.传送带模型的常见情况:(假设传送带都足够长)例1.如图所示,水平传送带水平部分长度为。

以速度V 顺时针转动, 在其左端无初速度释放一个小物体H 若P 与传送带之间的动摩擦因数为〃, 则P 从左端到传送带右端的运动时间不可能为()例2.(2011福建)如图甲所示,绷紧的水平传送带始终以恒定速率V 1运行.初 速度大小为V 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送 带.若从小物块滑上传送带开始计时,小物块在传送带上运动的V I 图象(以地 面为参考系)如图乙所示.已知V 2>?1,则()A. 12时刻,小物块离A 处的距离达到最大B. %2时刻,小物块相对传送带滑动的距离达到最大C. 0〜%2时间内,小物块受到的摩擦力方向先向右后向左D. 0〜%3时间内,小物块始终受到大小不变的摩擦力作用例3.如图所示,绷紧的传送带与水平面的夹角0=30°,皮带在电动机的带动下, 始终保持以V 0=2 m/s 的速率运行.现把一质量为m =10 kg 的工件(可视为质点)轻轻 放在皮带的底端,经时间1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2.求工 件与皮带间的动摩擦因数.例4.如图所示,倾斜传送带与水平方向的夹角为0 =37°,将一小物块轻轻地放在正在以速度V =10 m/s 匀速逆时针转动的传送带的上端,物块与传送带之间的动摩擦因数为〃=0.5(设最大静 摩擦力等于滑动摩擦力的大小),传送带两皮带轮轴心间的距离为L =29 m , (g 取10m/s 2, sin 37° = 0.6, cos 37°=0.8)求:/ /(1)将物块从顶部传送到传送带底部所需的时间为多少?(2)若物块与传送带之间的动摩擦因数为〃=0.8,物块从顶部传送到传送带底部所需的时间又为多少?例5.如图所示,传送带的水平部分ab =2 m ,斜面部分bc =4 m , bc 与水平面的夹角a =37°.一个小物L2 L .V.V C . :2 LD .LV—+ ---- V 2旦体A与传送带的动摩擦因数〃= 0.25,传送带沿图示的方向运动,速率V=2 m/s.若把物体A轻放到a处,它将被传送带送到。

高考物理专题力学知识点之牛顿运动定律易错题汇编附答案

高考物理专题力学知识点之牛顿运动定律易错题汇编附答案

高考物理专题力学知识点之牛顿运动定律易错题汇编附答案一、选择题1.质量为m的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为f,加速度为a=13g,则f的大小是()A.f=13mg B.f=23mgC.f=mg D.f=43 mg2.下列关于超重和失重的说法中,正确的是()A.物体处于超重状态时,其重力增加了B.物体处于完全失重状态时,其重力为零C.物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了D.物体处于超重或失重状态时,其质量及受到的重力都没有变化3.如图所示,A、B两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B受到的摩擦力A.方向向左,大小不变B.方向向左,逐渐减小C.方向向右,大小不变D.方向向右,逐渐减小4.有时候投篮后篮球会停在篮网里不掉下来,弹跳好的同学就会轻拍一下让它掉下来.我们可以把篮球下落的情景理想化:篮球脱离篮网静止下落,碰到水平地面后反弹,如此数次落下和反弹.若规定竖直向下为正方向,碰撞时间不计,空气阻力大小恒定,则下列图象中可能正确的是( )A.B.C .D .5.如图所示,小球从高处落到竖直放置的轻弹簧上,则小球从开始接触弹簧到将弹簧压缩至最短的整个过程中( )A .小球的动能不断减少B .小球的机械能在不断减少C .弹簧的弹性势能先增大后减小D .小球到达最低点时所受弹簧的弹力等于重力6.质量为2kg 的物体做匀变速直线运动,其位移随时间变化的规律为222(m)x t t =+。

该物体所受合力的大小为( )A .2NB .4NC .6ND .8N7.跳水运动员从10m 高的跳台上腾空跃起,先向上运动一段距离达到最高点后,再自由下落进入水池,不计空气阻力,关于运动员在空中的上升过程和下落过程,以下说法正确的有( )A .上升过程处于超重状态,下落过程处于失重状态B .上升过程处于失重状态,下落过程处于超重状态C .上升过程和下落过程均处于超重状态D .上升过程和下落过程均处于完全失重状态8.如图所示,传送带保持v 0=1 m/s 的速度运动,现将一质量m =0.5 kg 的物体从传送带左端放上,设物体与传送带间动摩擦因数μ=0.1,传送带两端水平距离x =2.5 m ,则运动时间为( )A .1sB .2sC .3sD .4s9.如图所示,在水平地面上有一辆小车,小车内底面水平且光滑,侧面竖直且光滑。

牛顿运动定律重难点解析

牛顿运动定律重难点解析

人教版物理必修一第四章 <牛顿运动定律>重难点解析第四章课文目录1 牛顿第一定律2 实验:探究加速度与力、质量的关系3 牛顿第二定律4 力学单位制5 牛顿第三定律6 用牛顿运动定律解决问题(一)7 用牛顿运动定律解决问题(二)★重点1、惯性是物体的固有属性,质量是物体惯性大小的量度;运用惯性概念,解释有关实际问题。

2、通过实验测量加速度、力、质量,分别作出加速度与力、加速度与质量的关系图像;根据图像写出加速度与力、质量的关系式,体会“控制变量法”对研究问题的意义。

3、牛顿第二定律的内容,会用正交分解法和牛顿第二定律解决实际问题。

4、物理公式既确定物理量之间的关系,又确定物理量单位间的关系;基本单位、导出单位和单位制;国际单位制中力学的三个基本单位;单位制在物理学中的重要意义。

5、通过对具体实例的观察和演示实验,认识力的作用是相互的;能找出某个力对应的反作用力,掌握牛顿第三定律的内容,运用牛顿第三定律解释生活中的有关问题。

6、动力学两类基本问题求解基本思路和一般步骤。

7、共点力平衡条件的应用;应用牛顿运动定律解决超、失重问题。

★难点1、理想实验的推理过程;对牛顿第一定律的理解。

2、明确实验目的、分析实验思路、制定实验方案、得出实验结论;认识数据处理时变换坐标轴的技巧,了解将”不易测量的物理量转化为可测物理量”的实验方法,会对实验误差作初步分析。

3、加速度与物体所受的合力之间的关系(正比性、同体性、瞬时性和矢量性)。

4、利用物理公式得出单位之间的关系;根据物理量单位之间的关系,判断运算表达式是否错误。

5、运用牛顿第三定律解决受力分析中的相互作用力问题;区分平衡力和作用力与反作用力。

6、物体的受力分析与运动情况分析。

7、超重失重现象的理解。

★疑点1、牛顿第一定律是否是牛顿第二定律的特殊情形。

2、为什么要作a-1/m图像。

3、牛顿第二定律与牛顿第一定律的关系。

4、作用力和反作用力的关系是否受物体运动状态和参考系等的影响。

高考物理最新力学知识点之牛顿运动定律难题汇编含答案解析

高考物理最新力学知识点之牛顿运动定律难题汇编含答案解析

高考物理最新力学知识点之牛顿运动定律难题汇编含答案解析一、选择题1.按压式圆珠笔内装有一根小弹簧,尾部有一个小帽,压一下小帽,笔尖就伸出来。

如图所示,使笔的尾部朝下,将笔向下按到最低点,使小帽缩进,然后放手,笔将向上弹起至一定的高度。

忽略摩擦和空气阻力。

笔从最低点运动至最高点的过程中A .笔的动能一直增大B .笔的重力势能与弹簧的弹性势能总和一直减小C .弹簧的弹性势能减少量等于笔的动能增加量D .弹簧的弹性势能减少量等于笔的重力势能增加量2.下列关于超重和失重的说法中,正确的是( )A .物体处于超重状态时,其重力增加了B .物体处于完全失重状态时,其重力为零C .物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了D .物体处于超重或失重状态时,其质量及受到的重力都没有变化3.如图是塔式吊车在把建筑部件从地面竖直吊起的a t -图,则在上升过程中( )A .3s t =时,部件属于失重状态B .4s t =至 4.5s t =时,部件的速度在减小C .5s t =至11s t =时,部件的机械能守恒D .13s t =时,部件所受拉力小于重力4.如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力A.方向向左,大小不变B.方向向左,逐渐减小C.方向向右,大小不变D.方向向右,逐渐减小5.如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O;整个系统处于静止状态;现将细绳剪断,将物块a的加速度记为a1,S1和S2相对原长的伸长分别为∆x1和∆x2,重力加速度大小为g,在剪断瞬间()A.a1=g B.a1=3g C.∆x1=3∆x2D.∆x1=∆x26.如图所示,传送带保持v0=1 m/s的速度运动,现将一质量m=0.5 kg的物体从传送带左端放上,设物体与传送带间动摩擦因数μ=0.1,传送带两端水平距离x=2.5 m,则运动时间为()A.1sB.2sC.3sD.4s7.小明为了研究超重和失重现象,站在电梯内水平放置的体重秤上,小明质量为55kg,电梯由启动到停止的过程中,下列说法错误..的是()A.图1可知电梯此时处于静止或匀速运动状态B.图2可知该同学此时一定处于超重状态C.图2可知电梯此时一定处于加速上升状态D.图2可知电梯此时的加速度约为0.7m/s28.荡秋千是一项娱乐,图示为某人荡秋千时的示意图,A点为最高位置,B点为最低位置,不计空气阻力,下列说法正确的是()A.在A点时,人所受的合力为零B.在B点时,人处于失重状态C.从A点运动到B点的过程中,人的角速度不变D.从A点运动到B点的过程中,人所受的向心力逐渐增大9.如图所示,用平行于光滑斜面的力F拉着小车向上做匀速直线运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 牛顿运动定律的中的疑难问题★【传送带模型】1.模型特点:物体在传送带上运动时,往往会牵涉到摩擦力的突变和相对运动问题.(1)当物体与传送带相对滑动时,物体与传送带间有滑动摩擦力;(2)当物体与传送带相对静止时,水平传送带上的物体不受摩擦力;倾斜传送带上的物体会受静摩擦力当物体速度与传送带速度相等时,物体所受的摩擦力发生突变.2.水平传送带问题:判断摩擦力时要注意比较物体的运动速度与传送带的速度,当物体的速度与传送带的速度相等时,物体所受的摩擦力突变为零,之后物体与传送带保持相对静止一起匀速运动.3.倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.传送带模型的常见情况:(假设传送带都足够长)模型描述及图示物体的运动情况物体轻放上水平匀速的传送带先加速后匀速物体的初速度方向与传送带相反先减速,然后反向加速反向的过程可能一直加速,也可能先加速后匀速,具体情况要看物体的初速度与传送带速度的大小关系倾斜上传,物体轻放①在μ>tan θ的情况下,物体能滑上传送带,且先加速后匀速,加速时的加速度为a= ②若μ<tan θ,则物体不能滑上倾斜下传,物体轻放①若μ>tan θ,物体先加速后匀速;加速时的加速度为a=②若μ<tan θ,则物体先加速,共速后继续加速共速前的加速度为a1=共速后的加速度为a2=例1.如图所示,水平传送带水平部分长度为L ,以速度v 顺时针转动,在其左端无初速度释放一个小物体P ,若P 与传送带之间的动摩擦因数为μ,则P 从左端到传送带右端的运动时间不可能为( )A .v LB .v L 2C .g L μ2D .gv v L μ2+ 例2.(2011)如图甲所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t 图象(以地面为参考系)如图乙所示.已知v 2>v 1,则( )A .t 2时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离达到最大C .0~t 2时间,小物块受到的摩擦力方向先向右后向左D .0~t 3时间,小物块始终受到大小不变的摩擦力作用例3.如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持以v 0=2 m/s 的速率运行.现把一质量为m =10 kg 的工件(可视为质点)轻轻放在皮带的底端,经时间1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2.求工件与皮带间的动摩擦因数.例4.如图所示,倾斜传送带与水平方向的夹角为θ=37°,将一小物块轻轻地放在正在以速度v =10 m/s 匀速逆时针转动的传送带的上端,物块与传送带之间的动摩擦因数为μ=0.5(设最大静摩擦力等于滑动摩擦力的大小),传送带两皮带轮轴心间的距离为L =29 m ,(g 取10m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)将物块从顶部传送到传送带底部所需的时间为多少?(2)若物块与传送带之间的动摩擦因数为μ′=0.8 ,物块从顶部传送到传送带底部所需的时间又为多少?例5.如图所示,传送带的水平部分ab =2 m ,斜面部分bc =4 m ,bc 与水平面的夹角α=37°.一个小物体A 与传送带的动摩擦因数μ=0.25,传送带沿图示的方向运动,速率v =2 m/s.若把物体A 轻放到a 处,它将被传送带送到c 点,且物体A 不会脱离传送带.求物体A 从a 点被传送到c 点所用的时间.(已知:sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)★【动力学中的临界极值问题】 临界和极值问题是物理中的常见题型,结合牛顿运动定律求解的也很多,临界是一个特殊的转换状态,是物理过程发生变化的转折点。

分析此类问题重在找临界条件,常见的临界条件有:1.两物体脱离的临界条件为:接触面上的弹力为零例6.一根劲度系数为k 、质量不计的轻弹簧上端固定,下端系一质量为m 的物块,有一水平的木板将物块托住,并使弹簧处于自然长度,如图所示.现让木板由静止开始以加速度a (a <g )匀加速向下移动,经过多长时间木板与物块分离?例7.(2017卷)一轻弹簧的一端固定在倾角为 的固定光滑斜面的底部,另一端和质量为m 的小物块a相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0,从t =0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度,重力加速度大小为g .求(1)弹簧的劲度系数;(2)物块b 加速度的大小;(3)在物块a 、b 分离前,外力大小随时间变化的关系式.2.叠加体发生相对运动的临界条件为:静摩擦力达到最大静摩擦力F f max例8.如图所示,物体A 叠放在物体B 上,B 置于光滑水平面上.A 、B 质量分别为6.0 kg 和2.0 kg ,A 、B 之间的动摩擦因数为0.2.在物体A上施加水平方向的拉力F ,开始时F =10 N ,此后逐渐增大,在增大到45N 的过程中,以下判断正确的是( )A .两物体间始终没有相对运动B .两物体间从受力开始就有相对运动C .当拉力F <12 N 时,两物体均保持静止状态D .两物体开始没有相对运动,当F >18 N 时,开始相对滑动例9.(2014)如图所示,A 、B 两物块的质量分别为2m 和m, 静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为 g .现对 A 施加一水平拉力 F ,则( )A .当 F < 2μmg 时,A 、B 都相对地面静止B .当 F =52μmg 时, A 的加速度为13μg C .当 F > 3μmg 时,A 相对B 滑动D .无论 F 为何值,B 的加速度不会超过12μg 例10.如图所示,小车上物体的质量m =8kg ,它被一根在水平方向上拉伸了的弹簧拉住而静止在小车上,这时弹簧的弹力为6N .现沿水平向右的方向对小车施加一作用力,使小车由静止开始运动起来.运动中加速度由零开始逐渐增大到1 m/s 2,然后以1 m/s 2的加速度做匀加速直线运动,则以下说法中正确的是( )A .物体与小车始终保持相对静止,弹簧对物体的作用力始终没有发生变化B .物体受到的摩擦力先减小、后增大,方向先向左、后向右C .当小车的加速度(向右)为0.75m/s 2时,物体不受摩擦力作用D .小车以1m/s 2的加速度向右做匀加速直线运动时,物体受到的摩擦力为8N★【滑块—木板问题】例11.如图,质量为M 的长木板,静止放在粗糙的水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度从左端冲上木板.从物块冲上木板到物块和木板都静止的过程中,物块和木板的v -t 图象分别如图中的折线所示,根据v -t 图象(g 取10 m/s 2),求:(1)m 与M 间动摩擦因数μ1及M 与地面间动摩擦因数μ2.(2)m 与M 的质量之比.(3)从物块冲上木板到物块和木板都静止的过程中,物块m 、长木板M 各自对地的位移.例12.如图所示,质量为M =2 kg 的足够长的长木板,静止放置在粗糙水平地面上,有一质量为m =3 kg 可视为质点的物块,以某一水平初速度v 0从左端冲上木板.4 s 后物块和木板达到4 m/s 的速度并减速,12 s 末两者同时静止.求物块的初速度v 0.例13.(2015新课标II)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾角为θ=37°(sin37°=0.6)的山坡C ,上面有一质量为m 的石板B ,其上下表面与斜坡平行;B 上有一碎石堆A(含有大量泥土),A 和B 均处于静止状态,如图所示.假设某次暴雨中,A 浸透雨水后总质量也为m (可视为质量不变的滑块),在极短时间,A 、B 间的动摩擦因数μ1减小为38,B 、C 间的动摩擦因数μ2减小为0.5,A 、B 开始运动,此时刻为计时起点;在第2s 末,B 的上表面突然变为光滑,μ2保持不变.已知A 开始运动时,A 离B 下边缘的距离l =27m ,C 足够长,设最大静摩擦力等于滑动摩擦力.取重力加速度大小g =10m/s 2.求:(1)在0~2s 时间A 和B 加速度的大小;(2)A 在B 上总的运动时间.例14.(2013)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m 1和m 2,各接触面间的动摩擦因数均为μ.重力加速度为g .(1)当纸板相对砝码运动时,求纸板所受摩擦力大小;(2)要使纸板相对砝码运动,求所需拉力的大小;(3)本实验中,m 1=0.5kg ,m 2=0.1kg ,μ=0.2砝码与纸板左端的距离d =0.1 m ,取g =10m/s 2.若砝码移动的距离超过l =0.002 m ,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?例15.(2013新课标Ⅱ)一长木板在水平地面上运动,在t =0时刻将一相对于地面精致的物块轻放到木板上,以后木板运动的速度-时间图像如图所示.己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦.物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取重力加速度的大小g=10m/s2.求:(1)物块与木板间、木板与地面间的动摩擦因数;(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.课后训练1.如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( )A.物块先向左运动,再向右运动B.物块向右运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零2.如图所示,水平传送带两边分别是与传送带等高的光滑水平地面A、B,初速度大小为v1的小物块从与传送带相接的地面A滑上传送带,当绷紧的水平传送带处于静止状态时,小物块恰好可以运动到传送带的中点,如果传送带以恒定速率v 2(v2=2v1)运行,若从小物块滑上传送带开始计时,则小物块运动的v-t图象(以地面为参考系)可能是( )3.如图所示,倾角为θ的传送带沿逆时针方向以加速度a加速转动时,小物体A与传送带相对静止,重力加速度为g.则( )A.只有a>g sin θ,A才受沿传送带向上的静摩擦力作用B.只有a<g sin θ,A才受沿传送带向上的静摩擦力作用C.只有a=g sin θ,A才受沿传送带向上的静摩擦力作用D.无论a为多大,A都受沿传送带向上的静摩擦力作用4.如图所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则图中能客观地反映小木块的速度随时间变化关系的是( )5.如图甲所示,倾角为θ的足够长的传送带以恒定的速率v0沿逆时针方向运行.t=0时,将质量m =1 kg的物体(可视为质点)轻放在传送带上,物体相对地面的v-t图象如图乙所示.设沿传送带向下为正方向,取重力加速度g=10 m/s2.则( )A.传送带的速率v0=10 m/sB.传送带的倾角θ=30°C.物体与传送带之间的动摩擦因数μ=0.5D.0~2.0 s摩擦力对物体做功W f=-24 J6.如图所示,在光滑平面上有一静止小车,小车质量为M=5 kg,小车上静止地放置着质量为m=1 kg 的木块,和小车间的动摩擦因数为μ=0.2,用水平恒力F拉动小车,下列关于木块的加速度a m和小车的加速度a M ,可能正确的是( )A .a m =1 m/s 2,a M =1 m/s2 B .a m =1 m/s 2,a M =2 m/s 2 C .a m =2 m/s 2,a M =4 m/s 2D .a m =3 m/s 2,a M =5 m/s 2 7.如图甲所示,足够长的木板B 静置于光滑水平面上,其上放置小滑块A .木板B 受到随时间t 变化的水平拉力F 作用时,用传感器测出木板B 的加速度a ,得到如图乙所示的a -F 图象,g 取10 m/s 2,则( )A .滑块A 的质量为4 kgB .木板B 的质量为1 kgC .当F =10 N 时木板B 的加速度为4 m/s 2D .滑块A 与木板B 间的动摩擦因数为0.18.如图所示,三个物体质量分别为m 1=1kg 、m 2=2kg 、m 3=3 kg ,已知斜面上表面光滑,斜面倾角θ=30°,m 1和m 2之间的动摩擦因数μ=0.8.不计绳和滑轮的质量和摩擦.初始用外力使整个系统静止,当撤掉外力时,m 2将(g =10 m/s 2,最大静摩擦力等于滑动摩擦力)( )A .和m 1一起沿斜面下滑B .和m 1一起沿斜面上滑C .相对于m 1上滑D .相对于m 1下滑9.(2014)如右图所示,水平传送带以速度v 1匀速运动.小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连.t =0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平.t =t 0时刻P 离开传送带.不计定滑轮质量和摩擦,绳足够长.正确描述小物体P 速度随时间变化的图像可能是( )10.如图所示,长度l =2 m ,质量M =23kg 的木板置于光滑的水平地面上,质量m =2 kg 的小物块(可视为质点)位于木板的左端,木板和小物块间的动摩擦因数μ=0.1,现对小物块施加一水平向右的恒力F=10 N,取g=10 m/s2.求:(1)将木板M固定,小物块离开木板时的速度大小;(2)若木板M不固定,m和M的加速度a1、a2的大小;(3)若木板M不固定,小物块从开始运动到离开木板所用的时间.11.如图所示,质量为M=1 kg,长为L=0.5 m的木板A上放置一质量为m=0.5 kg的物体B,A平放在光滑桌面上,B位于A中点处,B与A之间的动摩擦因数为μ=0.1,B与A间的最大静摩擦力等于滑动摩擦力(B可看做质点,重力加速度g取10 m/s2).求:(1)要用多大力拉A,才能使A从B下方抽出?(2)当拉力为3.5 N时,经过多长时间A从B下方抽出?12.某飞机场利用如图所示的传送带将地面上的货物运送到飞机上,传送带与地面的夹角θ=30°,传送带两端A、B的距离L=10 m,传送带以v=5 m/s的恒定速度匀速向上运动.在传送带底端A轻放上一质量m=5 kg的货物,货物与传送带间的动摩擦因数μ=32.求货物从A端运送到B端所需的时间.(g取10 m/s2)13.如图所示,一辆质量为M的卡车沿平直公路行驶,卡车上载一质量为m的货箱,货箱到驾驶室的距离l已知,货箱与底板的动摩擦因数为μ,当卡车以速度v行驶时,因前方出现故障而制动,制动后货箱在车上恰好滑行了距离l而未与卡车碰撞.求:(1)卡车制动的时间;(2)卡车制动时受地面的阻力.14.(2016)避险车道是避免恶性交通事故的重要设施,由制动坡床和防撞设施等组成,如图竖直平面,制动坡床视为水平面夹角为θ的斜面.一辆长12m的载有货物的货车因刹车失灵从干道驶入制动坡床,当车速为23m/s时,车尾位于制动坡床的低端,货物开始在车厢向车头滑动,当货物在车厢滑动了4m时,车头距制动坡床顶端38m,再过一段时间,货车停止.已知货车质量是货物质量的4倍,货物与车厢间的动摩擦因数为0.4;货车在制动坡床上运动受到的坡床阻力大小为货车和货物总重的0.44倍.货物与货车分别视为小滑块和平板,取cos θ=1,sin θ=0.1,g=10m/s2.求:(1)货物在车厢滑动时加速度的大小和方向;(2)制动坡床的长度.。

相关文档
最新文档