用牛顿运动定律解决问题应用篇

合集下载

物理《牛顿第一定律》教案优秀8篇

物理《牛顿第一定律》教案优秀8篇

物理《牛顿第一定律》教案优秀8篇高中物理牛顿第一定律教案篇一1.知识与技能(1)、知道理想实验是科学研究的重要方法。

(2)、知道牛顿第一定律的建立过程。

(3)、理解牛顿第一定律的内容和意义。

(4)、知道什么是惯性,会正确解释有关现象。

(5)、正确理解力和运动的关系。

2.过程与方法培养学生的观察能力、抽象思维能力及应用定律解决实际问题的能力3.情感、态度与价值观(1)、对客观事物的正确认识需要人们经过长期的由表及里,由片面到全面的认识过程。

通过本节的学习要让学生建立起正确的认识论与方法论的观点,同时体会到人们认识世界的长期性和艰巨性。

(2)、培养学生严谨的科学态度和作风,积极探索的创新精神,敢于向权威提出质疑和挑战的非凡勇气,不断地追求真理。

教学重点牛顿第一定律、惯性。

教学难点对理想实验、牛顿第一定律及惯性的正确理解?教学方法?教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。

?教学工具计算机、投影仪、CAI课件等教?学?活?动(一)引入教师活动:指出在力学中只研究怎样运动而不涉及运动和力的关系的分科叫做运动学。

研究运动合力的关系的分科叫动力学。

动力学知识在生产和科学研究中有着重要用途。

动力学的奠基人是英国科学家牛顿。

1678年出版的《自然哲学的数学原理》是牛顿的动力学奠基之作。

牛顿运动定律确立了力和运动的关系,这一章我们就来学习它。

(二)进入新课1、引出错误观点——历史的回顾教师活动:马路上有一辆车,发动机坏了,这么让它运动起来?(播放课件)教师设问:车运动起来后,如果不施加力的作用,车会怎么样?继续设问:车会不会立刻停下来?教师引导:施加了力车运动起来,停止施力,车要停止;于是可得结论,要让车运动起来,就必须施加力给车,换言之:力是维持物体运动的原因,我所推理出的这一观点正确吗?课件展示?力是维持物体运动的原因,让学生感受到力确实是维持物体运动的原因。

学生活动:同学们意见不一教师引导:人类在认识力和运动关系的道路中经历了漫长而又曲折的过程,请问在认识力和运动关系的过程中,有那几位著名的科学家?学生活动:回答:亚里士多德、伽利略、笛卡尔、牛顿教师活动:幻灯片简单介绍?亚里士多德、伽利略、笛卡尔、牛顿教师设疑:?他们各自的观点分别是什么?请同学们仔细阅读教材P68-69内容,并思考亚里士多德、伽利略、笛卡尔、牛顿他们各自的观点和所运用的方法教师活动:教师帮助学生共同总结,得出这几位科学家各自的观点和运用的科学方法。

2021_2022高中物理第四章牛顿运动定律第6节用牛顿运动定律解决问题一1教案新人教版必修

2021_2022高中物理第四章牛顿运动定律第6节用牛顿运动定律解决问题一1教案新人教版必修

用牛顿运动定律解决问题(一)教材分析力和物体运动的关系问题,一直是动力学研究的基本问题,人们对它的认识经历了一个漫长的过程,直到牛顿用他的三个定律对这一类问题作出了精确的解决.牛顿由此奠定了经典力学的基础.牛顿三定律成为力学乃至经典物理学中最基本、最重要的定律.牛顿第一定律解决了力和运动的关系问题;牛顿第二定律确定了运动和力的定量关系;牛顿第三定律确定了物体间相互作用力遵循的规律.动力学所要解决的问题由两部分组成:一部分是物体运动情况;另一部分是物体与周围其他物体的相互作用力的情况.牛顿第二定律恰好为这两部分的链接提供了桥梁.应用牛顿运动定律解决动力学问题,高中阶段最为常见的有两类基本问题:一类是已知物体的受力情况,要求确定出物体的运动情况;另一类是已经知道物体的运动情况,要求确定物体的受力情况.要解决这两类问题,对物体进行正确的受力分析是前提,牛顿第二定律则是关键环节,因为它是运动与力联系的桥梁.教学重点应用牛顿运动定律解决动力学的两类基本问题.教学难点动力学两类基本问题的分析解决方法.课时安排1课时三维目标1.知识与技能(1)知道动力学的两类基本问题,掌握求解这两类基本问题的思路和基本方法.(2)进一步认识力的概念,掌握分析受力情况的一般方法,画出研究对象的受力图.2.过程与方法(1)培养学生运用实例总结归纳一般解题规律的能力.(2)会利用正交分解法在相互垂直的两个方向上分别应用牛顿定律求解动力学问题.(3)掌握用数学工具表达、解决物理问题的能力.3.情感、态度与价值观通过牛顿第二定律的应用,提高分析综合能力,灵活运用物理知识解决实际问题.教学过程导入新课情境导入利用多媒体播放“神舟”五号飞船的发射升空、“和谐号”列车高速前进等录像资料.如图甲、乙所示.引导:我国科技工作者能准确地预测火箭的升空、变轨,列车的再一次大提速节约了很多宝贵的时间,“缩短”了城市间的距离.这一切都得益于人们对力和运动的研究.我们现在还不能研究如此复杂的课题,就让我们从类似较为简单的问题入手,看一下这类问题的研究方法.推进新课牛顿第二定律确定了运动和力的关系,使我们能够把物体的运动情况与受力的情况联系起来.因此,它在天体运动的研究、车辆的设计等许多基础学科和工程技术中都有广泛的应用.由于我们知识的局限,这里只通过一些最简单的例子作介绍.一、从受力确定运动情况如果已知物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律就可以确定物体的运动情况.例1一个静止在水平地面上的物体,质量是2 kg,在6.4 N的水平拉力作用下沿水平方向向右运动.物体与地面间的摩擦力是4.2 N,求物体在4 s末的速度和4 s内发生的位移.分析:这个问题是已知物体受的力,求它的速度和位移,即它的运动情况.教师设疑:1.物体受到的合力沿什么方向?大小是多少?2.这个题目要求计算物体的速度和位移,而我们目前只能解决匀变速运动的速度和位移.物体的运动是匀变速运动吗?师生讨论交流:1.对物体进行受力分析,如图.物体受力的图示物体受到四个力的作用:重力G ,方向竖直向下;地面对物体的支持力F N ,竖直向上;拉力F 1,水平向右;摩擦力F 2,水平向左.物体在竖直方向上没有发生位移,没有加速度,所以重力G 和支持力F N 大小相等、方向相反,彼此平衡,物体所受合力等于水平方向的拉力F 1与摩擦力F 2的合力.取水平向右的方向为正方向,则合力:F =F 1-F 2=2.2 N ,方向水平向右.2.物体原来静止,初速度为0,在恒定的合力作用下产生恒定的加速度,所以物体做初速度为0的匀加速直线运动.解析:由牛顿第二定律可知,F 1-F 2=maa =F 1-F 2ma =2.22m/s 2=1.1 m/s 2 求出了加速度,由运动学公式可求出4 s 末的速度和4 s 内发生的位移v =at =1.1×4 m/s=4.4 m/sx =12at 2=12×1.1×16 m=8.8 m.讨论交流:(1)从以上解题过程中,总结一下运用牛顿定律解决由受力情况确定运动情况的一般步骤.(2)受力情况和运动情况的链接点是牛顿第二定律,在运用过程中应注意哪些问题? 参考:运用牛顿定律解决由受力情况确定物体的运动情况大致分为以下步骤:(1)确定研究对象.(2)对确定的研究对象进行受力分析,画出物体的受力示意图.(3)建立直角坐标系,在相互垂直的方向上分别应用牛顿第二定律列式F x =ma x ,F y =ma y .求得物体运动的加速度.(4)应用运动学的公式求解物体的运动学量.3.受力分析的过程中要按照一定的步骤以避免“添力”或“漏力”.一般是先场力,再接触力,最后是其他力.即一重、二弹、三摩擦、四其他.再者每一个力都会独立地产生一个加速度.但是解题过程中往往应用的是合外力所产生的合加速度.再就是牛顿第二定律是一矢量定律,要注意正方向的选择和直角坐标系的应用.课堂训练(课件展示)如图所示自由下落的小球,从它接触竖直放置的弹簧开始到弹簧压缩到最大程度的过程中,小球的速度和加速度的变化情况是().A.加速度变大,速度变小B.加速度变小,速度变大C.加速度先变小后变大,速度先变大后变小D.加速度先变小后变大,速度先变小后变大解析:小球接触弹簧后,受到竖直向下的重力和竖直向上的弹力,其中重力为恒力.在接触开始阶段,弹簧形变较小,重力大于弹力,合力方向向下,故加速度方向也向下,加速度与速度方向相同,因而小球做加速运动.随着弹簧形变量的增加,弹力不断增大,向下的合力逐渐减小,小球加速度也逐渐减小.当弹力增大到与重力相等时,小球加速度等于0.由于小球具有向下的速度,仍向下运动.小球继续向下运动的过程,弹力大于重力,合外力方向变为竖直向上,小球加速度也向上且逐渐增大,与速度方向相反.小球速度减小,一直到将弹簧压缩到最大形变量,速度变为0.答案:C二、从运动情况确定受力与第一种情况过程相反,若已经知道物体的运动情况,根据运动学公式求出物体的加速度,于是就可以由牛顿第二定律确定物体所受的外力,这是力学所要解决的又一方面的问题.例2 一个滑雪的人,质量m=50 kg,以v0=2 m/s的初速度沿山坡匀加速滑下,山坡倾角θ=30°,在t=5 s的时间内滑下的路程x=60 m,求滑雪人受到的阻力(包括摩擦和空气阻力).合作探讨:这个题目是已知人的运动情况,求人所受的力.应该注意三个问题:滑雪人受到的力1.分析人的受力情况,作出受力示意图.然后考虑以下几个问题:滑雪的人共受到几个力的作用?这几个力各沿什么方向?它们之中哪个力是待求的,哪个力实际上是已知的?2.根据运动学的关系得到下滑加速度,求出对应的合力,再由合力求出人受的阻力.3.适当选取坐标系.坐标系的选择,原则上是任意的,但是为了解决问题的方便,选择时一般根据以下要求选取:(1)运动正好沿着坐标轴的方向.(2)尽可能多的力落在坐标轴上.如有可能,待求的未知力尽量落在坐标轴上,不去分解.解析:如图,受力分析建立如图坐标系,把重力G 沿x 轴和y 轴的方向分解,得到求滑雪人受到的阻力G x =mg ·sin θG y =mg ·cos θ与山坡垂直方向,物体没有发生位移,没有加速度,所以G y 与支持力F N 大小相等、方向相反,彼此平衡,物体所受的合力F 等于G x 与阻力F 阻的合力.由于沿山坡向下的方向为正方向,所以合力F =G x -F 阻,合力的方向沿山坡向下,使滑雪的人产生沿山坡向下的加速度.滑雪人的加速度可以根据运动学的规律求得:x =v 0t +12at 2 a =2(x -v 0t )t 2 a =4 m/s 2 根据牛顿第二定律F =maG x -F 阻=maF 阻=G x -maF 阻=mg ·sin θ-ma 代入数值后,得F 阻=67.5 N.答案:67.5 N结合两种类型中两个例题的解题过程,总结出用牛顿定律解题的基本思路和解题步骤:1.选定研究对象,并用隔离法将研究对象隔离出来.2.分别对研究对象进行受力分析和运动情况分析,并作出其受力图.3.建立适当的坐标系,选定正方向,正交分解.4.根据牛顿第二定律分别在两个正交方向上列出方程.5.把已知量代入方程求解,检验结果的正确性.课堂训练(课件展示)1.一个物体的质量m =0.4 kg ,以初速度v 0=30 m/s 竖直向上抛出,经过t =2.5 s 物体上升到最高点.已知物体上升过程中所受到的空气阻力大小恒定,求物体上升过程中所受空气阻力的大小是多少?解析:设物体向上运动过程中做减速运动的加速度大小为a ,以初速度方向为正方向. 因为v t =v 0-a t ,v t =0所以a =0v t=12 m/s 2 对小球受力分析如图,由牛顿第二定律f +mg =maf =m (a -g )=0.4×(12-9.8)N=0.88 N.答案:0.88 N2.如图所示,光滑地面上,水平力F 拉动小车和木块一起做匀加速运动,小车的质量为M ,木块的质量为m .设加速度大小为a ,木块与小车之间的动摩擦因数为μ,则在这个过程中大木块受到的摩擦力大小是( ).A.μmg B.ma C.mM+mF D.F-ma解析:这是一道根据物体运动状态求物体受力情况的典型习题.题中涉及两个物体,题干中的已知量又比较多,对此类题目,要注意选取好研究对象.两者无相对运动,它们之间的摩擦力只能是静摩擦力.因而滑动摩擦力公式f=μmg就不再适用.A选项错误.以木块为研究对象,则静摩擦力产生其运动的加速度F合=f=ma,再由牛顿第三定律可知B选项正确.以小车为研究对象,F-f=Ma,f=F-Ma,D选项也正确.以整体为研究对象,则a=FM+m,再代入f=ma可得f=mFM+m.故C选项也正确.答案:BCD教学建议:1.授课过程中,教师提示分析思路之后.受力分析、过程分析先由学生完成,教师则将解题过程完整写出,以便总结规律、让学生养成规范解题的习惯.2.运算过程中,物理量尽量用相应的字母表示,将所求量以公式形式代出,最后再将已知量代入,求出结果.课堂小结本节课主要讲述了动力学中的两类基本问题:(1)已知受力情况求解运动情况.(2)已知运动情况求物体受力情况.通过对例题的分析解决过程,总结出这两类基本问题的解决方法、思路和一般解题步骤.布置作业教材第87页“问题与练习”1、2、3、4题.板书设计6 用牛顿运动定律解决问题(一)一、从受力情况确定运动情况例1二、从运动情况确定受力情况例2总结:加速度是连接动力学和运动学的桥梁活动与探究课题:牛顿运动定律的适用条件.牛顿运动定律虽然是一个伟大的定律,但它也有自己适用的条件.通过对其适用条件的了解,使学生进一步完整地掌握这个规律,并且为相对论的提出打好基础.习题详解1.解答:如图所示,用作图法求出物体所受的合力F =87 Na =F m =872m/s 2=43.5 m/s 2 v =at =43.5×3 m/s=131 m/sx =12at 2=12×43.5×32 m =196 m. 2.解答:电车的加速度为:a =v -v 0t =0-1510m/s 2=-1.5 m/s 2. 电车所受阻力为:F =ma =-6.0×103 N ,负号表示与初速度方向相反.3.解答:人在气囊上下滑的加速度为:a =mg sin θ-F m =g sin θ-F m =(10×3.24.0-24060) m/s 2=4.0 m/s 2 滑至底端时的速度为:v =2ax =2×4.0×4.0 m/s =5.7 m/s.4.解答:卡车急刹车时的加速度大小为:a =F m =μmg m=μg =7 m/s 2 根据运动学公式:v 0=2ax =2×7×7.6 m/s =10.3 m/s≈37.1 km/h>30 km/h 所以,该车超速.设计点评动力学的两类基本问题在高中阶段的地位相当重要,对于培养学生的分析、判断、综合能力有很大的帮助.对于方法的总结,遵循由特殊到一般、再由一般到特殊的人们认识事物的基本发展思路.过程清晰,层次分明,有助于学生理解和掌握.备课资料一、牛顿运动定律的适用范围17世纪以来,以牛顿运动定律为基础的经典力学不断发展,在科学研究和生产技术上得到了极其广泛的应用,取得了巨大的成就.这一切不仅证明了牛顿运动定律的正确性,甚至使有些科学家认为经典力学已经达到十分完善的地步,一切自然现象都可以由力学来加以说明,过分地夸大了经典力学的作用.但是,实践表明,牛顿运动定律和所有的物理定律一样,只具有相对的真理性.1905年,著名的美籍德国物理学家爱因斯坦(1879—1955)提出了研究匀速相对运动体系的狭义相对论,引起了物理学的一场巨大革命.他指出,经典力学中的绝对时空观并不是直接从观察和实验中得出的.实际上,时间、空间和观察者是相对的.根据相对论原理,物体的质量也不是恒定不变的,而是随着物体运动状态的变化而变化.1916年爱因斯坦又发表了研究加速相对运动的广义相对论.运用这些理论所得出的结论和实验观察基本一致.这表明:对于接近光速的高速运动的问题,经典力学已不再适用,必须由相对论力学来研究.经典力学可以看做是相对论力学在运动速度远小于光速时的特例.从20世纪初以来,原子物理学发展很快,发现许多新的物理现象(如光子、电子、质子等微观粒子的波粒二象性)无法用经典力学来说明.后来,在普朗克(1858—1947)、海森堡(1901—1976)、薛定谔(1887—1961)、狄拉克(1902—1984)等物理学家的努力下创立了量子力学,解决了经典力学无法解决的问题.因此经典力学可以看做是量子力学在宏观现象中的极限情况.总之,“宏观”“低速”是牛顿运动定律的适用范围.二、用整体法与局部法巧解动力学问题在实际问题中,还常常碰到几个物体连在一起,在外力作用下的共同运动,称为连接体的运动.在分析和求解物理连接体问题时,首先遇到的关键之一,就是研究对象的选取问题.其方法有两种:一是隔离法,二是整体法.所谓隔离(体)法就是将所研究的对象——包括物体、状态和某些过程,从系统或全过程中隔离出来进行研究的方法.所谓整体法就是将两个或两个以上物体组成的整个系统或整个过程作为研究对象进行分析研究的方法.以系统为研究对象,运用牛顿第二定律求解动力学问题能回避系统内的相互作用力,使解题过程简单明了.隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.例1 用力F 推M ,使M 和m 两物体一起在光滑水平面上前进时,求两物体间的相互作用力.解析:如图所示,对整体应用牛顿第二定律有F =(M +m )a隔离m ,m 受外力的合力为M 对m 的推力N ,由牛顿第二定律N =ma ,解得:N =m M +m F . 答案:mM +m F 例2 如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球.开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的12,即a =12g .则小球在下滑的过程中,木箱对地面的压力为多少?解析:解法一:(隔离法)木箱与小球没有共同加速度,用隔离法解决如下.取小球m 为研究对象,受重力mg 、摩擦力F f ,如图,据牛顿第二定律得:mg -F f =ma ①取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′,如图. 据物体平衡条件得:F N -F f ′-Mg =0②且F f =F f ′③由①②③式得F N =2M +m 2g 由牛顿第三定律知,木箱对地面的压力大小为F N ′=F N =2M +m 2g . 解法二:(整体法)对于“一动一静”连接体,也可选取整体为研究对象,依据牛顿第二定律列式: (mg +Mg )-F N =ma +M ×0故木箱所受支持力:F N =2M +m 2g . 由牛顿第三定律知:木箱对地面压力F N ′=F N =2M +m 2g . 答案:2M +m 2g 例3 一个质量为0.2 kg 的小球用细线吊在倾角θ=53°的斜面顶端,如图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦.当斜面以10 m/s 2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力.解析:当加速度a 较小时,小球与斜面体一起运动,此时小球受重力、绳的拉力和斜面的支持力作用,绳平行于斜面.当加速度a 足够大时,小球将“飞离”斜面,此时小球受重力和绳的拉力作用,绳与水平方向的夹角未知,题目中要求a =10 m/s 2时绳的拉力及斜面的支持力,必须先求出小球离开斜面的临界加速度a 0.(此时,小球所受斜面支持力恰好为零)由mg cot θ=ma 0,所以a 0=g cot θ=7.5 m/s 2因为a =10 m/s 2>a 0,所以小球离开斜面,N =0,小球受力情况如图,则T cos α=mg ,所以T =(ma )2+(mg )2=2.83 N ,N =0.答案:2.83 N 0例4 如图所示,三个物体的质量分别为m 1、m 2、M ,斜面的倾角为α,绳的质量不计,所有接触面光滑.当m 1沿斜面下滑时,要求斜面体静止,则对斜面体应施加多大的水平力F?解析:对m 1、m 2构成的系统由牛顿第二定律知:m 1g sin α-m 2g =(m 1+m 2)a ①对m 1、m 2和M 构成的整个系统就水平方向而言,若施力使斜面体静止,只有m 1具有水平方向向右的加速度分量a 1,且有a 1=a cos α②所以,对斜面体必须施加水平向右的推力F ,如图,则对整个系统在水平方向上由牛顿第二定律知:F =m 1a 1③解①②③得:F =m 1g (m 1sin α-m 2)cos αm 1+m 2. 答案:m 1g (m 1sin α-m 2)cos αm 1+m 2这种以系统为研究对象的解题方法,只研究了系统在水平方向上的动力学行为即达目的,既回避了物体运动的多维性和相互作用的复杂性,又体现了牛顿第二定律在某一方向上的独立性.。

最新高中物理牛顿第二定律经典例题(精彩4篇)

最新高中物理牛顿第二定律经典例题(精彩4篇)

最新高中物理牛顿第二定律经典例题(精彩4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新高中物理牛顿第二定律经典例题(精彩4篇)练习题从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。

高中物理牛顿第二定律教案5篇

高中物理牛顿第二定律教案5篇

高中物理牛顿第二定律教案5篇通过教案能够为教师提供丰富的教学资源和参考资料,教师若希望在教学中脱颖而出,应高度重视教案的撰写和规划,以下是本店铺精心为您推荐的高中物理牛顿第二定律教案5篇,供大家参考。

高中物理牛顿第二定律教案篇1【教材地位与作用】本节内容是在上节实验课程探究加速度、质量与力的关系的基础上进行知识的探究和总结,在知识上要求知道决定加速度的因素、理解加速度、质量、力三者关系;要求经历探究活动、尝试解决问题方法、体验发现规律过程。

牛顿第二定律将力学和运动学有机地结合在一起,具体的、定量的回答了加速度和力、质量的关系,是动力学中的核心内容,是本章的重点内容。

【学情分析】在学习这一节内容之前,学生已经掌握了力、质量、加速度、惯性等概念;知道质量是惯性的量度、力是改变物体运动状态的原因;会分析物体的受力;通过上一节探究加速度与力、质量的关系,知道了加速度与力、质量的关系。

这些都为本节学习准备了知识基础,牛顿第二定律通过加速度把物体的运动和受力紧密的联系在一起,使前三章构成一个整体,是解决力学问题的重要工具,应使学生明确对于牛顿第二定律应深入理解,全面掌握。

【教学目标】1、知识目标(1)理解加速度与力和质量间的关系。

(2)理解牛顿第二定律的内容,知道定律的确切含义。

(3)能运用牛顿第二定律解答有关问题。

2、能力目标培养学生的分析能力、归纳能力、解决问题的能力。

3、德育目标(1)渗透物理学研究方法的教育。

(2)认识到由实验归纳总结物理规律是物理学研究的重要方法。

(3)培养学生严谨思考的能力,激发学生学习物理的兴趣。

【教学重点】理解牛顿第二定律【教学难点】牛顿第二定律的应用【教学策略】回顾与思考→创设物理情景→分组讨论→老师讲解→总结规律。

【教学流程图】【教学过程设计】教学环节和教学内容教师活动学生活动设计意图【知识回顾】回忆上节课探究的a与f、m关系。

向学生提问:回忆上节实验探究课内容,控制变量法的应用?我们研究了哪几个物理量?它们之间有什么关系?能用公式反应他们之间的关系吗?回忆上节课知识,集体回答。

物理牛顿运动定律的应用练习题20篇及解析

物理牛顿运动定律的应用练习题20篇及解析


B: a2' /
s2
经分析,B 先停止运动,A 最后恰滑至 B 的最右端时速度减为零,故 v2 v2 L 2a1 2a2 ' 2
【详解】
(1)A、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,
对 A,由牛顿第二定律可知,加速度 a 1g 2m / s2 ;
对 B,由牛顿第二定律可知, Fmin 2 m M g 1mg Ma ,
/
解得 Fmin 18N
(2)F=20N>18N,二者间会相对滑动,对 B,由牛顿第二定律;
(1)若 A、B 间相对滑动,F 的最小值;
(2)当 F=20N 时,若 F 的作用时间为 2s,此时 B 的速度大小;
/
(3)当 F=16N 时,若使 A 从 B 上滑下,F 的最短作用时间.
【答案】(1) Fmin 18N (2) v2 20m / s (3) t2 1.73s
【解析】
【分析】
(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和 木板的位移之差等于 L,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不 能从左侧滑下求解力 F 的范围; 【详解】
(1)铅块: 1mg ma1
解得 a1=4m/s2; 对木板: 1mg 2 (M m)g Ma2 解得 a2=2m/s2
1 2
a1t12
1 2
a2t12
1.25m
撤掉 F 后:物块相对于木板上滑,加速度仍未 a1=8m/s2,减速上滑
而木板: Mg sin 2 (M m)g cos 1mg cos Ma2
则: a2 12m/s2 ,方向沿斜面向下,减速上滑
由于: Mg sin 1mg cos 2 (M m)g cos

初中物理《牛顿第一定律》教学设计优秀9篇

初中物理《牛顿第一定律》教学设计优秀9篇

初中物理《牛顿第一定律》教学设计优秀9篇牛顿第一定律篇一(物体运动状态改变的原因)l_知道力是改变物体运动状态的原因。

2.会用力是改变物体运动状态的原因分析一些典型实例。

教材重点难点重点物体运动状态改变的原凶,和利用结论分析实例。

难点利用力是改变物体运动状态的原因。

教具小钢球、磁铁(条形)教学方法讲授活动讨论教学过程投影:熟透了的苹果从树上下落。

思考与讨论1.苹果未熟透前为什么不会从树上下落?2.熟透了的苹果从树上下落说明苹果的运动状态是否发生改变?3.是什么原因导致苹果下落的?教师归纳苹果未熟透前,由于受到平衡力的作用而保持静止状态。

熟透的苹果从树上下落,说明苹果的运动状态发生改变。

而导致苹果运动状态发生改变的原因是树对苹果的拉力没有了,苹果只受到重力的作用,即苹果原来的平衡状态破坏了,物体就沿着另一个力的方向运动起来了。

【合作交流,探究新知】一、物体运动状态改变的原因思考与讨论1.小孩用细绳拉住氢气球,一旦脱手,气球将升空。

你能说明气球升空的原因?小孩用细绳拉住氢气球时,氢气球由于受到平衡力的作用而静止。

但一旦脱手,氢气球失去了手的拉力,平衡就会破坏,此时氢气球就会升空。

2.水平道路上行驶的汽车(1)若发动机牵引力大小等于汽车行驶时受到的阻力,汽车将怎样运动?(2)若此时驾驶员关闭了发动机,则汽车又将怎样运动?为什么?最后汽车的运动状态怎样?(3)如果要使停止着的汽车重新启动,则驾驶员应怎样做?此时,汽车受力平衡吗?(1)当汽车发动机牵引力大小等于汽车行驶时受到的阻力时,汽车将做匀速直线运动。

(2)若驾驶员关闭发动机,汽车失去了发动机的牵引力,则汽车会在阻力作用下逐渐减速,最后汽车处于静止状态。

(3)要汽车重新起动,驾驶员应起动发动机(汽车受力不平衡),在牵引力的作用下,汽车由静止运动起来。

实验或投影:磁铁的吸引力使钢珠改变运动方向(如图2—3—1)备注想一想从上述实例和实验中,你能总结出一条什么样的结论?物体运动速度大小的改变和运动方向的改变都是在______作用下发生的。

最新版-高一物理必修一《牛顿第一定律》教案最新4篇

最新版-高一物理必修一《牛顿第一定律》教案最新4篇

高一物理必修一《牛顿第一定律》教案最新4篇牛顿第一定律教案篇一牛顿运动第一定律教学目标:一、知识目标1、理解牛顿第一定律和惯性的概念。

2、知道牛顿第一定律的建立过程。

3、正确理解力和物体运动的关系。

二、能力目标培养学生的观察能力、思维能力及应用定律解决实际问题的能力。

三、德育目标使学生学会从纷繁的现象中探求事物本质的科学态度和研究方法。

教学重点牛顿第一运动定律、惯性教学难点:对牛顿第一运动定律和惯性的正确理解教学方法:实验法、阅读法、归纳法【教学要点分析】1.本节教材重点是围绕力是维持物体运动的原因还是改变物体运动状态的原因的议题的辨论。

人类认识这个问题,经历了漫长的过程;学生正确认识这个问题,同样也要克服日常经验所带来的错误认识。

若一开始就讲方法,介绍历史回顾,指出亚里士多德错误,虽节省时间,但对消除学生由直觉产生的类似错误不利。

所以,教学一开始应先安排两个实例,让学生讨论,让学生充分思考,有足够时间去澄清错误认识,切实理解牛顿第一定律内容。

2.学习伽利略理想实验时,宜采用思维点拨方法引导学生阅读课本,这样更有利于培养学生独立思考的能力和习惯。

3.惯性是重要概念,想通过一节课的教学,让学生正确理解是困难的。

应该在今后教学中,结合相关材料,有针对性地一一纠正。

教学用具:多媒体小平台、气垫导轨滑块课时安排:1课时教学步骤:一、导入新课《实例讨论引入》下边请同学们阅读课文有关内容,观察并回答下列问题。

:㈠用手推小车,小车前进;停止用力,小车就停止。

(教师一边演示,也引导学生讨论问题,焦点—力是维持物体运动的原因还是改变物体运动状态的原因。

)通过例1讨论应该使学生明确:小车原先静止,手推小车施了推力,迫使小车改变了静止状态开始运动,手离开了小车,推力撤去,但小车在摩擦阻力作用下,速度逐渐减小,最终停止,是力使物体运动状态改变了。

㈡让足球在兰球场上、足球草地上以同样初速前进,在哪种场地上滚得更远?为什么?如果地面绝对光滑,足球又当怎样?通过例2讨论应该使学生明确:摩擦阻力越小,足球滚得越远,滚的时间越长。

牛顿第二定律的实际应用

牛顿第二定律的实际应用

牛顿第二定律的实际应用牛顿第二定律是经典力学的基本定律之一,它描述了物体的运动与施加在物体上的力之间的关系。

在这篇文章中,我们将探讨牛顿第二定律的实际应用,并使用具体例子来说明其在日常生活和工程领域的重要性。

1. 机械运动中的应用牛顿第二定律在机械运动中有着广泛的应用。

在汽车行驶过程中,引擎产生的马力通过驱动轮施加力,使汽车加速、转弯或制动。

牛顿第二定律可以用来计算车辆的加速度和所需的外力。

另外,航空航天领域中,飞机的飞行性能也可以通过牛顿第二定律进行计算和优化。

2. 项目安全分析和设计牛顿第二定律在项目的安全分析和设计中具有重要作用。

例如,建筑工程中,我们需要考虑风荷载对建筑物的影响。

利用牛顿第二定律,可以计算风力对建筑物的作用力,从而设计合适的支撑结构来确保建筑物的稳定性和安全性。

3. 汽车碰撞和安全性评估牛顿第二定律在汽车碰撞和安全性评估中也发挥了重要的作用。

在车辆碰撞过程中,牛顿第二定律可以用来计算碰撞力和车辆的加速度,从而评估车辆和乘客所承受的冲击力,并设计相应的安全装置,如安全气囊和座椅安全带。

4. 电子设备运作原理的分析除了机械运动,牛顿第二定律也可以应用在电子设备的运作原理分析中。

例如,电子平衡车的动态控制系统,根据通过传感器检测到的倾斜角度,利用牛顿第二定律计算所需的推力,从而保持车辆的平衡。

5. 运动员训练和体能提升对于运动员来说,了解牛顿第二定律的应用可以帮助他们优化训练和提高体能。

例如,射击和击剑运动中,运动员需要通过准确施加力来改变物体的运动状态。

了解牛顿第二定律可以帮助他们掌握力的大小和方向的平衡,提高技术水平。

6. 自由落体运动的分析自由落体运动是牛顿第二定律的经典应用之一。

根据牛顿第二定律的公式F=ma,可以计算物体在重力作用下的加速度。

通过观察自由落体运动,可以验证牛顿第二定律的准确性,并应用于其他与重力有关的运动。

总结:牛顿第二定律是经典力学中的重要定律,它在多个领域具有广泛的应用。

自由落体运动解题技巧及其在生活中的巧妙应用

自由落体运动解题技巧及其在生活中的巧妙应用

【自由落体运动解题技巧及其在生活中的巧妙应用】自由落体运动是物理学中一个重要的课题,也是高中物理必修内容之一,它描述了在无外力作用下,物体在重力作用下所具有的运动规律。

今天,我们将深入探讨自由落体运动的解题技巧,以及它在我们日常生活中的巧妙应用。

一、自由落体运动的基本规律自由落体运动是指物体在仅受重力作用下的运动状态。

根据牛顿运动定律和重力加速度的概念,可以得出自由落体运动的基本规律:物体在自由落体运动中的速度随时间的变化满足v=gt,位移随时间的变化满足s=gt²/2。

其中,v表示速度,t表示时间,g表示重力加速度,s表示位移。

这些基本规律为我们解题提供了重要的物理量关系,也为日常生活中的应用提供了基础。

二、自由落体运动解题技巧1.确定已知量和未知量:在解题前,首先要仔细分析已知条件和未知条件,明确哪些物理量是已知的,哪些是需要求解的。

2.利用基本规律进行计算:根据自由落体运动的基本规律,可以利用已知条件和物理公式进行计算,推导出未知物理量的数值。

3.注意单位换算:在计算过程中,需要注意单位的换算,确保计算结果的准确性。

4.理清逻辑思路:在解题过程中,需要理清思路,逐步推导,确保每一步计算和推导的准确性和连贯性。

5.结果检验:在求解出未知物理量的数值后,需要对结果进行检验,确保结果符合实际情况。

三、自由落体运动在生活中的应用1.自由落体运动在建筑工程中的应用:在建筑工程中,我们常常需要计算物体从高空坠落到地面所需的时间和速度,以保证建筑材料的安全运输和使用。

2.自由落体运动在交通工程中的应用:交通工程中,我们需要计算车辆从桥梁上坠落到水面的撞击力和破坏程度,以确保桥梁的稳固性和车辆行驶的安全性。

3.自由落体运动在体育比赛中的应用:在体育竞赛中,我们需要计算投掷物体的飞行轨迹和落点,以提高运动员的技术水平和竞赛成绩。

四、个人观点和理解对于自由落体运动的解题技巧和应用,我个人认为需要结合现实情况和数学模型进行综合分析,才能更好地应用于实际生活和工程设计中。

物理牛顿运动定律的应用练习题20篇及解析

物理牛顿运动定律的应用练习题20篇及解析
由几何关系及速度分解有: 解得:
(2)滑块在 B 点时的速度大小为 滑块从 B 点运动到 C 点过程中,由牛顿第二定律有: 可得加速度 设滑块到达 C 点时的速度大小为 vC,有: 解得:
此过程所经历的时间为: 故滑块通过传送带的过程中,以地面为参考系,滑块的位移 x1=L=6m, 传送带的位移 x2=vt=4m; 传送带和滑块克服摩擦力所做的总功为: 代入数据解得: 【点睛】 此题需注意两点,(1)要利用滑块沿 BC 射入来求解滑块到 B 点的速度;(2)计算摩擦力对物 体做的功时要以地面为参考系来计算位移。
4.如图所示,长 L=10m 的水平传送带以速度 v=8m/s 匀速运动。质量分别为 2m、m 的小 物块 P、Q,用不可伸长的轻质细绳,通过固定光滑小环 C 相连。小物块 P 放在传送带的最 左端,恰好处于静止状态,C、P 间的细绳水平。现在 P 上固定一质量为 2m 的小物块(图中 未画出),整体将沿传送带运动,已知 Q、C 间距大于 10 m,重力加速度 g 取 10m/s2.求:
由牛顿第二定律得:F=m vB2 r
解得:F=5 2 N
由牛顿第三定律知小球对细管作用力大小为 5 2 N,
6.如图所示,在竖直平面内有一倾角 θ=37°的传送带 BC.已知传送带沿顺时针方向运行的 速度 v=4 m/s,B、C 两点的距离 L=6 m。一质量 m=0.2kg 的滑块(可视为质点)从传送带上 端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC 方向滑人传送 带,滑块与传送带间的动摩擦因数 μ=0.5,取重力加速度 g=10m/s2 ,sin37°= 0.6,cos 37°=0.8。求:
(1)经历多长时间 A 相对地面速度减为零;

高中物理高一物理《牛顿第二定律》优秀教学案例

高中物理高一物理《牛顿第二定律》优秀教学案例
在课堂教学的最后阶段,我将引导学生进行反思与评价。首先,让学生回顾自己在课堂上的学习过程,总结所学知识和方法,并对自己的表现进行自我评价。此外,组织学生互相评价,鼓励他们提出建设性的意见和建议。最后,我会对每个学生的表现进行点评,强调他们的优点,指出需要改进的地方,并给予鼓励和指导。通过反思与评价,帮助学生巩固知识,提高能力,培养良好的学习习惯。
此外,我会对本节课的知识点进行梳理和总结,强调牛顿第二定律的物理意义、适用范围和实际应用价值。通过总结归纳,帮助学生巩固所学知识,提高他们的理解和应用能力。
(五)作业小结
为了巩固本节课的知识,我设计了以下作业:
1.请学生运用牛顿第二定律,分析一辆汽车从静止加速到一定速度所需的力,并与实际数据对比,探讨可能的影响因素。
(二)问题导向
以问题为导向的教学策略是本节课的核心。我将设计一系列由浅入深的问题,引导学生思考力、质量、加速度之间的关系。这些问题包括但不限于:为什么物体的加速度与作用力成正比,与质量成反比?如何从实验中验证这一关系?在实际应用中,如何运用牛顿第二定律解决具体问题?通过这些问题,激发学生的好奇心,促使他们主动探究和解决问题。
3.通过案例分析、数学建模等教学活动,训练学生的逻辑思维和解决复杂问题的能力。
4.利用信息技术和多媒体资源,丰富教学手段,提高学生的学习效率,培养他们自主学习和协作学习的能力。
(三)情感态度与价值观
1.培养学生对物理学习的兴趣和热情,让他们体会到物理学的美和实用性,从而增强学习的内驱力。
2.引导学生认识到科学探究的重要性和价值,培养他们勇于质疑、敢于创新的精神。
小组讨论过程中,学生需要运用牛顿第二定律,结合所学知识,共同探讨解决问题的方法。我会在一旁观察学生的讨论情况,适时给予指导和提示,帮助他们找到解决方案。

(物理)物理牛顿运动定律的应用练习题20篇

(物理)物理牛顿运动定律的应用练习题20篇

(物理)物理牛顿运动定律的应用练习题20篇一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为m=2kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s2)(1)若斜面与物块间无摩擦力,求m加速度的大小及m受到支持力的大小;(2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F的取值.(此问结果小数点后保留一位)【答案】(1)7.5m/s2;25N (2)28.8N≤F≤67.2N【解析】【分析】(1)斜面M、物块m在水平推力作用下一起向左匀加速运动,物块m的加速度水平向左,合力水平向左,分析物块m的受力情况,由牛顿第二定律可求出加速度a和支持力.(2)用极限法把F推向两个极端来分析:当F较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F较大(足够大)时,物块将相对斜面向上滑,因此F不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F的取值范围.【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得:mgtanθ=ma得a=gtanθ=10×tan37°=7.5m/s2m受到支持力20N=25N cos cos37NmgFθ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块的受力如下图所示:对物块分析,在水平方向有 Nsinθ﹣μNcosθ=ma 1竖直方向有 Ncosθ+μNsinθ﹣mg=0对整体有 F 1=(M+m )a 1代入数值得a 1=4.8m/s 2 ,F 1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F 2,对物块分析,在水平方向有 N ′sin θ﹣μN′cos θ=ma 2竖直方向有 N ′cos θ﹣μN ′sin θ﹣mg =0对整体有 F 2=(M +m )a 2代入数值得a 2=11.2m/s 2 ,F 2=67.2N综上所述可以知道推力F 的取值范围为:28.8N≤F ≤67.2N .【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,(1)A 、B 两球开始运动时的加速度.(2)A 、B 两球落地时的动能.(3)A 、B 两球损失的机械能总量.【答案】(1)25m/s A a =27.5m/s B a = (2)850J kB E = (3)250J【解析】【详解】(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得:对A :A A A A m g f m a -=对B :B B B B m g f m a -=A B f f =0.5A A f m g =联立以上方程得:25m/s A a = 27.5m/s B a =(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t = 212B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,15m B h =,10m/s A V =,15m/s B V =A 、B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:21()2kA A A A A E m v m g H h =+- 400J kA E = 21()2kB B B B B E m v m g H h =+- 850J kB E = (3)两球损失的机械能总量为E ∆,()A B kA kB E m m gH E E ∆=+--代入以上数据得:250J E ∆=【点睛】(1)轻质物体两端的力相同,判断A 、B 摩擦力的性质,再结合受力分析得到.(2)根据运动性质和动能定理可得到.(3)由能量守恒定律可求出.3.如图,一块长度为9L m =、质量为1M kg =的长木板静止放置在粗糙水平地面上.另有质量为1m kg =的小铅块(可看做质点),以012/v m s =的水平初速度向右冲上木板.已知铅块与木板间的动摩擦因数为10.4μ=,木板与地面间的动摩擦因数为20.1μ=,重力加速度取210/g m s =,求:()1铅块刚冲上木板时,铅块与木板的加速度1a 、2a 的大小;()2铅块从木板上滑落所需时间;()3为了使铅块不从木板上滑落,在铅块冲上木板的瞬间,对长木板施加一水平向右的恒定拉力F ,求恒力F 的范围.【答案】(1)4m/s 2;2m/s 2(2)1s (3)2N≤F≤10N【解析】【分析】(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和木板的位移之差等于L ,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不能从左侧滑下求解力F 的范围;【详解】(1)铅块:11mg ma μ=解得a 1=4m/s 2;对木板:122()mg M m g Ma μμ-+=解得a 2=2m/s 2(2)从开始到滑落过程:2201112111()22v t a t a t L +-= 解得t 1=1s 10118/v v a t m s =-=2212/v a t m s ==(3)到右端恰好共速:2202122211()22v t a t a t L '+-= '01222v a t a t -= 解得a ′2=4m/s 2木板:'122()F mg M m g Ma μμ+-+= 解得F ≥2N ;共速后不能从左侧滑下:2-()()F M m g M m a μ+=+共,1a g μ≤共 解得F ≤10N , 则F 的范围:2N ≤F ≤10N【点睛】本题主要是考查牛顿第二定律的综合应用,对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.4.如图所示,质量均为3kg m =的物体A 、B 紧挨着放置在粗糙的水平面上,物体A 的右侧连接劲度系数为100N/m k =的轻质弹簧,弹簧另一端固定在竖直墙壁上,开始时两物体压紧弹簧并恰好处于静止状态。

高二物理选修一知识点梳理5篇

高二物理选修一知识点梳理5篇

高二物理选修一知识点梳理5篇高二物理选修一知识点梳理篇一牛顿运动定律的应用1、动力学的两类基本问题:(1)已知物体的受力情况,确定物体的运动情况。

基本解题思路是:①根据受力情况,利用牛顿第二定律求出物体的加速度。

②根据题意,选择恰当的运动学公式求解相关的速度、位移等。

(2)已知物体的运动情况,推断或求出物体所受的未知力,基本解题思路是:①根据运动情况,利用运动学公式求出物体的加速度。

②根据牛顿第二定律确定物体所受的合外力,从而求出未知力。

(3)注意点:①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图。

不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键。

②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化。

2、关于超重和失重:在平衡状态时,物体对水平支持物的压力大小等于物体的重力。

当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力。

当物体的加速度方向向上时,物体对支持物的压力大于物体的重力,这种现象叫超重现象。

当物体的加速度方向向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象。

对其理解应注意以下三点:(1)当物体处于超重和失重状态时,物体的重力并没有变化。

(2)物体是否处于超重状态或失重状态,不在于物体向上运动还是向下运动,即不取决于速度方向,而是取决于加速度方向。

(3)当物体处于完全失重状态(a=g)时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等。

高二物理选修一知识点梳理篇二磁现象:磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。

磁体:具有磁性的物体,叫做磁体。

磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体;②来源:天然磁体(磁铁矿石)、人造磁体;③保持磁性的时间长短:硬磁体(永磁体)、软磁体。

牛顿第二定律与加速度

牛顿第二定律与加速度

牛顿第二定律与加速度牛顿第二定律是经典力学中的基本原理之一,它描述了力和物体运动之间的关系。

这个定律可以用公式 F = ma 表示,其中 F 代表物体所受的力,m 代表物体的质量,a 代表物体的加速度。

在这篇文章中,我们将探讨牛顿第二定律与加速度之间的关系,以及它们对物体运动的影响。

一、牛顿第二定律的表达式推导与意义牛顿第二定律的表达式 F = ma 是通过推导得出的。

根据定义,加速度 a 可以定义为物体单位时间内速度的变化量,即a = Δv / Δt。

同时,速度的变化量可以用物体所受的力与质量的比值来表示,即Δv = (F / m) × Δt。

将其代入加速度的定义式中,得到 a = (F / m)。

这就是牛顿第二定律的表达式。

牛顿第二定律的意义在于描述了力对物体运动状态的影响。

当施加在物体上的力增大时,物体的加速度也会增大;而当物体的质量增大时,加速度则减小。

这个关系可以形象地理解为推车的例子。

当你以一定的力推动一辆空车和一辆装满货物的车时,前者的加速度会明显大于后者。

二、加速度对物体运动的影响加速度是物体运动状态的重要指标之一。

根据牛顿第二定律的定量关系,我们可以得出以下结论:1. 加速度与力成正比:当施加在物体上的力增大时,物体的加速度也会增大,反之亦然。

这意味着只有当物体受到外力时,才会发生加速或减速的现象。

2. 加速度与质量成反比:当物体的质量增大时,给定的力将被分散到更多的质点上,因此物体的加速度减小。

质量越大,物体对外力的响应越弱。

3. 加速度与物体运动方向一致:根据牛顿第二定律,力和加速度具有相同的方向。

所以,当施加在物体上的力与物体的运动方向一致时,物体的加速度将增大;反之,如果力的方向与运动方向相反,物体的加速度将减小。

三、应用示例1. 自由落体运动自由落体运动是指物体仅受地球重力作用下的运动。

根据牛顿第二定律,物体在自由落体运动中的加速度恒定且等于重力加速度 g。

牛顿运动定律的适用范围最新版

牛顿运动定律的适用范围最新版

3.相对论、量子力学与经典力学的关系
(1)说明人类认识自然界更加深入,它 是科学的进步,并不表示经典力学失去 意义.
(2)不同的物理规律有不同的适用范围, 在各自的适用范围内,我们可以充分发 挥物理规律的作用.
四、牛顿三个运动定律的关系
牛顿提出的三个运动定律是一个整体,它回 答了力与物体运动的关系这一最基本、最重要 的问题.
第九节 牛顿运动定律适用范围
一、牛顿运动定律有极其广泛的应用
1.牛顿运动定律基于广泛的生活实践,大量的 科学实验,是对客观现实的反映.
2.牛顿运动定律是解决大量实际问题的基础. 随着人类对自然界认识的深入和科研水平的 进一步提高,以牛顿定律为基础的经典力学 已不能适应新的要求.
二、牛顿运动定律的适用范围
•点击下图观看动画
1.牛顿运动定律只在惯性系中成立 2.牛顿运动定律只适用于宏观低速运动的物
体.
(1)宏观物体是指相对于电子、质子、中子 等微观粒子而言.
(2)低速运动是指相对于光速而言.
对于微观高速运动的问题,经典力学出现了 困难,为此,20世纪以来,科学家创立了相对 论和量子力学.
三、相对论和量子力学
第一定律解决了物体在不受力作用条件下的 运动状态问题,同时指出物体具有惯性,确定 了力的概念,是后两个运动定律的基础.
第二定律在第一定律的基础上,进一步研究 了物体在受力作用条件下的运动状态,确定了 力、质量以及加速度的瞬时对应关系,是牛顿 三个运动定律的核心.
第三定律则反映了物体作用的相互性,阐明 了物体在作用过程中的相互联系问题,使人们 能够更加全面地分析、认识物体的力的作用与 运动的关系问题.
向;我们习惯了飞翔,却成了无脚的鸟。年轻时我们并不了解自己,不知道自己需要什么。不知道什么才是自己最想要的,什么才是最适合自己的,自己又是怎么样的一个 人。”时光叠加,沧桑有痕,终究懂得,漫漫人生路,得失爱恨别离,不过是生命的常态。原来,人生最曼妙的风景,就是那颗没被俗世河流污染的初心。大千世界,有很多 的东西可以去热爱,或许一株风中摇曳的小草,一朵迎风招展的小花,一条弯弯曲曲的小河,都足够让我们触摸迷失的初心。紫陌红尘,芸芸众生,皆是过客。若时光允许, 我愿意一生柔软,爱了樱桃,爱芭蕉,静守于轮回的渡口,揣一颗云水禅心,将寂寞坐断,将孤独守成一帧最美的山水画卷。一直渴盼着,与心悦的人相守于古朴的小院,守 着老旧的光阴,只闻花香,不谈悲喜,读书喝茶,不争朝夕。阳光暖一点,再暖一点,日子慢一些,再慢一些,从容而优雅地老去。浮生荡荡,阳春白雪,触目横斜千万朵, 赏心不过两三枝;任凭弱水三千,只取一瓢饮。有梦的季节,有爱的润泽,走过的日子,都会成为笔尖温润如玉的诗篇。相信越是走到最后,剩下的唯有一颗向真向善向美的 初心。似水流年,如花美眷,春潮带雨晚来急,野渡无人舟自横朝花夕拾,当回望过往,你是此生无憾,还是满心懊悔呢?随着芳华的流逝,我们终究会明白:任何的财富都 比不上精神上的愉悦,任何的快感都不及对初心的执着。愿你不趋炎附势,不阿谀奉迎,不苟且偷生,不虚掷有限的年华,活出属于自己的风采,活在每一个当下,不忘初心,

牛顿第一定律的实验验证与应用

牛顿第一定律的实验验证与应用

牛顿第一定律的实验验证与应用牛顿第一定律也被称为惯性定律,它是经典力学的基石之一。

在这篇文章中,我们将探讨牛顿第一定律的实验验证以及它在实际中的应用。

一、实验验证牛顿第一定律的核心观点是物体在没有外力作用下将保持匀速直线运动或静止状态。

要验证这一定律,我们可以进行以下实验。

实验一:光滑水平面上的物体运动我们可以将一个小球放在光滑的水平面上,观察其运动情况。

在没有外力作用下,小球将保持静止或匀速直线运动。

这是因为没有摩擦力或其他外力对小球产生影响。

实验二:拉力与加速度的关系我们可以使用一个简单的装置来验证拉力与物体加速度之间的关系。

将一个小车连接到一根拉力计上,通过拉力计施加不同的力来观察小车的加速度变化。

实验结果可以验证当施加的拉力增加时,小车的加速度也会增加。

二、应用牛顿第一定律的应用广泛存在于日常生活和科技领域中。

应用一:行车安全行车中的安全带就是基于牛顿第一定律的应用。

当车辆突然停止或发生碰撞时,人体会因惯性继续前进,而安全带则通过阻止人体运动的方式保护乘客的安全。

应用二:火箭推进原理火箭的推进原理也是基于牛顿第一定律。

火箭通过燃烧燃料产生后向的气体排放,由于质量减小而产生的反作用力推动火箭向前运动。

这个原理被广泛应用于航天事业中。

应用三:运动员的起跑技术起跑时,运动员通常会采用弓步起跑法。

这种起跑方式利用了牛顿第一定律中惯性的原理。

运动员先向前弯腿,然后向后收回,最后迅速蹬地产生向前的推力,以增加起跑的速度。

应用四:自行车行驶平衡骑自行车时,通过施加力来平衡和转向。

当我们骑车时,如果没有牛顿第一定律的作用,我们就无法保持平衡,也无法准确控制方向。

结论通过实验的验证以及在实际生活中的应用,牛顿第一定律可以被证明是力学领域中的一个基本定律。

它对于我们理解物体运动的行为以及应用于科技领域具有重要意义。

理解和应用牛顿第一定律的知识可以帮助我们更好地理解和解释物体的运动行为,以及在实践中运用它们。

摩擦力的突变

摩擦力的突变

力随境迁 抓住界点——应用牛顿运动定律解决摩擦力的突变问题河北 张学英当物体由一种物理状态变为另一种物理状态时,可能存在一个过渡的转折点,这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件。

临界问题是中学物理中的常见题型,结合牛顿运动定律求解的也很多,由于篇幅有限,下面仅以摩擦力的突变为例,解析一下牛顿运动定律在临界问题中的应用。

解决摩擦力发生突变时的临界问题的关键在于分析突变情况,找出摩擦力突变的点。

1. 静摩擦力突变为滑动摩擦力例1. 如图1所示,物体A 和B 叠放在光滑的水平面上,A 、B 的质量分别为m kg A =2,m kg B =6,为了保持A 与B 相对静止在水平面上做加速运动,作用在B 上的水平拉力F 不能超过4N 。

如果将此水平拉力作用在物体A 上,则( )A. A 、B 仍相对静止一起加速运动;B. A 、B 将发生相对运动;C. A 做匀速运动,B 做加速运动;D. A 、B 一起做匀速运动。

解析:设A 和B 之间最大静摩擦力为F f max ,当水平拉力F 作用在B 上时,则F m m a A B =+(),F m a f A max =所以F N f max =1当水平拉力作用在A 上时,A 、B 不发生相对运动,一起运动的最大加速度和拉力的最大值分别为 a F m m s f B max max/==162 F m m a N A B max max ()=+=43 由于F F max <,A 、B 将发生相对运动,A 、B 都做加速运动,故选项B 正确。

点评:静摩擦力是被动力,其存在及大小、方向取决于物体间的相对运动的趋势,而且静摩擦力存在最大值。

存在静摩擦的连接系统,相对滑动与相对静止的临界条件是静摩擦力达最大值,即f静=f m 。

2.滑动摩擦力突变为静摩擦力例2. 如图2所示,质量为M =8kg 的小车B 放在光滑的水平面上,在小车右端加一个水平向右的恒力F N =8。

运用牛顿第三定律解释火箭升空

运用牛顿第三定律解释火箭升空

运用牛顿第三定律解释火箭升空火箭升空是一项复杂而壮观的过程,而牛顿第三定律则是解释火箭升空背后的力学原理的重要定律。

牛顿第三定律指出:凡是有力的作用必定有相等而反向的反作用。

在火箭升空的过程中,正是牛顿第三定律的应用使得火箭能够顺利地脱离地球引力,向太空飞行。

我们来了解一下火箭升空的基本原理。

火箭升空是通过燃烧燃料产生的高压燃气喷射而产生推力,从而产生反作用力推动火箭向上运动。

这里的推力产生的过程正是通过牛顿第三定律来解释的。

根据牛顿第三定律,当火箭燃烧燃料并喷射高压燃气时,燃气会以极高的速度从火箭喷射口向后排出,形成一个喷射嘴。

根据动量守恒定律,喷射嘴向后喷射的高速气体会带走一定的动量,而根据牛顿第三定律,这个喷射过程中产生的反作用力会作用在火箭上,推动火箭向上运动。

在火箭升空的过程中,火箭发动机中的燃料会不断地燃烧,产生大量的高温高压气体。

这些气体通过喷射嘴排出,产生的推力会比火箭的重力大,从而使得火箭获得加速度向上运动。

这个推力与重力的差值,也就是净推力,将会加速火箭的速度,使其逐渐脱离地球引力范围。

在火箭升空的过程中,火箭发动机会不断地喷射燃气,产生的推力也会不断地作用在火箭上。

而根据牛顿第三定律,这个推力产生的反作用力也会作用在喷射嘴上,使得喷射嘴向相反的方向产生一个反向的力。

这个反向的力就是火箭升空过程中所产生的巨大噪音和震动的原因。

火箭升空的过程中,火箭的推力逐渐减小,最终与重力平衡,进入到轨道运行阶段。

这是因为火箭的燃料有限,燃料耗尽后无法继续产生推力。

同时,火箭进入轨道后,速度足够高,可以通过惯性继续保持运动,不再需要持续的推力。

总结来说,火箭升空是通过牛顿第三定律来解释的。

火箭通过喷射高速气体产生的推力,根据牛顿第三定律,产生了一个反向的力,推动火箭向上运动。

火箭的推力与重力的差值将会加速火箭的速度,使其逐渐脱离地球引力范围,最终进入轨道运行。

牛顿第三定律的应用使得火箭能够顺利地升空,开启太空探索的新篇章。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由运动学公式得
x
v0
t
1 2
at
2
解得,人受的阻力 F阻= 67.5N
探究与讨论
求解两类动力学问题的思路和方法是什么?
首先选取研究对象,分析物理情景,确定问题类型
类型一 从受力求运动 类型二 从运动求受力
受力分析,画出受力图
由牛顿第二定律 F=ma求 加速度a
由运动学公式求运动情况
运动分析,由运动学公式求 加速度a
例2. 蹦床是运动员在一张蹦紧的弹性网上蹦跳、翻滚并作各种空 中动 作的运动项目。一个质量为60kg的运动员,从离水平网面 3.2m高处自由落下,着网后沿竖直方向蹦回到离水平网面5.0m高 处。已知运动员与网接触的时间为1.2s,若把在这段时间内网对 运动员的作用力当作恒力处理,求此力的大小。( g取10m/s2 )
两类动力学问题
• 类型二:从运动求受力
一个滑雪的人,质量是75 kg,以v0=2 m/s的初速 度沿山坡匀加速滑下,山坡的倾角θ=30°,在t= 5 s的时间内滑下的路程x=60 m,求滑雪人受到的 阻力(包括摩擦和空气阻力) 。
两类动力学问题
• 类型二:从运动求受力
例题2:一个滑雪的人,质量是75 kg,以v0=2 m/s的初速度沿山坡匀加速滑下,山坡的倾角θ= 30°,在t=5 s的时间内滑下的路程x=60 m,求滑 雪人受到的阻力(包括摩擦和空气阻力) 。
拓展2:一个静止在水平地面上的物体,质量 是2 kg,在斜向上与水平方向成37°角 ,大小为 6.4 N的拉力作用下沿水平地面向右运动。物体与 地面间的摩擦力是4.2 N。求物体在4 s末的速度和 4 s内的位移。(cos 37°=0.8)
FN F2
a
F1
37°
G
两类动力学问题
• 类型一:从受力求运动
由牛顿第二定律 F=ma求合 力F
受力分析,画出受力图,求 出待求的力
牛顿第二定律是“桥梁”,受力分析和运 动分析是基础,正交分解是常用方法。
练习1 已知受力求运动
例1. 将质量为m的物体以初速度V0从地面竖直向上 抛出,设在上升和下降过程中所受空气阻力大小均
为f,求上升的最大高度和落回地面的速度。
一个静止在水平地面上的物体,质量是2 kg, 在斜向上与水平方向成37°角 ,大小为6.4 N的拉 力作用下沿水平地面向右运动。物体与地面间的摩 擦力是4.2 N。求物体在4 s末的速度和4 s内的位 移。(cos 37°=0.8)
FN F2
y
a
F1
37°
x
G
两类动力学问题
• 类型一:从受力求运动
L/O/G/O
用牛顿运动定律解决问题(一)
西安交大附中
动力学的两类基本问题
1.已知受力求运动:分析物体的受力,应用牛顿第二定律求加速 度,根据物体的运动特征,应用运动学公式求物体的运动情况。
2.已知运动求力:根据物体的运动情况,求出物体的加速度, 应用牛顿第二定律,推断或求出物体的受力情况。无论哪类问 题,联系力和运动的桥梁是加速度。
解:物体受力如图,由牛顿第二定律得
y
F1cos370 —F2=ma 解得加速度 a=0.46m/s2
FN F2
a
F1
37°
x
4s末的速度 v =at=1.84m/s
4s内的位移 x 1 at 2 =3.68m
G
2
专题二 已知运动情况求力
根据物体的运动,由运动学公式可以求出加速度,再根据牛顿 第二定律确定物体所受的合外力,从而求出未知的力,或与力 相关的某些物理量,如动摩擦因数、劲度系数、力的方向等.
根据物体的运动情况求解物体的受力情况的一般步骤
①确定研究对象,分析研究对象的运动过程,多过程的要画 出运动草图. ②由运动学公式列方程,求出加速度.
③对研究对象进行受力分析,画出受力图,根据牛顿第二定 律列方程求解.
④必要时对结果进行讨ຫໍສະໝຸດ .两类动力学问题• 类型二:从运动求受力
一个滑雪的人,质量是75 kg,以v0=2 m/s的 初速度沿山坡匀加速滑下,山坡的倾角θ=30°, 在t=5 s的时间内滑下的路程x=60 m,求滑雪人受 到的阻力(包括摩擦和空气阻力) 。
例4. 质量为10kg的物体在20N水平力作用下,从静止 开始在光滑水平面上运动,运动5s后撤去水平力。求 物体从开始运动到10s末经过的位移和10s末的速度。
练习2 已知运动求受力
例1. 物体由16m高处从静止开始下落,落至地面共 用时间2s,若空气阻力大小恒定,则空气阻力是重 力的多少倍?(g取10m/s2)
两类动力学问题
• 类型一:从受力求运动
拓展2:一个静止在水平地面上的物体,质量 是2 kg,在斜向上与水平方向成37°角 ,大小为 6.4 N的拉力作用下沿水平地面向右运动。物体与 地面间的摩擦力是4.2 N。求物体在4 s末的速度和 4 s内的位移。(cos 37°=0.8)
两类动力学问题
• 类型一:从受力求运动
两类动力学问题
• 类型二:从运动求受力
例题2:一个滑雪的人,质量是75 kg,以v0=2 m/s的初速度沿山坡匀加速滑下,山坡的倾角θ= 30°,在t=5 s的时间内滑下的路程x=60 m,求滑 雪人受到的阻力(包括摩擦和空气阻力) 。
两类动力学问题
• 类型二:从运动求受力
解:人受力如图,由牛顿第二定律得 mgsinθ —F阻=ma
④结合题目所给的物体运动的初始条件,选择运动学公式求出 所需的运动学量.
⑤必要时对结果进行讨论.
两类动力学问题
• 类型一:从受力求运动
拓展2:一个静止在水平地面上的物体,质量 是2 kg,在斜向上与水平方向成37°角 ,大小为 6.4 N的拉力作用下沿水平地面向右运动。物体与 地面间的摩擦力是4.2 N。求物体在4 s末的速度和 4 s内的位移。(cos 37°=0.8)
受力 分析
合力
加速度
运动 学量
第一章 力的知识
牛顿 第二定律
第二章 物体的运动
专题一 已知受力情况求运动
根据物体的受力情况求加速度,再根据运动学公式求解有 关运动的物理量.
根据物体的受力情况求解运动情况的一般步骤
①确定研究对象,对研究对象进行受力分析,并画出物体受 力示意图. ②根据力的合成与分解的方法求出合外力(大小和方向)共 线力合成建立符号规则,把矢量运算变成代数运算;非共线 力合成根据平行四边形定则或正交分解法求解. ③根据牛顿第二定律列方程,并求出物体的加速度.
相关文档
最新文档