放大器的非线性失真

合集下载

功率放大器非线性失真特性研究

功率放大器非线性失真特性研究

功率放大器非线性失真特性研究功率放大器是电子设备中一种重要的电路,可以将信号的电压或电流进行放大,并输出到外部电路中。

随着科学技术的不断发展,功率放大器的应用范围越来越广泛。

但是,功率放大器中存在着非线性失真的问题,这会对信号的传输产生负面影响。

本文将就功率放大器非线性失真特性进行深入探讨。

一、功率放大器的工作原理功率放大器主要由直流供电、输入信号放大、输出阶段等组成。

在工作时,信号被输入到输入端,并通过输入信号放大器进行放大,然后被输送到输出阶段,并从输出端输出。

在放大过程中,功率放大器需要保证输出信号与输入信号之间的线性关系,否则就会出现失真现象。

但是,有些因素会导致功率放大器出现非线性失真,如功率放大器本身的非线性特性、电容和电感等元件的非线性特性、信号的过载等。

二、功率放大器的非线性失真特性1.交叉失真交叉失真是指两个频率不同的信号在功率放大器内交叉产生失真引起的失真。

这种失真主要由功率放大器的非线性特性引起。

当两个不同频率的信号同时存在于功率放大器中时,会产生交叉相位,这会导致交叉失真的发生。

2.截止失真截止失真是指输出信号的幅度不能随着输入信号的幅度而无限制地增加。

当输入功率达到一定程度时,输出功率开始波动,无法再继续增加。

这种失真主要由功率放大器的内部电压限制引起,当电压超过一定限制时,输出信号的幅度就无法再随着输入信号的幅度而增加。

3.交调失真交调失真是指两个频率不同的信号在功率放大器内交互作用产生失真引起的失真。

当两个不同频率的信号同时作用于功率放大器时,会在放大器内产生交互作用,导致交调失真的发生。

三、功率放大器非线性失真控制方法1.负反馈负反馈是一种消除失真的方法,它可以通过将一部分输出信号输入到功率放大器的输入端进行控制,从而减小输出信号与输入信号之间的误差。

负反馈可以降低失真程度并提高整个系统的线性度,但它不能彻底消除失真。

2.滤波滤波是一种消除失真的方法,它可以将出现于功率放大器输出端的失真信号进行筛选,只保留有效信号而滤去失真信号。

干货|大学生电子竞赛题目分析——放大器非线性失真研究装置

干货|大学生电子竞赛题目分析——放大器非线性失真研究装置

干货|大学生电子竞赛题目分析——放大器非线性失真研究装置1任务设计并制作一个放大器非线性失真研究装置,其组成如图所示,图中的K1和K2为1×2切换开关,晶体管放大器只允许有一个输入端口和一个输出端口。

2要求K1和K2均投到各自的“1”端子,外接信号源输出频率1kHz、峰峰值20mV的正弦波作为晶体管放大器输入电压u i,要求输出无明显失真及四种失真波形u o,且u o的峰峰值不低于2V。

外接示波器测量晶体管放大器输出电压u o波形。

(1)放大器能够输出无明显失真的正弦电压u o(2)放大器能够输出有“顶部失真”的电压u o(3)放大器能够输出有“底部失真”的电压u o(4)放大器能够输出有“双向失真”的电压u o(5)放大器能够输出有“交越失真”的电压u o(6)分别测量并显示上述五种输出电压u o的“总谐波失真”近似值。

(7)其他3说明(1)限用晶体管、阻容元件、模拟开关等元器件设计并实现图中的受控晶体管放大器,其输出的各种失真或无明显失真的信号必须出自该晶体管放大电路,禁用预存失真波形数据进行D/A转换等方式输出各种失真信号。

(2)在设计报告中,应结合电路设计方案阐述出现各种失真的原因。

(3)无明显失真及四种具有非线性失真电压u o的示意波形如下图所示:(4)总谐波失真定义:线性放大器输入为正弦信号时,其非线性失真表现为输出信号中出现谐波分量,常用总谐波失真(THD:total harmonic distortion)衡量线性放大器的非线性失真程度。

THD定义:若线性放大器输入电压其含有非线性失真的输出交流电压为则有:在完成设计要求的第(6)项时,谐波取到五次即可,即(5)对THD自动测量期间,不得有任何人工干预。

(6)K1和K2的“2”端子用于作品测试。

题目分析与方案设计本题主要由两部分组成:一个晶体管放大器、一个谐波分析电路。

题目要求的晶体管放大器是一个具有特殊要求的放大器,要求通过切换某些元件后,不仅能够输出正常的无失真波形,还能输出4种失真波形,分别为顶部失真、底部失真、双向失真与交越失真。

模拟电子技术基础知识运算放大器的非线性特性解析与应用

模拟电子技术基础知识运算放大器的非线性特性解析与应用

模拟电子技术基础知识运算放大器的非线性特性解析与应用模拟电子技术中的运算放大器是一种重要的电子元件,广泛应用于信号处理、滤波、运算和放大等领域。

运算放大器被设计为线性的电路,但在实际应用中,其非线性特性常常会对电路性能产生影响。

本文将对运算放大器的非线性特性进行解析,并探讨其在实际应用中的重要性。

1. 非线性特性的定义和分类非线性特性指的是电路输出与输入信号不成比例的关系。

在运算放大器中,这种非线性特性通常体现为失真、交叉耦合和非线性增益等现象。

2. 失真失真是指运算放大器输出信号中含有不同于输入信号的频谱成分。

主要的失真形式包括谐波失真、交调失真和互调失真等。

谐波失真是输出信号中含有输入信号频率的整数倍频率成分;交调失真是输出信号中含有输入信号频率之间的交叉成分;互调失真则是当输入信号有多个频率时,输出信号中含有两个或多个频率之间的非线性交叉成分。

3. 交叉耦合交叉耦合是指在运算放大器中,当输入信号的一个分量变化时,会影响到其他分量的输出。

这种非线性耦合效应会导致输出信号中出现与输入信号成分无关的非线性成分,从而改变电路的运算性能。

4. 非线性增益非线性增益是指运算放大器在不同输入信号幅度下的输出增益不一致性。

在理想的运算放大器中,输出信号应该与输入信号成比例,但由于非线性特性的存在,输出信号的增益并不是恒定的。

这种非线性增益会导致信号失真,并降低电路的工作精度。

5. 非线性特性的应用尽管非线性特性会对电路性能产生影响,但在某些应用场景下,非线性特性也是被利用的。

例如,压限放大器(limiter amplifier)就是一种利用非线性特性的运算放大器,它被广泛应用于无线通信中用于抑制干扰信号、防止过载和保护接收机等方面。

6. 技术手段与解决方案为了解决运算放大器的非线性特性问题,工程师们提出了许多技术手段和解决方案。

例如,通过合理的设计,可以采用负反馈手段来补偿非线性特性,使得输出信号更加稳定和准确。

放大电路非线性失真

放大电路非线性失真

放大电路非线性失真电子设备中,放大电路是一个非常重要的部分。

它可以将弱信号放大,使其能够被后续电路准确处理。

然而,放大电路在实际应用中存在着非线性失真的问题,这对信号的准确传输和信息的可靠获取带来了一定的影响。

本文将探讨放大电路非线性失真的原因,并介绍几种常见的解决方法。

一、非线性失真的原因放大电路中的非线性失真主要来源于电子元件本身的非线性特性以及电路的工作条件。

下面将分别介绍这两个方面的原因。

1.1. 电子元件的非线性特性常见的电子元件,如二极管、三极管等,其工作特性难以完全满足理想线性状态。

例如,在二极管的伏安特性曲线中,前向电压和电流之间并不是简单的线性关系。

在实际电路中,二极管的非线性特性会导致放大电路输出信号存在失真。

同样,三极管的工作也存在非线性问题。

三极管的输入输出特性曲线通常是非线性的,这意味着在较大的输入信号下,输出信号会产生失真。

1.2. 电路的工作条件电路的工作条件也会对放大电路的线性度产生一定的影响。

例如,过大的电源电压会使放大器进入饱和区域,导致信号失真。

而过小的电源电压则可能使放大器工作在低电压区,造成信号截断。

此外,温度的变化以及电源电压的波动等也会对电路的线性度产生影响。

这些因素都是导致放大电路非线性失真的原因之一。

二、非线性失真的解决方法针对放大电路的非线性失真问题,工程师们提出了多种解决方法,下面将介绍几种常见的方法。

2.1. 负反馈负反馈是一种常用的解决放大电路非线性失真问题的方法。

通过将放大电路的输出信号与输入信号进行比较,并将其差值作为反馈信号输入到电路中,可以使得放大器的动态特性更加稳定,减小非线性失真。

2.2. 使用线性化技术线性化技术包括预失真技术、补偿网络技术等。

通过在放大电路中加入一定的预处理电路或者补偿网络,可以根据非线性特性对信号进行适当的处理,使得输出信号更加接近理想线性状态。

2.3. 优化电源控制通过优化电源的控制方式,可以改善放大电路的线性度。

简述基本放大电路中,放大信号的波形出现失真的原因及其消除方法

简述基本放大电路中,放大信号的波形出现失真的原因及其消除方法

简述基本放大电路中,放大信号的波形出现失真的原因及其消
除方法
在基本放大电路中,放大信号的波形出现失真的原因主要有两个方面:非线性失真和频率响应失真。

1. 非线性失真:非线性失真是指放大器输出的波形不精确地复制了输入信号的形状。

这是因为放大器的非线性特性会导致输出信号中包含原始信号所没有的额外谐波成分。

该失真的消除方法包括:
- 使用线性放大器:选择具有较高线性特性的放大器,尽量减少非线性失真;
- 使用负反馈:将一部分放大器的输出信号送回输入端,对放大器进行修正,减少非线性失真;
- 使用补偿电路:通过加入适当的补偿电路,可以抵消放大器中的非线性特性,减轻非线性失真。

2. 频率响应失真:频率响应失真是指放大器对不同频率的信号放大程度不同,导致输出信号的波形形状发生变化。

该失真的消除方法包括:
- 设计合适的放大器截止频率:根据需要放大的信号频率范围,选择合适的截止频率,使得放大器具有平坦的频率响应; - 使用频率补偿电路:通过加入补偿电路,在放大电路中对不同频率进行补偿,使得输出信号的频率响应更加平坦;
- 选择合适的电容和电感元件:在放大电路中选择合适的电容和电感元件,以满足不同频率的信号传输要求,减少频率响应的失真。

通过以上方法的综合应用,可以减少放大信号波形的失真,使得放大
电路输出的波形更加准确地复制了输入信号的形状。

放大器的非线性失真

放大器的非线性失真

放大器的非线性失真The document was prepared on January 2, 2021放大器的非线性失真非线性失真是模拟电路中影响电路性能的重要因素之一.本章先从非线性的定义入手,确定量化非线性的一个度量标准,然后研究放大器的非线性失真及其差动电路与反馈系统中的非线性,并介绍一些线性化的技术.概述非线性的定义电路非线性是指输出信号与输入信号之比不为一个常量,体现在输出与输入之间的关系不是一条具有固定斜率的直线,或体现为小信号增益随输入信号电平的变化而变化.放大器的非线性定义:当输入为正弦信号时,由于放大器管子的非线性,使输出波形不是一个理想的正弦信号,输出波形产生了失真,这种由于放大器管子参数的非线性所引起的失真称为非线性失真.由于非线性失真会使输出信号中产生高次谐波成分,所以又称为谐波失真.非线性的度量方法1 泰勒级数系数表示法:用泰勒级数展开法对所关心的范围内输入输出特性用泰勒展开来近似:)()()()(33221 +++=t x t x t x t y ααα 对于小的x ,y t≈α1x ,表明α1是x ≈0附近的小信号增益,而α2,α3等即为非线性的系数,所以确定式中的α1,α2等系数就可确定.2 总谐波失真THD 度量法:即输入信号为一个正弦信号,测量其输出端的谐波成分,对谐波成分求和,并以基频分量进行归一化来表示,称为“总谐波失真”THD .把xt=Acosωt 代入式中,则有:+++++=+++=)]3cos(cos 3[4)]2cos(1[2cos cos cos cos )(332213332221t t A t A t A t A t A t A t y ωωαωαωαωαωαωα由上式可看出,高阶项产生了高次谐波,分别称为偶次与奇次谐波,且n 次谐波幅度近似正比于输入振幅的n 次方.例如考虑一个三阶非线性系统,其总谐波失真为:2331233222)43()4()2(THD A A A A αααα++= 3 采用输入/输出特性曲线与理想曲线即直线的最大偏差来度量非线性.在所关心的电压范围0 V i,max 内,画一条通过实际特性曲线二个端点的直线,该直线就为理想的输入/输出特性曲线,求出它与实际的特性曲线间的最大偏差ΔV ,并对最大输出摆幅V o,max 归一化.即在如图所示.V图 非线性的确定单级放大器的非线性1 由于管子特性引起的非线性以共源放大器为例来说明单级放大器的非线性,如图所示是带电阻负载的共源放大器.V S +v sVo图 共源放大器图中V S 为M 1管的直流工作点,即栅源电压,而v s 则为输入的交流小信号,假定输入的交流小信号为:t cos V v m s ω= 则根据饱和萨氏方程可得其漏极电流为: 2)cos (t V V V K I m th GS N D ω+-=上式中I D0为直流输出,所以在输出端的交流信号可表示为:+++-=)]2cos(1[21cos )(22t V K t V V V K I m N m th GS N d ωω输出信号的基波与二次谐波的幅度之比为:)(42th GS mV V V A A -=ωω 由上式可以看出MOS 放大器的非线性失真是由于输出电流与输入电压的平方关系引起的,当V m 很小时,二次谐波可以忽略.2 由放大器传输特性引起的非线性带电阻负载的共源放大器的传输特性如图所示.V图 带电阻负载的共源放大器的传输特性由上图可以看出,放大器的非线性失真与输入信号大小、直流工作点偏置点有关.一般放大器的最大输出幅度是指无失真的输出.所以当偏置点不同时同一放大器的输出幅度是不同的.由于V o =V DD -I D R ,而放大器的电压增益为:A v =-g m R ,所以当电源电压为常数时,随着电阻R 值的增大,放大器的增益增加,但输出幅度的动态范围减小.差分电路的非线性对于差分电路,由于输入与输出间表现出一种“奇对称”的关系,即f -x=-fx ,所以对式的泰勒展开式进行简化,应只有奇次项,所有的偶次项系数为零,即输入为差分信号时差分放大器不存在偶次谐波,从而减少了非线性.V图 相同电压增益的单端放大器与差分放大器对于如图所示的差分放大器,其小信号电压增益为:)(2 R V V K R g A th GS N m v -=≈ 与共源放大器一样,假设输入信号为V m cosωt .则有:21D D o I I I -= 21GS GS id V V V -=根据饱和萨氏方程有:22221)(4 2idth GS id N id NS idN D D V V V V K V K I V K I I --=-=-从式可以看出,只有当N S id K I V /2≤时,I D1、I D2才有意义,而当V id 较小时,△I D =I D1-I D2和V id 才是线性的.所以一般认为在满足N S id K I V /±≤时,差分放大器是线性的.如果|V id |<<V GS -V th ,则将式中的根号下的式子展开得:)(8cos cos )(2 )(81)(2)(41)(2233222221⎥⎥⎦⎤⎢⎢⎣⎡---=⎥⎥⎦⎤⎢⎢⎣⎡---≈---=-th GS m m th GS N th GS idth GS id N th GS idth GS di N D D V V t V t V V V K V V V V V V K V V V V V V K I I ωω 利用三角函数的性质cos 3ωt=3cosωt+cos3ωt/4对式进行进一步的简化,有:)(32)3cos(cos )(323232321th GS m m th GS m m m D D V V t V g t V V V V g I I --⎥⎦⎤⎢⎣⎡--=-ωω 由上式可以看出:差分放大器的非线性失真只包含有奇次谐波,而无偶次谐波分量,且当])(32[323th GS m m V V V V ->>时,其三次谐波分量与基次谐波分量的比值为: )(32/22th GS m V V V -.与式相比可发现:在提供相同的电压增益与输出摆幅的情况下,差动电路呈现的失真要比共源放大的失真要小得多.电路中器件引起的非线性前面介绍的者是假定无源组件为线性,但实际上,特别是在集成电路中,无源组件也都是非线性的.这里主要介绍电容以及用MOS 管作电阻的非线性. 1 电容的非线性电容的非线性主要体现在开关电容电路中,电容器对电压的依赖关系可能会引入相当大的非线性.如图所示的电容结构,则是一个非线性电容.图 一种非线性电容结构对于图中的电容,由于其电容值的大小与PX 二点的电压值即电容两端的电压有关,通常此电容可表示为:)1(2210 +++=V V C C αα 为了考虑电容非线性的影响,分析如图a 所示的开关电容电路.CV oV i0a b图 a 非线性电容的开关电容电路 b 输出曲线假设图中放大器输入电容C 1上有一初始电压为V i0,而输出电容C 2的初始电压为零,且C 1是一非线性电容,并假设C 1/C 2=K 电路的死循环增益,C 1=KC 01+α1V ,则电容C 1上获得的电荷为:201000100112)1( 00i i V V V KC V KC dV V KC dV C Q i i αα+=+==⎰⎰而在放大模式终止时,电容C 2上的电荷为:2100222o o V V C V C dV C Q oα+==⎰而根据电荷守恒定理,Q 1=Q 2,所以可令式与式相等,则可求得:)211(10120211i i o V K V K V ααα+++-=上式中平方根项下的后两项通常远小于1,因此可以对平方根项展开,有:20102)1(i i o V K K KV V α-+≈从上式可以看出输出电压V o 的非线性是由第二项产生的.2 MOS 管作为电阻的非线性如图所示,为一个有源滤波器,其中使用MOS 管作为其电阻,V VGV oV V o图 用MOS 管作为电阻的有源滤波器选择V G 的电压使MOS 管工作在线性区,因此根据萨氏方程有: DS DSth GS N d V )2V V V (K i --= 对上式进行泰勒展开得:+----=)(21))((22S D N S D th GS N d V V K V V V V K i 式中V D -V S =V DS ,则其等效电阻为:++--==)(21)(S D N th GS N DS d V V K V V K V i R 上式中第一项为线性电阻,第二项为非线性电阻,使滤波器电路产生非线性,所以用简单管子工作在非饱和区作电阻时使电路产生非线性,当V D +V S 很小时,非线性可以忽略.克服非线性的技术 原理在模拟电路中改善和克服非线性失真的方法基本上都是采用负反馈.其基本的工作原理如下:考虑放大器的非线性失真时,输出信号可以表示为:h v di v o v DA v A v 00+=式中D 为谐波失真系数,v h 为输入端的谐波信号.则一个反馈系统可用图表示.Dv图 反馈系统的对非线性的影响的原理框图由上图可得到:of v f v F v ⋅= f sf di v v v -= di v h v of v A Dv A v 00+=把式、代入式h v sf v v v of Dv A v A F A v 000)1(+=+即:vv hv vv sf v of F A Dv A F A v A v 000011+++=上式说明,非线性失真减小是用降低系统增益换来的,反馈放大器输入信号幅度与无反馈时相同,则负反馈放大器的输出信号缩小了1+A v0F v 倍.为了便于比较,应将输出信号中的基波幅度调到与无反馈时相同,则有: s v v sf v F A v )1(0+= 把式代入到式中可得到:vv hv s v of F A Dv A v A v 0001++=由上式可以看出负反馈作用使放大器输出信号中的谐波成分减小了,若以D F表示,则有: vv F F A DD 01+=上式说明负反馈放大器非线性失真比无反馈放大器减小了1+A v0F v 倍.上述情况也可以从放大器的传输特性曲线来理解.假定一个放大器一般放大器的开环传输特性曲线失真可以用分段线性近似,如图所示.图 传输特性曲线失真的分段线性近似表示法当v s ≤V s1时,放大器开环增益为A 1;当V s1<v s ≤V s2时,放大器开环增益为A 2;当v s >V s2时,放大器开环增益为A 3.实际为传输特性的斜率,从此可以看出A 3为零,由于放大器随着输入信号的变化放大器增益的不一致,使输出波形将有失真.当放大器加反馈后该放大器闭环时的增益分别为假定反馈系数都为F v vvo v v F A A A 10111+=vvo v v F A A A 20221+=当反馈深度足够时,则有:A v1=1/F v ,A v2=1/F v ,A V3=0因为A 3=0.由上述关系画出闭环放大器传输特性如图中虚线所示,可以看出放大器的增益降低了,但线性范围扩展了,只有当v s >V s2时输出信号被限幅,才会失真.所以负反馈放大器在输出信号中非线性失真减小,反馈越深,负反馈放大器线性工作范围越大缓冲器最大:它是全反馈,非线性失真也越小,当放大器进入饱和区后,输出波形限幅.当放大器输入信号本身包含有谐波成分时,负反馈是无法将这种谐波成分减小的,只有加滤波器.改善放大器非线性失真的实际电路1 共源放大器线性电阻源级负反馈如图a所示,这是一个串联负反馈电路,且反馈系数为F=R S.VoViIa b图a带电阻负反馈的共源级 b不同反馈时的漏电流与Vi的关系负反馈减小了晶体管栅源之间施加的信号的摆幅,因此使得输入-输出特性具有更好的线性.忽略体效应,共源级的等效跨导为:1Smmm RggG+=当g m R S>>1时,则G m接近于1/R S,这是一个与输入无关的值.由图b可以发现R S越大,则ID越稳定.该电路的电压增益为:G m R,由于R S与R都是线性化的,因此A v也是线性的.并且该电路的线性范围直接取决于g m R S,g m R S越大则线性范围越大.例对于一个偏置电流为I0的共源级放大电路如图所示,其输入电压摆幅使漏电流由变化到.则MOS管的跨导发生变化,引起电路的非线性失真,计算以下三种情况下小信号电压增益的变化a R S=0,b g m R S=2的负反馈,c g m R S=4,其中g m是I D=I1时的跨导.解:假定M1工作于饱和区,则有DmIg∝.则:a当R S=0时,即不存在负反馈时,有:4.06.0,,=lmhmggb 当g m R S=2时,由式可得:4.06.00.89)6.021()4.021(4.06.0)4.01/(4.0)6.01/(6.0,,=++=++=SmmSmmlmhmRggRggGGc 同理,当g m R S =4时有:4.06.00.86 )6.041()4.041(4.06.0)4.01/(4.0)6.01/(6.0,,=++=++=S m m S m m lm h m R g g R g g G G由式与式可知:当g m R S =2时,线性度提高了11%;而当g m R S =4时,线性度提高了14%.2 差分放大器的线性负载共源放大器线性电阻源级负反馈,可直接应用到差分放大器中形成差分放大器的线性负载负反馈.如图a 、b 所示.a b图 差分对中使用的源级负反馈 a 一个电阻 b 两个电阻图a 、b 中的差分输入的半电路相同,如同图a 所示.因此其负反馈的作用也与带线性电阻负反馈的共源放大器的效果一样.在图a 中, V GS 抬高了I S R S /2电压值比不带反馈的放大器,而当V id =0时,电阻上通过I S /2的电流,因而提高反馈深度以提高线性范围与输出压摆之间是一矛盾的关系,另外,失调与噪声都存在负反馈作用,所以对失调与噪声都有改善.而图b 中,仅用一个电阻,且电阻2R S 上无电流流过,因此失调与噪声不存在负反馈作用,所以容易产生较大的失调和噪声.在MOS 差分运算放大器中,要求R S 能很精确,但是由于工艺原因,其电阻值存在着很大误差,所以一般在制造中采用工作在很深三极管区的MOS 管作为电阻,此时的电阻呈线性特征,当V DS 很小时有:R on3=1/2K N V GS -V th .如图所示.图 通过工作在深线性区的MOSFET 实现负反馈的差分对然而,当输入摆幅较大时,不能保证M 3处于深线性区,因此它的导通电阻将会增大,从而引入了非线性.当图中的电阻R S 用两个工作于深线性区的NMOS 管来实现时,就构成了如图所示的电路.图 用两个工作在线性区的MOSFET 负反馈的差分对当V id =0时,M 3与M 4都处在深线性区.假设V id 为负值,即V G1<V G2,由于V D4=V G4-V GS2,晶体管M 4处在线性区,而M 4则因为其漏极电压大于栅源电压,最终将进入饱和区.因此,即使一个负反馈器件进入饱和区,电路仍能保持相对线性.在设计时,令W/L 1,2≈7W/L 3,4,则可得到较宽的线性范围.但是在图中,当M 3、M 4进入饱和区时,电阻增加,在管子上的压降增大,使电路脱离了线性区.3 改变输入对管的输入特性来克服放大器的非线性强制输入对管始终工作在深的线性区,如图所示,图中运放A 1、A2使得:V A =V B ≈V b,且不受输入电平变化的影响,而且要求V b <<V GS1-V th1,因此输入对管M 1、M 2始终工作于深线性区.13V b图 输入器件工作在线性区的差分对该电路的特点为:1 由于M 1、M 2工作于深线性区,故它们的跨导较小,且为:g m1=g m2=2K N1V DS =2K N1V b . 所以这种线性范围的扩大是以增益的降代为代价的.2 因为M 1、M 2的工作状态与V i 的共模电平有关,所以输入共模电平必须严格控制,并跟踪V b ,以便确定I D1和I D2.3 M 3,M 4与两个辅助放大器在输出端会产生很大的噪声.4 利用器件特性的互补法其思路是将放大器看作由一个电压-电流V/I转换器后面再接一个电流-电压I/V转换器构成.这样在理想情况下,电压-电流转换时的非线性用其后的电流-电压的非线性相互抵消,从而产生线性的放大器.但在实际中,由于存在着各种其它非理想效应都会在电路中产生非线性,从而减小了放大器的线性工作范围.。

放大器产生误差的原因

放大器产生误差的原因

放大器产生误差的原因放大器是现代电子设备中必不可少的一个部件,它可以将输入信号放大到合适的电平,以便于后续的处理和传输。

然而,在放大器的工作中,常常会出现误差,这些误差可能会对整个系统的性能产生负面影响。

本文将从几个方面分析放大器产生误差的原因。

一、放大器内部噪声放大器内部噪声是放大器产生误差的主要原因之一。

噪声是指在信号处理过程中出现的随机波动,它会将输入信号与输出信号混合在一起,从而降低系统的信噪比。

放大器内部噪声主要来自于电子元件的热噪声、激励噪声以及杂散噪声等。

这些噪声会在放大器的输入端和输出端产生误差,因此放大器的噪声系数是衡量放大器质量的一个重要指标。

二、放大器的非线性失真放大器的非线性失真也是一个常见的误差源。

非线性失真是指当输入信号的幅度变化较大时,放大器的输出信号与输入信号不再呈线性关系,从而导致输出信号出现失真。

这种失真会使得信号的波形发生变形,从而影响系统的性能。

非线性失真主要来自于放大器元件的非线性特性,如晶体管的饱和和截止效应等。

三、放大器的温度漂移放大器的温度漂移也是一种常见的误差源。

温度漂移是指当放大器的温度发生变化时,放大器的增益和偏置电压也会发生变化,从而导致输出信号的误差。

这种误差主要来自于放大器元件的温度敏感性,如晶体管的热漂移等。

四、放大器的功率限制放大器的功率限制也是一种常见的误差源。

功率限制是指当输入信号的功率超过放大器的最大输出功率时,放大器会出现压缩失真或截止失真,从而导致输出信号的失真。

这种误差主要来自于放大器元件的功率限制,如晶体管的最大功率承受能力等。

放大器在工作中会有各种误差,这些误差会对系统的性能产生影响。

因此,设计和选择合适的放大器是非常重要的。

同时,在实际应用中,还需要采取一些措施来降低误差,如使用低噪声放大器、线性化电路、温度补偿技术等。

什么是电路中的放大器失真

什么是电路中的放大器失真

什么是电路中的放大器失真放大器是电子电路中常见的一个重要组件,其主要功能是将输入信号放大至需要的幅度,并将其输出。

然而,在实际应用中,放大器常常会引入一定的失真,影响信号的传输和质量。

本文将介绍什么是电路中的放大器失真,以及其产生的原因和常见类型。

一、放大器失真的定义在电路中,放大器失真指的是放大器输出信号与输入信号之间存在的非线性关系,导致输出信号形状或幅度发生改变,与原始信号存在差异。

这种失真会导致原始信号的畸变,降低信号的准确性和保真度。

二、放大器失真的原因1. 非线性特性:放大器在放大信号时,其放大增益往往会随着输入信号的变化而变化。

当输入信号较小或靠近放大器的饱和区时,放大器会表现出非线性的放大特性,导致失真现象的发生。

2. 频率响应:放大器在不同频率下的放大特性可能有所不同,其中某些频率段上的放大增益会有所衰减或变化。

这种频率响应不均导致输出信号的失真。

3. 输出载荷:放大器的输出端常常需要连接负载电阻或其他电子组件。

不正确的负载匹配或负载电阻的变化也会导致放大器输出信号的失真。

4. 温度效应:放大器在工作时会产生一定的发热,而温度的变化会引起电子器件的参数变化。

因此,温度的变化可能导致放大器工作状态发生变化,从而导致失真的发生。

三、放大器失真的类型1. 线性失真:线性失真是放大器输出信号与输入信号之间存在的线性变化关系。

例如,信号增益的非线性变化将导致放大器输出的失真。

2. 非线性失真:非线性失真是放大器输出信号与输入信号之间存在的非线性变化关系。

非线性失真可以进一步细分为各种类型,如谐波失真、交叉失真等。

谐波失真指的是输出信号中包含输入信号频率的整数倍频率成分,而交叉失真则指的是输出信号中包含输入信号频率之外的频率成分。

3. 相位失真:相位失真是指放大器输出信号的相位与输入信号的相位之间存在的差异。

相位失真会导致信号波形的畸变或时序错误。

四、放大器失真的影响放大器失真对信号的传输和质量会产生多种影响,其中包括:1. 信号失真:放大器失真会引起输入信号的形状、幅度或频谱发生变化,从而导致信号的失真。

功率放大电路的几种失真特点

功率放大电路的几种失真特点

功率放大电路的几种失真特点1.引言1.1 概述概述部分应当对功率放大电路的失真特点进行简要介绍。

可以参考以下内容进行编写:功率放大电路是现代电子技术领域中常见的一种电路拓扑结构,被广泛应用于音频放大、射频放大以及其他对输出功率要求较高的领域。

然而,虽然功率放大电路可以实现信号的放大,但在实际应用中会产生一些失真现象,对输出信号的品质造成一定的影响。

失真特点是指功率放大电路在信号放大过程中,产生了与输入信号不一致的变形现象。

这些失真包括非线性失真、相位失真、交叉失真等。

非线性失真是指输入输出特性在非线性区域存在失真,导致输出信号包含输入信号中不存在的频谱成分。

相位失真是指输入信号中不同频率的相位关系在输出信号中发生了改变,造成信号波形变形。

交叉失真是指两个或多个频率的信号在放大过程中相互干扰产生的失真。

了解功率放大电路的失真特点对于电子工程师和研究人员具有重要的意义。

首先,失真特点的研究可以帮助我们更好地理解功率放大电路的工作原理,为电路设计和优化提供指导和参考。

其次,了解失真特点可以帮助我们选择合适的补偿方法,减小失真对输出信号品质的影响。

最后,对功率放大电路失真特点的研究也为进一步提升电路性能和应用领域拓展提供了基础。

本文将重点介绍功率放大电路的几种常见失真特点,并探讨其产生的原因和可能的缓解方法。

通过对这些失真特点的深入分析,希望能够为功率放大电路的设计、优化和应用提供一定的参考价值。

1.2文章结构本文将探讨功率放大电路的几种失真特点。

为了更好地组织文章内容,本文将分为三个部分进行阐述。

首先,在引言部分我们将对本文的主题进行概述,介绍功率放大电路及其在电子领域中的重要性。

同时,我们还会简要介绍文章的结构,包括各章节的主题和内容,以方便读者把握全文的脉络。

其次,在正文部分,我们将详细讨论功率放大电路的两种主要失真特点。

第一种失真特点将会着重讨论...(这里可以简要描述第一种失真特点的内容)。

第二种失真特点则会聚焦于...(这里可以简要描述第二种失真特点的内容)。

电子电路中常见的放大器失真问题解决方法

电子电路中常见的放大器失真问题解决方法

电子电路中常见的放大器失真问题解决方法放大器作为电子电路中常见的组件,起到放大信号的作用。

然而,由于各种因素的影响,放大器在工作时会产生失真问题。

本文将探讨电子电路中常见的放大器失真问题,并提供一些解决方法。

一、失真问题的分类在电子电路中,放大器的失真问题主要分为三类:线性失真、非线性失真和时间失真。

1. 线性失真:线性失真是指放大器的输出信号与输入信号不成比例的情况。

常见的线性失真类型包括增益失真、相位失真和频率响应失真。

2. 非线性失真:非线性失真是指放大器输出信号中包含频率变换、非线性畸变和交叉失真等问题。

其中,频率变换是指输入信号的频率与输出信号的频率不同;非线性畸变是指输出信号与输入信号之间的非线性关系;交叉失真是指不同频率信号之间互相干扰的问题。

3. 时间失真:时间失真是指信号在放大器中传播时,不同频率信号到达输出端的时间不一致,导致失真问题。

二、解决方法针对上述不同类型的失真问题,有一些常见的解决方法可以采用。

1. 对线性失真问题的解决方法:(1)增益失真:增益失真一般是由于放大器的放大系数不稳定引起的。

解决方法是使用反馈电路来调整放大器的增益,使其更加稳定。

(2)相位失真:相位失真会导致信号的相位变化,进而影响到信号的传输和还原。

解决方法是使用相位补偿电路,通过补偿相位差来达到准确的放大。

(3)频率响应失真:频率响应失真使得输出信号的频率响应与输入信号不一致。

解决方法是采用滤波器电路,来补偿频率响应的不一致性。

2. 对非线性失真问题的解决方法:(1)频率变换:频率变换可以通过使用合适的滤波器来解决。

滤波器可以选择在特定频率范围内降低或削弱某些频率成分,从而实现频率变换的纠正。

(2)非线性畸变:非线性畸变可以通过使用补偿电路来解决。

补偿电路可以根据输入信号的非线性特征进行调整,以实现输出信号的线性化。

(3)交叉失真:交叉失真可以通过使用解耦电容、添加补偿电路等方法来解决,以减小不同频率信号之间的干扰。

放大电路中的失真与补偿

放大电路中的失真与补偿

放大电路中的失真与补偿在电子设备和音频系统中,放大电路扮演着至关重要的角色。

然而,在放大信号的过程中,常常会引入一些失真。

本文将探讨放大电路中的失真类型以及相应的补偿方法。

一、失真类型1. 非线性失真非线性失真是放大电路中最常见的一种失真类型。

在非线性失真情况下,放大器对输入信号进行了非线性的响应,导致输出信号的形状发生了变化。

这种失真会使得输出信号中出现频谱分量,这些频谱分量没有出现在输入信号中。

2. 相位失真相位失真是指放大器在放大过程中,对输入信号的相位关系进行了改变。

由于放大器对不同频率的信号具有不同的相位响应,因此输出信号的相位与输入信号的相位之间存在差异。

3. 畸变失真畸变失真是指在放大过程中,放大器对输入信号进行了形状和波形的扭曲,导致输出信号的波形与输入信号的波形不一致。

畸变失真可能由于非线性失真或相位失真引起。

二、补偿方法1. 负反馈负反馈是一种常用的补偿方法,它通过将放大器的一部分输出信号与输入信号进行比较,来减少放大电路中的失真。

负反馈可以降低非线性失真、相位失真和畸变失真,提高放大电路的线性度和稳定性。

2. 预失真预失真是一种先进的补偿技术,它通过在放大器的输入端引入预失真电路,使得输入信号与放大器的非线性特性相互抵消,从而减少信号失真。

预失真技术通常需要根据具体的失真特点进行调整和优化。

3. 使用高精度元件使用高精度的元件可以减少放大电路中的失真。

例如,选择高准确度的电阻、电容和晶体管等元件,可以提高放大电路的性能和稳定性,降低失真发生的概率。

4. 调整偏置电流调整放大电路中的偏置电流可以减少非线性失真。

通过调整电路中的偏置电流,可以使放大器在零输入情况下的工作点更接近线性区域,从而减少非线性失真的发生。

5. 优化供电电压供电电压的优化对于减少放大电路中的失真至关重要。

选择合适的供电电压可以确保放大器在工作时能够提供足够的动态范围,并降低失真发生的可能性。

总结:放大电路中的失真是一个需要重视的问题。

浅析声频功率放大器的非线性失真

浅析声频功率放大器的非线性失真

波形会发生变化 的现象 。非线性失真 的本质 , 就 是产生的新 的 频率分量 , 其原因和种类有很 多, 但都是由元器件的非线性影 响
造成的, 一般 常 有 的 评 价 方 法 , 包括总 谐波失 真 ( t o t a l h a r m o n i c d i s t o r t i o n ) 、 噪声 谐 波 失 真 ( n o i s e h a r mo n i c d i s t o r t i o n ) 、 互 调 失 真 ( i n t e r m o d u l a t i o n d i s t o t r i o n) 、 噪 声 互 调 失 真 ( n o i s e i n t e r m o d u l a t i o n d i s t o r t i o n ) 、 调 制失 真 ( m o d u l a t i o n d i s t o r t i o n ) 、 差 频 失 真( d i f f e r e n c e ・ r f e q u e n c y d i s t o r t i o n ) 和计 权 总 谐 波 失 真 ( w e i g h t e d t o t a l h a r m o n i c d i s t o t r i o n) 等。声 频 功 率 放 大 器 ( a u d i o p o w e r a m p l i i f e r ) , 下简称“ 功放” , 是指在给定失真条件下 , 能产生最 大 功率输 出以驱动某一 负载( 例如扬声 器) 的放 大器。功放在整 个声 系统 中起 到 了“ 组织 、 协调” 的枢纽作用 , 在 某 种 程 度 上 主 宰 着整 个 系 统能 否 提 供 良好 的 音 质输 出 。从 2 0 1 1 年开始 , 国家 标 准化 管 理 委 员会 陆 续 推 出 了 G B / T 1 2 0 6 0 ( 声 系统 设 备 》 系列 标 准, 等 同采 用 国 际 电工 委 员 会 I E C 2 0 6 0 8标 准 , 其 中对 功 放 的测 量方 法 也 进 行 了重 新 修 订 。本 文 重点 对 功放 的总谐 波失 真 和互 调 失真 进 行 分析 。 2 总谐 波 失 真 ( T H D) 声 系统 在 工 作过 程 中 , 由 于产 生谐 振 现 象 而 导 致 重 放 声 音

简述基本放大电路中,放大信号的波形出现失真的原因及其消除方法

简述基本放大电路中,放大信号的波形出现失真的原因及其消除方法

简述基本放大电路中,放大信号的波形出现失真的原因及其消
除方法
基本放大电路中,放大信号的波形出现失真的原因主要有以下几个:
1. 非线性失真:放大电路中的元件(如晶体管)工作在非线性区域,造成输入信号的不同部分被放大的程度不一样,导致输出信号失真。

2. 饱和失真:当放大电路中的晶体管工作在饱和状态时,无论输入信号有多大,输出信号的幅度都无法继续增大,导致输出信号失真。

3. 频率失真:放大电路对不同频率的信号响应不同,如低频信号被放大得太弱或者高频信号被放大得太强,导致频率失真。

4. 相位失真:放大电路对不同频率的信号的相位延迟不同,导致相位失真。

为消除放大信号的波形失真,可以采取以下方法:
1. 选择合适的放大电路:根据信号的特点选择合适的放大电路,如可以选择线性放大器来避免非线性失真。

2. 使用反馈:通过引入反馈电路,将放大电路的输出与输入进行比较,对输出进行修正,从而减小失真。

3. 频率补偿:在放大电路中加入频率补偿电路,可以调整放大电路对不同频率的响应,减小频率失真。

4. 相位补偿:在放大电路中加入相位补偿电路,可以调整放大电路对不同频率的相位延迟,减小相位失真。

5. 优化电路设计:合理选择元件、优化布局和参数设计等,可以减小失真程度。

总之,通过合适的放大电路选择、引入反馈、补偿电路以及优化电路设计等方法,可以有效消除基本放大电路中放大信号的波形失真。

模拟电子技术基础知识功率放大器的失真与校正

模拟电子技术基础知识功率放大器的失真与校正

模拟电子技术基础知识功率放大器的失真与校正模拟电子技术基础知识:功率放大器的失真与校正在模拟电子技术中,功率放大器起着至关重要的作用。

然而,功率放大器在实际应用中往往会产生失真的问题,影响音频、视频信号的质量。

本文将详细探讨功率放大器的失真机制以及常见的校正方法。

一、功率放大器失真的类型1. 线性失真线性失真是指当输入信号的幅度发生变化时,放大器输出信号的幅度也发生变化,但变化不符合输入信号的线性关系。

常见的线性失真包括增益非线性失真、交叉失真以及组合失真等。

2. 非线性失真非线性失真是指当输入信号幅度较小时,放大器输出信号存在非线性扭曲。

非线性失真会导致信号失真、频谱扩展、相位失真等问题,使得信号质量下降。

3. 相位失真相位失真是指放大器在对信号进行放大过程中,对信号的相位特性造成改变。

相位失真会导致信号相关性降低、音调改变等问题。

二、功率放大器失真的主要原因1. 饱和失真饱和失真是指当输入信号幅度超过放大器的输出能力时,放大器无法再将信号进一步线性放大,导致输出波形被削平,出现失真。

2. 截止失真截止失真是指当输入信号幅度较小时,放大器的输出信号不能完全线性放大,导致输出波形失真。

3. 偏置失真偏置失真是由于放大器的直流偏置电流不准确或变化导致的失真。

这种失真会导致输出信号的直流处于不稳定状态,出现直流偏移现象。

三、功率放大器失真的校正方法1. 反馈校正反馈校正是指通过将一部分输出信号引入到放大器的输入端进行比较,并将比较结果作用于放大器的输入端,来减小输出信号的失真。

反馈校正能够降低放大器的非线性失真,提高放大器的线性度。

2. 预失真校正预失真校正是通过在放大器输入端添加一个特殊的电路,使得输入信号在经过放大器之前发生特定的失真,使得在放大过程中失真得到部分抵消。

预失真校正可以有效降低功率放大器的非线性失真。

3. 功率拆分校正功率拆分校正是通过将输入信号进行拆分,并由多个放大器进行放大,再经过合并输出,从而降低每个放大器的失真程度。

模拟电子技术基础知识运算放大器的非线性特性分析

模拟电子技术基础知识运算放大器的非线性特性分析

模拟电子技术基础知识运算放大器的非线性特性分析模拟电路中的运算放大器是一种重要的电子元件,用于处理和放大模拟信号。

然而,由于运算放大器的非线性特性,其输出在一定范围内不完全与输入信号成比例,导致输出信号失真。

本文将对运算放大器的非线性特性进行分析,并探讨其产生的原因及可能的解决方法。

一、非线性特性的原因1. 饱和现象:当输入信号的幅值超过运算放大器的供电电压范围时,运算放大器将输出最大值(正饱和)或最小值(负饱和),导致输出信号的失真。

2. 引线效应:运算放大器内部的引线产生的电阻、电感和电容会对电路的频率响应产生影响,使得输出信号与输入信号的幅频特性不一致,也会导致非线性失真。

3. 温漂问题:温度变化会导致运算放大器的性能参数发生变化,如增益、输入偏置电流等,进而影响输出信号的准确性。

二、非线性特性的影响1. 噪声增加:非线性失真将引入更多的高频噪声成分,降低系统的信噪比,影响信号的质量。

2. 频率失真:非线性特性会导致输入信号的不同频率分量在输出端的放大程度不一致,引起频率失真现象。

3. 相位失真:非线性特性还会改变输入信号的相位,使得输出信号与输入信号之间的相位差发生变化,引起相位失真。

三、非线性特性的衡量方法为了衡量运算放大器的非线性特性,可以采用以下方法:1. 线性度曲线:通过绘制输入输出特性曲线,观察输出信号与输入信号之间的关系,可以判断运算放大器的线性度。

2. 总谐波失真(THD):使用频谱分析仪测量输出信号的谐波含量,计算出总谐波失真的百分比,该值越低,表示非线性失真越小。

3. 交调失真:交调失真是指当输入信号存在多个频率分量时,它们之间产生新的谐波和交调分量,从而导致非线性失真。

四、非线性特性的改善方法为了改善运算放大器的非线性特性,可采取以下措施:1. 反馈技术:应用负反馈可以降低非线性失真。

通过将部分输出信号与输入信号进行比较,调整放大器的增益,可以减小非线性特性的影响。

2. 选择合适的运算放大器:不同型号的运算放大器具有不同的非线性特性。

电子电路中的功率放大器失真问题如何解决

电子电路中的功率放大器失真问题如何解决

电子电路中的功率放大器失真问题如何解决在电子设备中,功率放大器被广泛应用于音频放大、射频通信、电力控制等领域。

然而,功率放大器在工作过程中常会出现失真问题,这对于电路的正常运行和信号质量产生不良影响。

因此,解决功率放大器失真问题成为电子工程师们的重要任务。

本文将探讨功率放大器失真问题的原因,并介绍几种解决方案。

一、原因分析功率放大器失真问题的主要原因包括非线性特性、温度效应和负载变化等。

1. 非线性特性:功率放大器的非线性特性导致输入信号与输出信号之间的失真。

当输入信号幅度较小时,功率放大器的增益线性;但当输入信号幅度增大时,放大器的增益将发生变化,出现非线性失真。

2. 温度效应:功率放大器在工作过程中会产生一定的热量,这会导致其内部元件的温度变化。

由于电子元件的性能与温度密切相关,温度的变化也会引起功率放大器的失真。

3. 负载变化:当功率放大器所驱动的负载发生变化时,输出信号与输入信号之间的匹配程度会发生变化。

这种负载变化也是功率放大器失真的一个主要原因。

二、解决方案为了解决功率放大器失真问题,我们可以采取以下几种解决方案:1. 线性化技术:线性化技术是一种常用的解决功率放大器失真问题的方法。

其基本原理是通过增加反馈回路,将输出信号与输入信号进行比较,并根据比较结果对输入信号进行调整。

这样可以有效地减小功率放大器的非线性失真。

2. 温度补偿:由于温度变化对功率放大器性能的影响,我们可以采取温度补偿措施来降低温度效应对失真的影响。

例如,使用温度传感器来感知功率放大器的温度,并通过反馈机制对功率放大器进行温度补偿,以保证其在不同温度下的工作稳定性。

3. 功率放大器设计:在功率放大器的设计过程中,我们可以采用一些策略来减小失真。

例如,选择合适的工作点,使功率放大器在线性区域内工作;优化电路布局,减小互ference和串扰等。

4. 使用高质量元件:选择高质量的电子元件可以提高功率放大器的性能和可靠性,减小失真。

网络放大器非线性失真与最大输出电平的修正值

网络放大器非线性失真与最大输出电平的修正值

56|j◎贵州省开阳县文体广播电视局林国刚我们的村村通工程,主要解决农村看电视难,扶贫工程,使农民们(含幼儿、少年、青年、中年等)通过看电视,扩大视野,提高自身知识素质,转变思想观念,全面提高素质,让全国人民的思想观念、科技技术、教育手段、经营手段、欣赏水准等精神生活和物质生活与时俱进。

因此,村村通广播电视工程是国务院、政府办的实事之一,是实践“三个代表”、“三农”政策的重要工程,是全面实现奔小康和谐社会的重要举措,随着村村通工程的逐渐深入,村村通发挥了前所未有的潜力。

为了继续保持村村通的潜力,现在,国务院、政府正在逐步扩大村村通工程,又要保证村村通广播电视保质“长期通,年年通”,这样,安装、调试问题和维修维护问题相当重要,为了尽力减少维修问题,在“村村通”网络中调试放大器参数措施是必不可少的重要举措之一,现将放大器非线性失真参数理论与实际测量值数据讨探如下:在“村村通”网络中,通常,人们在计算放大器非线性失真参数时,往往忽视了一个实际问题,即对计算结果的修正。

比如在计算单台放大器组合交调比时,使用公式CM=CMo+2(Sob-So ) (1)计算多台相“干线”放级联时的于线组合交调比时使用公式CM=CMo+2(Sob-So)-201lg(2)(1)和(2)式中:Sab 为放大器标称输出电平;So 为放大器实际输出电平;CMo 为放大器在标称输出电平和标称频道数时的组合交调比;n 干放级联数。

又比如在计算单个放大器组合三次差拍比时,使用公式CT B=CT Bo+2(Sob-So)(3)计算多台相“干线”放级联时的于线组合三次差拍比时使用公式CT B=CTBo+2(Sob-So)-20lgn (3)和(4)CTBo 式中:为放大器在标称输出电平和称频道数时的组合三次差拍比。

很显然,(1)和(2)式中所求系称频道数时的组合交调比;同理(3)和(4)CTBo 式所求系标称频道数时的组合三次差拍比。

当实际频道数与标称频道数相等或接近时,使用式是正确的,如果实际频道数与标称频道数相差较大时,应有附加修正项K进行修正K =20lg(No-1)/(Ns-1)式中:No 为标称频道数;Ns 为实际频道数由于电视节目越来越多,系统线性失真指标应以三次差拍比来表征,由(3)和(4)式分别求得单台放大器与台n 放大器级联时放大器最大输出电平为So m ax=So b +1/2(CTBo -CTBb )(5)S o m a x =S o b =1/2(C T B o -CTBob)-10lgn(6)(5)和(6)式中:CTBb 表示单台放大器组合三次差拍比指标;CTBnb 表示n 台放大器级联后的干线组合三次差拍比指标。

放大器的线性失真与非线性失真概念的理解

放大器的线性失真与非线性失真概念的理解

放大器的线性失真与非线性失真概念的理解
一个理想的放大器,其输出信号应当如实的反映输入信号,即他们尽管在幅度上不同,时间上也可能有延迟,但波形应当是相同的.但是,在实际放大器中,由于种种原因,输入信号不可能与输入信号的波形完全相同,这种现象叫做失真.放大器产生失真的原因主要有2 个:
①放大器件的工作点进入了特性曲线的非线性区,使输入信号和输出信号不再保持线性关系,这样产生的失真称为非线性失真.
②放大器的频率特性不好,对输入信号中不同频率成分的增益不同或延时不同,这样产生的失真成为线性失真.
非线性失真产生的主要原因来自2 方面:①晶体管等特性的非线性;
②静态工作等位置设置的不合适或输入信号过大.由于放大器件工作在非线性区而产生的非线性失真有4 种:饱和失真、截止失真、交越失真和不对称失真。

当电路有非线性失真时,输入正弦信号,输出将变成非正弦信号.而该非正弦信号是由基波和一系列谐波组成的,这就是非线性失真的特点.一个电路非线性失真的大小,常用非线性失真系数r 来衡量.r 的定义
为:输出信号中谐波电压幅度与基波电压幅度的百分比.显然r 的值越小,电路的性能也就越好.
其次,由于放大电路中有隔直流电容、射极旁路电容、结电容和各种寄生电容,使得它对不同频率的输入信号所产生的增益及相移是不同的.这样,当输入信号是非正弦波时,即使电路工作在线性区,也会产生失真,称为线性失真。

另外一种说法:。

放大器的非线性失真

放大器的非线性失真

放大器的非线性失真放大器是电子设备中非常重要的一个组件,其主要功能是将输入信号放大到更大的幅度。

然而,放大器并非完美,可能会引入一些非线性失真。

非线性失真是指输出信号的波形不同于输入信号的波形。

这是由于放大器的非线性特性导致的。

在放大器中,输入信号经过放大后,通过输出。

然而,由于电子元件本身的限制,例如晶体管和功率放大器,放大器输出信号可能会有所改变。

在放大器中,主要的非线性失真包括谐波失真和交叉失真。

谐波失真是指输出信号中存在放大倍数倍数的谐波。

例如,在音频放大器中,输入信号通常是一个正弦波。

然而,由于非线性特性,放大器的输出信号可能会包含原始信号的倍数倍数的谐波,如二次谐波(2倍频)、三次谐波(3倍频)等。

这些谐波信号可能会影响到音频的质量和听觉体验。

交叉失真是指输出信号中存在于不同频率信号之间的非线性交叉成分。

例如,在无线电通信中,多个信号可能同时进入放大器,如果放大器的非线性特性导致不同频率信号之间相互干扰,就会产生交叉失真。

这种失真会降低信号的清晰度和准确性。

为了减少非线性失真,可以采取一些措施。

其中一种方法是使用负反馈。

负反馈是在放大器的输出和输入之间引入一个反馈回路,将一部分输出信号作为输入信号的补偿。

这样可以减少放大器输出信号的非线性失真。

此外,还可以采用线性化技术,如预失真。

预失真在输入信号之前对其进行处理,以补偿放大器的非线性特性。

这样可以改善放大器的线性度,减少非线性失真。

总之,放大器在工作过程中可能会引入非线性失真,如谐波失真和交叉失真。

为了减少这些失真,可以采取一些方法,如负反馈和预失真技术。

通过这些措施,可以提高放大器的线性度,提供更清晰、准确的输出信号。

当今,放大器在电子设备中的应用范围非常广泛,涵盖了从音响系统到通信设备等多个领域。

然而,尽管现代放大器已经越来越先进,但非线性失真仍然是一个不可避免的问题。

首先,让我们深入了解谐波失真。

在放大器系统中,谐波失真是一种主要的非线性失真形式,它指的是输出信号中存在于输入信号频率的倍数倍频的谐波。

放大器波形常见失真原因

放大器波形常见失真原因

放大器波形常见失真原因放大器波形的常见失真原因有很多,下面列举了一些常见的原因,总结了各种失真类型及其产生的原因。

一般来说,放大器波形失真主要来自放大器本身的非线性特性,以及输入信号的不确定性。

首先,放大器本身的非线性特性是产生波形失真的主要原因之一。

放大器在工作时,会受到温度、电压、电流等环境因素的影响,这些因素会导致放大器的参数变化,从而引起波形失真。

放大器中的电容、电感、晶体管等元件也会产生非线性特性,使得输出信号与输入信号之间不是简单的比例关系,进而引起波形失真。

其次,输入信号的不确定性也会导致波形失真。

输入信号中可能存在噪声、杂散信号、多普勒效应等干扰,这些干扰信号会与原始信号叠加在一起,从而改变波形。

此外,输入信号的频率、幅度、相位等参数也可能发生变化,导致波形失真。

波形失真可以分为多种类型,下面分别介绍:1. 线性失真:线性失真是指输入信号的幅度被放大器放大后,波形与原始信号之间呈线性关系,但幅度发生了变化。

这种失真通常由于放大器的增益不均匀性、频率响应问题以及输入信号幅度与放大器工作范围不匹配等原因引起。

2. 非线性失真:非线性失真是指放大器对输入信号的非线性响应。

这种失真在放大器输出信号中产生了次谐波、高次谐波等,使得波形变得不规则,且频谱变宽。

非线性失真可能由于放大器电路中的非线性元件(如晶体管、二极管)引起,也可能是由于放大器电压、电流过大,使其进入非线性区域而产生。

3. 相位失真:相位失真是指放大器对输入信号的相位偏移或相位延迟。

相位失真一般由放大器的频率响应不均匀性导致,不同频率信号在放大过程中的相位角度会有不同的偏移,从而引起波形失真。

4. 交调失真:交调失真是指放大器输出信号中产生了两个或多个不同频率的信号之间的乘积频率。

这种失真通常由于放大器非线性特性引起,当放大器输入信号中含有两个或多个频率的信号时,这些信号经过放大后会产生新的频率信号,从而引起波形失真。

5. 直流偏置失真:直流偏置失真是指放大器输出信号中出现了直流分量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

放大器的非线性失真非线性失真是模拟电路中影响电路性能的重要因素之一。

本章先从非线性的定义入手,确定量化非线性的一个度量标准,然后研究放大器的非线性失真及其差动电路与反馈系统中的非线性,并介绍一些线性化的技术。

12.1 概述 非线性的定义电路非线性是指输出信号与输入信号之比不为一个常量,体现在输出与输入之间的关系不是一条具有固定斜率的直线,或体现为小信号增益随输入信号电平的变化而变化。

放大器的非线性定义:当输入为正弦信号时,由于放大器(管子)的非线性,使输出波形不是一个理想的正弦信号,输出波形产生了失真,这种由于放大器(管子)参数的非线性所引起的失真称为非线性失真。

由于非线性失真会使输出信号中产生高次谐波成分,所以又称为谐波失真。

非线性的度量方法1 泰勒级数系数表示法:用泰勒级数展开法对所关心的范围内输入输出特性用泰勒展开来近似:)()()()(33221 t x t x t x t y (12.1)对于小的x ,y (t)≈α1x ,表明α1是x ≈0附近的小信号增益,而α2,α3等即为非线性的系数,所以确定式(12.1)中的α1,α2等系数就可确定。

2 总谐波失真(THD )度量法:即输入信号为一个正弦信号,测量其输出端的谐波成分,对谐波成分求和,并以基频分量进行归一化来表示,称为“总谐波失真”(THD )。

把x(t)=Acosωt 代入式(12.1)中,则有:)]3cos(cos 3[4)]2cos(1[2cos cos cos cos )(332213332221t t A t A t A t A t A t A t y (12.2)由上式可看出,高阶项产生了高次谐波,分别称为偶次与奇次谐波,且n 次谐波幅度近似正比于输入振幅的n 次方。

例如考虑一个三阶非线性系统,其总谐波失真为:2331233222)43()4()2(THD A A A A (12.3) 3 采用输入/输出特性曲线与理想曲线(即直线)的最大偏差来度量非线性。

在所关心的电压范围[0 V i,max ]内,画一条通过实际特性曲线二个端点的直线,该直线就为理想的输入/输出特性曲线,求出它与实际的特性曲线间的最大偏差ΔV ,并对最大输出摆幅V o,max 归一化。

即在如图12.1所示。

V图12.1 非线性的确定12.2 单级放大器的非线性1 由于管子特性引起的非线性以共源放大器为例来说明单级放大器的非线性,如图12.2所示是带电阻负载的共源放大器。

V S +v sV o图12.2 共源放大器图中V S 为M 1管的直流工作点,即栅源电压,而v s 则为输入的交流小信号,假定输入的交流小信号为:t cos V v m s (12.4)则根据饱和萨氏方程可得其漏极电流为:2)cos (t V V V K I m th GS N D)]2cos(1[21cos )(2cos cos )(2)(20222t V K t V V V K I t V K t V V V K V V K m N m th GSN D m N m th GS N th GS N(12.5)上式中I D0为直流输出,所以在输出端的交流信号可表示为:)]2cos(1[21cos )(22t V K t V V V K I m N m th GS N d (12.6) 输出信号的基波与二次谐波的幅度之比为:)(42th GS mV V V A A (12.7) 由上式可以看出MOS 放大器的非线性失真是由于输出电流与输入电压的平方关系引起的,当V m 很小时,二次谐波可以忽略。

2 由放大器传输特性引起的非线性带电阻负载的共源放大器的传输特性如图12.3所示。

V图12.3 带电阻负载的共源放大器的传输特性由上图可以看出,放大器的非线性失真与输入信号大小、直流工作点(偏置点)有关。

一般放大器的最大输出幅度是指无失真的输出。

所以当偏置点不同时同一放大器的输出幅度是不同的。

由于V o =V DD -I D R ,而放大器的电压增益为:A v =-g m R ,所以当电源电压为常数时,随着电阻R 值的增大,放大器的增益增加,但输出幅度的动态范围减小。

12.3 差分电路的非线性对于差分电路,由于输入与输出间表现出一种“奇对称”的关系,即f(-x)=-f(x),所以对式(12.1)的泰勒展开式进行简化,应只有奇次项,所有的偶次项系数为零,即输入为差分信号时差分放大器不存在偶次谐波,从而减少了非线性。

V图12.4 相同电压增益的单端放大器与差分放大器对于如图12.4所示的差分放大器,其小信号电压增益为:)(2 R V V K R g A th GS N m v (12.8)与共源放大器一样,假设输入信号为V m cosωt 。

则有:21D D o I I I (12.9)21GS GS id V V V (12.10)根据饱和萨氏方程有:22221)(4 2idth GS id N id NS idN D D V V V V K V K I V K I I (12.11)从式(12.11)可以看出,只有当N S id K I V /2 时,I D1、I D2才有意义,而当V id 较小时,△I D =I D1-I D2和V id 才是线性的。

所以一般认为在满足N S id K I V / 时,差分放大器是线性的。

如果|V id |<<V GS -V th ,则将式(12.11)中的根号下的式子展开得:)(8cos cos )(2 )(81)(2)(41)(2233222221th GS m m th GS N th GS idth GS id N th GS idth GS di N D D V V t V t V V V K V V V V V V K V V V V V V K I I (12.12) 利用三角函数的性质cos 3ωt=[3cosωt+cos(3ωt)]/4对式(12.12)进行进一步的简化,有:)(32)3cos(cos )(323232321th GS m m th GS m m m D D V V t V g t V V V V g I I(12.13) 由上式可以看出:差分放大器的非线性失真只包含有奇次谐波,而无偶次谐波分量,且当])(32[323th GS m m V V V V 时,其三次谐波分量与基次谐波分量的比值为: )(32/22th GS m V V V 。

与式(12.7)相比可发现:在提供相同的电压增益与输出摆幅的情况下,差动电路呈现的失真要比共源放大的失真要小得多。

12.4 电路中器件引起的非线性前面介绍的者是假定无源组件为线性,但实际上,特别是在集成电路中,无源组件也都是非线性的。

这里主要介绍电容以及用MOS 管作电阻的非线性。

1 电容的非线性电容的非线性主要体现在开关电容电路中,电容器对电压的依赖关系可能会引入相当大的非线性。

如图12.5所示的电容结构,则是一个非线性电容。

图12.5 一种非线性电容结构对于图12.5中的电容,由于其电容值的大小与PX 二点的电压值(即电容两端的电压)有关,通常此电容可表示为:)1(2210 V V C C (12.14)为了考虑电容非线性的影响,分析如图12.6(a)所示的开关电容电路。

CV oV i0(a) (b)图12.6 (a )非线性电容的开关电容电路 (b )输出曲线假设图12.6中放大器输入电容C 1上有一初始电压为V i0,而输出电容C 2的初始电压为零,且C 1是一非线性电容,并假设C 1/C 2=K (电路的死循环增益),C 1=KC 0(1+α1V ),则电容C 1上获得的电荷为:201000100112)1( 0i i V V V KC V KC dV V KC dV C Q i i(12.15)而在放大模式终止时,电容C 2上的电荷为:2100222o o V V C V C dV C Q o(12.16)而根据电荷守恒定理,Q 1=Q 2,所以可令式(12.15)与式(12.16)相等,则可求得:)211(10120211i i o V K V K V(12.17)上式中平方根项下的后两项通常远小于1,因此可以对平方根项展开,有:20102)1(i i o V K K KV V (12.18) 从上式可以看出输出电压V o 的非线性是由第二项产生的。

2 MOS 管作为电阻的非线性如图12.7所示,为一个有源滤波器,其中使用MOS 管作为其电阻,V V GV oV V o图12.7 用MOS 管作为电阻的有源滤波器选择V G 的电压使MOS 管工作在线性区,因此根据萨氏方程有:DS DSth GS N d V )2V V V (K i(12.19) 对上式进行泰勒展开得:)(21))((22S D N S D th GS N d V V K V V V V K i (12.20) 式中V D -V S =V DS ,则其等效电阻为:)(21)(S D N th GS N DS d V V K V V K V i R (12.21) 上式中第一项为线性电阻,第二项为非线性电阻,使滤波器电路产生非线性,所以用简单管子工作在非饱和区作电阻时使电路产生非线性,当V D +V S 很小时,非线性可以忽略。

12.5 克服非线性的技术 12.5.1 原理在模拟电路中改善和克服非线性失真的方法基本上都是采用负反馈。

其基本的工作原理如下:考虑放大器的非线性失真时,输出信号可以表示为:h v di v o v DA v A v 00 (12.22)式中D 为谐波失真系数,v h 为输入端的谐波信号。

则一个反馈系统可用图12.8表示。

Dv图12.8 反馈系统的对非线性的影响的原理框图由上图可得到:of v f v F v (12.23) f sf di v v v (12.24) di v h v of v A Dv A v 00 (12.25)把式(12.23)、(12.24)代入式(12.25)h v sf v v v of Dv A v A F A v 000)1( (12.26)即:vv hv vv sf v of F A Dv A F A v A v 000011(12.27)上式说明,非线性失真减小是用降低系统增益换来的,反馈放大器输入信号幅度与无反馈时相同,则负反馈放大器的输出信号缩小了(1+A v0F v )倍。

为了便于比较,应将输出信号中的基波幅度调到与无反馈时相同,则有:s v v sf v F A v )1(0 (12.28)把式(12.28)代入到式(12.27)中可得到:vv hv s v of F A Dv A v A v 0001(12.29)由上式可以看出负反馈作用使放大器输出信号中的谐波成分减小了,若以D F 表示,则有:vv F F A DD 01(12.30)上式说明负反馈放大器非线性失真比无反馈放大器减小了(1+A v0F v )倍。

相关文档
最新文档