高中数学复习及知识点:基本不等式

合集下载

(完整版)高考数学-基本不等式(知识点归纳)

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

高一数学知识点不等式

高一数学知识点不等式

高一数学知识点不等式不等式是数学中的一个重要概念,它在高一数学学习中占据着重要的地位。

本文将讨论高一数学中的不等式知识点,包括不等式的基本概念、解不等式的方法等内容。

1.不等式的基本概念不等式是指包含不等号(>、<、≥、≤)的数学表达式。

它描述了两个数之间的相对大小关系。

在不等式中,我们称表达式的两边为左边和右边,其中,不等号左侧的表达式通常称为不等式的“左端”,不等号右侧的表达式通常称为不等式的“右端”。

2.不等式的表示形式不等式可以有多种表示形式,下面是一些常见的表示形式:- 一元一次不等式:形如ax+b>0的不等式,其中a和b为已知实系数,x为未知实数。

- 一元二次不等式:形如ax^2+bx+c>0的不等式,其中a、b和c为已知实系数,x为未知实数。

- 绝对值不等式:形如|ax+b|<c的不等式,其中a、b为已知实系数,c为已知正实数,x为未知实数。

3.不等式的解集表示解不等式是指找出满足不等式条件的数的集合。

解集可以使用不等式符号表示,也可以使用区间表示。

下面是一些常见的解集表示形式:- 不等式符号表示:例如,解集{x | x>2}表示满足不等式x>2的所有实数x的集合。

- 区间表示:例如,解集(-∞, 2)表示所有小于2的实数的集合。

4.不等式的性质和运算规则不等式有一些特殊的性质和运算规则,包括以下几点:- 不等式两边同时加(减)一个相同的数,不等式方向不变。

- 不等式两边同时乘(除)一个正数,不等式方向不变。

- 不等式两边同时乘(除)一个负数,不等式方向改变。

- 对于绝对值不等式,需要考虑绝对值的正负情况来确定解集。

5.不等式的解法方法解不等式的方法主要包括代入法、图像法和数轴法等。

在解题过程中,我们可以运用不等式的性质和运算规则,根据具体题目的要求采取不同的解题方法。

6.不等式的应用不等式在高一数学中有广泛的应用,常见的应用场景包括以下几个方面:- 解决实际问题中的数量关系,如寻找最大值、最小值等。

高中数学不等式知识点归纳

高中数学不等式知识点归纳

高中数学不等式知识点归纳什么是不等式一般地,用纯粹的大于号“>”、小于号“,≥,≤,≠)连接的式子叫做不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

高中数学基本不等式知识点数学知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0数学知识点2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

数学知识点3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。

当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。

综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。

高中数学不等式知识点

高中数学不等式知识点

高中数学不等式知识点在高中数学的学习中,不等式是一个重要的内容板块,它不仅在数学领域有着广泛的应用,也对我们培养逻辑思维和解决实际问题的能力有着重要的作用。

下面我们就来详细梳理一下高中数学不等式的相关知识点。

一、不等式的基本性质1、对称性:若 a > b,则 b < a 。

2、传递性:若 a > b 且 b > c ,则 a > c 。

3、加法法则:若 a > b ,则 a + c > b + c 。

4、乘法法则:若 a > b 且 c > 0 ,则 ac > bc ;若 a > b 且 c <0 ,则 ac < bc 。

这些基本性质是我们解决不等式问题的基础,需要牢记并能熟练运用。

二、一元一次不等式形如 ax + b > 0 或 ax + b < 0 (a ≠ 0)的不等式称为一元一次不等式。

解一元一次不等式的一般步骤为:1、去分母(若有分母)。

2、去括号。

3、移项,将含未知数的项移到一边,常数项移到另一边。

4、合并同类项。

5、系数化为 1 ,注意当系数为负数时,不等号方向要改变。

例如,解不等式 2x + 5 > 7 ,移项得到 2x > 7 5 ,即 2x > 2 ,系数化为 1 得 x > 1 。

三、一元二次不等式形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0 (a ≠ 0)的不等式称为一元二次不等式。

解一元二次不等式的关键是求出其对应的二次方程的根。

通过判断二次函数图象的开口方向以及与x 轴的交点情况来确定不等式的解集。

例如,对于不等式 x² 2x 3 < 0 ,先求出方程 x² 2x 3 = 0 的根,即(x 3)(x + 1) = 0 ,解得 x = 3 或 x =-1 。

因为二次函数开口向上,所以不等式的解集为-1 < x < 3 。

四、简单的绝对值不等式1、当|x| < a (a > 0)时,a < x < a 。

第二章-2.2-基本不等式高中数学必修第一册人教A版

第二章-2.2-基本不等式高中数学必修第一册人教A版


1
(13
5
+2
12


3
)

=
3 + 4
12
5,当且仅当

1
+ = 5,(变形确定常数)则3

1
12
= (9 + 4 +
+
5

=
3
,

+ 3 = 5,即 = 1, =
+ 4 =
1
时取等号.
2
故3 + 4的最小值为5.
(方法二思路清晰,过程简单易上手,对思维有较高要求,适合变形后等式一边为
1

1
4
≥ ,故A,B错误;
1

1

+
≥ 1,故C恒成立;

+ 2
1
1
2

= 8,∴ 2 2 ≤ ,故D恒成立.
2
+
8
∵ ≤ 4 = + ,∴ + =

+ 2
2

2 +2
,∴
2
2 +
方法帮丨关键能力构建
题型1 利用基本不等式求最值的常见题型及求解技巧
例5(1) 函数 = 5 − 2 0 < < 2 的最大值是
常数的情况)
【学会了吗|变式题】
4.(2024·浙江省杭州二中期末)已知 > 0, >
值为( A
2
0,且

1
+

= 1,则2 +
)
A.5 + 4 2

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。

②传递性:a>b。

b>c则a>c。

③可加性:a>b等价于a+c>b+c,其中c为任意实数。

同向可加性:a>b,c>d,则a+c>b+d。

异向可减性:a>b,cb-d。

④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。

⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。

异向正数可除性:a>b>0,0bc。

a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。

⑧倒数法则:a>b>0,则1/a<1/b。

2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。

a^2+b^2>=2ab,当且仅当a=b时取等号。

a+b/2>=√ab,当且仅当a=b时取等号。

a+b+c/3>=∛abc,当且仅当a=b=c时取等号。

a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。

a+b+c>=3√abc,当且仅当a=b=c时取等号。

a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。

a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。

3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。

a+b)/2<=√(a^2+b^2),对任意实数a,b成立。

a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。

a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。

a+b)/2>=√ab,对任意正实数a,b成立。

高三数学 第一轮复习 04:基本不等式

高三数学 第一轮复习 04:基本不等式

高中数学第一轮复习04基本不等式·知识梳理·模块01:平均值不等式一、平均值不等式有关概念1、通常我们称a b+2为正数a b 、a b 、的几何平均值。

2、定理:两个正数的算术平均数大于等于它们的几何平均值,即对于任意的正数b a 、,有2a b+≥,且等号当且仅当a b =时成立.3、定理:对于任意的实数b a 、,有2()2a b ab +≥,且等号当且仅当b a =时成立。

即对任意的实数b a 、,有222a b ab +≥,且等号当且仅当b a =时成立。

[注意事项]:222a b ab +≥和2a b+≥两者的异同:(1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;(2)取等号的条件在形式上是相同的,都是“当且仅当a b =时取等号”;(3)222a b ab +≥可以变形为:222a b ab +≤;2a b +≥可以变形为:2(2a b ab +≤。

4、平均值不等式的几何证明法:如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .易证~Rt ACD Rt DCB ∆∆,那么2CD CA CB =⋅,即CD =.这个圆的半径为2b a +,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a b =时,等号成立.[知识拓展]1、当0a b <≤时,2112a ba b a b+≤≤≤+(调和平均值≤几何平均值≤算术平均值≤平方平均值)2、123,,,,n a a a a 是n 个正数,则12na a a n+++ 称为这n个正数的算术平均数,称为这n 个正数的几何平均数,它们的关系是:12n a a a n+++≥ ,当且仅当12n a a a ===时等号成立.二、利用基本不等式求最值问题(1)“积定和最小”:a b +≥⇔如果积ab 是定值P ,那么当a b =时,和a b +有最小值;(2)“和定积最大”:2(2a b ab +≤⇔如果和a b +是定值S ,那么当a b =时,积ab 有最大值214S .[注意事项]:基本不等式求最值需注意的问题:(1)各数(或式)均为正;(2)和或积为定值;(3)等号能否成立,即“一正、二定、三相等”这三个条件缺一不可。

基本不等式中常用公式高一知识点

基本不等式中常用公式高一知识点

基本不等式中常用公式高一知识点摘要:1.引言:介绍基本不等式2.基本不等式的常用公式3.高一知识点中的基本不等式应用4.结论:基本不等式在高中数学中的重要性正文:【引言】在高中数学中,基本不等式是一个重要的知识点。

基本不等式能够帮助我们解决许多与不等式相关的问题,它在数学中有着广泛的应用。

今天我们将探讨基本不等式中的一些常用公式,并介绍它们在高一数学中的应用。

【基本不等式的常用公式】在基本不等式中,有一些常用的公式,它们可以帮助我们更方便地解决不等式问题。

这些公式包括:1.两个正数的算术平均数大于等于它们的几何平均数,即(a+b)/2 >= sqrt(ab)。

2.两个负数的算术平均数小于等于它们的几何平均数,即(a+b)/2 <= sqrt(-ab)。

3.一个正数和一个负数的算术平均数小于等于它们的几何平均数,即(a-b)/2 <= sqrt((-a-b)/2)。

【高一知识点中的基本不等式应用】在高一数学中,基本不等式在许多章节中都有应用,例如在解不等式、求最值等问题中。

下面我们通过一些例子来看一下基本不等式在高一数学中的应用。

例1:求解不等式x^2 - 3x + 2 > 0。

解:我们可以通过求解这个不等式的根,然后根据根的情况来确定不等式的解集。

首先,我们可以通过求解判别式来找到这个不等式的根:Δ= (-3)^2 - 4*1*2 = 9 - 8 = 1。

由于判别式大于0,所以这个不等式有两个实根,它们分别为x1 = 1 和x2 = 2。

因此,这个不等式的解集为x < 1 或x > 2。

例2:求函数f(x) = x^2 - 2x + 1 在区间[0, 1] 上的最小值。

解:我们可以通过求解函数的导数来找到函数的极值点。

首先,求解函数的导数:f"(x) = 2x - 2。

然后令导数等于0,解得x = 1。

将x = 1 带入原函数,得到f(1) = 1 - 2 + 1 = 0。

高一数学不等式知识点梳理

高一数学不等式知识点梳理

高一数学不等式知识点梳理在高中数学中,不等式是一个重要的概念和内容,在各个章节中都会涉及到不等式的相关知识和应用。

下面将对高一数学中的不等式知识点进行梳理和总结,以帮助同学们更好地理解和掌握不等式的相关内容。

一、不等式的基本概念1. 不等式的定义:不等式是数之间的大小关系的一种表示方式,用符号“<”、“>”、“≤”、“≥”等表示。

2. 不等式的解集:不等式的解集是使得不等式成立的所有实数的集合。

二、一元一次不等式1. 一元一次不等式的解法:(1) 通过绘制数轴法确定解集;(2) 利用性质将不等式转化为等价的形式求解。

2. 一元一次不等式的性质:(1) 加减性质:若a<b,则a±c<b±c(其中c为常数);(2) 倒置性质:若a<b,则-b<-a;(3) 倍增性质:若a<b,则ac<bc(c>0)或ac>bc(c<0);(4) 倒数性质:若a<b,则1/b<1/a(a>0,b>0)。

三、一元二次不等式1. 一元二次不等式的解法:(1) 使用根的性质来解决一元二次不等式;(2) 利用配方法将一元二次不等式转化成平方完全性质的形式求解。

2. 一元二次不等式的性质:(1) 零点性质:若x1、x2为一元二次不等式的解,则x1+x2=-b/a、x1*x2=c/a;(2) 符号性质:当a>0时,一元二次不等式y=ax²+bx+c的解集随x的增加而递增,当a<0时,解集随x的增加而递减;(3) 洛必达不等式:若0<a<b,则0<ln(a/b)<a/b<1。

四、绝对值不等式1. 绝对值不等式的解法:(1) 利用绝对值的定义进行讨论求解;(2) 利用绝对值的性质化简不等式,并得出解集。

2. 常见的绝对值不等式:(1) |x|<a(a>0)的解集为(-a, a);(2) |x|>a(a>0)的解集为(-∞, -a)∪(a, +∞);(3) |x-a|<b(b>0)的解集为(a-b, a+b);(4) |x-a|>b(b>0)的解集为(-∞, a-b)∪(a+b, +∞)。

(完整版)高中数学不等式知识点总结

(完整版)高中数学不等式知识点总结

选修 4--5 知识点1、不等式的基本性质①(对称性) a b b a同向可加性)a b,c⑧(倒数法则)2、几个重要不等式用基本不等式求最值时(积定和最小,和定积最大) 三相等” .④ (可积性)a b,cac bca b ,c 0 acbc⑤ (同向正数可乘性)a b0,c d 0 acbdb 0,0cdab (异向正数可除性) cd⑥ (平方法则)a bna b n(n N,且n1)异向可减性)a b,c dN,且n b 1)a na n b(n③(三个正数的算术—几何平均不等式) abc33 abc(a 、b 、 cR )(当且仅当a b c 时取到等号)②(传递性)a b,bc ac③(可加性) a bacbc⑦(开方法则) 11a b ;a22①a 2b 2 2aba ,,(当且仅当b时取 "" 号) . 变形公式:aba2 b22②(基本不等式)aba ,,(当且仅当 a b 时取到等号)变形公式: a 2 ababa b2,要注意满足三个条件“一正、二定、(a 2 b 2)(c 2 d 2) (ac bd )2 (a,b,c,d R ).当且仅当 ad bc 时,等号成立2ax⑨绝对值三角不等式3、几个著名不等式②幂平均不等式:④二维形式的柯西不等式:2④ab 22c ab bc ca a , b R(当且仅当a b c 时取到等号) .3⑤ab33c 3abc(a 0,b 0,c 0)(当且仅当a b c 时取到等号) .若ab⑥0,则ba2ab (当仅当 a=b 时取等号)若ab b 0,则aa 2b (当仅当 a=b 时取等号)b b m1anbn a ⑦aa mb ,(其中a b 0,规律: 小于 1 同加则变大,大于 1 同加则变小 .⑧当a 0时,x22a x a x a 或 x a;m 0, n 0)1(a 1n ③二维形式的三角不等式: 22 a 1 a 2 2 a n a 2a n )2.22 x 1 y 122x 2 y 2(x 1 x 2)2 (y 1 y 2)2(x 1,y 1,x 2,y 2 R).a. b.①平均不等式: 211ababb a 2 b 2,(a,b R ,当且仅当 ab 时取 " "号) . (即调和平均 变形公式:几何平均 算术平均 平方平均) .aba b22abb 2(a b)2 20)⑤ 三维形式的柯西不等式:顺序和),当且仅当 a1 a2 ... an 或 b1 b2 ... bn 时,反序和等于顺序和 ⑨琴生不等式 : (特例 :凸函数、凹函数)若定义在某区间上的函数f ( x),对于定义域中任意两点 x1,x2(x1 x2),有f(x 1 x 2)f(x 1) f(x 2)或 f(x 1 x 2) f (x 1) f(x 2).f (2 )2或 f (2 )2 .则称 f(x) 为凸(或凹)函数4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法) 、综合法、分析法; 其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等 一化:化二次项前的系数为正数 二判:判断对应方程的根 . 三求:求对应方程的根 .2 2 2 2 2 2 (a 1 a 2 a3 )(b 1 b 2 b 3) (a 1b 1 a 2b 2⑥一般形式的柯西不等式:(a 12a 22... a n 2)(b 12b 22... b n 2) (a 1b 1⑦向量形式的柯西不等式:ur urur urur ur设 ,是两个向量,则,当且仅当等号成立 .⑧排序不等式( 排序原理):设a 1 a 2... a n ,b 1 b 2bn为两组实数 a 1b n a 2b n 1... a n b 1a 1c 1 a 2c 2... a n c na 3b 3) .a 2b 2 ... a n b n ) .ur ur ur是零向量,或存在实数 k ,使 k 时, .c 1,c 2,...,c n是b 1,b 2,...,b n的任一排列,则①舍去或加上一些项,如 1(a12)234②将分子或分母放大(缩小) ,11,11如k 2 k(k 1),k 2k(k1),1 2 (k * N *,k1)等.kk k 15、一元二次不等式的解法2求一元二次不等式 ax bx c0(或12(a12)2;22 1 22 k k k k k k 1常见不等式的放缩方法:(a 0,2b 4ac 0)解集的步骤:四画:画出对应函数的图象 . 五解集:根据图象写出不等式的解集 . 规律:当二次项系数为正时,小于取中间,大于取两边 .6、高次不等式的解法:穿根法 . 分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切) ,结合原式不等号的方向, 写出不等式的解集 .7、分式不等式的解法:先移项通分标准化,则f(x)0 f (x) g(x) 0 g(x)f(x) 0f (x) g(x) 0g(x) g(x) 0(“ 或 ”时同理)规律:把分式不等式等价转化为整式不等式求解 .8、无理不等式的解法:转化为有理不等式求解⑵当0 a 1时,a f(x) a g(x)f (x) g(x)规律:根据指数函数的性质转化 .10、对数不等式的解法f(x) 0log a f (x) log a g(x) g(x) 0⑴当a 1时,f(x) g(x)f(x)⑴a(a 0)f(x) f(x)f(x)⑵a(a 0)f(x) f(x) f(x) g(x) f(x)g(x) f(x) 0 02 [g(x)]2或f(x) 0 或g(x) 0 f(x)g(x) f(x)g(x) f(x)0 02[g(x)]2f(x)g(x)f (x) g(x) f (x) 0g(x) ⑸ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解 9、指数不等式的解法:⑴当 a 1时 ,af (x) a g(x)f (x) g(x)f (x) 0log a f(x) log a g(x) g(x) 0 .f (x) g(x)⑵当0 a 1时,规律:根据对数函数的性质转化.11、含绝对值不等式的解法:a (a 0)a.⑴定义法: a (a 0)2(x) g2(x).⑵平方法:f(x) g(x) f⑶同解变形法,其同解定理有:①x a a x a(a 0);或x a(a 0);②x a x a③ f (x) g(x) g(x) f (x) g(x) (g(x) 0)或f(x) g(x) (g(x) 0) 规律:关键是去掉绝对值的符号.④f (x) g(x) f(x) g(x)12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法2解形如ax bx c 0 且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a与0的大小;⑵讨论与0 的大小;⑶讨论两根的大小.14、恒成立问题c 0 的解集是全体实数(或恒成立)的条件是⑴不等式ax2 bx0 时b0,c 0;①当aa00.②当a0时⑵不等式ax2 bx c 0 的解集是全体实数(或恒成立)的条件是①当a 0 时b 0,c 0;a0②当a 0 时0.⑶f (x) a恒成立f (x)max a;f(x) a恒成立f(x)max a⑷ f (x) a 恒成立f (x)min a;f(x) a恒成立f(x)min a.15、线性规划问题常见的目标函数的类型:①“截距”型:zAx By;z ②“斜率”型:y z yx 或x b; a③“距离”型:z22x2 y2或z22 xyz (x a)2 (y b)2或z (x a)2(y b)2.在求该“三型” 的目标函数的最值时,可结合线性规划与代数式的几何意义求解,题简单化.从而使问。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结一、知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc;a > b, c < 0ac < bc;⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0,2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。

当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。

综合法:以已知或已证明的不等式为基础,根据不等式的性质推导出待证明的不等式。

平均不等式常用于综合法的标度。

分析方法:不等式两边的关系不够清晰。

通过寻找不等式成立的充分条件,对待证明的不等式进行逐步转化,直到找到一个容易证明或已知成立的结论。

4.不等式的解法(1) 不等式的有关概念同解不等式:如果两个不等式有相同的解集,那么这两个不等式称为同解不等式。

同解变形:当一个不等式转化为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形称为同解变形。

高三不等式必背知识点

高三不等式必背知识点

高三不等式必背知识点在高中数学课程中,不等式是一个重要且普遍存在的概念,而解不等式是解析几何、函数、导数等数学领域的基础。

在高三阶段,不等式也是重要的数学知识点之一。

本文将介绍高三阶段必背的不等式知识点,包括基本不等式、三角不等式、均值不等式等。

一、基本不等式基本不等式是指数学中最基础、最常用的两个不等式:算术平均-几何平均不等式和柯西-斯瓦茨不等式。

1. 算术平均-几何平均不等式(AM-GM不等式)对于非负实数 $a_1、a_2、\ldots、a_n$,AM-GM 不等式定义为:$$\frac{a_1+a_2+\ldots+a_n}{n}\geq \sqrt[n]{a_1\cdot a_2\ldots a_n}$$其中,等号成立的条件是$a_1=a_2=\ldots=a_n$。

2. 柯西-斯瓦茨不等式(Cauchy-Schwarz不等式)对于实数 $a_1、a_2、\ldots、a_n$ 和实数 $b_1、b_2、\ldots、b_n$,柯西-斯瓦茨不等式定义为:$$(a_1^2+a_2^2+\ldots+a_n^2)(b_1^2+b_2^2+\ldots+b_n^2)\geq (a_1b_1+a_2b_2+\ldots+a_nb_n)^2$$其中,等号成立的条件是$\frac{a_1}{b_1}=\frac{a_2}{b_2}=\ldots=\frac{a_n}{b_n}$。

二、三角不等式三角不等式是指与三角函数相关的一系列不等式,在解析几何和三角学中有重要的应用。

1. 直角三角形的三角不等式对于直角三角形,设斜边为 $c$,两个直角边分别为 $a$ 和$b$,那么三角不等式定义为:$$a+b>c$$2. 一般三角形的三角不等式对于一般的三角形,设边长分别为 $a、b、c$,则有三种不等式:$$a+b>c, a+c>b, b+c>a$$其中,任意两边之和大于第三边。

三、均值不等式均值不等式是指反映一组数的平均值和什么程度相差的不等式。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结(最新版)目录一、高中不等式知识点总结二、不等式的基本性质1.对称性2.传递性3.可加性4.可积性三、不等式性质的运用1.作差比较法2.作商比较法四、高中数学不等式知识点总结五、结语正文一、高中不等式知识点总结在高中数学的学习中,不等式是一个重要的知识点。

不等式是指用大于号(>)、小于号(<)或大于等于号(≥)、小于等于号(≤)等符号连接的式子。

不等式在数学中有着广泛的应用,因此掌握不等式的相关知识点至关重要。

二、不等式的基本性质不等式具有以下几个基本性质:1.对称性:如果 a>b,那么 b<a;如果 a<b,那么 b>a。

即不等式的方向可以随意改变,不等式仍然成立。

2.传递性:如果 a>b,且 b>c,那么 a>c。

即不等式可以按照顺序进行传递。

3.可加性:如果 a>b,且 c>d,那么 a+c>b+d。

即两个不等式相加,不等号的方向不变。

4.可积性:如果 a>b,且 c>d,那么 ac>bd。

即两个不等式相乘,不等号的方向不变。

三、不等式性质的运用在实际解题过程中,我们可以运用不等式的基本性质来进行计算和比较大小。

例如,在比较两个数的大小时,我们可以通过作差比较法或作商比较法来判断。

作差比较法是指将两个数相减,比较差值的大小;作商比较法是指将两个数相除,比较商的大小。

四、高中数学不等式知识点总结在高中数学中,不等式的知识点涉及到一元一次不等式、一元二次不等式、绝对值不等式、不等式组等。

对于这些不等式,我们需要掌握其解法和性质,并能够熟练运用到实际题目中。

五、结语不等式是高中数学中的一个重要知识点,掌握好不等式的相关性质和解法,对于提高数学成绩具有重要意义。

高中数学基本不等式知识点及练习题

高中数学基本不等式知识点及练习题

高中数学基本不等式知识点及练习题1.基本不等式:对于任意正实数a和b,有ab≤(a+b)/2.2.几个重要的不等式:1) 平方差公式:对于任意实数a和b,有(a-b)^2≥0,即a^2+b^2≥2ab.2) 两个同号数的平方和大于它们的积:对于任意正实数a 和b,有a^2+b^2≥2ab.3) 两个异号数的平方和小于它们的积:对于任意实数a和b,如果ab<0,则a^2+b^2<2ab.4) 平均值不等式:对于任意正实数a和b,有(a+b)/2≥√(ab).3.算术平均数与几何平均数:对于任意正实数a和b,它们的算术平均数为(a+b)/2,几何平均数为√(ab)。

基本不等式可以叙述为两个正数的算术平均数大于或等于它们的几何平均数.4.利用基本不等式求最值问题:1) 如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.2) 如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是p^2/4.一个技巧:在运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a^2+b^2≥2ab逆用就是ab≤(a^2+b^2)/(a+b)^2;还要注意“添、拆项”等技巧和公式等号成立的条件等.两个变形:1) a^2+b^2≥(a+b)^2/2≥ab(a>0,b>0,当且仅当a=b时取等号).2) a^2+b^2≥2ab(a,b∈R,当且仅当a=b时取等号).三个注意:1) 使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视。

要利用基本不等式求最值,这三个条件缺一不可.2) 在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.3) 连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值:例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.解题技巧:技巧一:凑项.例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.技巧二:凑系数.例1.当x^2+7x+10/(x+1)的值域.技巧三:分离.例3.求y=x(8-2x)的最大值,当y<4时。

高考数学-基本不等式(知识点归纳)

高考数学-基本不等式(知识点归纳)

高考数学-基本不等式(知识点归纳) 高中数学基本不等式的巧用一、基本不等式1.若$a,b\in\mathbb{R}$,则$a+b\geq 2ab$,$ab\leq\frac{(a+b)^2}{4}$(当且仅当$a=b$时取“=”)2.若$a,b\in\mathbb{R}$,则$\frac{a+b}{2}\geq\sqrt{ab}$(当且仅当$a=b$时取“=”)3.若$x>1$,则$x+\frac{1}{x}\geq 2$(当且仅当$x=1$时取“=”);若$x<1$,则$x+\frac{1}{x}\leq -2$(当且仅当$x=-1$时取“=”);若$x\neq 0$,则$x+\frac{1}{x}\geq 2$或$x+\frac{1}{x}\leq -2$(当且仅当$x=1$或$x=-1$时取“=”)4.若$a,b>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”);若$ab\neq 0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$或$\frac{a}{b}+\frac{b}{a}\leq -2$(当且仅当$a=b$时取“=”)注:(1)当两个正数的积为定值时,可以求它们的和的最小值,当两个正数的和为定值时,可以求它们的积的最大值,正所谓“积定和最小,和定积最大”。

2)求最值的条件“一正,二定,三取等”。

3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用。

应用一:求最值例1:求下列函数的值域1.$y=3x+\frac{11}{2}$2.$y=x+\frac{1}{2x}$解:(1)$y=3x+\frac{11}{2}\geq 6$,所以值域为$[6,+\infty)$。

2)当$x>0$时,$y=x+\frac{1}{2x}\geq 2$;当$x<0$时,$y=x+\frac{1}{2x}\leq -2$;当$x=0$时,$y$无定义。

高一数学基本不等式综合复习

高一数学基本不等式综合复习

第5讲基本不等式1.基本不等式:ab≤a+b2(1)基本不等式成立的条件:a≥0,b≥0.(2)等号成立的条件:当且仅当时取等号.(3)其中称为正数a,b的算术平均数,称为正数a,b的几何平均数.2.利用基本不等式求最值已知x≥0,y≥0,则(1)如果积xy是定值p,那么当且仅当时,x+y有最小值是.(简记:积定和最小)(2)如果和x+y是定值s,那么当且仅当时,xy有最大值是.(简记:和定积最大)常用结论几个重要的不等式(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.(2)ab(a,b∈R),当且仅当a=b时取等号.(3)a2+b22≥(a,b∈R),当且仅当a=b时取等号.(4)b a+ab≥2(a,b同号),当且仅当a=b时取等号.考点1利用基本不等式求最值[典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件33ba b ++=,则22a b +的最小值为()A .8B .6C .4D .22.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为()A .3B .2C .1D .03.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是()A .11m n+上的最小值为2B .mn 的最大值为1C 的最大值为4D .22m n +的最小值为544.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为()A .15,+BC ∞D ∞,15[举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为()A .8B .7C .6D .52.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是()A .1B .2C .4D .63.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为()A .40B .1674C .42D .16944.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是()A .2B .2C .2D .65.(多选)(2022·河北保定·一模)下面描述正确的是()A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b 的最小值是C .已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为7126.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是()A .114a b+≥B .2212a b +≥CD .10b +<7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a ____________.8.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________.9.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.10.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a ba b +++的最大值为__________.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++的最小值;考点2利用基本不等式证明不等式(2022·全国·高三专题练习)已知,,a b c 都是正数,求证:(1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++.[举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数.(1)求24a a +的最小值;(2)求证:bc ac ab a b c a b c++≥++.2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>.(1)若2a b +=,求1411+++a b的最小值;(2)求证:2222(1)++≥++a b a b ab a b .3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1.(1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=.(1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.考点3基本不等式中的恒成立问题典例1.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是()A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110na b b c a c+≥---恒成立,则n 的最大值是()A .2B .3C .4D .5[举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是()A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞2.(2021·浙江·模拟预测)对任意正实数,a b不等式2(1)2a b ab a bλλ+-+≥+则()A .实数λ有最小值1B .实数λ有最大值1C .实数λ有最小值12D .实数λ有最大值123.(多选)(2022·全国·高三专题练习)当0x >,0y >,R m ∈时,2222y xm m k x y+>-++恒成立,则k 的取值可能是()A .2-B .1-C .1D .24.(2022·全国·高三专题练习)不等式22221122xy yz a a x y z ++-++≤对任意正数x ,y ,z 恒成立,则a 的最大值是__________.5.(2021·重庆一中高三阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________.6.(2022·全国·高三专题练习)若不等式()x a x y ++对一切正实数,x y 恒成立,则实数a 的最小值为_____.考点4基本不等式与其他专题综合典例1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.2.[2021湖北鄂东南联考]方程(x 2018+1)(1+x 2+x 4+…+x 2016)=2018x 2017的实数解的个数为________.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为()(精确到1米)A .8米B .9米C .10米D .11米[举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是()A .30B .60C .900D .18002.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是()A .tan tan tan tanBC B C +=B .tan tan tan tan tan tan A B C A B C =++C .41tan 3A <≤D .tan tan tan A B C 的最小值为43.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.第5讲基本不等式1.基本不等式:ab≤a+b2(1)基本不等式成立的条件:a≥0,b≥0.(2)等号成立的条件:当且仅当a=b时取等号.(3)其中a+b2称为正数a,b的算术平均数,ab称为正数a,b的几何平均数.2.利用基本不等式求最值已知x≥0,y≥0,则(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.(简记:积定和最小)(2)如果和x+y是定值s,那么当且仅当x=y时,xy有最大值是s24.(简记:和定积最大)常用结论几个重要的不等式(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.(2)ab(a,b∈R),当且仅当a=b时取等号.(3)a2+b22≥(a,b∈R),当且仅当a=b时取等号.(4)b a+ab≥2(a,b同号),当且仅当a=b时取等号.考点1利用基本不等式求最值[典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件33ba b ++=,则22a b +的最小值为()A .8B .6C .4D .2【答案】D【解析】因为33ba b ++=≥,当且仅当33a b=,即a b =时取等号,所以643a b a b ++≥⋅,所以24a b +≥,2a b +≥,()222122a b a b +≥+=,当且仅当1a b ==时等号成立,所以22a b +的最小值为2故选:D.2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为()A .3B .2C .1D .0【答案】D【解析】因为2x >-,所以20x +>,102x >+,利用基本不等式可得11222022x x x x +=++-≥=++,当且仅当122x x +=+即1x =-时等号成立.故选:D.3.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是()A .11m n+上的最小值为2B .mn 的最大值为1C的最大值为4D .22m n +的最小值为54【答案】AB【解析】∵0,0,2m n m n >>+=,∴()1111111222222n m m n m n m n m n ⎛⎫⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当n mm n=,即1m n ==时等号成立,故A 正确;2m n +=≥ 1mn ≤,当且仅当1m n ==时,等号成立,故B 正确;22224⎡⎤≤+=⎢⎥⎣⎦,2=,当且仅当1m n ==时等号成立,最大值为2,故C 错误;()22222m n m n++≥=,当且仅当1m n ==时等号成立,故D 错误.故选:AB4.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为()A .15,+BC ∞D ∞,15[答案]A[解析]由x >0,xx 2+3x +1=1x +1x+3,令t =x +1x ,则t ≥2x ·1x=2,当且仅当x =1时,t 取得最小值2.x x 2+3x +1取得最大值15,所以对于任意的x >0,不等式x x 2+3x +1≤a 恒成立,则a ≥15.[举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为()A .8B .7C .6D .5【答案】D【解析】因为13x >,所以3x -1>0,所以()4433112153131y x x x x =+=-++≥=--,当且仅当43131x x -=-,即x =1时等号成立,故函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为5.故选:D .2.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是()A .1B .2C .4D .6【答案】C【解析】解:因为0x >,0y >,22x y +=,所以()1211214122244222y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4y x x y =,即12x =,1y =时取等号;故选:C3.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为()A .40B .1674C .42D .1694【答案】D 【解析】()()222222222214444444a b ab a b a b ab ab a b ++=+++=++-++()()()22222362a b ab ab =++-=+-,又2112902()2222a b ab a b +≤=⋅⋅≤=,当且仅当3,32a b ==时取“=”,则22916936(2)36(2)24ab +-≤+-=,所以当3,32a b ==时,()()2214a b ++的最大值为1694.故选:D4.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是()A .2B .2C .2D .6【答案】B【解析】由220ab a +-=,得22a b =+,所以()a b b b b b +=+=++-=++884222222,当且仅当,a b b b ==+++28222,即a b ==2取等号.故选:B.5.(多选)(2022·河北保定·一模)下面描述正确的是()A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b的最小值是C .已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为712【答案】AC【解析】对于选项A ,∵0a >,0b >,1a b +=,∴1a b =+≥,∴14ab ≤,当且仅当12a b ==时取等号,∴22221log log log log 24a b ab +=≤=-,∴A 正确;对于选项B :因为1ab =,所以22a b a a+=+,又01a <<,所以由对勾函数的单调性可知函数()2=+h a a a在()0,1上单调递减,所以()()3,h a ∈+∞,即23+>a b ,故B 不正确;对于选项C ,根据题意,已知()()3121x y x x y +=+++-,则()()()21122123321212x x y x x y x x y x x y +⎛⎫+++++=++≥+⎡⎤ ⎣⎦++++⎝⎭当且仅当()21212++=++x x y x x y ,即1==x y时,等号成立,所以32x y +≥+,故C 正确;对于选项D ,()()2222032x y x y xy x y x y xy +---+=⇒+-+=-,令0x y t +=>,所以214t t -≥-,所以1732412xy xy -≥-⇒≥,此时1,2712x y xy ⎧+=⎪⎪⎨⎪=⎪⎩无解,所以选项D 不正确,故选:AC .6.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是()A .114a b+≥B .2212a b +≥CD .10b +<【答案】AB【解析】对于A :因为001a b a b >>+=,,,所以()11111124b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当b a a b =,即12a b ==时取等号,所以114a b+≥成立.故A 正确;对于B :因为001a b a b >>+=,,,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号.所以()22212122a b a b ab ab +=+-=-≥成立.故B 正确;对于C :因为001a b a b >>+=,,,所以()()113a b +++=,所以()()311a b =+++≥.记u =,则0u >,所以211336u a b =++++≤+=,所以u <≤≤故C 错误;对于D :因为0,b >所以10+>b .故D 错误.故选:AB7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a____________.【答案】6-63+【解析】 a ,b 为正实数,且2a b +=,222221111a b b a a b a b +-+∴+=+++2111a b a b =++-++2111a b =+++()()1211131a b a b ⎛⎫=++++ ⎪+⎝⎭()2111331b a a b ⎛⎫+=+++ ⎪+⎝⎭(1133≥++当且仅当()2112b aa b a b ⎧+=⎪⎨+⎪+=⎩即6a =-4b =时取“=”故答案为:6-63+8.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________.【答案】9【解析】()()()()41414411911x y x y x y x y x y xy y x y x y -+⎡⎤-+⎛⎫⎡⎤⎣⎦++=++=-++++⎪⎢⎥---⎣⎦⎝⎭≥,当且仅当32x y =⎧⎨=⎩时等号成立,取等条件满足1x y >>,所以()41x y x y xy y -+++-的最小值为9.故答案为:99.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.【答案】8【解析】解:0m n >>Q ,所以()()2224m n n m m n n ⎡⎤-+-≤=⎢⎥⎣⎦,当且仅当m n n -=,即2m n =时取等号;所以214()m n n m ≥-,所以()()42422448114m m m m n nm m +≥+-⨯≥+==,当且仅当2244m m =,即1m =时取等号,所以()481m m n n +≥-,当且仅当1m =、12n =时取等号;故答案为:810.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a b a b +++的最大值为__________.【答案】23【解析】1111111111211111111a b a b a b a b a b a b +-+-⎛⎫+=+=-+-=-+ ⎪++++++++⎝⎭.因为0a >,0b >,且1a b +=,所以()1111111111311a b a b a b ⎛⎫⎛⎫+⋅=++++ ⎪ ⎪++++⎝⎭⎝⎭()1111142222311333b a a b ⎛++⎛⎫=++≥+=+= ⎪ ++⎝⎭⎝,当且仅当11111b a a b a b ++⎧=⎪++⎨⎪+=⎩即12a b ==时取等.所以114222111133a b a b a b ⎛⎫+=-≤-= ⎪++++⎝⎭.,即11a b a b +++的最大值为23.故答案为:23.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++的最小值;【答案】274【解析】由222111[()(2)(3)]462x y z y z x+++++222(111)++2111[()1(2)1(3)1]462x y z y z x ≥+⨯++⨯++⨯2111[(23)()]462x y z y z x=+++++21232323[3()]623x y z x y z x y z x y z++++++=+++212332[3(3)]62323y x z x z y x y x z y z =+++++++2381(324≥+=.所以222111()(2)(3)462x y z y z x +++++≥274,当且仅当231x y z ===时等号成立,综上,222111()(2)(3)462x y z y z x +++++的最小值为274. 考点2利用基本不等式证明不等式(2022·全国·高三专题练习)已知,,a b c 都是正数,求证:(1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++.【解】(1)()()2222244a b ab c abc a b acab bc abc++-=+++-()()()()22222222b a ac c a b bc c b a c a b c =-++-+=-+-,∵,,a b c 都是正数,∴()()220b a c a b c -+-≥,当且仅当“a b c ==”时等号成立,∴()()24a b ab c abc ++≥.(2)()()()11111112a b b c c a a b b c c a a b b c c a ⎛⎫++=+++++++⎡⎤ ⎪⎣⎦++++++⎝⎭132a b b c b c c a c a a b b c a b c a b c a b c a ⎡++++++⎤⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎝⎭⎣⎦132⎛≥+ ⎝()19322222=+++=,当且仅当“13a b c ===”时等号成立,∴11192a b b c c a ++≥+++.[举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数.(1)求24a a +的最小值;(2)求证:bc ac ab a b c a b c++≥++.【解】(1)因为24a a+24=322a a a ++≥=,当且仅当“2a =”时等号成立,所以当2a =时,24a a+的最小值为3.(2)因为2bc ac c a b +≥=,同理2ac ab a b c +≥,2bc ab b a c +≥,所以三式相加得22()bc ac ab a b c a bc ⎛⎫++≥++ ⎪⎝⎭,所以bc ac aba b c a b c++≥++,当且仅当“a b c ==”时等号成立2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>.(1)若2a b +=,求1411+++a b的最小值;(2)求证:2222(1)++≥++a b a b ab a b .【解】(1)因为0,0a b >>,所以10,10a b +>+>,又2a b +=,所以1++14a b +=,所以14114114(1)19()[(1)(1)][5](54)1141141144b a a b a b a b a b +++=++++=++≥+=++++++当且仅当14(1)112b a a b a b ++⎧=⎪++⎨⎪+=⎩,即1353a b ⎧=⎪⎪⎨⎪=⎪⎩时取等号,所以1411+++a b 的最小值为94.(2)因为22222a b a a b +≥①,222a b ab +≥②,22222a b b ab +≥③,所以,由①②③,同向不等式相加可得:222222222222a b a b a b ab ab ++≥++,当且仅当ab a b ==,即1a b ==时取等号.即2222(1)++≥++a b a b ab a b 成立.3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1.(1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值.【解】(1)111abc abc abc bc ac ab a b c a b c++=++=++222222222222b c a c a b a b c +++≤++=++,当且仅当1a b c ===时等号成立.(2)依题意,,R a b c +∈,11,abc bc a==,所以a b c =+≥=,当且仅当b c =时等号成立.所以23322,2a a ≥≥,所以a 的最小值为232,此时23222a b c ===.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=.(1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.【解】(1)由a b c ++≥,当且仅当a b c ==时,取得等号.又3a b c ++=,所以3313abc ⎛⎫≤= ⎪⎝⎭.故当且仅当1a b c ===时,abc 取得最大值1.(2)证明:要证3333a b b c c a abc ++≥,需证2223a b c c a b++≥.因为()222222a b c a b c a b c c a b c a bc a b ⎛⎫⎛⎫⎛⎫+++++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()26a b c ≥=++=,即2223a b c c a b++≥,当且仅当1a b c ===时取得等号.故3333a b b c c a abc ++≥. 考点3基本不等式中的恒成立问题1.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是()A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞【答案】C【解析】解:因为0x >,所以22221131x x x x x =≤=++++,当且仅当1x x =即1x =时取等号,因为221x a x x ≥++恒成立,所以23a ≥,即2,3a ⎡⎫∈+∞⎪⎢⎣⎭;故选:C2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110na b b c a c+≥---恒成立,则n 的最大值是()A .2B .3C .4D .5【答案】C【解析】解:2110n a b b c a c+≥---等价于2110()a c n a b b c ⎛⎫+-≥ ⎪--⎝⎭,()110110()a c a b b c a b b c a b b c ⎛⎫⎛⎫+-=-+- ⎪ ⎪----⎝⎭⎝⎭10()111111b c a ba b b c --=++≥+=+--故得到211,n n N +≥∈则n 的最大值是4.故选:C.[举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是()A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞【答案】D【解析】因为0a >,0b >,191a b+=,所以()199101016a a b a b a b a b b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当9b a a b =,即4a =,12b =时取等号.由题意,得241186x x m ≥-++-,即242x x m --≥-对任意的实数x 恒成立,又()2242266x x x --=--≥-,所以6m -≥-,即6m ≥.故选:D .2.(2021·浙江·模拟预测)对任意正实数,a b不等式2(1)2a b ab a bλλ+-+≥+则()A .实数λ有最小值1B .实数λ有最大值1C .实数λ有最小值12D .实数λ有最大值12【答案】C【解析】2(1)2a b ab a b λλ+-++故222a b ab ab a b a b λ+⎛⎫-≥ ⎪++⎝⎭,()()22022a b a b ab a b a b -+-=≥++,当a b =时,不等式恒成立;当a b¹时,222aba ba b aba bλ+≥+-+12,a b=时等号成立,a b¹12<,故12λ≥.故选:C.3.(多选)(2022·全国·高三专题练习)当0x>,0y>,Rm∈时,2222y x m m kx y+>-++恒成立,则k的取值可能是()A.2-B.1-C.1D.2【答案】AB【解析】因为0x>,0y>,所以222y xx y+≥=,当且仅当2x y=时,等号成立.因为()222111m m k m k k-++=--++≤+.若2222y x m m kx y+>-++恒成立,则12k+<,解得1k<.故选:AB.4.(2022·全国·高三专题练习)不等式22221122xy yz a ax y z++-++≤对任意正数x,y,z恒成立,则a的最大值是__________.【答案】1【解析】因为222222212222xy yz xy yz xy yzx y z x y y z xy yz+++==++++++≤,当x y z==时取等号,所以2222xy yzx y z+++的最大值是12,即211122a a+-≥,解得112a-≤≤,所以a的最大值是1.故答案为:15.(2021·重庆一中高三阶段练习)已知对任意正实数x,y,恒有()2222x y a x xy y+-+≤,则实数a的最小值是___________.【答案】2【解析】解:因为0,0x y>>,则()2220x xy y x y xy-+=-+>,则()2222x y a x xy y +-+≤,即2222x y a x xy y +-+≤,又22222211x y xy x xy y x y +=-+-+,因为222x y xy +≥,所以22112xy x y -≥+,所以22121xy x y≤-+,即22222x y x xy y +≤-+,当且仅当x y =时,取等号,所以2222max2x y x xy y ⎛⎫+= ⎪-+⎝⎭,所以2a ≥,即实数a 的最小值是2.故答案为:2.6.(2022·全国·高三专题练习)若不等式()x a x y ++对一切正实数,x y 恒成立,则实数a 的最小值为_____.【答案】2【解析】()()22=22x a x y x x x y x y ++∴++++ ,当且仅当=2x y 时取等号,0,0x y >> 0x y ∴+>()x a x y ++maxa ∴≥⎝⎭222x yx y +≤=+max=2a ∴≥⎝⎭,a ∴的最小值为2故答案为:2考点4基本不等式与其他专题综合[典例]1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.【答案】[]33-【解析】因函数()f x 在(),-∞+∞内单调递增,则R x ∀∈,42()cos 2sin 033f x x a x '=--≥,即42sin cos 233a x x ≤-,整理得242sin 33a x x ≤+,当sin 0x =时,则203≤成立,R a ∈,当sin 0x >时,42sin 33sin a x x ≤+,而4221sin (2sin )33sin 3sin x x x x +=+≥当且仅当12sin sin x x =,即sin 2x =时取“=”,则有3a ≤,当sin 0x <时,42sin 33sin a x x ≥+,而4221sin [(2sin )]33sin 3sin x x x x +=--+≤--当且仅当12sin sin x x -=-,即sin x =时取“=”,则有a ≥综上得,33a -≤≤所以实数a 的取值范围是[]33-.故答案为:,33⎡-⎢⎣⎦2.[2021湖北鄂东南联考]方程(x 2018+1)(1+x 2+x 4+…+x 2016)=2018x 2017的实数解的个数为________.[答案]1[解析]由题意知x >0,∴(x 2018+1)(1+x 2+x 4+…+x 2016)≥2x 2018·1×12(21·x 2016+2x 2·x 2014+…+2x 2016·1)=2018x 2017,当且仅当x =1时等号成立,因此实数解的个数为1.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为()(精确到1米)A .8米B .9米C .10米D .11米【答案】C【解析】由题意知,8,12PB QB ==,设,,PMB QMB BM x ∠=∠==αβ,则812tan ,tan x x==αβ,所以()212844tan tan 1289696962612x x x PMQ x x x x x x x -∠=-===≤=++⋅+⋅βα,当且仅当96x x =,即96x =9610≈,所以BM 大约为10米.故选:C.[举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是()A .30B .60C .900D .1800【答案】B【解析】23300010()Q C f Q Q Q +==3300010Q Q =+3300022306010Q Q≥⋅⨯=,当且仅当3300010Q Q=,即当100Q =时等号成立.所以f (Q )的最小值是60.故选:B.2.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是()A .tan tan tan tanBC B C +=B .tan tan tan tan tan tan A B C A B C =++C .41tan 3A <≤D .tan tan tan A B C 的最小值为4【答案】ABC【解析】解:因为()sin sin sin cos sin cos sin sin A B C B C C B B C =+=+=,两边同除cos cos B C 得tan tan tan tan B C B C +=,故A 正确;由均值不等式tan tan tan tan B C B C +=≥tan tan 4B C ≥当且仅当tan tan 2B C ==时取等号,()tan tan tan tan 1tan tan B CA B C B C+=-+=--,所以tan tan tan tan tan tan A B C A B C ++=,故B 正确;tan tan 1tan 1tan tan 1tan tan 1B C A B C B C ==+--,由tan tan 4B C ≥,所以110tan tan 13B C <≤-,所以得31tan 1ta 1n tan 14A B C =+≤-<,故C 正确;22tan tan 1tan tan 12tan tan t 1ta t n t 1a n t n a n an a A B C B C B C B B C C ==-++--,由tan tan 13B C -≥且1y x x =+在[)3,+∞上单调递增,所以tan tan tan A B C 的最小值为163,故D 错误.故选:ABC3.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.【答案】448【解析】解:设BM x =,则34x x AN =+,则123AN x=+,则()1248433242448AMPN S x x x x ⎛⎫=++=+++= ⎪⎝⎭,当且仅当483xx=,即4x=时等号成立,故矩形花坛的AMPN面积最小值为48.即当4BM=时,矩形花坛的AMPN面积最小,最小面积为48.故答案为:4;48.。

数学基本不等式知识点(高中数学知识点复习资料归纳整理)

数学基本不等式知识点(高中数学知识点复习资料归纳整理)

数学基本不等式知识点(高中数学知识点复习资料归纳整理)基本不等式【考纲要求】1. 了解基本不等式的证明过程,理解基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2. 会用基本不等式解决最大(小)值问题.3. 会应用基本不等式求某些函数的最值;能够解决一些简单的实际问题【知识网络】【考点梳理】考点一:重要不等式及几何意义1.重要不等式:如果,那么(当且仅当时取等号“=”).2.基本不等式:如果是正数,那么(当且仅当时取等号“=”).要点诠释:和两者的异同:(1)成立的条件是不同的:前者只要求都是实数,而后者要求都是正数;(2)取等号“=”的条件在形式上是相同的,都是“当且仅当时取等号”。

(3)可以变形为:,可以变形为:.3. 如图,是圆的直径,点C是AB上的一点,AC=a,BC=b,过点C作交圆于点D,连接AD、BD易证,那么,即.这个圆的半径为,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立.要点诠释:1. 在数学中,我们称为a,b的算术平均数,称为a,b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.2. 如果把看作是正数的等差中项,看作是正数的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项.考点二:基本不等式的证明1. 几何面积法如图,在正方形ABCD中有四个全等的直角三角形。

设直角三角形的两条直角边长为a、b,那么正方形的边长为。

这样,4个直角三角形的面积的和是2ab,正方形ABCD的面积为。

由于4个直角三角形的面积小于正方形的面积,所以:。

当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有。

得到结论:如果,那么(当且仅当时取等号“=”)特别的,如果a>0,b>0,我们用、分别代替a、b,可得:如果a>0,b>0,则,(当且仅当a=b时取等号“=”).通常我们把上式写作:如果a>0,b>0,,(当且仅当a=b时取等号“=”)2. 代数法∵,当时,;当时,.所以,(当且仅当时取等号“=”).特别的,如果,,我们用、分别代替、,可得:如果,,则,(当且仅当时取等号“=”).通常我们把上式写作:如果,,,(当且仅当时取等号“=”).要点三、用基本不等式求最大(小)值在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)画出 g x x 4 x R, x z 0 的简图,并直接写出 g x 的单调区间
x
(4)已知T x
4x2 2x
4x 1
5
,
x
>0,1@
,求函数
T
x
的值域
独家补充 2:已知 f x x a a ! 0 , x z 0
x
(1)判断 f x 的单调性并证明
B. ab 有最小值 D. 1 有最大值
a b
③狭义权方和不等式
独家补充 14:
(1)当 a,b, x,
y
!
0
时,求证:
a2 x

b2 y
t
a b 2
xy
(2)当 x, y ! 0 时,已知 1 2 2 ,求 x y 的最小值
xy
(3)当 x, y ! 0 时,已知 1 2 2 ,求 x 2y 的最小值
xy
(4)设 a ! 1,b ! 0, a b
2
,求
a
1
1

2 b
最小值
(5)已知实数
a
!
0

b
!
0

a
1
1

b
1
1
1 ,则 a 2b 的最小值为(
2

A. 2 2
B. 6 4 2
C. 3 2 2
D. 3 4 2
(6) x, y 为正实数,且 x y
1 ,则
x2 x2
(2)证明 f (x) 的奇偶性
(3)画出 g x x 4 x R, x z 0 的简图,并直接写出它单调区间
x
②对勾函数/飘带函数的应用
独家补充 3:
(1)函数 y x 10 2 d x d 7 的最小值为_________;函数 y x 10 2 d x d 7 的最
()
A.
«¬ª
1 5
,1º»¼
B. >0,1@
C. f,1@
D. >1,5@
B. 2 3
C. 1 3
2
D. 4 2 3
独家补充 11: x, y 为正实数,且 x y
1 ,则
x2 x2

y2 y 1
的最小值是
(Ⅲ)柯西不等式
①柯西不等式的证明
独家补充 12:下面比较大小正确的是( )
A. ac bd 2 a2 b2 c2 d 2
的值为( ) A.2
B. 3
2
C.3
D. 9
2
讲义例 5:已知 a , b ! 0 , a b
1 ,则
1 2a
1

b
2
1
的最小值是(

A. 9
5
B. 11
6
C. 7
5
D.1 2 2
5
独家补充
10:若
x
!
0

y
!
0
,且
x
1 1

x
1 2y
1,则 2x y 的最小值为(

A.2
②基本不等式的应用 1.基本不等式的直接使用 独家补充 5:
(1)函数 y x 10 2 d x d 7 的最小值为_________
x
(2)若 x ! 1,求函数 y 2 3x 4 的最大值为_________
x
(3)已知正实数 x, y 满足 2x y 1 ,则 xy 的最大值为_________
(2)已知 2x2 3y2 d 6 ,求 x 2y 的最大值
(3)已知 1 2 2 ,求 x 2y 的最小值
xy
讲义例 2:(2015 年上海市春季高考)
已知 a ! 0 , b ! 0 ,若 a b 4 ,则( )
A. a2 b2 有最小值 C. 1 1 有最大值
ab
a
(2)已知 a,b 0, f , 2a b 2 ,则 a 1 的取值范围是_________
ba
(3)设 a b 2 ,b ! 0 ,求 1 a 的最小值,并求当 1 a 取得最小值时,a,b
2a b
2a b
的值为?
(4)已知实数
a

b
满足
ab
!
0
,则
a
a
b

a
a 2b
A、 a ! 1
B、 a 3
C、 a d 3
D、 a t 1
(2)若不等式 x 4 x 3 d a 对一切 x R 恒成立,那么实数 a 的取值范围是
()
A、 a ! 1
B、 a 1
C、 a d 1
D、 a t 1
(3)若关于 x 的不等式 x t2 2 x t2 2t 1 3t 无解,则实数 t 的取值范围是
x
x
大值为_________
(2)若 x ! 1,求函数 y 2 3x 4 的最大值为_________
x
(3)若 x ! 1,求 f x
x

1 x 1
的最小值
(4)若 x ! 1,求 f x
x2
2x x 1
2
的最小值
(Ⅱ)基本不等式
①基本不等式的证明 独家补充 4:若 a,b ! 0 ,证明: a b t 2 ab
独家补充 7:函数 h x
x2 x
22 2x
x 1 1
,若存在正实数
x1
,
x2
,
...,Leabharlann xn,其中n

N*

n
t
2

使得 h xn h x1 h x2 } h xn1 ,则 n 的最大值为?
2.基本不等式的凑配及齐次化思想 独家补充 8: (1)已知 a ! 0 ,则 a 4 a 的最小值为_________
B. ac bd 2 a2 b2 c2 d 2
C. ac bd 2 t a2 b2 c2 d 2
D. ac bd 2 ! a2 b2 c2 d 2
②柯西不等式的应用 独家补充 13: (1)求函数 y 3 x 5 4 6 x 的最大值
讲义例 1:(2015 年湖南省文科高考)
若实数 a , b 满足 1 2 ab ,则 ab 的最小值为( )
ab
A. 2
B.2
C. 2 2
D.4
独家补充 6:
(1)若对任意正数
x
,不等式
x2
2
4

2a x
1
恒成立,则实数
a
的取值范围为?
(2)已知 a , b 为正数, 4a2 b2 7 ,则 a 1 b2 的最大值为?
A. >8, f
B. >3, f
C. f,3@
D. f,8@
讲义例 3:已知 x 2 y xy x ! 0, y ! 0 ,则 2x y 的最小值为( )
A.10
B.9
C.8
D.7
独家补充 9:已知 x ! 0 , y ! 0 , 2x y 2xy ,若 x ay 的最小值为 8,则正实数 a
的最大值为?
3.“1”代法
讲义例 4:已知正实数 x , y 满足 x y
3 ,则 4 1 的最小值(
xy

A.2
B.3
C.4
D. 10
3
讲义例 6:已知 m ! 0 , n ! 0 , 1 4 1 ,若不等式 m n t x2 2x a 对已知的 m ,
mn
n 及任意实数 x 恒成立,则实数 a 的取值范围是( )
一.必考题型
第 3 讲 基本不等式
二.高频易错题型 三.压轴题型
四.习题+解答 (Ⅰ)对勾函数
①对勾函数/飘带函数的图象及性质
独家补充 1:已知 f x x a a ! 0 , x z 0
x
(1)判断 f x 在 0, a , a, f 上的单调性并证明
(2)证明 f (x) 的奇偶性

y2 y 1
的最小值是
(7)已知
a
!
1,
b
!
1
,则
a2 b
1

b2 a
1
最小值是
(Ⅳ)三角不等式
①三角不等式的证明 独家补充 15:证明: x y d x r y d x y
②三角不等式的应用
独家补充 16:
(1)若关于 x 的不等式 x 2 x 1 a 无解,则 a 的取值范围是( )
相关文档
最新文档