2016年一元二次函数分类练习题
一元二次方程练习题及答案
![一元二次方程练习题及答案](https://img.taocdn.com/s3/m/77e880bb03d8ce2f0166231e.png)
一元二次方程练习题及答案一元二次方程班级姓名学号一、选择题(共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):1.下列方程中不一定是一元二次方程的是()A.(a- 3)x2=8 (a工3)B.ax2+bx+c=03x 2 0 2 572下列方程中,常数项为零的是()A.x2+x=1B.2x2-x-12=12 ;C.2(x2-1)=3(x-1)D.2(x2+1)=x+2 3. 一元二次方程2x2-3x+1=0化为(x+a)2=b的形式,正确的是()2223 13 13A. x 16;B.2 x ;C. x ;D.以上都不对4 164 162 4.关于x的一元二次方程 a 1 x2 x a2 1 0的一个根是0,贝V a值为()A、1 B、 1 C、1 或1 D、125. 已知三角形两边长分别为2和9,第三边的长为二次方程x2-14x+48=0的一根,则这个三角形的周长为()A.11B.17C.17 或19D.196. 已知一个直角三角形的两条直角边的长恰好是方程2x2 8x 7 0的两个根,则这个直角三角形的斜边长是()A 、、3 C、6 D、9x2 5x 67.使分式的值等于零的x是()A.6B.-1 或6C.-1D.-68. 若关于y的一元二次方程ky2-4y-3=3y+4有实根,则k的取值范围是()7777A.k>-B.k > -且k工0C.k > -D.k> 且k工044449. 已知方程x2 x 2,则下列说中,正确的是()(A)方程两根和是1 (B)方程两根积是2(C)方程两根和是 1 (D)方程两根积比两根和大210. 某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200 X 2x=1000C.200+200X 3x=1000D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题4 分,共20 分)11. 用______ 法解方程3(x-2)2=2x-4 比较简便.12. 如果2x2+1与4x2-2x-5互为相反数,则x的值为___________ .213. x2 3x ______ (x _____ )14. 若一元二次方程ax2+bx+c=0(a工0)有一个根为-1,贝V a、b、c的关系是______ . 15. 已知方程3ax2-bx-1=0 和ax2+2bx-5=0,有共同的根-1,贝V a= _________ , b= _____ . 16. 一元二次方程x2-3x-仁0与x2-x+3=0的所有实数根的和等于 _______ . 17.已知x2+mx+7=0 的一个根,贝V m= _______ ,另一根为______ .18. 已知两数的积是12,这两数的平方和是25,以这两数为根的一元二次方程是11219. 已知x1, x2是方程x 2x 1 0的两个根,则x1x2等于____________ .20. 关于x的二次方程x2 mx n 0有两个相等实根,则符合条件的一组m,n的实数值可以是m n三、用适当方法解方程:(每小题5分,共10分)21. (3 x)2 x25 22.x2 3 0四、列方程解应用题:(每小题7分,共21分)23. 某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%,若每年下降的百分数相同,求这个百分数.24. 如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2道路应为多宽?25. 某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
专题六(一元二次方程,分式方程实际问题)优秀练习题
![专题六(一元二次方程,分式方程实际问题)优秀练习题](https://img.taocdn.com/s3/m/51a614de376baf1ffd4fad54.png)
专题六一元二次方程,分式方程实际问题1、(2016乌鲁木齐,19,10分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?2、(2015乌鲁木齐,18,10分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?3、(2014乌鲁木齐,18,9分)某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从2017年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去就设备维护费或新设备购进费)4、(2012乌鲁木齐,19,12分)水果店第一次用500元购进某种水果,由于销售状况良好,该店又用1650元购时该品种水果,所购数量是第一次购进数量的3倍,但进货价每千克多了0.5元.(1)第一次所购水果的进货价是每千克多少元?(2)水果店以每千克8元销售这些水果,在销售中,第一次购进的水果有5%的损耗,第二次购进的水果有2%的损耗.该水果店售完这些水果可获利多少元?5、某地大力发展经济作物,其中果树种植已初具规模。
一元二次方程实际问题分类题集(含答案)
![一元二次方程实际问题分类题集(含答案)](https://img.taocdn.com/s3/m/524bf10b30126edb6f1aff00bed5b9f3f90f722d.png)
一元二次方程实际问题分类题集(含答案)1、一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有()人。
A.12人B.18人C.9人D.10人答案:B.18人2、某一商人进货价便宜8%,而售价不变,那么他的利润(按进货价而定)可由目前x增加到(x+10%),则x是()。
A.12% B.15% C.30% D.50%答案:A.12%3、___为迎接香港回归,从1994年到1997年四年内师生共植树1997棵,已知该校1994年植树342棵,1995年植树500棵,如果1996年和1997年植树的年增长率相同,那么该校1997年植树的棵数为()。
A.600 B.604 C.595 D.605答案:B.6044、一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()。
A.25 B.36 C.25或36 D.-25或-36答案:B.365、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需付7元车费);超过3km以后,每增加1km,加收2.4元(不足1km按1km计),某人乘出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程()。
A.正好8km B.最多8km C.至少8km D.正好7km答案:C.至少8km6、直角三角形两条直角边的和为7,面积为6,则斜边为()。
A.37 B.5 C.38 D.7答案:B.57、有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m,宽是第一块宽的3倍,已知第二块木板的面积比第一块大108m2,这两块木板的长和宽分别是()。
A.第一块木板长18m,宽9m,第二块木板长16m,宽27m;B.第一块木板长12m,宽6m,第二块木板长10m,宽18m;C.第一块木板长9m,宽4.5m,第二块木板长7m,宽13.5m;D.以上都不对答案:A.第一块木板长18m,宽9m,第二块木板长16m,宽27m8、从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是()。
一元二次函数练习题
![一元二次函数练习题](https://img.taocdn.com/s3/m/1e97938eccbff121dd3683de.png)
开口方向对称轴Fra bibliotek顶点坐标最大或 最小值
与 轴的
交点坐标
与 轴有无交点和交点坐标
二次函数提高题:
2.已知二次函数 与 轴的一个交点A(-2,0),则 值为( )
A.2B.-1C.2或-1 D.任何实数
3.与 形状相同的抛物线解析式为( )
A. ﻩﻩB. C. ﻩD.
4.关于二次函数 ,下列说法中正确的是( )
4.一个正方形的面积为16cm2,当把边长增加 cm时,正方形面积增加 cm2,则 关于 的函数解析式为.
5.二次函数 的图象是,其开口方向由________来确定.
6.与抛物线 关于 轴对称的抛物线的解析式为。
7.抛物线 向上平移2个单位长度,所得抛物线的解析式为。
8.一个二次函数的图象顶点坐标为(2,1),形状与抛物线 相同,这个函数解析式为。
一元二次函数练习题
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
二次函数基础题:1、若函数y= 是二次函数,则 。
2、二次函数开口向上,过点(1,3),请你写出一个满足条件的函数。
3、二次函数y=x +x-6的图象:
7. 可由下列哪个函数的图象向右平移1个单位,下平移2个单位得到( )
ﻩA、 ﻩB. C. ﻩD.
8.对 的叙述正确的是( )
ﻩA.当 =1时, 最大值=2 ﻩ B.当 =1时, 最大值=8
C.当 =-1时, 最大值=8ﻩD.当 =-1时, 最大值=2
9.根据下列条件求 关于 的二次函数的解析式:
(1)当 =1时, =0; =0时, =-2; =2 时, =3.
(完整版)一元二次函数分类练习题
![(完整版)一元二次函数分类练习题](https://img.taocdn.com/s3/m/27cf7e9cb84ae45c3a358cc9.png)
一元二次函数分类复习题 【二次函数的定义】(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 。
①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x;⑤y=-2x -1; ⑥y=mx 2+nx+p; ⑦y =(4,x ) ; ⑧y=-5x 。
2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。
3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。
4、若函数y=(m -2)x m -2+5x+1是关于x 的二次函数,则m 的值为 。
6、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值.7.。
函数245(5)21a a y a xx ++=-+-, 当a =_______时, 它是一次函数; 当a =_______时, 它是二次函数。
8.将121222--=x x y 变为n m x a y +-=2)(的形式,则n m ⋅=_____。
9,已知二次函数)1(3)1(2-++-=a a x x a y 的图象过原点则a 的值为【二次函数的对称轴、顶点、最值】-—-- ★★★二次函数的图像抛物线的时候应抓住以下五点:a ,开口方向; b,对称轴; c ,顶点; d ,与x 轴的交点; e,与y 轴的交点 填空题a ,开口方向问题:1,二次函数52-+=a ax y 的图象顶点在Y 轴负半轴上。
且函数值有最小值,则a 的取值范围是2,若抛物线22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( ) A.1a > B.1a < C.1a ≥ D.1a ≤b,对称轴问题:1,若二次函数k ax y +=2,当X 取X1和X2(21x x ≠)时函数值相等,则当X 取X1+X2时,函数值为2。
二次函数基础分类练习题(含答案)
![二次函数基础分类练习题(含答案)](https://img.taocdn.com/s3/m/f4b0fa0b90c69ec3d5bb751e.png)
二次函数基础分类练习题 练习一 二次函数下列函数:①y =()21y x x x =-+;③ ()224y x x x =+-;④ 21y x x =+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c =3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数4、当____m =时,函数()2221m m y m m x --=+是关于x 的二次函数5、当____m =时,函数()2564m m y m x-+=-+3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____. 10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点5、函数2ax y =与b ax y +-=的图象可能是( )A.B.C.D .练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 .练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标;(2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.练习六 c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是 6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;练习七 c bx ax y ++=2的性质1、函数2y x px q =++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数2224y mx x m m =++-的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2y ax bx c =++与y 轴交于点A (0,2),它的对称轴是1x =-,那么acb= 4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.10、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )练习八 二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为 .1、 二次函数有最小值为1-,当0x =时,1y =,它的图象的对称轴为1x =,则函数的关系式为 练习九 二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是.2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( )A 、0B 、1C 、2D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( )A 、0,0>∆>aB 、0,0<∆>aC 、0,0>∆<aD 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( )A 、0B 、-1C 、2D 、41 6、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3B 、x =-2C 、x =-1D 、x =1。
一元二次函数练习题
![一元二次函数练习题](https://img.taocdn.com/s3/m/22fff463bdd126fff705cc1755270722192e59e0.png)
一元二次函数练习题在数学学科中,一元二次函数是一种常见且重要的函数类型。
了解和掌握一元二次函数的性质及其解题技巧,对于学习数学和解决实际问题都具有重要意义。
本文将通过一些练习题来帮助读者加深对一元二次函数的理解和应用。
题目一:已知一元二次函数f(x)=ax^2+bx+c,若顶点坐标为(-1,4),求a,b,c的值。
解析:根据顶点坐标的定义,可以得到-1为顶点横坐标,4为顶点纵坐标。
而顶点的横坐标在函数中对应的是x=-b/(2a),纵坐标对应的是f(-b/(2a))。
将已知的顶点坐标代入该方程可以得到:-1 = -b/(2a) (1)4 = f(-b/(2a)) = a(-b/(2a))^2 + b(-b/(2a)) + c = ab^2/(4a^2) - b^2/(2a) + c (2)由方程(1)可以得到b=2a,将其带回方程(2)可以得到:4 = a(2a)^2/(4a^2) - (2a)^2/(2a) + c= 2a^2/4 - 4a^2/(2a) + c= a^2/2 - 2a + c因此,我们可以得到方程组:-1 = -b/(2a)4 = a^2/2 - 2a + c将方程(1)代入方程(2)可以消去b的变量,得到:-1 = -2a/(2a) = -14 = a^2/2 - 2a + c解方程组可以得到a=2,c=5。
因此,所求的a,b,c的值分别为2,4,5。
题目二:已知一元二次函数f(x)=-x^2+3x-2,求解f(x)=0的根。
解析:要求解f(x)=0的根,即要找到使得函数取零值的x值。
将给定的函数f(x)=-x^2+3x-2代入方程可以得到:0 = -x^2+3x-2为了解方程,可以使用求根公式或配方法进行化简。
这里我们使用配方法来进行求解。
首先,观察方程中的三项系数,可以发现a=-1,b=3,c=-2。
根据配方法的原理,它的关键是找到一个数k,使得方程两边能够表示成一个完全平方。
中考数学专题训练---一元二次方程组的综合题分类含答案解析
![中考数学专题训练---一元二次方程组的综合题分类含答案解析](https://img.taocdn.com/s3/m/1b35b4be2cc58bd63186bddd.png)
中考数学专题训练---一元二次方程组的综合题分类含答案解析一、一元二次方程1.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.【答案】(1)k >34;(2 【解析】【分析】(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=5,利用完全平方公式进行变形即可求得答案.【详解】(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0,∴k >34; (2)当k =2时,原方程为x 2-5x +5=0,设方程的两个根为m ,n ,∴m +n =5,mn =5,∴==. 【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.2.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x2-(2k-1)x+k2+1的图象与x轴有两交点,∴当y=0时,x2-(2k-1)x+k2+1=0有两个不相等的实数根.∴△=b2-4ac=[-(2k-1)]2-4×1×(k2+1)>0.解得k<-34;(2)当y=0时,x2-(2k-1)x+k2+1=0.则x1+x2=2k-1,x1•x2=k2+1,∵=== 32-,解得:k=-1或k=13-(舍去),∴k=﹣13.解方程:(3x+1)2=9x+3.【答案】x1=﹣13,x2=23.【解析】试题分析:利用因式分解法解一元二次方程即可.试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,分解因式得:(3x+1)(3x+1﹣3)=0,可得3x+1=0或3x﹣2=0,解得:x1=﹣13,x2=23.点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.4.已知:关于的方程有两个不相等实数根.(1)用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k(k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x1>x2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.请你解答下列问题:5.从图象来看,该函数是一个分段函数,当0≤x≤m时,是正比例函数,当x>m时是一次函数.【小题1】只需把x代入函数表达式,计算出y的值,若与表格中的水费相等,则知收取方案.6.解下列方程:(1)2x2-4x-1=0(配方法);(2)(x+1)2=6x+6.【答案】(1)x1=1+62x2=1-621=-1,x2=5.【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x2-2x=12,∴x2-2x+1=32.∴(x -1)2=32.∴x -1=.∴x 1=1x 2=1 (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.∴x +1=0或x +1-6=0.∴x 1=-1,x 2=5.7.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t , ()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.8.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y(只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.9.关于x 的方程()2204k kx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】()1由于方程有两个不相等的实数根,所以它的判别式0V >,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围.()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404k k k =+-⋅>V ,1k ∴>-,又0k Q ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204k kx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x k x x +⎧+=-⎪⎪⎨⎪=⎪⎩, 又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-, 由()1知,1k >-,且0k ≠,43k ∴=-不符合题意, 因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。
一元二次方程分类练习题
![一元二次方程分类练习题](https://img.taocdn.com/s3/m/77c67e1aba0d4a7303763a13.png)
知识梳理一、知识构造:一元二次方程考点种类一观点一元二次方程题型分类总结解与解法根的鉴别韦达定理(1)定义:①只含有一个未知数,而且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。
2(2)一般表达式:ax bx c 0(a0)⑶难点:怎样理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需成立方程或不等式加以议论。
典型例题:例 1、以下方程中是对于x 的一元二次方程的是()A3 x 1 21 B1 12 02 xx 2 xC ax2 bx c 0D x2 2 x x 2 1变式:当 k 时,对于 x 的方程kx2 2x x 2 3 是一元二次方程。
例 2 、方程 m 2 x m 3mx 1 0 是对于x 的一元二次方程,则m 的值为。
针对练习:★ 1、方程8x2 7 的一次项系数是,常数项是。
★ 2、若方程 m 2 x m 1 0 是对于 x 的一元一次方程,⑴求 m 的值;⑵写出对于 x 的一元一次方程。
★★ 3、若方程m 1 x2 m ? x 1 是对于x的一元二次方程,则m的取值范围是。
★★★ 4、若方程 nx m+x n-2x2=0 是一元二次方程,则以下不行能的是()=n=2 =3,n=1 =2,m=1 =n=1考点种类二方程的解⑴观点:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的观点求代数式的值;典型例题:例 1、已知2 y2 y 3 的值为2,则 4y 2 2 y 1 的值为。
例 2、对于 x 的一元二次方程 a 2 x2 x a2 4 0 的一个根为0,则 a 的值为。
例 3、已知对于 x 的一元二次方程ax2 bx c 0 a 0 的系数知足a c b ,则此方程必有一根为。
例 4、已知a, b是方程x2 4x m 0 的两个根, b,c 是方程 y2 8y 5m 0 的两个根,则 m 的值为。
二次函数一元二次方程练习题及答案
![二次函数一元二次方程练习题及答案](https://img.taocdn.com/s3/m/35b2144ecd1755270722192e453610661ed95ac9.png)
1如果b>0,c>0那么二次函数y=ax²+bx+c的图象大致是()2一次函数y=2x-3与二次函数y=x²-2x+1的图象有()A一个交点B两个交点C无数个交点D无交点3已知二次函数y=mx²-2x-3的图象与x轴有交点,则m的取值范围A m>—13B m≥—13C m>—13且m≠0 D m≥—13且m≠04如果对于任意实数x,函数y=ax²+bx+c的值都是负数,那么有()A a>0,b2−4ac>0 B a<0,b2−4ac<0C a>0,b2−4ac<0D a<0,b2−4ac>05如图,抛物线y=x²+bx+c与x轴交于点A,B两点,与y轴交于点C(0,c),∠OBC=45°,则下列各式成立的是()A b-c-1=0B b+c-1=0C b-c+1=0D b+c+1=06函数y=ax+b与y=ax²+bx+c(a≠0)的图象如图所示,则下列选项正确的是()A ab>0,c>0B ab<0,c>0C ab<0,c>0D ab<0,c<07已知抛物线y=ax²+bx+c的对称轴x=2,且经过点(3,0)则a+b+c的值()A 0B 1C -1D 不能确定8已知二次函数y=ax²+bx+c的图象如图,则化简二次根式√(a+c)2+√(b−c)2的结果是()A a+bB a-b+2 C-a+b-2c D-a-b9已知二次函数y1=ax²+bx+c的图象如图与一次函数y2=kx+m的图象如图,直线与抛物线的交点为A(-2,4)B(8,2)则能使y1<y2的x的取值范围()A X>8B X<-2C x<-2或x>8 D-2<x<810已知二次函数y1=ax²+bx+c的图象如图所示,则a,b,c满足()A a<0,b<0,c>0B a<0,b<0,c<0C a<0,b>0,c>0D a>0,b<0,c>011已知二次函数y=(a-1)x²+2ax+3a-2的图象最低点在x轴上,那么a=_______此时的解析式为________________的图象总与x轴有12已知关于x的函数y=(a²+3a+2)x²+(a+1)x+14交点,求a的取值范围13:已知一个二次函数的图象如图所示三点(1)求抛物线的对称轴(2)平行于x轴的直线1的解析式为y=25,抛物线与x轴交于AB两4点,在抛物线的对称轴上找点P,使BP的长等于直线1与x轴的距离,求点P的坐标14某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高产量,在试生产中发现,由于其它生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品。
一元二次函数的图像和性质及练习题目
![一元二次函数的图像和性质及练习题目](https://img.taocdn.com/s3/m/5f4141e7360cba1aa811da66.png)
一元二次函数的图象和性质一、【课程要求】1.掌握二次函数的图像和性质,结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2.通过三个“二次”掌握函数、方程、不等式之间的关系二、【重点难点】①二次函数的图象和性质,②一元二次方程根的存在性及根的个数,函数最值问题。
三、【命题规律】从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。
本节在高考中,重点考察数形结合与等价转化数学思想,通过三个“二次”之间的相互转化,考查函数的方程思想,对于二次函数的区间最值,尤其是含有参数的区间最值问题,要求选择合理的标准分类讨论,。
四、【知识回顾】(一) 二次函数基本知识1.二次函数的定义:形如2(0,,)y ax bx c a a b c =++≠且为常数的函数叫关于x 的二次函数。
2.二次函数的解析式的三种形式(1)一般式(三点式):2(0)y ax bx c a =++≠,配方后为 。
其中顶点坐标为 ,对称轴为 。
(2)顶点式(配方式):20()()y a x h k a ≠=-+,其中顶点坐标为 ,对称轴为 。
(3)两根式(零点式):120()()()y a x x x x a ≠=--,其中12,x x 是方程20ax bx c ++=的两个根,同时也是二次函数的图像与x 轴交点()()12,00x x ,,的横坐标。
求函数解析式时,一般采用 待定系数法3.二次函数的图像和性质(1)二次函数2(0)y ax bx c a =++≠的图像是一条 ,其对称轴为 ,顶点坐标为 ,开口方向由 决定。
(2)二次函数2(0)y ax bx c a =++≠的单调性以对称轴为分界。
当0a >时,函数图像开口向 ,当x ∈ 时,()f x 单调递增,当x ∈ 时,()f x 单调递减,当x = 时,()f x 有最小值。
(完整版)数学一元二次函数练习题(含答案)
![(完整版)数学一元二次函数练习题(含答案)](https://img.taocdn.com/s3/m/d5dff4ca3b3567ec112d8a2e.png)
职高数学一元二次函数练习题填空题:1.一元二次函数的顶点坐标为____________,两个根分别为______,______,对称轴方程为 _________________.2.已知一元二次函数的图象与轴的交点为(-2,0)(1,0),并且经过(2,4)点,则它的解析式为____________________.3.不等式<0的解集为__________________.选择题:4.函数的顶点的坐标是( ).(A)(2,-3) (B)(-2,3) (C)(-2,-3) (D)(2,3)5.函数的最小值是( ).(A)3 (B)4 (C)2 (D)-36.二次函数=2(+5)-2图象的顶点是( ).(A)(5,2) (B)(-5,-2) (C)(-5,2) (D)(5,-2)7.设函数=(-1<≤1),那么它是( ).(A)偶函数,不是奇函数 (B)奇函数,不是偶函数(C)既是奇函数,又是偶函数 (D)既不是奇函数,又不是偶函数解答题:8.求下列函数的定义域:(1);(2).9.用配方法将函数化成的形式,并指出它的图象的开口方向、顶点坐标和对称轴方程及函数的最大(或最小)值.10.作函数=的图象,并根据图象求解以下问题(精确0.1):(1)求=2,=2.4,=-1.7时的函数值;(2)求1.2,(-2.3);(3)求对应=2,=5.8的值;(4)求,;(5)计算上述各值,并与由图象得出的各值作比较. 11.求下列函数图象顶点的坐标、函数的最大值或最小值:(1);(2).12.求函数=-2-3的图象与轴的交点与顶点的坐标.13.已知二次函数=-+4-3.(1)指出函数图象的开口方向;(2)当为何值时,=0;(3)求函数图象顶点的坐标和对称轴.14.当为何值时,函数的图象与轴不相交.15.已知下列二次函数,分别求>0,<0时的取值范围:(1);(2). 16.求下列函数的定义域:(1);(2).17.当在什么范围内取值时,方程+2(-1)+3-11=0.(1)有实数根; (2)没有实数根.18.已知函数,(0)=-10,(1)=0,(-5)=0,求这个函数.19.已知函数,(3)=0,(-1)=0,(-2)=0,求这个函数.20.若一次函数满足[]=2+1,求.答案、提示和解答:1.(1,1);=0,=2;=1.2.=+-2.3.{|-1<<3}. 4.C. 5.A. 6.B. 7.D.8.(1);(2)[-2,6].9.解:.∵,∴函数图象开口向下,顶点坐标为(-2,8),对称轴方程为=-2,函数的最大值为8.10.(1)=2,=4;=2.4,≈5.8;=-1.7,≈2.9;(2)(1.2)≈1.4,(-2.3)≈5.3;(3)=2时,=1.4或=-1.4,=5.8时,=2.4或=-2.4;(4),;(5)略.11.(1)顶点坐标(2,-7),=-7;(2)顶点坐标(1,5),=5.12.与轴交点(-1,0),(3,0),顶点坐标(1,-4).13.(1)曲线开口向下;(2)=1,=3;(3)顶点坐标(2,1),对称轴=2.14.>.15.(1)当时,>0,当时,<0;(2)当时,<0,当。
一元二次方程专题练习(解析版)
![一元二次方程专题练习(解析版)](https://img.taocdn.com/s3/m/7e2c0777bb4cf7ec4afed0d6.png)
一元二次方程专题练习(解析版)一、初三数学 一元二次方程易错题压轴题(难)1.已知关于x 的一元二次方程kx 2﹣2(k +1)x +k ﹣1=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)是否存在实数k ,使1211x x -=1成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)k >﹣13且k ≠0;(2)存在,7k =±详见解析 【解析】【分析】(1)根据一元二次方程的根的判别式,建立关于k 的不等式,求得k 的取值范围.(2)利用根与系数的关系,根据21121211,x x x x x x --=即可求出k 的值,看是否满足(1)中k 的取值范围,从而确定k 的值是否存在.【详解】解:(1)由题意知,k ≠0且△=b 2﹣4ac >0∴b 2﹣4ac =[﹣2(k +1)]2﹣4k (k ﹣1)>0,即4k 2+8k +4﹣4k 2+4k >0,∴12k >﹣4解得:k >13-且k ≠0(2)存在,且7k =±理由如下: ∵12122(1)1,,k k x x x x k k+-+== 又有211212111,x x x x x x --== 2112,x x x x ∴-=22222121122,x x x x x x ∴-+=22121212()4(),x x x x x x ∴+-=2222441()(),k k k k k k+--∴-= 22(22)(44)(1),k k k k ∴+--=-21430,k k ∴--=1,14,3,a b c ==-=-24208,b ac ∴∆=-=1472k ±∴==± k >13-且k ≠0, 172130.21,3-≈--> 17.3+-∴满足条件的k 值存在,且7k =± .【点睛】本题考查的是一元二次方程根的判别式,一元二次方程根与系数的关系,掌握以上知识是解题的关键.2.已知二次函数y =9x 2﹣6ax +a 2﹣b ,当b =﹣3时,二次函数的图象经过点(﹣1,4) ①求a 的值;②求当a ≤x ≤b 时,一次函数y =ax +b 的最大值及最小值;【答案】①a 的值是﹣2或﹣4;②最大值=13,最小值=9【解析】【分析】①根据题意解一元二次方程即可得到a 的值;②根据a ≤x ≤b ,b =﹣3求得a=-4,由此得到一次函数为y =﹣4x ﹣3,根据函数的性质当x =﹣4时,函数取得最大值,x =﹣3时,函数取得最小值,分别计算即可.【详解】解:①∵y =9x 2﹣6ax +a 2﹣b ,当b =﹣3时,二次函数的图象经过点(﹣1,4) ∴4=9×(﹣1)2﹣6a ×(﹣1)+a 2+3,解得,a 1=﹣2,a 2=﹣4,∴a 的值是﹣2或﹣4;②∵a ≤x ≤b ,b =﹣3∴a =﹣2舍去,∴a =﹣4,∴﹣4≤x ≤﹣3,∴一次函数y =﹣4x ﹣3,∵一次函数y =﹣4x ﹣3为单调递减函数,∴当x =﹣4时,函数取得最大值,y =﹣4×(﹣4)﹣3=13x =﹣3时,函数取得最小值,y =﹣4×(﹣3)﹣3=9.【点睛】此题考查解一元二次方程,一次函数的性质,(2)是难点,正确理解a 、b 的关系得到函数解析式是解题的关键.3.某连锁超市派遣调查小组在春节期间调查某种商品的销售情况,下面是调查后小张与其 他两位成员交流的情况.小张:“该商品的进价为 24元/件.”成员甲:“当定价为 40元/件时,每天可售出 480件.”成员乙:“若单价每涨 1元,则每天少售出 20件;若单价每降 1元,则每天多售出 40件.” 根据他们的对话,请你求出要使该商品每天获利 7680元,应该怎样合理定价?【答案】要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件【解析】【分析】设每件商品定价为x 元,则在每件40元的基础上涨价时每天的销售量是[]48020(40)x --件,每件商品的利润是(24)x -元,在每件40元的基础上降价时每天的销量是[]48040(40)x +-件,每件的利润是(24)x -元,从而可以得到答案.【详解】解:设每件商品定价为x 元.①当40x ≥时,[](24)48020(40)7680x x ---= ,解得:1240,48;x x ==②当40x <时,[](24)48040(40)7680x x -+-=,解得:1236,40x x ==(舍去),.答:要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件.【点睛】本题考查的是一元二次方程中的升降价对销售量产生影响方面的应用,用含有未知数的代数式表示销售量是这一类题的关键.4.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x ,根据题意得:10(1+x )2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%; (2)设每年新增汽车数量最多不超过y 万辆,根据题意得:2009年底汽车数量为14.4×90%+y ,2010年底汽车数量为(14.4×90%+y )×90%+y ,∴(14.4×90%+y )×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题5.已知关于x 的方程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0.【解析】【分析】在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数.【详解】若存在n 满足题意.设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2, 由方程②得,(x+n-1)[x-2(n+1)]=0,①若4n 2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍. ②若4n 2+3n+2=2(n+2),解得n=0或n=-14(舍), 综上所述,n=0.6.如图,∠ AOB =90°,且点A ,B 分别在反比例函数1k y x =(x <0),2k y x=(x >0)的图象上,且k 1,k 2分别是方程x 2-x -6=0的两根.(1)求k 1,k 2的值;(2)连接AB ,求tan ∠ OBA 的值.【答案】(1)k1=-2,k2=3.(2)tan∠OBA=63.【解析】解:(1)∵k1,k2分别是方程x2-x-6=0的两根,∴解方程x2-x-6=0,得x1=3,x2=-2.结合图像可知:k1<0,k2>0,∴k1=-2,k2=3.(2)如图,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D.[来源:学&科&网Z&X&X&K]由(1)知,点A,B分别在反比例函数2yx=-(x<0),3yx=(x>0)的图象上,∴S△ACO=12×2-=1 ,S△ODB=12×3=32.∵∠ AOB=90°,∴∠ AOC+∠ BOD=90°,∵∠ AOC+∠ OAC=90°,∴∠ OAC=∠ BOD.又∵∠ACO=∠ODB=90°,∴△ACO∽△ODB.∴SSACOODB∆∆=2OAOB⎛⎫⎪⎝⎭=23,∴OAOB=±6(舍负取正),即OAOB=6.∴在Rt△AOB中,tan∠OBA=OAOB=6.7.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)【答案】(1)⑤;(2)x1=2n,x2=﹣4n.【解析】【分析】(1)根据移项要变号,可判断;(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解.【详解】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n,x2=﹣4n.8.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息见下表:(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A型空气净化器的净化能力为300 m3/小时,B型空气净化器的净化能力为200 m3/小时.某长方体室内活动场地的总面积为200 m2,室内墙高3 m.该场地负责人计划购买5台空气净化器每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,至少要购买A型空气净化器多少台?【答案】(1)每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元;(2)为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台;(3)至少要购买A型空气净化器2台.【解析】解:(1)设每台A型空气净化器的利润为x元,每台B型空气净化器的利润为y元,根据题意得:5102000,200, {{ 1052500.100. x y xx y y+==+==解得答:每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元. (2)设购买A型空气净化器m台,则购买B型空气净化器(100﹣m)台,∵B型空气净化器的进货量不少于A型空气净化器的2倍,∴100-m≥2m,解得:m≤100. 3设销售完这100台空气净化器后的总利润为W元.根据题意,得W=200m+100(100﹣m)=100m+10000.∵要使W最大,m需最大,∴当m=33时,总利润最大,最大利润为W:100×33+10000=13300(元).此时100﹣m=67.答:为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台.(3)设应购买A型空气净化器a台,则购买B型空气净化器(5﹣a)台,根据题意得:12[300a+200(5-a)]≥200×3.解得:a≥2.∴至少要购买A型空气净化器2台.9.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=7(BQ﹣OP),求此时直线PQ的解析式.【答案】(1)k32)当0<t<12时,S=12•OQ•P y=12(1﹣2t3=﹣323.当t>12时,S=12OQ•P y=12(2t﹣13=323.(3)直线PQ的解析式为y=﹣33x+533.【解析】【分析】(1)求出点B的坐标即可解决问题;(2)分两种情形①当0<t<12时,②当t>12时,根据S=12OQ•P y,分别求解即可;(3)根据已知条件构建方程求出t,推出点P,Q的坐标即可解决问题. 【详解】解:(1)对于直线y =kx +k ,令y =0,可得x =﹣1,∴A (﹣1,0),∴OA =1,∵AB =2,∴OB =223AB OA -=∴k =3.(2)如图,∵tan ∠BAO =3OB OA= ∴∠BAO =60°,∵PQ ⊥AB ,∴∠APQ =90°,∴∠AQP =30°,∴AQ =2AP =2t , 当0<t <12时,S =12•OQ •P y =12(1﹣2t 3323. 当t >12时,S =12OQ •P y =12(2t ﹣1)•32t =32t 2﹣34t . (3)∵OQ +AB 7(BQ ﹣OP ),∴2t ﹣1+22221373(21)(1)24t t t +--+ ∴2t +1271t t -+∴4t 2+4t +1=7t 2﹣7t +7,∴3t 2﹣11t +6=0,解得t =3或23(舍弃), ∴P (1233Q (5,0),设直线PQ的解析式为y=kx+b,则有133 2250k bk b⎧+=⎪⎨⎪+=⎩,解得3353kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线PQ的解析式为353y x=-+.【点睛】本题属于一次函数综合题,考查了一次函数的性质,三角形的面积,无理方程等知识,解题的关键是学会利用参数构建方程解决问题.10.已知:如图,在平面直角坐标系中,矩形AOBC的顶点C的坐标是(6,4),动点P 从点A出发,以每秒1个单位的速度沿线段AC运动,同时动点Q从点B出发,以每秒2个单位的速度沿线段BO运动,当Q到达O点时,P,Q同时停止运动,运动时间是t秒(t>0).(1)如图1,当时间t=秒时,四边形APQO是矩形;(2)如图2,在P,Q运动过程中,当PQ=5时,时间t等于秒;(3)如图3,当P,Q运动到图中位置时,将矩形沿PQ折叠,点A,O的对应点分别是D,E,连接OP,OE,此时∠POE=45°,连接PE,求直线OE的函数表达式.【答案】(1)t=2;(2)1或3;(3)y=12 x.【解析】【分析】先根据题意用t表示AP、BQ、PC、OQ的长.(1)由四边形APQO是矩形可得AP=OQ,列得方程即可求出t.(2)过点P作x轴的垂线PH,构造直角△PQH,求得HQ的值.由点H、Q位置不同分两种情况讨论用t表示HQ,即列得方程求出t.根据t的取值范围考虑t的合理性.(3)由轴对称性质,对称轴PQ垂直平分对应点连线OC,得OP=PE,QE=OQ.由∠POE =45°可得△OPE是等腰直角三角形,∠OPE=90°,即点E在矩形AOBC内部,无须分类讨论.要求点E坐标故过点E作x轴垂线MN,易证△MPE≌△AOP,由对应边相等可用t表示EN,QN.在直角△ENQ中利用勾股定理为等量关系列方程即求出t.【详解】∵矩形AOBC中,C(6,4)∴OB=AC=6,BC=OA=4依题意得:AP=t,BQ=2t(0<t≤3)∴PC=AC﹣AP=6﹣t,OQ=OB﹣BQ=6﹣2t (1)∵四边形APQO是矩形∴AP=OQ∴t=6﹣2t解得:t=2故答案为2.(2)过点P作PH⊥x轴于点H∴四边形APHO是矩形∴PH=OA=4,OH=AP=t,∠PHQ=90°∵PQ=5∴HQ3 =①如图1,若点H在点Q左侧,则HQ=OQ﹣OH=6﹣3t ∴6﹣3t=3解得:t=1②如图2,若点H在点Q右侧,则HQ=OH﹣OQ=3t﹣6∴3t﹣6=3解得:t=3故答案为1或3.(3)过点E作MN⊥x轴于点N,交AC于点M∴四边形AMNO是矩形∴MN=OA=4,ON=AM∵矩形沿PQ折叠,点A,O的对应点分别是D,E∴PQ垂直平分OE∴EQ=OQ=6﹣2t,PO=PE∵∠POE=45°∴∠PEO=∠POE=45°∴∠OPE=90°,点E在矩形AOBC内部∴∠APO+∠MPE=∠APO+∠AOP=90°∴∠MPE=∠AOP在△MPE与△AOP中PME OAP90 MPE AOPPE0P ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△MPE≌△AOP(AAS)∴PM=OA=4,ME=AP=t∴ON=AM=AP+PM=t+4,EN=MN﹣ME=4﹣t∴QN=ON﹣OQ=t+4﹣(6﹣2t)=3t﹣2∵在Rt△ENQ中,EN2+QN2=EQ2∴(4﹣t)2+(3t﹣2)2=(6﹣2t)2解得:t1=﹣2(舍去),t2=4 3∴AM=43+4=163,EN=4﹣43=83∴点E坐标为(163,83)∴直线OE的函数表达式为y=12 x.【点睛】本题考查了矩形的判定和性质,勾股定理,轴对称的性质,全等三角形的判定和性质,解一元一次和一元二次方程.在动点题中要求运动时间t的值,常规做法是用t表示相关线段,再利用线段相等或勾股定理作为等量关系列方程求值.要注意根据t的取值范围考虑方程的解的合理性.。
一元二次方程应用题题型分类练习
![一元二次方程应用题题型分类练习](https://img.taocdn.com/s3/m/8435efb3be1e650e53ea992e.png)
一元二次方程实际应用类型一、传播问题1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?举一反三:【变式1】某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?【变式2】某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?类型二比赛和赠送问题1.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?【变式1】参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?举一反三:【变式1】一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?类型三、平均增长率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为a(1+x)n=b(a为原来数,x为平均增长率,n为增长次数,b为增长后的量.)(2)降低率问题:平均降低率公式为a(1-x)n=b(a为原来数,x为平均降低率,n为降低次数,b为降低后的量.)1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,求水稻每公顷产量的年平均增长率。
【变式1】某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?【变式2】白溪镇2019年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2021年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?2.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
一元二次函数练习题
![一元二次函数练习题](https://img.taocdn.com/s3/m/c05c2ad09a89680203d8ce2f0066f5335a8167ad.png)
一元二次函数练习题二次函数基础题:1.若函数 $y=(a+1)x^2+a+1$ 是二次函数,则 $a=0$。
2.一个满足条件的函数是 $y=(x-1)^2+2$。
3.二次函数 $y=x^2+x-6$ 的图象:1.与 $y$ 轴的交点坐标为 $(0,-6)$;2.与 $x$ 轴的交点坐标为 $(-3,0)$ 和 $(2,0)$;3.当 $x=-2$ 时,$y<0$;4.当 $x=1$ 时,$y>0$。
4.函数 $y=x^2-kx+8$ 的顶点在 $x$ 轴上,则 $k=4$。
5.抛物线 $y=-3x^2$ 左平移 $2$ 个单位,再向下平移$4$ 个单位,得到的解析式是 $y=-3(x+1)^2-4$,顶点坐标为$(-1,-4)$。
6.抛物线 $y=-3x^2$ 向右移 $3$ 个单位得解析式是 $y=-3(x-3)^2$。
7.如果点 $(-1,1)$ 在 $y=ax^2+2$ 上,则 $a=-1$。
8.函数$y=-x^2-1$ 对称轴是$x=0$,顶点坐标是$(0,-1)$,当 $x$ 的增大而减少。
9.函数 $y=-(x-2)^2$ 对称轴是 $x=2$,顶点坐标是 $(2,0)$,当 $x$ 的增大而 $y$ 减少。
10.函数 $y=x^2-3x+2$ 的图象与 $x$ 轴的交点有 $2$ 个,且交点坐标是 $(1,0)$ 和 $(2,0)$。
11.二次函数有 $4$ 个,分别是 $y=x^2-(x+1)^2$,$y=11x^2$,$y=-2(x-2)^2$,$y=-\frac{1}{2}x+2$。
15.二次函数 $y=ax^2+x+c$ 过 $(1,-1)$ 和 $(2,-2)$,解析式为 $y=-2x^2+3x-1$。
二次函数中等题:1.当 $x=1$ 时,二次函数 $y=3x^2-x+c$ 的值是 $4$,则$c=2$。
2.二次函数 $y=x^2+c$ 经过点 $(2,4)$,则当 $x=-2$ 时,$y=4+c$。
一元二次不等式解法专题知识梳理及典型练习题(含答案)
![一元二次不等式解法专题知识梳理及典型练习题(含答案)](https://img.taocdn.com/s3/m/1a29c51981c758f5f71f67f5.png)
一元二次不等式解法专题一.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根x 1,x 2(x 1<x 2) 有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x <x 1} ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2}Φ Φ二.穿针引线法例 1 解下列不等式:(1)x x ≥-2414 (2)0822≥+--x x (3)0)3)(2(>-+x x例2 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =_____.例3(穿针引线法) 解不等式:(x-1)2(x+1)(x-2)(x+4)<0例4 不等式xx ->+111的解集为( ) A .{x|x >0}B .{x|x≥1}C.{x|x >1} D .{x|x >1或x =0}解不等式化为+->,通分得>,即>,1x 000111122----xx x x x∵x 2>0,∴x-1>0,即x >1.选C . 例5 与不等式023≥--xx 同解得不等式是( ) A .(x -3)(2-x)≥0B.0<x -2≤1C .≥230--xx D .(x -3)(2-x)≤0 练习1:1.不等式x 2-3x +2<0的解集为( ). A .(-∞,-2)∪(-1,+∞) B .(-2,-1) C .(-∞,1)∪(2,+∞) D .(1,2)答案 D2.(2011·XX)不等式2x 2-x -1>0的解集是( ). A.⎝ ⎛⎭⎪⎫-12,1B .(1,+∞) C .(-∞,1)∪(2,+∞) D.⎝⎛⎭⎪⎫-∞,-12∪(1,+∞) 故原不等式的解集为⎝⎛⎭⎪⎫-∞,-12∪(1,+∞). 答案 D3.不等式9x 2+6x +1≤0的解集是( ).A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-13B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-13C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-13≤x ≤13D .R答案 B4.若不等式ax 2+bx -2<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-2<x <14,则ab =( ).A .-28B .-26C .28D .26 答案 C5.函数f (x )=2x 2+x -3+log 3(3+2x -x 2)的定义域为________.解析 依题意知⎩⎨⎧2x 2+x -3≥0,3+2x -x 2>0,解得⎩⎨⎧x ≤-32或x ≥1,-1<x <3.∴1≤x <3.故函数f (x )的定义域为[1,3).答案 [1,3)6.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.[审题视点] 对x 分x ≥0、x <0进行讨论从而把f (x )>3变成两个不等式组. 解 由题意知⎩⎨⎧x ≥0,x 2+2x >3或⎩⎨⎧x <0,-x 2+2x >3,解得:x >1.故原不等式的解集为{x |x >1}.例不等式<的解为<或>,则的值为7 1{x|x 1x 2}a axx -1A aB aC aD a .<.>.=.=-12121212分析可以先将不等式整理为<,转化为 0()a x x -+-111[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}可知-<,即<,且-=,∴=.a 10a 12a 1112a - 选C .例解不等式≥.8 237232x x x -+-解 先将原不等式转化为3723202x x x -+--≥即≥,所以≤.由于++=++>,---+-+++-2123212314782222x x x x x x x x 002x x 12(x )022∴不等式进一步转化为同解不等式x 2+2x -3<0,即(x +3)(x -1)<0,解之得-3<x <1.解集为{x|-3<x <1}. 说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题. 练习21.(x+4)(x+5)2(2-x)3<0.2.解下列不等式(1);22123+-≤-x x 127314)2(22<+-+-x x x x3.解下列不等式1x 5x 2)2(;3x 1x 1+>+-≤-)(4.解下列不等式()()12log 6log 1log )2(;08254)1(21212121≥-++≥+⋅-+x x x x5解不等式1)123(log 2122<-+-x x x .。
一元二次方程练习题
![一元二次方程练习题](https://img.taocdn.com/s3/m/96382883700abb68a982fbbf.png)
方法一:平方差公式法解方程平方差公式的原型是两个数的平方差等于两个数的和和两个数的差的乘积,这时候就遇到二次方程了。
这类的解题技巧只限于两个数的平方差,才能用这个方法进行求解哦。
例题1:求方程x的平方-4=0的根这个方程满足我们刚才说的平方差公式方法,直接使用平方差公式法进行因式分解即可:(x+2)(x-2)=0,因此原方程的两个根为2和-2。
例题2:求方程x的平方-3=0的根。
虽然3的平方根为无理数,但是其仍然是满足平方差公式的,我们仍然利用平方差公式进行因式分解求解即可:(x+根号3)(x-根号3)=0,求得其两个根分别为根号3和负根号3。
方法二:因式分解法解方程因式分解法有哪些呢?我们给出详细说明:有公因式的先提取公因式,然后判断是不是完全平方式,如果不是,看看是否能够十字相乘因此分家,采用这几步即可进行完整的因式分解求解了。
如果都不满足上面的两种方法,我们采用第三种方法进行求解即可。
例题3:求方程x的平方+x=0的根根据上面给出的技巧,先提取x,结果为x(x+1)=0,解得:x=0或者x=-1。
注意:一定要按照我们给出的步骤进行因式分解解答哦,咱们给出的都是捷径哦。
例题4:求方程2x的平方+x-1=0的根根据咱们的方法,没有合适的因式分解的方法了,我们只能去尝试十字相乘因式分解了,发现,这个方程能写成十字相乘因式分解的格式:(2x-1)(x+1)=0,求解方程的:x=1/2或者x=-1。
很多学生会问,怎么判断方程是否可以在有理数范围内进行因式分解呢?咱们给出一个快速的判断方法,求方程的△,△如果是能开方开出来的数,则该方程一定可以因式分解哦,然后你根据咱们给出的技巧进行因式分解求解即可。
例题5:求方程x的平方+x-1=0的根根据新给出的技巧,我们发现△=1的平方+4=5,开方开不出来,因此在实数范围内是不能因式分解,所以要采用下面的方法进行求根了。
方法三:求根公式法解方程求根公式:x=(-b+或者减去根号△)/(2a),根据求根公式,将例题5中的a=1,b=1,c=-1代入得:这个方程的根为x=(-1+根号5)/2或者(-1-根号5)/2。
一元二次函数解法韦达定理根的判别式精分类习题
![一元二次函数解法韦达定理根的判别式精分类习题](https://img.taocdn.com/s3/m/7d78dd081ed9ad51f01df2b8.png)
一、概念习题1、方程782=x 的一次项系数是,常数项是。
2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
3、若方程()112=∙+-x m x m 是关于x 的一元二次方程,则m 的取值范围是。
4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=15、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为。
6、已知322-+y y 的值为2,则1242++y y 的值为。
7、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为。
8、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为。
9、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为。
10、已知方程0102=-+kx x 的一根是2,则k 为,另一根是。
11、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。
⑴求k 的值 ⑵方程另一个解。
12、已知m 是方程012=--x x 的一个根,则代数式=-m m 2。
13、已知a 是0132=+-x x 的根,则=-a a 622。
14、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a -15、若=∙=-+yx 则y x 324,0352。
二、解法习题直接开平方法1、解关于x 的方程:();08212=-x ()216252x -=0; ()();09132=--x (4)02=-b ax2、若()()2221619+=-x x ,则x 的值为。
3下列方程无解的是( )A.12322-=+x x B.()022=-x C.x x -=+132 D.092=+x配方法1、(1)试用配方法说明322+-x x 的值恒大于0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数分类复习题 【二次函数的定义】(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =(4,x) ; ⑧y=-5x 。
2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。
3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。
4、若函数y=(m -2)x m -2+5x+1是关于x 的二次函数,则m 的值为 。
6、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
7..函数245(5)21a a y a xx ++=-+-, 当a =_______时, 它是一次函数; 当a =_______时, 它是二次函数.8.将121222--=x x y 变为n m x a y +-=2)(的形式,则n m ⋅=_____。
9,已知二次函数)1(3)1(2-++-=a a x x a y 的图象过原点则a 的值为【二次函数的对称轴、顶点、最值】★★★二次函数的图像抛物线的时候应抓住以下五点:a,开口方向; b,对称轴; c,顶点; d,与x 轴的交点; e,与y 轴的交点 填空题a,开口方向问题:1,二次函数52-+=a ax y 的图象顶点在Y 轴负半轴上。
且函数值有最小值,则a 的取值范围是2,若抛物线22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( ) A.1a > B.1a < C.1a ≥ D.1a ≤b,对称轴问题:1,若二次函数k ax y +=2,当X 取X1和X2(21x x ≠)时函数值相等,则当X 取X 1+X 2时,函数值为 2.抛物线y=(k-1)x 2+(2-2k)x+1,那么此抛物线的对称轴是直线_________,它必定经过________和____ 3.若二次函数3622+-=x x y 当X 取两个不同的值X 1和X 2时,函数值相等,则X 1+X 2= c,顶点:1.抛物线42++=ax x y 的顶点在X 轴上,则a 值为:_________.2.若函数k h x y ---=2)(的顶点在第二象限,则h 0 ,k 03.已知二次函数当x=2时Y 有最大值是1.且过(3.0)点求解析式?4.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( ) (A )8 (B )14 (C )8或14 (D )-8或-145.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( )(A )12 (B )11 (C )10 (D )96..若0<b ,则二次函数12-+=bx x y 的图象的顶点在 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限7实数X,Y 满足0332=-++y x x 则X+Y 的最大值为 ______. d,与x 轴的交点:已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。
1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = .3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴6.已知抛物线y =x 2+(m -1)x -14 的顶点的横坐标是2,则m 的值是_ .7.抛物线y=x 2+2x -3的对称轴是 。
8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。
9.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口________.10.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0. 11.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。
12.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。
13.抛物线5)43()1(22+--++=x m m x m y 以Y 轴为对称轴则。
M =14.抛物线y= (k 2-2)x 2+m-4kx 的对称轴是直线x=2,且它的最低点在直线y= -21+2上,求函数解析式。
【函数y=ax 2+bx+c 的图象和性质】1.抛物线y=x 2+4x+9的对称轴是 。
2.抛物线y=2x 2-12x+25的开口方向是 ,顶点坐标是 。
3.试写出一个开口方向向上,对称轴为直线x =-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。
4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)y=12 x 2-2x+1 ; (2)y=-3x 2+8x -2; (3)y=-14x 2+x -45.把抛物线y=x 2+bx+c 的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x 2-3x+5,试求b 、c 的值。
6.把抛物线y=-2x 2+4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。
7.某商场以每台2500元进口一批彩电。
如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?【函数y=a(x -h)2的图象与性质】 1.填表:抛物线开口方向 对称轴 顶点坐标 ()223--=x y()2321+=x y2.已知函数y=2x 2,y=2(x -4)2,和y=2(x+1)2。
(1)分别说出各个函数图象的开口方、对称轴和顶点坐标。
(2)分析分别通过怎样的平移。
可以由抛物线y=2x 2得到抛物线y=2(x -4)2和y=2(x+1)2?3.试写出抛物线y=3x 2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
(1)右移2个单位;(2)左移23 个单位;(3)先左移1个单位,再右移4个单位。
4.试说明函数y=12 (x -3)2 的图象特点及性质(开口、对称轴、顶点坐标、增减性、最值)。
5.二次函数y=a(x -h)2的图象如图:已知a=12 ,OA =OC ,试求该抛物线的解析式。
【二次函数的增减性】1.二次函数y=3x 2-6x+5,当x>1时,y 随x 的增大而 ;当x<1时,y 随x 的增大而 ;当x=1时,函数有最 值是 。
2.已知函数y=4x 2-mx+5,当x> -2时,y 随x 的增大而增大;当x< -2时,y 随x 的增大而减少;则x =1时,y 的值为 。
3.已知二次函数y=x 2-(m+1)x+1,当x ≥1时,y 随x 的增大而增大,则m 的取值范围是 .4.已知二次函数y=-12 x 2+3x+52 的图象上有三点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)且3<x 1<x 2<x 3,则y 1,y 2,y 3的大小关系为 .5.抛物线2)13(-=x y 当x 时,Y 随X 的增大而增大.6.已知点11()x y ,,22()x y ,均在抛物线21y x =-上,下列说法中正确的是( )A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >7..若),41(),,45(),,413(321y C y B y A --为二次函数245y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .213y y y <<8.右图是二次函数y 1=ax 2+bx+c 和一次函数y 2=mx+n 的图像,•观察图像写出y 2≥y 1时,x 的取值范围_______.【二次函数图象的平移】向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2口诀:左加右减,上加下减。
(要在括号内进行)具体如下:1,将一般式函数y=ax 2+bx+c (a ≠0)右移m ,下移n 个单位,变成:y=a (x-m )2+b (x-m )+c-n左移m 个单位,变成: y=a (x+m )2+b (x+m )+c-n 上述,如果上移n 个单位,则:y=a (x-m )2+b (x-m )+c+n 2,将顶点式y=a(x-h) 2+k (a ≠0)右移m ,下移n 个单位,变成: y=a(x-h-m) 2+k-n 左移m 个单位,变成: y=a(x-h+m) 2+k-n技法:只要两个函数的a 相同,就可以通过平移重合。
将二次函数一般式化为顶点式y=a(x -h)2+k ,平移规律:左加右减,对x ;上加下减,直接加减6.抛物线y= -32 x 2向左平移3个单位,再向下平移4个单位,所得到的抛物线的关系式为 。
7.抛物线y= 2x 2, ,可以得到y=2(x+4}2-3。
8.将抛物线y=x 2+1向左平移2个单位,再向下平移3个单位,所得到的抛物线的关系式为 。
9.如果将抛物线y=2x 2-1的图象向右平移3个单位,所得到的抛物线的关系式为 。
10.将抛物线y=ax 2+bx+c 向上平移1个单位,再向右平移1个单位,得到y=2x 2-4x -1则a = ,b = ,c = .11.将抛物线y =ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为 _.12.抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 【函数图象与坐标轴的交点】11.抛物线y=x 2+7x+3与直线y=2x+9的交点坐标为 。