平行线的判定证明练习试题精选.docx

合集下载

(完整版)平行线的判定专项练习60题(有答案)

(完整版)平行线的判定专项练习60题(有答案)

1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC 于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE 分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD .25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB 和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC 和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD 于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?。

(完整版)平行线及其判定(证明应用题)

(完整版)平行线及其判定(证明应用题)

授课教案学员姓名:________________ 学员年级:________________ 授课教师:_________________ 所授科目:_________ 上课时间:______年____月____日(~);共_____课时(以上信息请老师用正楷字手写)平行线及其判定(证明应用题)一.解答题(共11小题)1.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.2.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.3.如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?2015年03月05日752444625的初中数学组卷参考答案与试题解析一.解答题(共11小题)1.(2014•槐荫区二模)已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.考点:平行线的判定.专题:证明题.分析:由∠A=∠F,根据内错角相等,两直线平行,即可求得AC∥DF,即可得∠C=∠FEC,又由∠C=∠D,则可根据同位角相等,两直线平行,证得BD∥CE.解答:证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.点评:此题考查了平行线的判定与性质.注意内错角相等,两直线平行与同位角相等,两直线平行.2.(2013•邵阳)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.考点:平行线的判定;角平分线的定义;三角形内角和定理.专题:证明题.分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.解答:(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(内错角相等,两直线平行);(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.3.(2010•江宁区一模)如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.考点:平行线的判定.专题:证明题.分析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.要证明AM∥BC,只要转化为证明∠C=∠DAM即可.解答:证明:∵AB=AC,∴∠B=∠C,∵∠B=∠DAM,∴∠C=∠DAM,∴AM∥BC.点评:本题主要考查了平行线的判定,注意等量代换的应用.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.考点:平行线的判定.专题:探究型.分析:因为DF∥AC,由内错角相等证明∠C=∠FEC,又因为∠C=∠D,则∠D=∠FEC,故CE∥BD.解答:解:CE∥BD.理由:∵DF∥AC(已知),∴∠C=∠FEC(两直线平行,内错角相等),又∵∠C=∠D(已知),∴∠D=∠FEC(等量代换),∴CE∥BD(同位角相等,两直线平行).点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题能有效地培养“执果索图”的思维方式与能力.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.考点:平行线的判定.专题:探究型.分析:设AB与DE相交于H,若判断ED与FB的位置关系,首先要判断∠1和∠EHA的大小;由∠3=∠4可证得BD∥CF(内错角相等,两直线平行),可得到∠5=∠BAF;已知∠5=∠6,等量代换后发现AB∥CD,即∠2=∠EHA,由此可得到∠1=∠EHA,根据同位角相等,两直线平行即可判断出BF、DE的位置关系.解答:解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,又∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠EHA,又∵∠1=∠2,即∠1=∠EHA,∴BF∥DE.另解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∵△BFA、△DEC的内角和都是180°∴△BFA=∠1+∠BFA+BAF;△DEC=∠2+∠4+∠6∵∠1=∠2;∠BAF=∠6∴∠BFA=∠4,∴BF∥DE.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.考点:平行线的判定.专题:证明题.分析:先由已知证明AD∥EF,再证明1∠1=∠4,∠2=∠4,等量代换得出∠1=∠2.解答:证明:∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(垂直于同一条直线的两直线平行),∴∠1=∠4(两直线平行,同位角相等),又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行),∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2(等量代换).点评:此题的关键是理解平行线的性质及判定.①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.考点:平行线的判定.专题:推理填空题.分析:由∠A=∠F,根据内错角相等,得两条直线平行,即AC∥DF;根据平行线的性质,得∠C=∠CEF,借助等量代换可以证明∠D=∠CEF,从而根据同位角相等,证明BD∥CE.解答:解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).点评:此题综合运用了平行线的判定及性质,比较简单.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.考点:平行线的判定.专题:证明题.分析:首先根据角平分线的性质可得∠BAC=2∠DAC,再根据三角形外角与内角的关系可得∠G+∠GFA=∠BAC,又∠AFG=∠G.进而得到∠BAC=2∠G,从而得到∠DAC=∠G,即可判定出GE∥AD.解答:证明:∵AD是△ABC的平分线,∴∠BAC=2∠DAC,∵∠G+∠GFA=∠BAC,∠AFG=∠G.∴∠BAC=2∠G,∴∠DAC=∠G,∴AD∥GE.点评:此题主要考查了平行线的判定,关键是掌握三角形内角与外角的关系,以及平行线的判定定理.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.考点:平行线的判定.专题:证明题.分析:利用直角三角形中两锐角互余得出∠D=40°,再利用内错角相等,两直线平行的判定证明即可.解答:证明:∵CA⊥AD,∴∠C+∠D=90°,∴∠C=50°,∴∠D=40°,∵∠BAD=40°,∴∠D=∠BAD,∴AB∥CD.点评:本题主要考查了平行线的判定和直角三角形中两锐角互余,比较简单.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.考点:平行线的判定;角平分线的定义.专题:证明题.分析:运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.解答:证明:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义).∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°.∴AB∥CD(同旁内角互补,两直线平行).点评:灵活运用角平分线的定义和角的和差的关系是解决本题的关键,注意正确识别“三线八角”中的同位角、内错角、同旁内角.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?考点:平行线的判定;平行公理及推论.专题:探究型.分析:根据内错角相等,两直线平行可知a∥b,由同旁内角互补,两直线平行可知b∥c,根据如果两条直线都与第三条直线平行那么这两条直线平行得出结论.解答:解:平行.理由如下:∵∠1=∠2,∴a∥b(内错角相等,两直线平行),∵∠3+∠4=180°,∴b∥c(同旁内角互补,两直线平行),∴a∥c(平行于同一直线的两直线平行).点评:本题很简单,考查的是平行线的判定定理和平行公理的推论.内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行那么这两条直线平行.。

平行线的性质判定专项练习40题

平行线的性质判定专项练习40题

平行线的判定专项练习1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.3.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.4.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.5.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.6.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.7.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.8.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.11.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.12.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.20.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.21.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.22.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.23.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.24.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.25.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.26.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.27.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.28.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.29.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.30.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.31.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.32.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.33.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.36.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.37.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置,若∠EFB=65°,则∠AED′等于38.如图,AD⊥BC于点D,EF⊥BC于点F,EF交AB于点G,交CA的延长线于点E,且∠1=∠2.AD平分∠BAC吗?说说你的理由.39.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠PAG的度数.40.已知AB∥CD,分别探讨下列四个图形中∠APC和∠PAB、∠PCD的关系.(只要求直接写出),并请你从所得四个关系中任意选出一个说明理由12 AB CDFGE。

平行线的判定练习题(有答案)

平行线的判定练习题(有答案)

平行线的判定练习题(有答案)平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.平行线的判定--- 第 1 页共 1 页7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定---第 2 页共 2 页13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?平行线的判定---第 3 页共 3 页19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.平行线的判定---第 4 页共 4 页26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.平行线的判定---第 5 页共 5 页平行线测姓名:一、选择题1.下列命题中,不正确的是____ [ ]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______ [ ](2题)(5题)(3题)(7题) (8题)A.∠ACB=∠BAC B.∠ABC+∠BAE=180° C.∠ACB+∠BAD=180°D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件: (1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180° (4)∠5+∠8=180°,其中能判定a∥b的条件是_________[ ]A.(1)(3) B.(2)(4)C.(1)(3)(4) D.(1)(2)(3)(4)4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ]A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直 B.互相平行 C.相交 D.无法确定7.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180° B.∠2+∠3=180° C.∠3+∠4=180° D.∠2+∠4=180°8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30° B.60° C.90° D.120°二、填空题 9.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,.(2)∠A=∠3,.(3)∠ABC+∠C=180°.10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。

(913)平行线的判定专项练习60题(有答案)ok

(913)平行线的判定专项练习60题(有答案)ok

平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?平行线的判定60题参考答案:1.∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BC∥DE2.∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).3.∵AB⊥BC(已知),∴∠ABC=90°(垂直定义);∵BC⊥CD(已知),∴∠BCD=90°(垂直定义),∴∠ABC=∠DCB;∵∠1=∠2(已知),∴∠ABC﹣∠2=∠DCB﹣∠1,即∠FBC=∠ECB,∴BF∥CE(内错角相等,两直线平行)4.∵AB⊥BC,∴∠3+∠4=90°.∵∠2=∠3,∠1+∠2=90°,∴∠1=∠4,∴BE∥DF.5.AB平行于ON.证明:∵OP平分∠MON,∴∠BOA=∠NOA,∵∠BOA=∠BAO,∴∠BAO=∠NOA,∴AB∥ON6.∵∠1=∠2,∴DC∥AB,∴∠A+∠ADC=180°.又∵∠A=∠C,∴∠ADC+∠C=180°,∴AE∥BC.7.∵BC是∠ABE的平分线,∴∠ABC=∠CBE(角平分线定义),∵∠ABE=∠D+∠E=∠ABC+∠CBE,∠D=∠E,∴∠ABC=∠D,∴DE∥BC8.过点E作EF∥AB.∵EF∥AB,∴∠A=∠AEF;又∵∠AEC=∠A+∠C,∴∠AEC=∠AEF+∠C;而∠AEC=∠AEF+∠CEF,∴∠CEF=∠C,∴EF∥CD,∴AB∥CD.9.∵AC∥ED,∴∠1=∠4;∵∠1=∠2,∴∠2=∠4;又∵EB平分∠AED,∴∠3=∠4;∴∠2=∠3,∴AE∥BD10.∵∠1+∠BEF=180°,∠1=105°,∴∠BEF=75°,∵∠2=75°,∴∠BEF=∠2,∴AB∥CD.11.∵∠D=∠A,∴ED∥AB;∵∠B=∠BCF,∴AB∥CF;∴ED∥CF.12.∵AB⊥BC,CD⊥BC(已知),∴∠ABC=∠BCD=90°(垂直定义);又∵∠1=∠2(已知),∴∠ABC﹣∠1=∠BCD﹣∠2(等量减等量,差相等),∴∠EBC=∠FCB,∴EB∥FC(内错角相等,两直线平行)13.∵BE是∠B的平分线,∴∠1=∠CBE,∵∠1=∠2,∴∠2=∠CBE,∴DE∥BC.14.AC与DF平行,理由如下:∵BD∥EC,∴∠DBC+∠C=180°,又∠C=∠D,∴∠DBC+∠D=180°,∴AC∥DF.15.∵AC⊥AE,BD⊥BF,∴∠1+∠3=∠2+∠4=90°,∵∠1=35°,∠2=35°,∴∠3=∠4,∴AE∥BF.16.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等);∵∠1=∠2,∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF,∴BE∥CF(内错角相等,两直线平行).17.∵∠BAD=DCB,∠1=∠3(已知),∴∠BAD﹣∠1=∠DCB﹣∠3(等式性质),即∠2=∠4,∴AD∥BC(内错角相等,两直线平行)18.DF∥AB.理由:∵DE∥CA,∴∠1=∠CAD,∵AD是三角形ABC的角平分线,∴∠BAD=∠CAD,∵∠1=∠2,∴∠2=∠BAD,∴DF∥AB19.AB∥DF(2分)理由:∵∠C=∠DAE,(已知)∴AD∥BC,(内错角相等,两直线平行)(2分)∴∠D=∠DFC,(两直线平行,内错角相等)∴∠B=∠D,(已知)∴∠B=∠DFC,(2分)∴AB∥DF(同位角相等,两直线平行)20.CF∥BD.理由如下:∵BD⊥BE,∴∠1+∠2=90°;∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD.21.AB∥CD.(1分)理由如下:∵∠1+∠MNC=180°,∠MNC=∠1,∴∠1=135°.(2分)又∵∠AMN=∠2=45°,(3分)∴∠1+∠AMN=180°.(4分)∴AB∥CD22.∵BF平分∠ABD,DG平分∠CDE,∴∠1=∠ABD,∠2=∠CDE,又∵∠ABD=∠CDE,∴∠1=∠2,∴BF∥DG(同位角相等,两直线平行).23.ED∥BF;证明如下:∵四边形ABCD中,∠A=∠C=90°,∴∠ADC+∠ABC=180°,∵BF、DE分别平分∠ABC、∠ADC,∴∠ADC+∠ABC=2∠ADE+2∠ABF=180°,∴∠ADE+∠ABF=90°,又∵∠A=90°,∠ADE+∠AED=90°,∴∠AED=∠ABF,∴ED∥BF(同位角相等,两直线平行).24.在△ECD中∵∠C+∠CED+∠CDE=180°(三角形内角和定理),又∵∠CAB=∠CED+∠CDE(已知),∴∠C+∠CAB=180°(等量代换),∴AB∥CD(同旁内角互补,两直线平行)25.∵CD⊥AB,GF⊥AB,∴CD∥FG,∴∠2=∠DCG;又∵∠1=∠2,∴∠DCG=∠1,∴DE∥BC26.∵∠CAD=∠ACB,∴AD∥BC,∵EF⊥CD,∴∠EFC=90°∵∠D=90°,∴∠EFC=∠D,∴AD∥EF,∴BC∥EF,∴∠AEB=∠B.27.∵∠E=∠F,∴AE∥FP,∴∠PAE=∠APF;又∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,即∠2+∠PAE=∠1+∠APF;∴∠2=∠128.∵DC⊥EC,∴∠1+∠2=90°,又∠D=∠1,∠E=∠2,∴∠D+∠1+∠E+∠2=180°.根据三角形的内角和定理,得∠A+∠B=180°,∴AD∥BE29.∵∠A+∠ABC+∠C+∠CDA=360°而∠A=∠C,BE平分∠ABC,DF平分∠CDA∴2∠A+2∠ABE+2∠ADF=360°即∠A+∠ABE+∠ADF=180°又∠A+∠ABE+∠AEB=180°∴∠AEB=∠ADF∴BE∥DF30.∠C=∠D.理由如下:∵∠A=∠F,∴DF∥AC,∴∠D=∠DBA.∵∠1=∠DGF,又∵∠1=∠2,∴∠2=∠DGF,∴DB∥EC,∴∠DBA=∠C,∴∠C=∠D31.∵四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠CDA=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∵∠A=90°,∴∠1+∠AEB=90°,∵∠1=∠2,∴∠AEB=∠3,∴BE∥FD.32.∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴a∥b.33.CF∥OD.理由:∵DE⊥AO,BO⊥AO,∴DE∥BO,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴CF∥OD34.∵∠DOB是△COD的外角,∴∠C+∠CDO=∠DOB,又∵∠DOB=∠1+∠2,而∠1=∠2,∠C=∠CDO,∴∠2=∠C,∴CD∥OP35.(1)∵DE平分∠BDF,AF平分∠BAC,∴∠BDF=2∠1,∠BAC=2∠2,又∵∠1=∠2,∴∠BDF=∠BAC,∴DF∥AC;(2)∵AF平分∠BAC,∴∠BAF=∠2.又∵∠1=∠2,∴∠1=∠BAF,∴DE∥AF.36.DE∥AB,∵AD平分∠BAC,∴∠BAC=2∠1,∵EF平分∠DEC,∴∠DEC=2∠2,∵∠1=∠2,∴∠BAC=∠DEC,∴DE∥AB.37.∵∠BDE+∠CDE=∠A+∠ACD,又DE是∠BDC的平分线,∠ACD=∠A,∴∠A=∠BDE,∴DE∥AC.38.∠2与∠B相等时,AC∥BD.理由如下:∵∠A=∠1,∠1=∠2,∴∠A=∠2,∵∠2=∠B,∴∠A=∠B,∴AC∥BD.39.MN与EF平行.理由如下:∵∠1=∠A,∴MN∥AB,∵∠2=∠B,∴EF∥AB,∴MN∥EF.40.∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4,∴AB∥CD.41.∵∠E=∠F,∴BE∥CF,∴∠EBC=∠BCF,∵∠1=∠2,∴∠CBA=∠DCB,∴AB∥CD.42.∵EF⊥CD于F,∴∠EFG=90°,∵∠GEF=25°,∴∠EGF=65°,∵∠1=65°,∴∠1=∠EGF,∴AB∥CD.43.图中共有2对平行线.①AB∥CD.理由如下:∵∠1=∠2=90°,∴AB∥CD(在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行);②∵∠2=90°,∴∠4+∠5=90°,又∵∠3=30°,∠4=60°,∴∠3=∠5,∴EF∥HG(同位角相等,两直线平行).综上所述,图中共有2对平行线,它们是:AB∥CD、EF∥HG44.AB∥CD,理由:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB∥CD.45.∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFC=90°(垂直的定义),∴∠B=90°﹣∠1(直角三角形两锐角互余),∠GFC=90°﹣∠2(互余的定义),∵∠1=∠2(已知),∴∠B=∠GFC(等角的余角相等),∴AB∥GF(同位角相等,两直线平行)46.∵∠B=∠1,∴AB∥DE(同位角相等,两直线平行),∴∠2=∠ADE(两直线平行,内错角相等)∵∠2=∠E,∴∠E=∠ADE,∴AD∥CE(内错角相等,两直线平行).47.∵EM平分∠BEF,FN平分∠DFH,∴∠BEF=2∠MEF,∠DFH=2∠NFH,∵∠BEF=∠DFH,∴∠MEF=∠NFH,∴EM∥FN48.BE∥CF,理由是:∵BE,CF分别平分∠ABC和∠BCD,∴∠1=∠ABC,∠2=∠BCD,∵∠ABC=∠BCD,∴∠1=∠2,∴BE∥CF.49.DB与EC的位置关系是平行,理由:∵∠1=∠3,∠2=∠4(对顶角相等),又∵∠1=∠2,∴∠3=∠4,∴BD∥EC.50.(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由是:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.51.GH∥MN.理由如下:∵HG平分∠AHM,MN平分∠DNH(已知),∴∠GHM∠AHM,∠NMH=∠DMH(角平分线定义),而∠AHM=∠DMH(已知)∴∠GHM=∠NMH(等量代换),∴GH∥MN.(内错角相等,两直线平行) 52.∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD53.∵EG⊥FG,∴∠G=90°,∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴AB∥CD.54.:∵∠1+∠2=180°,∠1=130°,∴∠2=50°,∵∠A=50°,∴∠A=∠2,∴AB∥CD.55.(1)∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,∴∠DAE+∠1=90°,∠BCF+∠2=90°,∵∠1=∠2,∴∠DAE=∠BCF,∴AD∥BC;(2)AB∥CD.理由如下:∵∠DAE=∠BCF,∠DAB=∠DCB,∴∠DAB﹣∠DAE=∠DCB﹣∠BCF,即∠CAB=∠ACD,∴AB∥CD.56.(1)AD与BC一定平行.理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1=30°,∠B=60°,∴∠1+∠BAC+∠B=180°,即∠BAD+∠B=180°,∴AD∥BC.(2)AB与CD不一定平行.57.∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.58.EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=2(已知),∴EF∥AD(内错角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC于点D(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,所以EF与BC的位置关系是垂直.59.∵CE平分∠ACD,∴∠1=∠2,∵∠1=∠B,∴∠2=∠B,∴AB∥CE.60.∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴AD∥BC,故可以判定AB∥CD,AD∥BC.。

平行线的判定证明题(精选篇)

平行线的判定证明题(精选篇)

平行线的判定证明题平行线的判定证明题平行线的判定证明题1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

按这个判定,绝对没错。

这两种的第一条都没有办法判定,而后两条就完全可以按照第一条来判定,最后的结果一定是对的。

2平行线的性质:(1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。

平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

平行线的性质:在同一平面内永不相交的两条直线叫做平行线。

平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

3光学原理。

延长GE角D于Q因为∠2=∠3,所以AB∥D由AB∥D可得∠1=∠GQD又∠1=∠4所以∠4=∠GQD所以GQ∥FH 即:GE∥FH因为∠2=∠3所以AB∥D所以角FE=角FEB所以大角HFE=大角FEG所以HF∥GE4)要证明AB∥GD,只要证明∠1=∠BAD即可,根据∠1=∠2,只要再证明∠2=∠BAD即可证得;(2)根据AB∥D,∠1:∠2:∠3=1:2:3即可求得三个角的度数,再根据∠EBA与∠ABD互补,可求得∠EBA的度数,即可作出判断.解答:解:(1)证明:∵AD⊥B,EF⊥B(已知)∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥AD(同位角相等,两直线平行)(2分)∴∠2=∠BAD(两直线平行,同位角相等)(3分)∵∠1=∠2,(已知)∴∠1=∠BAD(等量代换)∴AB∥DG.(内错角相等,两直线平行)(4分)(2)判断:BA平分∠EBF(1分)证明:∵∠1:∠2:∠3=1:2:3∴可设∠1=k,∠2=2k,∠3=3k(k 0)∵AB∥D∴∠2+∠3=180°(2分)∴2k+3k=180°∴k=36°∴∠1=36°,∠2=72°(4分)∴∠ABE=72°(平角定义)∴∠2=∠ABE∴BA平分∠EBF(角平分线定义).(5分)。

平行线的判定》证明题

平行线的判定》证明题

平行线的判定》证明题1.当∠1=∠2时,直线a、b平行。

因为这时∠1+∠2=180°,根据平行线的性质可知a、b平行。

2.已知∠XXX∠BCD,且∠ABC+∠CDG=180°,因此∠BCD=∠XXX根据三角形内角和定理可知∠XXX∠BCD+∠XXX∠ABC+∠BCD=180°,所以BC∥GD。

3.已知∠1=15°,∠2=15°,因此∠ACE=∠BDF=75°。

但AE与BF不平行,因为它们交于点F。

4.BE平分∠ABD,DE平分∠XXX,且∠DQP=∠1=∠2,因此∠XXX∠XXX∠BCQ。

根据同位角和内错角性质可知AB∥CD,DE∥BE,因此AD∥BC。

5.已知∠2=∠3,且∠1+∠2=90°,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。

6.已知∠1=30°,∠B=60°,因此∠C=90°。

根据三角形内角和定理可知∠ABC=∠ACB=60°,因此AB=AC。

又因为∠BAC=90°,所以AD∥BC。

7.已知∠BAD=∠DCB,∠BAC=∠DCA,因此三角形ABD与三角形CBD相似。

根据相似三角形的性质可知AB∥CD。

8.直线EF分别与直线AB、CD相交于点P和点Q,PG 平分∠APQ,QH平分∠DPQ。

根据角平分线的性质可知∠XXX∠GPQ+∠HPQ=1/2(∠APQ+∠DPQ)=1/2(180°)=90°,因此GH∥AB∥CD。

9.已知XXX,XXX,∠1=∠2,因此∠XXX∠BCD。

根据同位角和内错角性质可知BE∥CF。

10.已知AB⊥DF,∠2=90°,∠2=∠3,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。

(完整版)平行线的判定习题(含答案)(最新整理)

(完整版)平行线的判定习题(含答案)(最新整理)

2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如右图所示,在下列条件中,不能判断l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4+∠5=180°D.∠2+∠4=180°【答案】B【解析】【分析】直接利用平行线的判定方法分别分析得出答案.【详解】解:A、∠1=∠3根据内错角相等,两直线平行能判定l1∥l2,故此选项不符合题意;B. ∠2=∠3无法判定l1∥l2,故此选项符合题意;C. ∠4+∠5=180°, ∠2=∠5,所以∠4+∠2=180°, 根据同旁内角互补,两直线平行能判定l1∥l2,故此选项不符合题意;D. ∠2+∠4=180°,能判定l1∥l2,故此选项不符合题意;故选:B.【点睛】本题考查平行线的判定,正确掌握判定方法是解题关键.2.如图,直线a,b被直线c所截,下列条件能判断a//b的是( ).A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠2+∠4=180°【答案】B【解析】【分析】根据平行线的判定定理,同位角相等,两直线平行即可解题.【详解】解:A. ∠1=∠2是对顶角,无法判断,B. ∠1=∠4,根据同位角相等,两直线平行即可判定a//b,正确,C. ∠3+∠4=180°,邻补角互补无法判断平行,D. ∠2+∠4=180°,内错角不是互补的,错误,故选B.【点睛】本题考查了平行线的判定,属于简单题,熟悉平行线的判定定理是解题关键.3.如图,下列条件:①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥EF的有( )A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故选:C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.4.如图,下列条件中,不能判断直线的是()∠1=∠3∠2=∠3∠4=∠5A.B.C.D.∠2+∠4=180°【答案】B【解析】【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行对各选项进行判断.【详解】当∠1=∠3时,a∥b;当∠4=∠5时,a∥b;当∠2+∠4=180°时,a∥b.故选:B.【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.5.如图,点E在AD延长线上,下列条件中不能判定BC∥AD的是( )∠1=∠2∠C=∠CDEA.B.∠3=∠4∠C+∠ADC=180∘C.D.【答案】A【解析】【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行进行判断,即可得出答案.【详解】解:A、∵∠1=∠2,∴AB∥CD,本选项符合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠3=∠4,∴BC∥AD,本选项不合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:A.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.6.如图,下列条件中能得到AB∥CD的是( )∠1=∠2∠2=∠3∠1=∠4∠3=∠4 A.B.C.D.【答案】C【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、因为∠1=∠2,不能得出AB∥CD,错误;B、∵∠2=∠3,∴AD∥BC,错误;C、∵∠1=∠4,∴AB∥CD,正确;D、因为∠3=∠4,不能得出AB∥CD,错误;故选C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.7.下列说法错误的是( )A.在同一平面内,不相交的两条线段必然平行B.在同一平面内,不相交的两条直线必然平行C.在同一平面内,不平行的两条线段延长后必然相交D.在同一平面内,两条直线没有公共点,那么两条直线平行【答案】A【解析】【分析】根据两条直线的位置关系直接可以找出错误的选项.【详解】在同一平面内,不相交的两条直线必然平行; 在同一平面内,不平行的两条线段延长后必然相交; 在同一平面内,两条直线没有公共点,那么两条直线平行;只有A选项中,在同一平面内,不相交的两条线段不一定平行,故A错误.故选A.【点睛】此题重点考察学生对两直线的位置关系的理解,掌握两直线的位置关系是解题的关键. 8.同一平面内的两条线段,下列说法正确的是( )A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交【答案】C【解析】【分析】根据线段有固定长度这一特点来解题即可.【详解】同一平面内的两条线段,可以出现相交,平行,也可以出现既不平行也不相交的状态.故选C【点睛】此题重点考察学生对两条线段位置关系的理解,抓住线段有固定长度是解题的关键. 9.在同一平面内,两条不重合直线的位置关系可能是( )A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【答案】C【解析】【分析】根据前提条件结合直线的位置关系直接可以得到答案.【详解】在同一平面内,两条不重合的直线的位置关系只有两种:平行或相交.故选C【点睛】此题重点考察学生对两直线位置关系的理解,掌握两直线的位置关系是解题的关键. 10.如图,已知点E在BC的延长线上,则下列条件中不能判断AB∥CD的是( )A.∠B=∠DCE B.∠BAD+∠D=180°C.∠1=∠4D.∠2=∠3【答案】D【解析】【分析】根据平行线的判定定理即可直接作出判断.【详解】A、根据同位角相等,两直线平行即可证得,故选项错误;B、根据同旁内角互补,两直线平行,即可证得,故选项错误;C、根据内错角相等,两直线平行即可证得,故选项错误;D、∠2和∠3是AD和BC被AC所截形成的角,因而不能证明AB∥CD,故选项正确.故选:D.【点睛】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.如图,下列判定两直线平行错误的是()A.若∠D=∠3,则BE∥DF B.若∠B=∠2,则AB∥CDC.若∠1+∠D=,则BE∥DF D.若∠1+∠B=,则AB∥CD18001800【答案】A【解析】【分析】根据平行线的判定逐一判断即可.【详解】A. ∠D和∠3是一组同旁内角,根据“同旁内角互补,两直线平行”,可得本选项错误;B. ∠B和∠2是一组同位角角,根据“同位角相等,两直线平行”,可得本选项正确;C. 因为∠1 = ∠3,若∠1+∠D=,则∠3+∠D=,根据“同旁内角互补,两直线18001800平行”,可得本选项正确;D. ∠1和∠B,是一组同旁内角,根据“同旁内角互补,两直线平行”,可得本选项正确.故选:A.【点睛】本题考查平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解题关键.12.如图,已知CD、BF相交于点O,∠D=,下面判定两直线平行正确的是650()A.当∠C=时,AB∥CD B.当∠A=时,AC∥DE6501150C.当∠E=时,CD∥EF D.当∠BOC=时,BF∥DE12501150【答案】D【解析】选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;选项B中,不符合三线八角构不成平行;选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行【详解】解:A、错误,因为∠C=∠D,所以AC∥DE;B、错误,不符合三线八角构不成平行;C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.故选:D.【点睛】本题考查平行线的判定,解题关键是在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.13.如图,下列条件中,能判断FB∥CE的是()A.∠F+∠C=B.∠ABF=∠C C.∠F=∠C D.∠A=∠D1800【答案】B【解析】【分析】分析四个选项,看哪个选项的条件满足平行线的判定定理,由此即可得出结论.【详解】解:A、∠F+∠C=180°,不能得出FB∥CE,A不可以;B、∠ABF=∠C,同位角相等,两直线平行,B可以;C、∠F=∠C,不能得出FB∥CE,C不可以;D、∠A=∠D,内错角相等,两直线平行,但得出的是DF∥AC,D不可以.【点睛】本题考查平行线的判定定理,解题的关键是牢记平行线的判定定理.本题属于基础题,难度不大,解决该题型题目时,寻找相等或互补的角去证明直线平行.14.如图,一根直尺EF压在三角板的角∠BAC上,欲使CB∥EF,则应使∠ENB的度300数为()A.B.C.D.1000110012001300【答案】C【解析】【分析】根据平行线的判定方法即可解答.【详解】解:因为三角板含有30°的角,所以∠B=60°,当∠ENB+∠B=180°时,根据“同旁内角互补,两直线平行”,可使CB∥EF,此时∠ENB=180°-∠B=180°-60°=.1200故选:C.【点睛】本题考查平行线的判定方法,解题关键是熟练掌握判定方法,根据题目要求选择简单方法.15.如图,直线a与直线b被直线c所截,b⊥c,垂足为A,∠1=69°,若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转( )A.69°B.49°C.31°D.21°【答案】D【解析】先根据b⊥c得出∠2的度数,再由平行线的判定定理即可得出结论.【详解】∵b⊥c,∴∠2=90°.∵∠1=69°,a∥b,∴直线b绕着点A顺时针旋转的度数=90°﹣69°=21°,故选D.【点睛】本题考查了垂直的定义,平行线的判定,熟练掌握和正确运用相关知识是解题的关键. 16.如图是小敏作“过已知直线外一点画这条直线的平行线”,从图中可知,小敏画平行线的依据是( )①两直线平行,同位角相等②两直线平行,内错角相等③同位角相等,两直线平行④内错角相等,两直线平行A.①②B.②③C.③④D.①④【答案】C【解析】【分析】①②为平行线的性质,③④为平行线的判定定理.【详解】解:根据平行线的判定与性质可知,①②为平行线的性质,③④为平行线的判定定理,∴小敏是依据③④画平行线的.故选:C.【点睛】本题主要考查平行线的判定与性质,解此题的关键在于熟记平行线的判定定理与性质的区别.17.如图,下列结论:若,则∥;若,则∥;若①∠1=∠3AB CD②∠2=∠4AB CD③∠ADC=∠5,则AD//BC;若∠DAB+∠ABC=180°,则AD//BC,其中正确的个数是④()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据内错角相等,两直线平行可以对①②③进行判断,根据同旁内角互补,两直线平行可以对④进行判断,由此即可得答案.【详解】①若∠1=∠3,则AB∥CD,正确;②若∠2=∠4,则AD∥BC,故②错误;③若∠ADC=∠5,则AD//BC,正确;④若∠DAB+∠ABC=180°,则AD//BC,正确,故选C.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.18.如图,下列推理正确的是( )A.∵∠1=∠2,∴AD∥BC B.∵∠3=∠4,∴AB∥CDC.∵∠3=∠5,∴AB∥DC D.∵∠3=∠5,∴AD∥BC【答案】C【解析】【分析】利用平行线的判定方法判断即可得到结果.【详解】∵∠3=∠5,∴AB∥DC(同位角相等,两直线平行).故选C.【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.二、解答题∠AED=∠C∠1=∠B EF//AB19.如图,,,说明:.【答案】见解析.【解析】【分析】先由同位角相等,得出两直线平行,再根据两直线平行,得出内错角相等,最后根据同位角相等,得出两直线平行即可.【详解】∠AED=∠C∵(已知)DE//BC∴(同位角相等,两直线平行)∠1=∠EFC又∵(两直线平行,内错角相等)∠B=∠EFC∴(等量代换)EF//AB∴(同位角相等,两直线平行)【点睛】本题主要考查了平行线的判定与性质,解题时注意:两直线平行,内错角相等;同位角相等,两直线平行.20.如图,已知∠ABC=180°-∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.【答案】(1)证明见解析;(2)36°.【解析】【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠DBC,根据垂直推出BD∥EF,根据平行线的性质即可求出∠EFC.【详解】(1)证明:∵∠ABC=180°-∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)∵AD∥BC,∠ADB=36°,∴∠DBC=∠ADB=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠EFC=36°【点睛】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.21.平面上有6条直线,共有12个不同的交点,画出它们可能的位置关系(画三种图形).【答案】详见解析.【解析】【分析】从平行线的角度考虑,先考虑只有二条直线平行,再考虑三条平行,作出草图即可看出.【详解】如下图.【点睛】本题考查平行线与相交线的综合运用.没有明确平面上六条不重合直线的位置关系,需要运用分类讨论思想.22.如图,根据要求填空.(1)过A作AE∥BC,交______于点E;(2)过B作BF∥AD,交______于点F;(3)过C作CG∥AD,交__________于点G;(4)过D作DH∥BC,交BA的__________于点H.【答案】(1)DC;(2)DC;(3)AB;(4)延长线.【解析】【分析】根据要求,直接进行作图就可以解决.【详解】(1)过A作AE∥BC,交DC于点E;(2)过B作BF∥AD,交DC于点F;(3)过C作CG∥AD,交AB的延长线于点G;(4)过D作DH∥BC,交BA的延长线于点H.【点睛】本题主要考查平行线的作法以及几何语言的准确性.23.探索与发现:(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是__________,请说明理由.(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是________.(直接填结论,不需要证明)(3)现在有2 011条直线a1,a2,a3,…,a2 011,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2 011的位置关系.【答案】(1)a1⊥a3,理由详见解析;(2)a1∥a4;(3)a1⊥a2 011.【解析】【分析】(1)根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答;(2)根据(1)中结论即可判定垂直;(3)根据规律发现,与脚码是偶数的直线互相平行,与脚码是奇数的直线互相垂直,根据此规律即可判断.【详解】(1)a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;(2)同(1)的解法,如图2,直线a1与a4的位置关系是:a1∥a4;(3)直线a1与a3的位置关系是:a1⊥a2⊥a3,直线a1与a4的位置关系是:a1∥a4∥a5,以四次为一个循环,⊥,⊥,∥,∥以此类推,a1∥a2009,a1⊥a2010,所以直线a1与a2011的位置关系是:a1⊥a2011.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导.三、填空题24.已知,如图,要使得AB∥CD,你认为应该添加的一个条件是________【答案】∠ECD=∠A(答案不唯一).【解析】【分析】根据平行线的判定定理,即可直接写出条件.【详解】添加的条件是:∠ECD=∠A(答案不唯一).故答案为:∠ECD=∠A.【点睛】本题考查了平行线的判定定理,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.25.在同一平面内,三条不同的直线a、b、c,若a⊥c,b⊥c,则______.【答案】a∥b【解析】【分析】根据平行线的判定解答即可.【详解】在同一平面内,三条不同的直线a、b、c,若a⊥c,b⊥c,则a∥b.故答案为:a∥b.【点睛】本题考查了平行线的判定与性质,在同一平面内,垂直于同一直线的两直线平行的性质,是基础题,熟记平行线的判定是解题的关键.126.设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关系是________;(2)若a⊥b,b⊥c,则a与c的位置关系是________.【答案】a∥c;a∥c.【解析】【分析】(1)根据两条直线的位置关系直接写出答案.(2)根据垂线的性质去解答即可.【详解】设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关是a∥c,(2)若a⊥b,b⊥c,则a与c的位置关系是a∥c.故答案为(1). a∥c (2). a∥c【点睛】此题重点考察学生对两直线的位置关系和垂线性质的理解,掌握两直线的位置和垂线的性质是解题的关键.27.如图,某工件要求AB∥ED,质检员小李量得∠ABC=146°,∠BCD=60°,∠EDC=154°,则此工件________.(填“合格”或“不合格”)【答案】合格【解析】【分析】作CF∥AB,由平行线的性质得出∠ABC+∠1=180°,求出∠1,得出∠2,由∠2+∠EDC=180°,得出CF∥ED,证出AB∥ED,即可得出结论.【详解】作CF∥AB,如图所示:则∠ABC+∠1=180°,∴∠1=180°-146°=34°,∴∠2=∠BCD-∠1=60°-34°=26°,∵∠2+∠EDC=26°+154°=180°,∴CF∥ED,∴AB∥ED;故答案为:合格.【点睛】本题考查了平行线的性质与判定;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键28.如图,EN⊥CD,点M在AB上,∠MEN=156°,当∠BME=________°时,AB∥C D.【答案】66.【解析】【分析】过点E作EF∥AB,由平行线的性质可得∠BME=MEF,利用平行线的判定定理和性质定理可得∠NEF=90°,易得∠BME.【详解】过点E作EF∥AB,∴∠BME=MEF,∵AB∥CD,∴EF∥CD,∵EN⊥CD,∴EN⊥EF,∴∠NEF=90°,∵∠MEN=156°,∴∠MEF+90°=156°,∴∠MEF=∠BME=156°-90°=66°.故答案为:66.【点睛】本题主要考查了平行线的判定定理及性质定理,综合运用定理是解答此题的关键.29.如图,已知CD⊥DA,DA⊥AB,∠1=∠2. 试说明DF∥AE. 请你完成下列填空,把解答过程补充完整.解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°( ).∴∠CDA=∠DAB(等量代换).又∠1=∠2,从而∠CDA-∠1=∠DAB-________(等式的性质).即∠3=_______.∴DF∥AE( ).【答案】垂直的定义;∠2;∠4;内错角相等,两直线平行【解析】【分析】(1)根据垂直的定义填空;(2)根据等式的性质进行填空;(3)根据图象中角的位置关系进行解答;(4)根据平行线的判定定理进行解答即可.【详解】解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°(垂直的定义),∴∠CDA=∠DAB(等量代换),又∠1=∠2,从而∠CDA-∠1=∠DAB-∠2 (等式的性质).即∠3=∠4,∴DF∥AE(内错角相等,两直线平行).故答案为:垂直的定义;∠2;∠4;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理等知识点,解此题的关键在于熟记书本中基本的知识点.30.如图,当∠1=∠__时,AB∥DC.【答案】4【解析】【分析】当∠1=∠4 时,根据内错角相等,两直线平行可以判定AB∥DC.【详解】∵∠1=∠4,∴AB∥DC(内错角相等,两直线平行).【点睛】此题主要考查了平行线的判定,内错角相等,两直线平行.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的判定证明练习题精选
一.判断题:
1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。

()
2.如图①,如果直线l 1⊥OB,直线l 2⊥ OA,那么l1与l 2一定相交。

()
3.如图②,∵∠GMB=∠ HND(已知)∴AB∥ CD(同位角相等,两直线平行)()
二.填空题:
1.如图③∵∠ 1=∠2,∴ _______∥ ________()。

∵∠ 2=∠3,∴ _______∥ ________()。

2.如图④∵∠ 1=∠2,∴ _______∥ ________()。

∵∠ 3=∠4,∴ _______∥ ________()。

3.如图⑤ ∠ B=∠ D=∠ E,那么图形中的平行线有 ________________________________ 。

4.如图⑥ ∵ AB ⊥ BD, CD⊥BD(已知)
∴ AB ∥ CD ()
又∵∠ 1+∠ 2 = 180(已知)
∴ AB ∥ EF ()
∴ CD∥ EF ()
三.选择题:
1.如图⑦,∠ D=∠ EFC,那么()
A. AD∥ BC B.AB∥ CD
C. EF∥ BC D.AD∥ EF
2.如图⑧,判定 AB∥ CE的理由是()
A.∠ B=∠ ACE B.∠ A=∠ ECD C .∠ B=∠ ACB D.∠ A=∠ ACE
3.如图⑨,下列推理错误的是()
A.∵∠ 1=∠ 3,∴a∥ b B.∵∠ 1=∠ 2,∴a∥ b C.∵∠ 1=∠ 2,∴c∥ d D .∵∠ 1=∠2,∴c∥ d
4. 如图,直线 a、 b 被直线 c 所截,给出下列条件,①∠1=∠ 2,②∠ 3=∠ 6,
③∠ 4+∠ 7= 180°,④∠ 5+∠ 8= 180°其中能判断a∥b 的是()
A.①③B.②④C.①③④D.①②③④
四.完成推理,填写推理依据:
1.如图⑩ ∵∠ B=∠_______,∴ AB ∥CD()
∵∠ BGC=∠ _______,∴ CD∥ EF()
∵ AB∥ CD , CD∥ EF,
∴ AB ∥ _______()
2.如图⑾填空:
( 1)∵∠ 2=∠ B(已知)
∴ AB__________ (( 2)∵∠ 1=∠ A(已知)
∴ __________ (
( 3)∵∠ 1=∠ D(已知)
∴ __________ (
( 4)∵ _______=∠ F(已知)
)))
∴ AC ∥ DF()
3.填空。

如图,∵ AC⊥ AB, BD⊥AB(已知)
∴∠ CAB= 90°,∠ ______= 90°()
∴∠ CAB=∠ ______()
∵∠ CAE=∠ DBF(已知)
∴∠ BAE=∠ ______
∴ _____∥ _____()
4.已知,如图∠1+∠ 2= 180°,填空。

∵∠ 1+∠ 2= 180°()又∠ 2=∠ 3()
∴∠ 1+∠ 3= 180°
∴_________()
五.证明题
1.已知:如图⑿,CE平分∠ ACD,∠ 1=∠ B,
求证: AB∥ CE
2.如图:∠ 1= 53 ,∠ 2=127 ,∠ 3= 53 ,试
说明直线 AB 与 CD, BC与 DE的位置关系。

3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。

4.已知:如图,,,且.
求证: EC∥ DF.
5.如图 10,∠ 1∶∠ 2∶∠ 3 = 2 ∶3∶4,∠AFE = 60 °,∠ BDE =120°,写出图中平行的直线,并说明理由.
6.如图 11,直线 AB、 CD被 EF 所截,∠ 1 = ∠2,∠ CNF =∠BME。

求证: AB∥CD,MP∥NQ.
A
F
1
E
2
3
B D C
图10
M
E
A1B
P
N
C2D
F Q
图11
7.已知:如图:∠AHF+∠ FMD= 180°, GH平分∠ AHM,MN平分∠ DMH。

求证: GH∥ MN。

8.如图,已知:∠AOE+∠ BEF= 180°,∠ AOE+∠ CDE=180°,
求证: CD∥ BE。

9.如图,已知:∠A=∠ 1,∠ C=∠ 2。

求证:求证:AB∥CD。

10.如图:已知;AB∥CD,AD∥BC,∠B与∠D相等吗?
试说明理由。

( 8 分)
E
A2
1
D
11. 如图所示,已知∠B=∠ C,AD∥ BC,试说明: AD平分∠ CAE
B C
E
A D
12、如图所示,已知AD是∠ EAC的平分线, AD∥BC,∠ B=300求
B C
∠ DAE,∠ DAC,∠ C的度数。

( 12 分)
13.如图,,∠ 1 = ∠ 2, EF ∥ AD, 试说明 DG∥AB.
14. 如图, EF∥ AD,∠ 1 = ∠ 2,∠ BAC = 70 °。

将求∠ AGD
15.已知:如图, D、E、 F 分别是 BC、CA、 AB上的点, D∥AB, DF∥AC
试说明∠ FDE=∠ A
6、已知:如图,直线AB∥ CD,直线 EF分别交 AB, CD于点 E, F,
∠ BEF的平分线与∠ DFE的平分线相交于点P.试求∠ P 的大小.
E
A B
P
F
C D。

相关文档
最新文档