专题3.1 动量和能量答案2
动量和能量一章习题解答
习题3—8 一个人从10.0m深的井中提水,起始桶中装有10.0kg的水,由 于水桶漏水,每升高1.00m要漏去0.20kg的水。求水桶被匀速地从井中 提到井口人所作的功。 解:依题意,桶中水的质量随桶到井底的距离x的变化关系为 因此,水桶被匀速地从井中提到井口人所作的功为
解:∵ ,
45˚ B Y X O A B A 图2-22
∴ (N•s)
[注意:本题已给出坐 标系,用矢量列式进行 计算更方便]
习题3—7 高空作业时系安全带是必要的。假如一质量为51.0kg的人在 操作时不慎从高空跌落下来,由于有安全带的保护,最终使他被悬挂起 来。已知此时人离原处的距离为2.0m,安全带弹性缓冲作用时间为 0.50s,求安全带对人的平均冲力。
(C) A2方向。 (D) A3方向。 解:小球与平板组成的系统在水平方向动量守恒,小球与平板碰撞
后小球仍旧保持原来的水平速度;在竖直方向,由于是完全弹性碰撞而 且小球与平板的质量相等,因而碰撞后两者交换速度,即碰后小球竖直 方向的速度为零。综合上述分析可知,碰撞后小球以原水平速度v向右 运动。所以应该选择答案(C).
习题3―19图
习题3—19 质量为m的平板A(体 积不计),用竖立的弹簧支持而处 在水平位置,如图。从平台上投 掷一个质量为m的球B,球的初速 为v,沿水平方向。球由于重力作 用而下落,与平板发生完全弹性 碰撞,且假定平板是光滑的。则 球与平板碰撞后的运动方向应为 [ ] (A) A0方向。 (B) A1方向。
(2) 由引力势能公式,可得卫星的势能为 (3) 卫星的机械能为
动量与能量综合专题
动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。
当两个或多个物体相互作用时,它们的总动量保持不变。
这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。
在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。
2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。
3、方向:动量是矢量,具有方向性。
在计算动量的变化时,需要考虑动量的方向。
二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。
这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。
在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。
2、转化与转移:能量的转化和转移是不同的。
转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。
3、方向:能量的转化和转移是有方向的。
在计算能量的变化时,需要考虑能量的方向。
三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。
当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。
因此,在解决复杂问题时,需要综合考虑动量和能量的因素。
例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。
这些情况的发生不仅与物体的动量有关,还与物体的能量有关。
如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。
因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。
四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。
高中物理解题高手:专题13动量守恒和能量守恒
高中物理解题高手:专题13动量守恒和能量守恒动量守恒和能量守恒[重点难点提示]动量和能量是高考中的必考知识点,考查题型多样,考查角度多变,大部分试题都与牛顿定律、曲线运动、电磁学知识相互联系,综合出题。
其中所涉及的物理情境往往比较复杂,对学生的分析综合能力,推理能力和利用数学工具解决物理问题的能力要求均高,常常需要将动量知识和机械能知识结合起来考虑。
有的物理情景设置新颖,有的贴近于学生的生活实际,特别是多次出现动量守恒和能量守恒相结合的综合计算题。
在复习中要注意定律的适用条件,掌握几种常见的物理模型。
一、解题的基本思路:解题时要善于分析物理情境,需对物体或系统的运动过程进行详细分析,挖掘隐含条件,寻找临界点,画出情景图,分段研究其受力情况和运动情况,综合使用相关规律解题。
⑴由文字到情境即是审题,运用D图象语言‖分析物体的受力情况和运动情况,画出受力分析图和运动情境图,将文字叙述的问题在头脑中形象化。
画图,是一种能力,又是一种习惯,能力的获得,习惯的养成依靠平时的训练。
⑵分析物理情境的特点,包括受力特点和运动特点,判断物体运动模型,回忆相应的物理规律。
⑶决策:用规律把题目所要求的目标与已知条件关联起来,选择最佳解题方法解决物理问题。
二、基本的解题方法:阅读文字、分析情境、建立模型、寻找规律、解立方程、求解验证⑴分步法(又叫拆解法或程序法):在高考计算题中,所研究的物理过程往往比较复杂,要将复杂的物理过程分解为几步简单的过程,分析其符合什么样的物理规律再分别列式求解。
这样将一个复杂的问题分解为二三个简单的问题去解决,就化解了题目的难度。
⑵全程法(又叫综合法):所研究的对象运动细节复杂,但从整个过程去分析考虑问题,选用适合整个过程的物理规律,如两大守恒定律或两大定理或功能关系,就可以很方便的解决问题。
⑶等效法(又叫类比法):所给的物理情境比较新颖,但可以把它和熟悉的物理模型进行类比,把它等效成我们熟知的情境,方便的解决问题。
安徽庐江二中高三物理二轮复习----动量和能量(2)
专题训练——动量和能量(2)一、单项选择题1.如图所示,图线表示作用在某物体上的合外力随时间变化的关系,若物体开始时是静止的,那么( )A .前3 s 内合外力对物体做的功为零B .前5 s 内物体的动能变化量为零C .在前5 s 内只有第1 s 末物体的动能最大D .在前5 s 内只有第5 s 末物体的速率最大2.质量为g k 1023⨯、发动机的额定功率为80kw 的汽车在平直公路上行驶,若汽车所受阻力大小恒为N 3104⨯,则下列说法错误的是( )A .汽车的最大速度是20m/sB .若汽车保持额定功率启动,则当其速度为5m/s 时,加速度为6m/s 2C .汽车维持加速度2m/s 2匀加速运动的时间最多为10sD .汽车以加速度2m/s 2匀加速启动,启动后第2s 末时发动机的实际功率是32kw3.如图甲所示,斜面AB 与水平面BC 是由同种材料制成的。
质量相等的可视为质点的a 、b 两物块,从斜面上的同一位置A 由静止开始下滑,经B 点在水平面上滑行一段时间后停止。
不计经过B 点时的能量损失,用传感器采集到它们的速度—时间图象如图乙所示,则由上述信息判断下列说法正确的是( )A .在斜面上滑行的加速度物块a 比物块b 的小B .在水平面上滑行的距离物块a 比物块b 的小C .与斜面间的动摩擦因数物块a 比物块b 的小D .在整个运动过程中克服摩擦力做的功物块a 比物块b 多4.如图所示,一条轻绳一端通过定滑轮悬挂一个质量为m 的重物,在另一端施加拉力F ,使重物从地面由静止开始加速向上运动。
当重物上升高度为h 时,轻绳断开,不计一切摩擦,则( )A .重物从开始向上加速到轻绳断开的过程中重力势能的增量为FhB .轻绳断开瞬间重物重力的瞬时功率为-2(F -mg )mg 2hC .重物上升过程中机械能守恒D .重物落地前瞬间的动能为Fh ﹢mgh5.质量分别为2m 和m 的A 、B 两球之间压缩一根轻弹簧,静置于光滑水平桌面上。
动量与能量部分习题分析与解答共23页
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。量与能量部分习题分析与解 答
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
动量和能量
1.机车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,下列说法正确的是( )A .机车输出功率逐渐增大B .机车输出功率不变C .在任意两相等时间内,机车动能变化相等D .在任意两相等时间内,机车动量变化大小相等答案:AD详解:阻力不变时的匀加速,说明牵引力恒定,速度逐渐变大,于是根据P = Fv ,P 逐渐增大。
任意两相等的时间内,速度变化大小相等。
于是动量变化大小相等。
动能要有速度的平方,动能变化不等。
2.如图所示,用轻弹簧连接的木块A 和B 放在光滑水平面上,木块A 紧靠竖直墙壁,一颗子弹沿水平方向射入木块B 后留在其中,由子弹、弹簧、木块A 和B 组成的系统,在下列的四个过程中,(1) 动量不守恒,机械能守恒的是( ) (2) 机械能不守恒,动量守恒的是( ) (3) 动量和机械能都守恒的是( )A .子弹进入B 的过程B .带子弹的木块B 向左运动,直到弹簧压缩至最短的过程C .弹簧推着带子弹的木块B 向右运动,直到弹簧恢复原长的过程D .带子弹的木块B 继续向右运动,直到弹簧达到最大伸长答案:(1)BC (2)A (3)D子弹进入B ,机械能必然不守恒,有一部分转化为内能了。
动量守恒。
(注意,因为B 项单独列出木块B 运动,因此认为此时木块B 还没有位移) BCD 三项明显都是机械能守恒,其中满足动量守恒的只有D. 因为BC 情况系统水平方向是要受到墙的作用力的。
3.两个木块A 和B 的质量分别为3=A m kg,2=B m kg ,A 、B 之间用一轻弹簧连接在一起.A 靠在墙壁上,用力F 推B 使两木块之间弹簧压缩,地面光滑,如图3所示。
当轻弹簧具有8J 的势能时,突然撤去力F 将木块B 由静止释放.求:(1)撤去力F 后木块B 能够达到的最大速度是多大?(2)木块A 离开墙壁后,弹簧能够具有的弹性势能的最大值多大?3、s m v m /22= J E m 8.4=图34.(A)如图所示,两个质量都为M 的木块A 、B 用轻质弹簧相连放在光滑的水平地面上,一颗质量为m 的子弹以速度v 射向A 块并嵌在其中,求弹簧被压缩后的最大弹性势能。
高三物理动量、能量计算题专题训练
动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。
现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。
小物块恰能到达圆弧轨道的最高点A 。
取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。
(2)小物块与车最终相对静止时,它距O ′点的距离。
(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?2.(19分)质量m A =3.0kg .长度L =0.70m .电量q =+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。
3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m 、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L ,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n
i内
0
设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为
专题3.1 动量和能量
第- 7 -页专题三 动量和能量第一讲 动能定理与能量守恒要点梳理:1、功的基本问题(1)关于功的计算问题:①W=FL cos α这种方法只适用于恒力做功。
②用动能定理W=ΔE k 或功能关系求功。
当F 为变力时,往往考虑用这种方法求功。
(2)关于求功率问题:①tW P = 所求出的功率是时间t 内的平均功率。
②功率的计算式:θcos Fv P =,其中θ是力与速度间的夹角。
一般用于求某一时刻的瞬时功率。
(3)常见力做功的特点:①重力做功和路径无关,只与物体始末位置的高度差h 有关:W=mgh , 当末位置低于初位置时,W >0,即重力做正功;反之重力做负功。
②滑动摩擦力做功与路径有关。
滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。
在两个接触面上因相对滑动而产生的热量相对滑S F Q =,其中滑F 为滑动摩擦力,相对S 为接触的两个物体的相对路程。
2.动能和动能定理K E mv mv W ∆=-=21222121合 ①不管是否恒力做功,该定理都成立;对于变力做功,应用动能定理要更方便、更迅捷。
②动能为标量,但21222121mv mv E K -=∆仍有正负,分别表示动能的增减。
3.功能关系的几个常用公式:①物体动能的增量由外力做的总功来量度,即:K E W ∆=外; ②物体重力势能的增量由重力做的功来量度,即:P GE W ∆-=;③物体机械能的增量由重力以外的其他力做的功来量度,即:E W ∆=其他,当0=其他W 时,说明只有重力做功,所以系统的机械能守恒;④一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。
相对滑S F Q =,其中滑F 为滑动摩擦力,相对S 为接触物的相对路程。
题型分类聚焦: 类型一:功、功率的计算例1:如图1,定滑轮至滑块的高度为h ,已知细绳的拉力为F (恒定),滑块沿水平面由A 点前进S 至B 点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。
专题二:动量和能量(定稿和答案)
动量和能量概述:处理力学问题、常用的三种方法一是牛顿定律;二是动量关系;三是能量关系。
若考查的物理量是瞬时对应关系,常用牛顿运动定律;若研究对象为一个系统,首先考虑的是两个守恒定律;若研究对象为一个物体,可优先考虑两个定理。
特别涉及时间问题时,优先考虑的是动量定理、而涉及位移及功的问题时,优先考虑的是动能定理。
两个定律和两个定理,只考查一个物理过程的始末两个状态,对中间过程不予以细究,这正是它们的方便之处,特别是变力问题,就显示出其优越性。
动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。
分析这类问题时,应首先建立清晰的物理图景、抽象出物理模型、选择物理规律、建立方程进行求解。
P G E W ∆-=,弹簧弹簧E W ∆-=,分子分子E W ∆-=,电势能电场E W ∆-= 0=洛仑兹力W消耗的电能安培力安培力=>W W 0,,产生的电能安培力安培力=<W W 0, 机非E W ∆= K E W ∆=合力 Q fs =相对Q W E +=∆ max K E W h +=ν一、各个物理规律的条件例1. 如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 靠紧竖直墙。
用水平力F 将B 向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E 。
这时突然撤去F ,关于A 、B 和弹簧组成的系统,下列说法中正确的是 (BD ) A.撤去F 后,系统动量守恒,机械能守恒B.撤去F 后,A 离开竖直墙前,系统动量不守恒,机械能守恒C.撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为ED.撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为E /3[A 离开墙前墙对A 有弹力,这个弹力虽然不做功,但对A 有冲量,因此系统机械能守恒而动量不守恒;A 离开墙后则系统动量守恒、机械能守恒。
A 刚离开墙时刻,B 的动能为E ,动量为p =mE 4向右;以后动量守恒,因此系统动能不可能为零,当A 、B 速度相等时,系统总动能最小,这时的弹性势能为E /3。
动量和能量的综合问题-高考物理复习
(2)小物块第一次返回到B点时速度v的大小; 答案 8 m/s
当小物块第一次回到B点时,设车和子弹的速度为v3,取水平向右为 正方向,由水平方向动量守恒有(m0+M)v1=(m0+M)v3+mv 由能量守恒定律有 12(m0+M)v12=12(m0+M)v32+12mv2 联立解得v3=2 m/s,v=8 m/s, 即小物块第一次返回到B点时速度大小为v=8 m/s.
1234
(2)从C球由静止释放到第一次摆到最低点的过程中,B
移动的距离;
答案
l 3
对A、B、C组成的系统,由人船模型规律可得mxC=2mxAB, xC+xAB=l 联立解得从 C 球由静止释放到第一次摆到最低点的过程中,B 移动 的距离为 xAB=3l .
1234
(3)C球向左摆动的最高点距O点的竖直高度.
⑩
设在M点轨道对物块的压力大小为FN,
则 FN+mg=mvRM2
⑪
由⑩⑪解得FN=(1- 2 )mg<0,假设不成立,即物块B不能到达M点.
(3)物块A由静止释放的高度h. 答案 1.8 m
物块A、B的碰撞为弹性正碰且质量相等,
碰撞后速度交换,则vA=v0=6 m/s ⑫
设物块A释放的高度为h,对下落过程,根
(3)求平板A在桌面上滑行的距离.
答案
3 8m
A、B碰撞后,A向左做匀减速直线运动,B向左做匀加速直线运动,
则对B有μmBg=mBaB 对A有μmBg+μ(mB+mA)g=mAaA 解得aA=6 m/s2,aB=2 m/s2 设经过时间t,两者共速,则有v=aBt=vA-aAt 解得 v=12 m/s,t=14 s 此过程中A向左运动距离 x1=vA+2 vt=2+2 12×14 m=156 m
高中物理压轴题04 用动量和能量的观点解题(解析版)
压轴题04用动量和能量的观点解题1.本专题是动量和能量观点的典型题型,包括应用动量定理、动量守恒定律,系统能量守恒定律解决实际问题。
高考中既可以在选择题中命题,更会在计算题中命题。
2024年高考对于动量和能量的考查仍然是热点。
2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。
3.用到的相关知识有:动量定理、动量守恒定律、系统机械能守恒定律、能量守恒定律等。
近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型为弹性碰撞,完全非弹性碰撞,爆炸问题等。
考向一:动量定理处理多过程问题1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。
2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。
3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。
(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小。
4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程。
研究过程既可以是全过程,也可以是全过程中的某一阶段。
(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力。
(3)规定正方向。
(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考向二:动量守恒定律弹性碰撞问题两球发生弹性碰撞时应满足动量守恒和机械能守恒。
以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m 1v 21=12m 1v ′21+12m 2v ′22②由①②得v ′1=m 1-m 2v 1m 1+m 2v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度。
动能定理和动量定理专题
例1 如图2-1所示,单摆的质量为m、摆长为l,最大摆角为θ(θ<100),则在摆球从最高点第一次运动到平衡位置的过程中,求:(1)重力的冲量;(2)合外力的冲量?图2-1 例2 在一次抗洪抢险活动中,解放军某部动用直升飞机抢救落水人员,静止在空中的直升飞机上电动机通过悬绳将人从离飞机90m处的洪水中吊到机舱里.已知人的质量为80kg,吊绳的拉力不能超过1200N,电动机的最大输出功率为12kw,为尽快把人安全救起,操作人员采取的办法是:先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当人到达机舱时恰好达到最大速度.(g=10m/s2)求:(1)人刚到达机舱时的速度;(2)这一过程所用的时间.例3 蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60kg 的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m高处.已知运动员与网接触的时间为1.2s.若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小.(g=10m/s2)例4 有一宇宙飞船,以v=10km/s的速度进入分布均匀的宇宙微粒区,飞船每前进s =1km与n=1×104个微粒相碰.已知每个微粒的质量m=2×10-4g.假如微粒与飞船碰撞后附于飞船上,则要保持飞船速度不变,飞船的牵引力应增加多少?1.下列说法中正确的是 ( )A .一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同B .一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反C .在同样时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反D .在同样时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反2.质量为m 的物体以初速度v 0水平抛出,经过时间t ,下降的高度为h ,速率变为v ,在这段时间内物体动量变化量的大小为 ( )A .m (v -v 0)B .mgtC .22v v mD .gh m 23.古有“守株待兔”的寓言。
动量守恒定律与能量守恒定律
第三章动量守恒定律与能量守恒定律1)一.选择题:1.一质量为M的斜面原来静止于水平光滑平面上,将一质量为m的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将(A)保持静止.(B)向右加速运动.(C)向右匀速运动.(D)向左加速运动.2.人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒.[3.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A和B,用L和E K分别表示卫星对地心的角动量及其动能的瞬时值,则应有(A)L A>L B,E KA>E KB. (B)L A=L B,E KA V E KB.(C)L A=L B,E KA>E KB.(D)L A V L B,E KA V E KB.[]二.填空题:1.一质量为5kg的物体,其所受的作用力F随时间的变化关系如图所示.设物体从静止开始沿直线运动,则20秒末物体的速率v=.2.一物体质:量M=2kg,在合外力F=(3+2t)i(SI)的作用下,从静止开始运动,式中「为方向一定的单位矢量,则当t=1s时物体的速度v:=三.计算题:如图所示,质量为M的滑块正沿着光滑水平地面向右滑动.一质量为m的小球水平向右飞行,以速度v i(对地)与滑块斜面相碰,碰后竖直向上弹起,速率为V2(对地).若碰撞时间为&,试计算此过程中滑块对地的平均作用力和滑块速度增量的大小.答案:一.选择题ACC二.填空题15m/s22m/s三.计算题:解:(1)小球m在与M碰撞过程中给M的竖直方向冲力在数值上应等于球的竖直冲力.而此冲力应等于小球在竖直方向的动量变化率即:一mv2f2.:t由牛顿第三定律,小球以此力作用于M,其方向向下.对M,由牛顿第二定律,在竖直方向上N—Mg—f=0,又由牛顿第三定律,M给地面的平均作用力也为mv2F=fMg=Mg方向竖直向下.(2)同理,M受到小球的水平方向冲力大小应为7'=——.:t方向与m原运动方向一致根据牛顿第二定律,对M有f'=M包,_寸利用上式的「,即可得Av=mv1/M第三章动量守恒定律与能量守恒定律(2)一 .选择题:3分3分M对小2分1分1分1分1分1.质量为20g的子弹沿X轴正向以500m/s的速率射入一木块后,与木块一起仍沿X轴正向以50m/s的速率前进,在此过程中木块所受冲量的大小为(A)9Ns-.(B)-9Ns•.(C)10Ns.(D)-10Ns•.[2.体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达.(B)乙先到达.(C)同时到达.(D)谁先到达不能确定.[3.一质点作匀速率圆周运动时,(A)它的动量不变,对圆心的角动量也不变.(B)它的动量不变,对圆心的角动量不断改变.(C)它的动量不断改变,对圆心的角动量不变.(D)它的动量不断改变,对圆心的角动量也不断改变.[二 .填空题:1.质量为M的车以速度V0沿光滑水平地面直线前进,车上的人将一质量为m的物体相对于车以速度u竖直上抛,则此时车的速度v=2.如图所示,流水以初速度V I进入弯管,流出时的速度为V2,且V1=V2=V.设每秒流入的水质量为q,则在管子转弯处,水对管壁的平均冲力大小是,方向A:(管内水受到的重力不考虑)三 .计算题:1.有一水平运动的皮带将砂子从一处运到另一处,砂子经一竖直的静止漏斗落到皮带上,皮带以恒定的速率v水平地运动.忽略机件各部位的摩擦及皮带另一端的其它影响,试问:(1)若每秒有质量为q m=dM/dt的砂子落到皮带上,要维持皮带以恒定速率v运动,需要多大的功率?(2)若q m=20kg/s,v=1.5m/s,水平牵引力多大?所需功率多大?2.人造地球卫星绕地球中心做椭圆轨道运动,若不计空气阻力和其它星球的作用,在卫星运行过程中,卫星的动量和它对地心的角动量都守恒吗?为什么?答案一.选择题ACC二.填空题1V03分2qv2分竖直向下1分三.计算题:1.解:(1)设t时刻落到皮带上的砂子质量为M,速率为v,t+dt时刻,皮带上的砂子质量为M+dM,速率也是v,根据动量定理,皮带作用在砂子上的力F的冲量为:Fdt=(M+dM)v—(Mv+dM-0)=dMv2分F=vdM/dt=vq m1分由第三定律,此力等于砂子对皮带的作用力F,即F=F.由于皮带匀速运动,动力源对皮带的牵引力F〃=F,1分因而,F"=F,F”与v同向,啰力源所供给的功率为:P=Fv=vvdM/dt=v2q m2分(2)当q m=dM/dt=20kg/s,v=1.5m/s时,水平牵引力F"=vq m=30N2分所需功率P=v2q m=45W2分2.答:人造卫星的动量不守恒,因为它总是受到外力——地球引力的作用.2分人造卫星对地心的角动量守恒,因为它所受的地球引力通过地心,而此力对地心的力矩为零.3分一 .选择题:1.用一根细线吊一重物,重物质量为5kg,重物下面再系一根同样的细线,细线只能经受70N的拉力.现在突然向下拉一下下面的线.设力最大值为50N,则(A)下面的线先断.(B)上面的线先断.(C)两根线一起断.(D)两根线都不断.[]2.质量分别为m A和m B(m A>m B)、速度分别为V A和V B(V A>V B)的两质点A和B,受到相同的冲量作用,则(A)A的动量增量的绝对值比B的小.(B)A的动量增量的绝对值比B的大.(C)A、B的动量增量相等.(D)A、B的速度增量相等.[]3.如图所示,砂子从h=0.8m高处下落到以3m/s的速率水平向右运动的传送带上.取重力加速度g=10m/s2.传送带给予刚落到传送带上的砂子的作用力的方向为(A)与水平夹角530向下.(B)与水平夹角530向上.(C)与水平夹角370向上.(D)与水平夹角37°向下.二 .填空题:1.一质量为m的典点沿着二条曲线运动,其位置矢量在空间直角座标系中的表达式为r=acosccti+bsin«tj,其中a、b、e皆为常量,则此质点对原点的角动量L=;此质点所受又t原点的力矩M=.2.地球的质量为m,太阳的质量为M,地心与日心的距离为R,引力常量为G,则地球绕太阳作圆周运动的轨道角动量为L=.3.质量为m的质点以速度—沿一直线运动,则它对该直线上任一点的角动量为.三 .计算题:一炮弹发射后在其运行轨道上的最高点h=19.6m处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S I=1000m,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g=9.8m/s2)。
2025届高考英语复习:经典好题专项(动量和能量的综合问题)练习(附答案)
2025届高考英语复习:经典好题专项(动量和能量的综合问题)练习1. (多选)一个质量为m 的小型炸弹自水平地面朝右上方射出,在最高点以水平向右的速度v 飞行时,突然爆炸为质量相等的甲、乙、丙三块弹片,如图所示。
爆炸之后乙由静止自由下落,丙沿原路径回到原射出点。
若忽略空气阻力,则下列说法正确的是( )A .爆炸后乙落地的时间最长B .爆炸后甲落地的时间最长C .甲、丙落地点到乙落地点O 的距离比为4∶1D .爆炸过程释放的化学能为7m v 232. (2023ꞏ湖南永州市模拟)如图所示,质量均为m 的木块A 和B ,并排放在光滑水平地面上,A 上固定一竖直轻杆,轻杆上端的O 点系一长为L 的细线,细线另一端系一质量为m 0的球C(可视为质点),现将C 球拉起使细线水平伸直,并由静止释放C 球,重力加速度为g ,忽略空气阻力,则下列说法不正确的是( )A .A 、B 两木块分离时,A 、B 的速度大小均为m 0m mgL2m +m 0B .A 、B 两木块分离时,C 的速度大小为2mgL2m +m 0C .C 球由静止释放到最低点的过程中,A 对B 的弹力的冲量大小为2m 0mgL2m +m 0D .C 球由静止释放到最低点的过程中,木块A 移动的距离为m 0L2m +m 03. (多选)如图所示,质量为M 的小车静止在光滑水平面上,小车AB 段是半径为R 的四分之一圆弧轨道,BC 段是长为L 的粗糙水平轨道,两段轨道相切于B 点。
一质量为m 的可视为质点的滑块从小车上的A 点由静止开始沿轨道下滑,然后滑入BC 轨道,最后恰好停在C 点。
已知小车质量M =4m ,滑块与轨道BC 间的动摩擦因数为μ,重力加速度为g ,则( )A .全过程滑块在水平方向上相对地面的位移的大小为R +LB .小车在运动过程中速度的最大值为gR 10C .全过程小车相对地面的位移大小为R +L5 D .μ、L 、R 三者之间的关系为R =μL4. (多选)如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F 。
专题3.2 动量和能量答案
动量和能量 第二讲答案变形1:分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。
0v mv 21=+M两边乘以t ,得:mx=My 而x+y=L可以解出x 和y ,这与“人船模型”的结果一样。
变形2:分析 选定气球和猴子为一个系统,在猴子沿绳子下滑着地前的整个过程中,系统在竖直方向上所受合外力为零,因此,在竖直方向上每时每刻动量守恒,与人船模型类同。
解:设猴子从开始下滑到着地历时t ,其间气球又上升了h ,由动量守恒定律得 M v 1 – m v 2 = 0两边乘以t ,可得 M h – m H = 0 解得 h = Hm/M因此,所求绳长至少应为H+h=H Mm )1(+变形3: 解析:子弹打入沙箱, 动量守恒,v m m v m 000)(+=此后由沙箱和子弹组成的系统机械能守恒,当沙箱上摆到最高点时, gh m m v m m 21020)()(+=+ 联系以上两式,则沙箱上升的最大高度为:202020m m g 2v m h )(+= 练习1:子弹射入木块时,可认为木块未动。
子弹与木块构成一个子系统,当此系统获共同速度v 1时,有 m 0v 0 =(m 0+m)v 1 ①此后木块(含子弹)以v 1向左滑,不滑出小车的条件是:到达小车左端与小车有共同速度v 2,则 (m 0+m)v 1 =(m 0+m+M)v 2 ②22022100)(2121)(21)(v M m m Mv v m m gL m m ++-++=+μ 22022100)(2121)(21)(v M m m Mv v m m gL m m ++-++=+μ ③ 联立解得 v 0=150m/s 为最大值,∴v 0≤150m/s 练习2:⑴当物块相对小车静止时,它们以共同速度v 做匀速运动,相互作用结束,v 即为小车最终速度根据动量守恒定律 mv 0=2mv 解得v=v 0/2=3m/s ⑵22022121mv mv mgS ⋅-=μ S=6m ⑶次65.615.0==+--=dl S n ⑷物块最终仍停在小车正中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量和能量 第一讲答案
训练1:(1)根据动量守恒:v M m mv )(0+= 系统机械能的减少量:2220111222
E mv mv Mv mgl μ∆=--= (2)m 、M 相对位移为l ,根据能量守恒得:Q mgl μ=,可解出L
训练2:小球与斜面之间的摩擦力对小球做功使小球的机械能减小,选项A 错误;在小球运动的过程中,重力、摩擦力对小球做功,绳的张力对小球不做功.小球动能的变化等于重力、摩擦力做功之和,故选项B 、D 错误,C 正确. 训练3:(1)由A 到B 过程,根据动能定理:mgR=2
1m v 2 ∴物体到达B 点时的速率v =gR 2=8.0102⨯⨯=4m/s (2)由A 到C 过程,由动能定理:mgR -μmgs =0 ∴ 物体与水平面间的动摩擦因数μ=R /s =0.8/4=0.2 训练4:(1)根据机械能守恒 E k =mgR
(2)根据机械能守恒 ΔE k =ΔE p mv 2=12
mgR 小球速度大小 v=gR 速度方向沿圆弧的切线向下,与竖直方向成30°
(3)根据牛顿运动定律及机械能守恒,在B 点N B -mg=m v B 2R ,mgR =12
mv B 2 解得 N B =3mg 在C 点:N C =mg 训练5: ①小球经过B 点时,重力与支持力的合力提供向心力,由公式可得:R
v m mg F B NB
2=- 解得:mg F NB 3= ②小球离开B 点后做平抛运动,在竖直方向有:221gt R H =- 水平方向有:t v S B = 解以上两式得: R R H S )(2-= ③由R R H S )(2-=,根据数学知识知,当R R H =-(即2
1=H R )时,S 有最大值,其最大值为:H R R S m ===222 训练6:(1)物块沿斜面下滑C 到B 的过程中,在重力、支持力和摩擦力作用下做匀加速运动,设下滑到达斜面底端B 时的速度为v ,则由动能定理可得:21cos 0sin 2
h mgh mg mv μθθ-⋅=- 所以
v = 代入数据解得:0.6=v m/s (2)设物块运动到圆轨道的最高点A 时的速度为v A ,在A 点受到圆轨道的压力为N 。
物块沿圆轨道上滑B 到A 的过程中由动能定理得:2211222
A mg r mv mv -⋅=- 物块运动到圆轨道的最高点A 时,由牛顿第二定律得:r
v m mg N A 2=+ 由以上两式代入数据解得: N =20N
由牛顿第三定律可知,物块运动到圆轨道的最高点A 时,对圆轨道的压力大小N A =N =20N
训练7:20381mv M m E ⎪⎭⎫ ⎝⎛
-=∆ g
h M mv s 20=。