制冷
第1章制冷方法-PPT课件
2.4.1
布雷顿制冷循环
一、等熵膨胀制冷 高压气体绝热可逆膨胀过程,称为等 熵膨胀。气体等熵膨胀时,有功输出, 同时气体的温度降低,产生冷效应。 常用微分等熵效应 α s 来表示气体等熵 膨胀过程中温度随压力的变化
T αs p s
因 α s 总为正值,故气体等熵膨胀时温度总 是降低,产生冷效应。
2.1 物质相变制冷
气体
凝华
升华 冷凝 凝固 熔解 蒸发
固体
液体
液体蒸发制冷
NEXT
2.1.1 蒸气压缩式制冷
包含: 压缩机 冷凝器 节流阀 蒸发器
2.1.2 蒸气吸收式制冷
包含: 吸收器 发生器 溶液泵 热交换器 冷凝器 节流阀 蒸发器
工作原理:一定的液体对某种制冷剂气 体的吸收能力随温度不同而变化
吸收工质对∶水-氨;溴化锂水溶液-水
消耗热能
2.1.3 吸附式制冷
工作原理:一定的固体吸附剂对某种制 冷剂气体的吸附能力随温度不同而变化
间歇制冷,可采用两个以上吸附器实现 连续制冷
吸附工质对∶沸石-水;硅胶-水;活性炭
-甲醇;氯化锶-氨;氯化钙-氨
有物理吸附和化学吸附两种方式
如果将电源极性互换,则电偶对的制冷端 与发热端也随之互换。
NEXT
多级热电堆
一对电偶的制冷量是很小的,如φ 6xL7 的电偶对,其制冷量仅为3.3~4.2kJ/h
为了获得较大的冷量可将很多对电偶对 串联成热电堆,称单级热电堆
单级热电堆在通常情况下只能得到大约 50℃的温差。为了得到更低的冷端温度,可 用串联、并联及串并联的方法组出多级热电 堆,图2-166示出多级热电堆的结构型式。
顺磁体:不同的磁介质产生的附加磁
制冷知识
绪论:一、制冷(Refrigeration )1. 定义:通过人工的方法,把某物体或某空间的温度降低到低于周围环境的温度,并使之维持在这一低温的过程。
实质:热量的转移的过程。
(注意和“冷却”的区别)2. 制冷途径:a. 天然冷源b. 人工制冷天然冷源:用深井水或“冬季采冰以供夏用”。
二、人工制冷我们都知道,热量传递终是从高温物体传向低温物体,直至二者温度相等。
热量决不可能自发地从低温物体传向高温物体,这是自然界的客观规律。
然而,现代人类的生活与生产经常需要某个物体或空间的温度低于环境温度,甚至低得很多。
例如,储藏食品需要把食品冷却到0℃左右或-15℃左右,甚至更低;合金钢在-70℃~-90℃低温下处理后可以提高硬度和强度。
而这种低温要求天然冷却是达不到的,要实现这一要求必须有另外的补偿过程(如消耗一定的功作为补偿过程)进行制冷。
这种借助于一种专门装置,消耗一定的外界能量,迫使热量从温度较低的被冷却物体或空间转移到温度较高的周围环境中去,得到人们所需要的各种低温,称为人工制冷。
而这种实现制冷所需要的机器和设备的总和就称为制冷装置或制冷机。
制冷机中使用的工作物质称为制冷剂。
制冷程度:人工制冷可以获得的温度。
制冷的方法:1. 液体汽化制冷(蒸汽制冷):利用液体汽化吸热标准大气压下,1kg 液氨汽化可吸收1371 的热量,且气体温度低达-33.4 ℃;p =870pa 时,水在5 ℃下即可沸腾,吸热2489kJ/kg 。
分类:蒸汽压缩制冷、吸收式制冷、蒸汽喷射式制冷, 吸附式制冷2. 气体膨胀制冷:将高压气体做绝热膨胀,使其压力、温度下降,利用降温后的气体来吸取被冷却物体的热量从而制冷。
3. 热电制冷(半导体制冷):利用某种半导体材料的热电效应。
建立在帕尔帖(peltire) 效应(电流流过两种不同导体的界面时,将从外界吸收热量,或向外界放出热量)原理上。
三、发展概况及应用1. 发展概况:制冷技术是从19 世纪中叶开始发展起来的,1934 年美国人波尔金斯试制成功了第一台以乙醚为工质、闭式循环的蒸汽压缩式制冷机。
制冷的名词解释是什么
制冷的名词解释是什么制冷是一个广泛应用于日常生活和工业领域的概念。
它是指通过某种方法,将热量从一个物体中转移出来,使得物体的温度降低到我们所期望的程度。
制冷技术的应用非常广泛,包括家用冰箱、空调系统、冷冻食品、医疗设备、化学实验室等众多领域。
在制冷过程中,热量的传递是核心问题。
以家用冰箱为例,当食物放入冰箱中时,冷气循环系统开始工作。
首先,冷冻箱会排出其中的热空气,使冷空气进入冷冻箱内部。
通过循环冷媒流体,将食物上的热量迅速吸走,然后将这些热量通过冷媒带到冰箱的背面。
在那里,通过冷凝器将热量释放到室外环境中。
制冷技术的原理可以追溯到数百年前。
早在公元二世纪,古希腊的发明家克特西比亚斯就发现了一种简单的制冷方法。
他观察到,当擦拭水罐的外表面时,水罐的内部会变得更加寒冷。
他利用这个观察结果开发出了一种简易冷藏设备,成为制冷技术史上的一个重要里程碑。
然而,真正的制冷技术的发展要等到18世纪末。
当时,一个名叫威廉·凯尔文的发明家创建了第一个真正的制冷机。
该机器基于蒸气循环技术,通过蒸发和冷凝来传递热量。
这个发明奠定了现代制冷技术的基础,并为后来的创新提供了重要的指导。
随着科学技术的不断进步,制冷技术也在不断演进。
过去,制冷通常依赖于传统的压缩式制冷,但如今有更多的选择,包括吸附制冷、热泵和磁制冷等。
各种不同类型的制冷方法具有各自的特点和适用范围。
例如,吸附式制冷技术通过使用吸附剂材料来捕获蒸发的液体,进而实现制冷效果。
制冷技术在当今社会已经成为不可或缺的一部分,无论是家庭、商业还是工业环境。
冰箱和空调系统的普及,使得我们的生活更加舒适和便捷。
在工业领域,制冷技术在食品加工、药品制造、电子设备、汽车制造等方面发挥着重要作用。
制冷技术还有助于保鲜食物,延长其保存期限,减少食物浪费。
然而,随着制冷技术的广泛应用和发展,也带来了一些环境和能源方面的问题。
许多传统的制冷系统使用氢氟碳化物(CFCs)或氢氟氯碳化物(HCFCs)作为冷媒,这些化学物质对臭氧层有破坏性。
第三章 制冷
(Tk - T0)↓,ε ↑ → 但Tk ↓受环境条件限制;T0 ↑不利于传热。
二、制冷循环工作参数的确定
1、蒸发温度(T0):随制冷剂的不同而不同。
空气载冷: T0比冷库空气温度低8~12℃; 盐水载冷: T0比盐水温度低4~6℃。 2、冷凝温度(Tk):由冷凝器型式、冷凝介质的温度决定。 水冷却: Tk=t+(4~5℃)
例2、在氨蒸气压缩制冷循环中,蒸发温度和冷凝温 度分别为-20℃和20℃,制冷量为20冷吨(日
本)。氨在冷凝器中的放热速率为100kJ/s,氨
回热循环:将蒸发器产生的低温低压蒸汽与节流 前的液体工质进行热交换。
1、既可减轻或消除吸汽管道中的有害过热,又能使液 态制冷剂过冷。 2、制冷剂过冷,将增加循环的制冷量△ q0 ,但功耗 也增大△W,其制冷系数是否提高,视具体操作条 件和制冷剂种类而异。 3、当Tk=30℃,T0在普通制冷温度范围内时,对F-12 采用回热循环是有利的;对于氨是不利的;F-22 介于两者之间,即制冷无大的变化。
233 Tk 273 T2 273 T0 299 Tk 273 T0 273 Tk
预热 系数 排气 温度 冷凝 温度
立式: b=0.001 温度℃
立式压缩机:
ηm — 机械效率。指示功率Ni与轴功率Nz之比。机械摩擦损失。
m
Ni Nz
m 0.8 ~ 0.95
ηD — 传动效率。轴功率Nz与实际功率N之比。传动机构的完 善程度。 传动效率ηD 的取值:
(t为冷凝器排水温度,进出水的温差取2~3℃)
空气冷却: Tk=t’+(8~12℃) (t’为冷凝器排气温度) (立、卧式、淋激式冷凝器)
3、压缩机的吸汽温度(T1):为控制过热点温度。 低压蒸汽过热有害,使压缩机功耗↑,可通过控制冷凝温 度,回收一部分过热能量。 吸汽温度取决于回汽的 过热度 。若不考虑回汽 的过热,则T1≈T0,实际上, 自蒸发器的低压蒸汽进 压缩机前将在吸汽管中 吸收周围空气的热量,温 度升高,比容增大,叫蒸汽 过热。
制冷名词解释
名词解释(chase.zx)1.制冷系数:单位功耗所能获得的冷量,以电能或机械能驱动的制冷剂引入制冷系数来衡量2.(热泵)供热系数:单位功耗所能放出的热量,对于热能驱动方式的制冷剂,引用热力系数来衡量3.制冷效率:评价实际制冷循环的热力学完善程度(与可以循环的接近程度)4.热力完善度:工作于相同温度间的实际循环的制冷系数与逆卡诺循环的制冷系数之比。
5.制冷:用人工的方法在一定时间和一定空间内将物体冷却,使其温度降到环境温度以下,并保持这个温度。
6.制冷剂:是制冷机中的工作介质,他在制冷机系统中循环流动,通过自身热力状态的变化与外界发生能量的交换,从而达到制冷的目的。
7.氟利昂:卤代烃,是链状饱和碳氢化物的氟氯溴衍生物的总称。
8.膨润作用:不溶解,但能使它们变软膨胀和起泡。
9.载冷剂:在间接冷却系统中,用于传递冷量的中间介质。
10.单功轴功率制冷量:压缩机的制冷量与输至压缩机轴上的功率之比。
11.能效比:在额定工况和规定条件下,空调进行制冷运行时实际制冷量与实际输入功率值比。
12.性能系数:单位制冷量与制冷消耗功率之比。
13.容积效率:压缩机实际输气量与理论输气量之比。
14.输气系数:压缩机容积效率,同上。
15.喘振现象:离心式压缩机的流量和能量在瞬间内发生不稳定的周期性反复变化的现象。
16.混合热:多种不同的物质相互混合形成均相系统时产生的热效应。
17.二元溶液:由两种成分所组成的溶液成为二元溶液。
18.发生不足:在发生器稀溶液与蒸汽由于接触时间不足,在流动过程中存在不足,导致压力不等,产生发生不足。
19.吸收不足:在吸收器中浓溶液与制冷剂由于接触时间不够,在流动过程中存在不足,发生吸收不足。
20.吸收不足:进入吸收器的浓溶液,由于溶液温度过高或蒸发压力过低,导致完成吸收过程而流出吸收器的稀溶液浓度过高,携带的制冷剂蒸发量降低的现象。
21.轴功率:由原动机传到压缩机曲轴上的功率。
22.指示功率:直接用于压缩气体的功率。
制冷的概述
螺杆式制冷压缩机
Page 14
涡旋式制冷压缩机
Page 15
涡旋式制冷压缩机
Page 16
离心式制冷压缩机 实物图
Page 17
实物图
旋转式压缩机
Page 18
往复活塞式压缩机
Page 19
2)放热冷凝。 冷凝器是输出热量的设备, 把压缩机排出 的高温高压制冷剂蒸汽,通过散热器散热冷 凝为液体制冷剂。制冷剂从蒸发器中吸收的 热量和压缩机产生的热量,被冷凝器周围的 冷却介质所吸收而排出系统。
Page 20
立式壳管式冷凝器
Page 21
卧式壳管式冷凝器
Page 22
冷凝器图片
丝管式冷凝器
翅片式 冷凝器
Page 23
蛇炮(套管式冷凝器)
汽车空调冷凝器 风冷式冷凝器
Page 24
3)节流降压
节流机构的作用:节流阀对制冷剂起节流降压 作用并调节进入蒸发器中的制冷剂流量。它在通道 某处的流通截面积急速变小,当液体经过该处时, 会受到较大的阻力,待流出狭道时,压力显著下降, 同时伴随温度下降。
一、蒸气压缩式制冷循环 1、蒸气压缩式制冷系统
蒸气压缩式制冷系统,由压缩机、冷凝器、膨 胀阀(又称节流阀)、蒸发器四个部分组成。
Page 8
减压作用, 变成低温 低压制冷 剂液体
通过冷却放热 变成高压常温
液体
液体降压蒸发变 成气体同时吸热
温度下降
吸收来自蒸 发器的气体 压缩成高温 高压气体
Page 9
冷循环的动力设备,在正 向循环中锅炉消耗热能, 产生压力为0.198~ 0.98MPa的工作蒸汽,以 保证完成循环。在工业制 冷中也可利用能保证工作 压力的工业余汽,以节约 能源。在循环中,锅炉产 生的高压水蒸汽通过阀件 等部件输送到蒸汽喷射式 制冷循环的主喷射器和各 个辅助喷射器。
冷库制冷工作原理
冷库制冷工作原理
冷库制冷工作原理主要涉及以下几个方面:
1. 蒸发冷却:冷库制冷工作原理的核心是蒸发冷却。
冷库内部的制冷剂(通常是氨或氟利昂)通过蒸发吸收空气中的热量,使空气温度下降。
制冷剂处于低压状态下,进入蒸发器(蒸发器通常是冷库内部的冷凝器),通过蒸发时吸热的过程,将空气中的热量吸收并转化为气态制冷剂。
2. 压缩机的作用:低温的气态制冷剂被压缩机抽入,通过增加制冷剂的压力来提高其温度。
高温高压的制冷剂进入冷凝器,通过散热器散发热量,使制冷剂冷却并变成液态。
3. 冷凝器散热:制冷剂在冷凝器中散热,将吸收的热量释放到外部环境中。
冷凝器通常是由散热器和风扇组成,使制冷剂再次变成低温液态。
4. 膨胀阀的作用:低温液态制冷剂通过膨胀阀进入蒸发器,膨胀阀通过限制制冷剂的流速和流量,使其进入蒸发器时温度和压力降低。
通过以上的循环过程,冷库中的空气温度得以降低,实现制冷效果。
整个制冷过程中,制冷剂不断循环流动,吸收、释放热量,从而实现对冷库内空气温度的控制。
制冷工作原理
制冷工作原理制冷技术是现代社会中非常重要的一项技术,在日常生活中有很多应用场景,例如家用空调、商业冷柜、医药冷链等。
制冷技术基于热力学原理,通过传递热量来实现物体的冷却,本文将详细介绍制冷工作原理。
1. 热力学基础热力学是现代物理学中一个重要的分支,它研究的是热量和能量之间的转换,以及这些过程中的热力学性质。
在制冷过程中,热力学原理是至关重要的,在这里我们简要介绍一些重要的概念:热力学系统是指处于一定压力、温度和物质组成下的物体。
在制冷系统中,通常将制冷剂和空气视为两个不同的热力学系统。
1.2 热平衡热平衡是指热力学系统之间达到温度平衡的状态。
在制冷系统中,通常通过传导、对流和辐射等方式来实现热平衡。
在热力学中,系统的运行状态可以通过相应的参数来描述,例如压力、温度、物质量等。
热力学过程是指在这些参数变化的过程中系统的状态发生的变化。
2. 制冷循环过程在制冷循环过程中,制冷剂从液态变成气态的过程称为蒸发。
蒸发的过程需要吸收热量,从而使室内空气冷却下来。
2.2 压缩制冷剂在蒸发后,会以气态进入压缩机,在压缩机内被压缩成高温高压的气体。
压缩的过程会产生大量的热量,该热量需要通过冷凝器散发出去。
2.3 冷凝在压缩机之后,制冷剂会被输入到冷凝器中,该过程是使制冷剂从气态变为液态的过程。
在这个过程中,制冷剂会释放出大量的热量,冷凝器会将这些热量散发到空气中,使空气变得更加炎热。
2.4 膨胀在冷凝器之后,制冷剂将以液态再次进入膨胀阀中,这是制冷循环中最重要的步骤之一。
在膨胀阀中,制冷剂会扩散并降低温度和压力,最终流回蒸发器中,从而完成制冷循环过程中的一个完整循环。
3. 制冷系统中的关键部件制冷系统包括多个功能块,其中最基本的是蒸发器、压缩机、冷凝器和膨胀阀。
下面分别介绍这些关键部件的作用。
3.1 蒸发器蒸发器是制冷系统中最重要的组成部分,该部件是制冷循环过程中制冷剂从液态变为气态的地方。
蒸发器通常由许多小管组成,这使得蒸发器表面积增大,使空气更好地与制冷剂接触,从而提高了制冷效果。
常见的五大制冷方法
常见的五大制冷方法
制冷领域常用的制冷方法有以下五种:
第一,利用高压气体的膨胀制冷,利用常温下的高压气体在膨胀机中绝热膨胀,风冷式冷水机组的型号,到达较低的温度,气体复热时即可在低温下制冷。
第二,液体蒸发制冷,在常温下冷凝的液体节流到较低的压力,这个时候,风冷式的冷水机组,它的温度也会随之降低,液体在低压下蒸发之后就能够达到制冷的效果。
第三,气体涡旋式制冷,在常温下高压气体流经涡流管就可分离成冷、热两股气流,冷气流复热时就能够制冷。
第四,半导体制冷,利用半导体的热-点效应制冷。
第五,化学方法制冷,利用吸热效应的化学反应过程制冷。
当今的制冷机利用的是高压气体膨胀制冷和液体的蒸发制冷为基础发展起来的,中间应用最为广泛的是液体的蒸发制冷。
各种的制冷机依靠某种工作介质的状态变化来完成它的工作循环,风冷式冷水机组所采用的的制冷剂被称为工作的介质。
这五种方式的制冷方法不断地应用在制冷厂家和制冷设备当中,其中利用风冷式的制冷机组制冷量也较大,能够满足人们对制冷量的需求。
制冷原理与设备
制冷原理与设备制冷:指用人工的方法在一定时间和一定空间内将某物体或流体冷却,使其温度降到环境温度以下,并保持这个低温。
制冷方法有四种:液体气化制冷、气体膨胀制冷、涡流管制冷和热电制冷。
液体气化制冷循环:由工质低压下汽化、蒸气升压、高压气液化和高压液体降压四个基本过程组成。
蒸气压缩式、吸收式、蒸气喷射式制冷都属于液体气化制冷。
以机械能或电能为补偿的:蒸气压缩式、热电制冷式制冷机以热能为补偿的:吸收式、蒸气喷射式、吸附式制冷机饱和状态:当液体处在密闭容器内时,若容器内除了液体及液体本身的蒸气外不存在任何其他气体,那么液体和蒸汽在某一压力下将达到平衡,这种状态称饱和状态。
汽化潜热:液体汽化时,需要吸收热量,该热量称为汽化潜热制冷系数、热力系数(性能系数COP)热力完善度压缩机:节流阀;蒸发器;冷凝器;过冷:制冷剂液体的温度低于同一压力下饱和状态的温度称为过冷。
两者之差称为过冷度。
制冷剂液体离开冷凝器进入节流阀之间往往具有一定的过冷度。
过冷总是有利的。
过热:制冷剂液体的温度高于同一压力下饱和状态的温度称为过热。
两者之差称为过热度。
制冷剂液体在蒸发其中完全蒸发后人然要继续吸收一部分热量,这样,在他到达压缩机之前就处于过热状态。
有害过热和有效过热。
氨不宜采用过高的过热度,吸入蒸气的过热会对往复式压缩机的容积效率有所改善,所以,对氨而言,也希望有5 C左右的过热度闪发蒸气:液体节流产生的蒸气是饱和蒸气,又称闪发蒸气,以区别于加热液体后产生的饱和蒸气。
制冷★制冷:指用人工的方法在一定时间和一定空间内将某物体或流体冷却,使其温度降到环境温度以下,并保持这个低温。
◆制冷方法有四种:液体气化制冷、气体膨胀制冷、涡流管制冷和热电制冷。
★蒸汽压缩式制冷原理:蒸汽压缩式制冷属于液体汽化制冷方式。
液体汽化制冷循环由工质低压下汽化、蒸汽升压、高压气液化和高压液体江亚四个基本过程组成。
蒸汽压缩式制冷系统由压缩机、冷凝器、膨胀阀、蒸发器组成,用管道将其连成一个封闭的系统。
制冷原理
一、制冷:是指用人工的方法在一定时间和一定空间内将某物体冷却,使其温度降低到环境温度以下,并保持这个温度。
二、制冷机:机械制冷中所必需的机械和设备的总和。
三、制冷工质1、制冷剂(1)分类按照化学成分分:1.无机物:NH3 、H2O、N2、CO22.有机物:1)碳氢化合物:CH4、C2H6、C2H42)氟利昂:饱和碳氢化合物的卤族取代物。
CHClF2、CCl2F2、C2H2F43.混合物:1)非共沸混合物:蒸发过程中混合物温度发生变化。
R4012)共沸混合物:具有共同的沸点,蒸发过程中混合物温度不发生变化。
R501 按照制冷剂的标准蒸发温度:高温(低压)、中温(中压)、低温(高压)制冷(2)命名原则(3)制冷剂的选用原则1、热力学方面的要求:1)具有较大的制冷工作范围:临界温度高、标准蒸发温度低、凝固温度低。
2)具有适当的工作压力和压缩比3)单位质量和单位体积制冷量均大:4)绝热指数低:可减少耗功率,降低排气温度,有利于润滑。
2、物理化学方面的要求:1)流动性好(粘度小,密度小):可减少流动阻力损失,降低能耗,缩小管径减少材料消耗。
2)传热性好:可减少传热面积。
3)化学稳定性好:对金属和非金属材料不腐蚀3、安全性方面的要求:不燃烧、不爆炸、无毒或低毒、易检漏4、对环境的亲和友善:1)臭氧衰减指数ODP:表示物质对大气臭氧层的破坏程度2)温室效应指数GWP:表示物质造成温室效应的影响程度5、经济性方面的要求:制冷剂的生产工艺简单,价廉、易得。
6、特定要求:1)离心式压缩机要求分子量要大,提高级压比,减少级数;2 )制冷量在200W以下的制冷机要求制冷剂的单位容积制冷量要小,以免压缩机的尺寸过小,加工困难;制冷量1000W以上的制冷机要求制冷剂的单位容积制冷量要大,以减小压缩机的尺寸和制冷剂容积流量;3)全封闭和半封闭式制冷压缩机要求制冷剂电绝缘性能好。
(3)制冷剂与润滑油的溶解性:1)完全溶解 制冷剂与油形成均匀溶液,不会产生油膜而妨碍传热;制冷剂中润滑油含量较多时,容易引起蒸发温度升高、制冷量减少、润滑油黏度降低、沸腾时泡沫多、蒸发器液面不稳定。
制冷原理及相关设备
制冷原理及相关设备一、制冷原理制冷原理是通过一系列的物理过程,将热量从低温环境中吸收,然后传递到高温环境中,从而实现将物体的温度降低的过程。
制冷原理的基础是热力学第二定律,即熵的增加原理。
1. 压缩式制冷系统压缩式制冷系统是目前应用最广泛的制冷方式。
它由四个主要组件组成:压缩机、冷凝器、膨胀阀和蒸发器。
•压缩机:将低温低压的制冷剂气体吸入,经过压缩使其温度和压力升高,然后将高温高压的气体排出。
•冷凝器:将高温高压的制冷剂气体放入冷凝器,通过流体或空气传热的方式,使其冷却并转化为高压液体。
•膨胀阀:控制高压液体制冷剂流量的阀门,将高压液体制冷剂通过膨胀阀放到低温低压区域,使其蒸发。
•蒸发器:将低温低压的制冷剂液体蒸发为制冷剂气体,吸收周围环境的热量,从而使环境温度下降。
2. 蒸发冷却原理蒸发冷却原理是利用液体蒸发时吸热的特性,通过蒸发剂的蒸发过程将周围环境的热量吸收,从而实现降低温度的目的。
蒸发冷却主要应用于一些小型空间或个人使用的冷却设备,如家用空调、冷风扇等。
二、相关设备1. 空调空调是一种常见的制冷设备,主要通过压缩式制冷系统实现室内温度的控制。
空调由室内机和室外机两部分组成。
•室内机:包括蒸发器和风扇,通过蒸发器吸收室内热量并通过风扇对室内空气进行循环,从而降低室内温度。
•室外机:包括压缩机和冷凝器,通过压缩机将室内吸入的制冷剂气体压缩成高温高压的气体,然后放入冷凝器冷却并转化为高压液体。
2. 制冷冰箱制冷冰箱利用压缩式制冷系统实现食物和饮料的冷藏和冷冻。
它包括一个压缩机、冷凝器、膨胀阀和蒸发器,工作原理与空调类似。
•压缩机将低温低压的制冷剂气体吸入并压缩成高温高压的气体。
•高温高压的气体进入冷凝器,通过传热的方式将热量散发到周围环境。
•高压液体进入膨胀阀膨胀为低温低压的制冷剂,进入蒸发器。
•制冷剂在蒸发器中吸收食物和饮料的热量,使其冷藏和冷冻。
3. 制冷车载冰箱制冷车载冰箱是一种特殊的冰箱,用于在车辆中保持食物和饮料的冷藏和冷冻。
不同温度区的主要制冷方法
不同温度区的主要制冷方法
制冷技术在现代生活和工业中发挥着重要作用,针对不同的温度区域,采用的制冷方法也各有特点。
本文将详细介绍在不同温度区中,主要应用的制冷方法及其工作原理。
一、低温区(-40℃至0℃)
1.压缩式制冷:这是最常见的制冷方式,通过压缩机将制冷剂压缩成高温高压气体,然后通过冷凝器放热,冷凝成液体。
经过节流装置降压后,制冷剂变为低温低压的汽液混合物,在蒸发器中吸热实现制冷。
2.吸收式制冷:利用吸收剂与制冷剂之间的亲和力,通过加热吸收剂使制冷剂从溶液中蒸发出来,实现制冷。
这种方式不需要压缩机,适合在低电压或无电地区使用。
二、中温区(0℃至15℃)
1.冷藏制冷:主要应用于食品冷藏和空调领域。
采用压缩式制冷循环,通过调节制冷剂的流量和压缩机的运行参数,实现0℃至15℃的温度控制。
2.热泵制冷:热泵制冷在冬季可以制热,夏季可以制冷。
在制冷模式下,热泵从室内吸收热量,通过制冷循环排放到室外,实现室内温度的降低。
三、高温区(15℃以上)
1.蒸汽压缩制冷:适用于空调、热泵等设备。
通过蒸汽压缩制冷循环,将制冷剂压缩成高温高压气体,经过冷凝器放热后,变为高温高压液体,再通过膨胀阀降压,实现制冷。
2.热管式制冷:利用热管内工作液的相变吸热和放热原理,实现高温区的
制冷。
热管式制冷具有结构简单、无运动部件、可靠性高等优点。
总结:不同温度区的主要制冷方法包括压缩式制冷、吸收式制冷、冷藏制冷、热泵制冷、蒸汽压缩制冷和热管式制冷等。
这些制冷方法在各自适用的温度范围内,为生活和工业提供了有效的温度控制手段。
制冷机的工作原理完整版
制冷机的工作原理集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]一、制冷的原理二、制冷系统的组成三、常见故障及处理方法一、制冷的原理首先讲讲什么叫制冷。
制冷两字只能说是技术上的术语,严格讲是错误的,世界上没有那国的科学家能制造出“冷”来。
我们是把利用机械设备把降温对象降到所需温度的方法叫制冷,这就是术语。
一、制冷的原理什么叫制冷,比如我们将装有一公斤20℃冷水的水壶放到一块烧到500℃的铁板上,没有多久水就开了,如果不拿开水壶,不多久水就干了。
大家和说钢板在对水加热,反过来也可以说水在对钢板降温。
而且,降了多少度,都可计算出来,因为一公斤水从20℃升到100℃,它需要外界提供它 80大卡热量,水从100℃到烧干,它需要外界提供539大卡热量,也就是说一公斤20℃冷水烧到干,要外界提供619大卡热量。
如果按制冷的角度它从外界或钢板中提取了619 大卡热量而变成了水蒸汽,使钢板降温了,这就是制冷,是利用水对钢板制冷。
热量总是通过传导、对流、辐射,从温度高的物体转移到温度低的物体,绝不可能反过来进行。
一个物体失去一些热量后,它的温度也会降低一些。
我们的目的就是通过制冷系统,将介质中的热量向比制冷剂传递,达到降低介质温度的目的。
制冷系统的组成最基本的四大部件制冷系统的组成1、压缩机、制冷压缩机是制冷装置中最主要的设备,通常称为制冷装置中的主机。
制冷剂蒸气从低压提高为高压以及汽体的不断流动、输送,都是借助于制冷压缩机的工作来完成的,也就是说,制冷压缩机的作用是:1、从蒸发器中吸取制冷剂蒸气,以保证蒸发器内一定的蒸发压力。
2、提高压力,将低压低温的制冷剂蒸气压缩成为高压高温的过热蒸气,以创造在较高温度(如夏季35℃左右的气温)下冷凝的条件。
3、输送并推动制冷剂在系统内流动,完成制冷循环。
制冷系统的组成我们现在使用的就是螺杆压缩机,螺杆压缩机是靠气缸中一对螺旋转子相互啮合旋转,造成由齿型空间的基元容积的变化,实现对制冷剂气体的压缩。
空调制冷原理介绍
(1) 无机化合物 如水、氨、二氧化碳等 (2) 氟利昂和烷烃类 如R12、丙烷等 (3) 非共沸制冷剂 如R407C等
(4) 共沸制冷剂
如R502等
谢
谢
பைடு நூலகம்
制冷剂在冷凝器中的变化
① 过热蒸气进入冷凝器后,在 压力不变的条件下,先是散 发出一部分热量,使制冷剂 过热蒸气冷却成饱和蒸气。 ② 饱和蒸气在等温条件下,继 续放出热量而冷凝产生了饱 和液体。
制冷剂在节流元件中的变 化
① 饱和液体制冷剂经过节流元 件,由冷凝压力Pk降至蒸发 压力P0,温度由tk降至t0。 为绝热膨胀过程。
制冷循环系统的基本组成
制冷循环系统:
根据蒸气压缩式制冷原理构成的单级蒸气压缩式制冷循环系统,是由不同直 径的管道和在其中制冷剂会发生状态变化的部件组成,串接成一个封闭的循环回 路,在系统回路中装入制冷剂,制冷剂在这个循环回路中能够不停地循环流动。
单级蒸气压缩式制冷系统包含四大部件: 压缩机→压缩过程 冷凝器→冷凝过程 膨胀阀→节流过程 蒸发器→蒸发过程 单级蒸气压缩式制冷系统循环工质: 制冷剂 -CFCs(氯氟烃) -HFCs(氢氟碳化合物) -CO2(二氧化碳 )
单级蒸气压缩式制冷循环的基本工作原理
制冷循环过程
制冷剂在制冷中的变化过程
制冷剂在制冷压缩机中的变化
① 制冷剂蒸气由蒸发器的出口管路进 入压缩机吸气口时,压力越高温度 越高,压力越低温度越低。 ② 制冷剂蒸气在压缩机中被绝热压缩 成过热蒸气,压力由蒸发压力P0升 高到冷凝压力Pk。 ③ 外界的能量对制冷剂做功,使得制 冷剂蒸气的温度再进一步升高,压 缩机排出的蒸气温度高于冷凝温度。
动力式:
工作原理:它首先使气体流动速度提高,即增加气体分子的动能;然后使气流速 度有序降低,使动能转化为压力能,与此同时气体容积也相应减小。 特点:压缩机具有驱使气体获得流动速度的叶轮。主要是离心式 (二)按制冷量范围分类 大、中型制冷机,主要是活塞、螺杆、离心式机组 活塞式:100~200kW 涡旋式:5~70kW 螺杆式:150~1400kW 离心式:350kW以上
六种常见制冷方式
六种常见制冷方式一、蒸汽式压缩制冷原理:在蒸汽压缩制冷循环系统中,压缩机从蒸发器吸入低温低压的制冷剂蒸汽,经压缩机绝热压缩成为高温高压的过热蒸汽,再压入冷凝器中定压冷却,并向冷却介质放出热量,然后冷却为过冷液态制冷剂,液态制冷剂经膨胀阀(或毛细管)绝热节流成为低压液态制冷剂,在蒸发器内蒸发吸收空调循环水(空气)中的热量,从而冷却空调循环水(空气)达到制冷的目的,流出低压的制冷剂被吸入压缩机,如此循环工作。
压缩机功能:把制冷剂蒸气从低压状态压缩至高压状态,创造了制冷剂在冷凝器中常温液化的条件。
被称为整个装置的“心脏”。
冷凝器功能:使压缩机排出的制冷剂过热蒸气冷却,并凝结为制冷剂液体,在冷凝器内制冷剂的热量排放给冷却介质。
分类:水冷式冷凝器、风冷式冷凝器、蒸发式冷凝器。
风冷式冷凝器:使用和安装方便,不需要冷却水、热量由分机将其带入大气中。
但同样传热系数低,相对其他类型重量偏大,翅片表面会积灰是散热能力下降,须及时清理。
蒸发器功能:依靠制冷剂液体的蒸发来吸收冷却介质热量的换热设备,它在制冷系统中的任务是对外输出冷量。
分类:满液式(沉浸式)蒸发器、干式蒸发器。
干式蒸发器:沉浸式蛇管、壳管式、板式、喷淋式等。
节流装置功能:截流降压:高压常温的制冷剂流过膨胀阀后,就变为低压、低温的制冷剂液体。
控制制冷剂流量:膨胀阀通过感温包感受蒸发器出口处制冷剂过热度的变化来控制阀的开度,调节进入蒸发器的制冷剂流量,使其流量与蒸发器的热负荷相匹配。
控制过热度:膨胀阀具有控制蒸发器出口制冷剂过热度的功能,即保持蒸发器的传热面积的充分利用,又防止压缩机冲缸事故的发生。
分类:手动节流阀、热力膨胀阀、毛细管、电子膨胀阀、浮球板、固定孔板、可变孔板。
二、蒸汽吸收式制冷以制冷剂-吸收剂为工作流体,称为吸收工质对。
常用工质对:溴化锂-水(制冷剂是水)、氨-水(制冷剂是氨)-低沸点工质是制冷剂。
装置:吸收式制冷装置由发生器、冷凝器、蒸发器、吸收器、循环泵、节流阀等部件组成,工作介质包括制取冷量的制冷剂和吸收、解吸制冷剂的吸收剂,二者组成工质对。
低温制冷技术及其应用
低温制冷技术及其应用一、低温制冷原理低温制冷技术是一种利用低温环境实现热量转移和物质冷却的工程技术。
其基本原理是通过降低系统的温度,使热量从低温物体传向高温物体,从而实现制冷效果。
二、常见的低温制冷技术1. 机械制冷:利用机械压缩/膨胀原理,通过制冷剂的循环,实现制冷。
2. 液氮制冷:利用液氮的低温特性,通过液氮的蒸发吸热实现制冷。
3. 脉管制冷:利用脉管中冷媒的相变,实现低温制冷。
4. 热电制冷:利用热电效应实现制冷。
三、低温制冷技术的应用领域1. 科研实验:低温环境下进行物理、化学、生物等实验研究。
2. 工业生产:如金属冶炼、化学反应、能源开发等。
3. 医疗领域:如冷冻治疗、血液保存、器官移植等。
4. 航天领域:如卫星温度控制、空间探测器冷却等。
四、低温制冷技术的优缺点优点:1. 可实现低温环境,满足特殊需求。
2. 适用范围广,可用于不同领域。
3. 技术成熟,可靠性高。
缺点:1. 能耗较大,成本较高。
2. 部分技术复杂,维护困难。
3. 对环境有一定影响。
五、低温制冷技术的发展趋势1. 提高能效比,降低能耗。
2. 开发新型制冷技术,降低成本。
3. 拓宽应用领域,提高实用性。
六、低温制冷技术的前景展望随着科技的不断进步和各行业对低温环境需求的增加,低温制冷技术将有更广阔的应用前景。
未来,低温制冷技术将向更高效、更环保、更经济的方向发展。
在航天、能源、医疗等领域,低温制冷技术的市场需求将不断增长。
此外,随着新技术、新材料的发展,如纳米技术、超导材料等,也将为低温制冷技术的发展提供新的机遇和挑战。
七、低温制冷技术的实际案例分析例如,在医疗领域,低温冷冻手术是常见的应用案例。
通过使用低温冷冻技术,可以将病变组织迅速冷却至低温状态,使细胞内冰晶形成,破坏细胞结构,从而达到治疗目的。
此外,在科研实验中,低温制冷技术也广泛应用于材料科学、物理学、化学等领域的研究工作中,如超导材料的研究、量子计算的研究等。
在这些实验中,低温环境可以显著改变物质的性质,提供更多可能性来进行探索和研究。
制冷原理与制冷设备
制冷原理与制冷设备制冷是一种将热能从一个空间移动到另一个空间的过程,使得被冷却的空间温度下降,其基本原理是通过热量的传递和排除,将空间中的热能转移出去。
在现代社会中,制冷设备广泛应用于家庭、商业、工业等各个领域,为人们提供了舒适的生活和工作环境。
本文将介绍制冷的基本原理以及常见的制冷设备。
一、制冷原理1. 蒸发冷却原理蒸发冷却是一种常见的制冷原理,它利用液体在蒸发过程中吸热的特性来降低空间的温度。
当液体处于低压环境下,其分子将从液态转化为气态,吸收周围的热量。
这个过程中,液体的温度将下降,从而使得周围的空气或物体的温度也随之下降。
通过控制蒸发的速率和循环系统的设计,可以实现对空间温度的制冷效果。
2. 压缩机制冷原理压缩机制冷是一种常用的制冷原理,它主要通过物质的压缩和膨胀来实现制冷效果。
在这个过程中,制冷剂经过压缩机被压缩成高压气体,然后通过冷凝器释放热量,使制冷剂转化为液体。
接着,制冷剂通过膨胀阀进入蒸发器,在蒸发的过程中吸收热量,从而降低空间的温度。
二、常见的制冷设备空调是一种广泛应用于家庭和商业场所的制冷设备。
它通过利用压缩机制冷原理将热量转移到室外,使得室内的空气温度下降。
空调设备由室内机和室外机组成,室内机通过冷凝器释放热量,室外机通过蒸发器吸收热量,实现制冷效果。
现代空调设备还具备除湿和净化空气的功能,提供了更加舒适的室内环境。
2. 冰箱冰箱是一种常见的家用制冷设备,它主要通过蒸发冷却原理来实现制冷效果。
冰箱内部有一个蒸发器,冷冻剂在其中蒸发吸热,使得冰箱内部的温度下降。
通过调节压缩机的工作状态和控制器的温度设定,可以实现冷藏和冷冻功能,保持食物的新鲜和品质。
3. 制冷车制冷车是一种用于运输食品、医药等易受温度影响的物品的专用车辆。
它通常配备有制冷设备和保温材料,可以在运输过程中保持物品的低温状态。
制冷车主要通过压缩机制冷原理来实现制冷效果,将车内的热量排出,实现对物品温度的控制。
4. 工业制冷设备工业制冷设备广泛应用于化工、制药、电子等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制冷分类根据人工制冷所能达到的低温,一般将人工制冷技术分为制冷、低温和超低温技术。
通常称从低于环境温度至119.8K(-153.35℃,氪Kr标准沸点)为制冷技术;称从119.8-4.23K (-268.92℃,氦He标准沸点)为低温技术;称从4.23K至接近绝对零度为超低温技术。
在制冷领域内,将应用于食品冷加工、空调制冷等的制冷技术成为普冷,应用于气体液化、分离等的制冷技术称为深冷。
制冷方法1、相变制冷:蒸汽压缩式制冷(离心、螺杆、活塞)蒸汽吸收式制冷(消耗热能为前提,无机械运动部分,运行平稳,震动小,耗电少,对热能质量要求低,经济性好)蒸汽喷射式制冷液体汽化相变制冷的能力大小与制冷剂的汽化潜热有关:制冷剂的分子量越小,汽化潜热量越大任何一种制冷剂的汽化潜热随汽化压力的提高而减小,当达到临界状态时,汽化潜热为零,所以从制冷剂的临界温度至凝固温度是液体汽化相变制冷循环的极限工作温度范围。
2、气体膨胀制冷3、热电制冷(半导体制冷)帕尔贴效应(电流流过两种金属组成的闭合回路,环路出现一个结点吸热,一个结点放热的现象):体积小、无噪音、运行可靠、冷却速度快、效率低。
4、固体吸附式制冷5、气体涡流制冷:压缩气体通过涡流管分成冷热流体,冷流体用于制冷。
制冷剂定义一般把制冷剂和载冷剂统称冷媒。
制冷剂又称制冷工质,南方称为雪种。
它在制冷系统中不断循环并通过其本身的状态变化以实现制冷。
制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。
在蒸气压缩式制冷机中,使用在常温或较低温度下能液化的工质为制冷剂,如氟利昂(饱和碳氢化合物的氟、氯、溴衍生物),共沸混合工质(由两种氟利昂按一定比例混合而成的共沸溶液)、碳氢化合物(丙烷、乙烯等)、氨等;在气体压缩式制冷机中,使用气体制冷剂,如空气、氢气、氦气等,这些气体在制冷循环中始终为气态;在吸收式制冷机中,使用由吸收剂和制冷剂组成的二元溶液作为工质,如氨和水、溴化锂(分子式:LiBr。
白色立方晶系结晶或粒状粉末,极易溶于水)和水等;蒸汽喷射式制冷机用水作为制冷剂。
代号制冷剂的代号最早是针对氟里昂而规定的,代号是由字母“R”和其后边的数字组成的。
R 代表制冷剂(制冷介质) “Refrigerant”如氨命名为:R717(分子式NH3),“7”代表无机化合物类,17为其分子量的整数部分。
氟里昂是饱和碳氢化合物(烷族)的卤族元素的衍生物的总称。
饱和碳氢化合物的分子式是:CmH(2m+2),当H(2m+2)被氟、氯或溴等部分或全部取代后,所得的衍生物就是CmHnFxClyBrz ,这就是氟里昂的分子通式,且n+x+y+z = 2m+2 。
氟里昂的代号是由R(m-1)(n+1)(x)B(z)组成的。
代号的编号规则与氟里昂相同,如:甲烷为R50,乙烷为R170,丙烷为R290性质要求性质要求:(1)蒸发压力与蒸发温度(冷水机-5℃-0℃,冷库-30℃—-20℃,家用空调5℃-10℃)对应蒸发压力不可太低,最好能大于大气压力(考虑到真空容器的密封)(2)冷凝压力与冷凝温度对应饱和压力不能太高(压缩机排气压力限制)(3)化学性质稳定(4)较高传热系数,粘度低(降低流动阻力)(5)安全性(无毒,无刺激,无燃烧及爆炸性)(6)经济性要求工质低廉,易于获得(7)良好的电气绝缘性(8)环保性(ODP GWP)部分制冷剂介绍氨氨是目前使用最为广泛的一种中压中温制冷剂。
氨的凝固温度为-77.7℃,标准蒸发温度为-33.3℃,在常温下冷凝压力一般为1.1~1.3MPa,即使当夏季冷却水温高达30℃时也绝不可能超过1.5MPa。
氨有很好的吸水性,即使在低温下水也不会从氨液中析出而冻结,故系统内不会发生“冰塞”现象。
氨对钢铁不起腐蚀作用,但氨液中含有水分后,对铜及铜合金有腐蚀作用。
因此,氨制冷装置中不能使用铜及铜合金材料,并规定氨中含水量不应超过0.2%。
氨的临界温度较高(tkr=132℃)(氦气、氧气等临界温度较低,很难液化),汽化潜热大,在大气压力下为1164KJ/Kg,标准工况下的单位容积制冷量也大,氨压缩机尺寸可以较小。
纯氨对润滑油无不良影响,但有水分时,会降低冷冻油的润滑作用。
氨在润滑油中不易溶解,故要在装置中设置油分离器,减少润滑油进入冷凝器和蒸发器,防止热交换表面被油污染后传热性能降低。
液氨透明无色,氨蒸气无色,有强烈的刺激臭味。
氨对人体有较大的毒性,当氨液飞溅到皮肤上时会引起冻伤。
当空气中氨蒸气的容积达到0.5-0.6%时可引起爆炸。
故机房内空气中氨的浓度不得超过0.02mg/L。
总上所述,氨作为制冷剂的优点是:易于获得、价格低廉、压力适中、单位制冷量大、放热系数高、几乎不溶解于油、流动阻力小,泄漏时易发现。
其缺点是:有刺激性臭味、有毒、可以燃烧和爆炸,对铜及铜合金有腐蚀作用。
R22在国内空调制冷装置中广泛采用,热力学性能与氨不相上下,安全可靠,是一种良好的制冷剂,目前价格较高,影响大规模推广使用。
缺点是温室效应气体,GWP值是二氧化碳的1700倍CFC(R12为淘汰产品)工业上大量生产和使用的氯氟烃是破坏臭氧层的物质,根据氯氟烃的英文名称Chloro-fluoron-carbon,取其字头组成缩写CFC,用CFC代码作为氯氟烃的统称。
在CFC后标以化合物代码,可以代表不同的氯氟烃,如CFC-12代表二氯二氟甲烷,CFC-113代表1,1,2-三氯-1,2,2-三氟乙烷等。
ODP与GWPODP(ozone depletion potential)臭氧消耗潜值(臭氧衰减指数),用于考察物质的气体散逸到大气中对臭氧破坏的潜在影响程度。
规定制冷剂R11的臭氧破坏影响作为基准,取R11的ODP值为1,其他物质的ODP是相对于R11的比较值。
R22的ODP值为0.05,对臭氧层同样有破坏作用。
GWP(Global Warming Potential)按照惯例,以二氧化碳的GWP值为一,其余气体与二氧化碳的比值作为该气体GWP值。
其余温室气体的GWP值一般远大于二氧化碳,但由于它们在空气中含量少,我们仍然认为二氧化碳是温室效应的罪魁祸首,温室效应60%由其引发。
载冷剂定义以间接冷却方式工作的制冷装置中,将被冷却物体的热量传给正在蒸发的制冷剂的物质称为载冷剂。
载冷剂通常为液体,在传送热量过程中一般不发生相变。
但也有些载冷剂为气体,或者液固混合物,如二元冰等。
常用的载冷剂有:水、盐水、乙二醇或丙二醇溶液、二氯甲烷和三氯乙烯,一般不包括一氟二氯甲烷,这个通常作为制冷剂,只有在直接制冷时,才使用制冷剂作为载冷剂。
直接制冷用大量的制冷剂,制冷剂一般对环境的友好程度低,如氟利昂,氨气等,因此间接制冷是节能环保的一种方式。
部分载冷剂介绍水:它性质稳定、安全可靠,无毒害和腐蚀作用,流动传热性较好,还是廉价易得物质。
不足之处在于凝固点为0°C,相对而言比较高。
由于较高凝固点的限制使之只适用于工作温度在0℃以上的高温载冷场合。
即在0°C以上的人工冷却过程和空调装置中,水是最适宜的载冷剂。
如空气调节设备等。
工业用的循环冷却水,温度一般在10-30℃。
盐水:即氯化钙或氯化钠的水溶液,可用于盐水制冰机和间接冷却的冷藏装置,或冷却袋装食品。
盐水的凝固温度随浓度而变,当溶液浓度为29.9%时,氯化钙盐水的最低凝固温度为-55℃;当溶液浓度为22.4%时,氯化钠盐水的最低凝固温度为-21.2℃。
使用时按溶液的凝固温度比制冷机的蒸发温度低5℃左右为准来选定盐水的浓度。
氯化钙和氯化钠价格较低,对设备腐蚀性很大丙二醇和乙二醇:性质稳定,与水混溶,其溶液的凝固温度随浓度而变,通常用它们的水溶液作为载冷剂,适用的温度范围为0-20。
虽然乙二醇或丙二醇溶液的凝固点低,可达-50℃,但是低温下溶液的粘度上升非常迅速,因此,一般具有工业应用价值的温度为-20℃以上。
其水溶液也有腐蚀性。
载冷剂优点综合来看,使用载冷剂的优势在于:(1)可以使制冷机系统聚集在较小的范围里,便于整个装置的制造、安装、运行管理,提高制冷效率。
同时将冷量传送到远处。
另外还将减少制冷剂系统制冷剂的充灌量和减少制冷剂泄漏的可能性。
(2)便于对冷量的分配和控制。
特别是对集中供冷的大容量空冷装置而言。
(3)所用的载冷剂热容量较大,因此被冷却对象的温度易于稳定制冷相关单位冷吨(功率单位)(RT refrigeration Ton )1美国冷吨=3.51kW 1日本冷吨=3.86KW卡(能量单位)1atm下,使水温升高一度所需的能量1cal=4.18J 1kcal(大卡)=4.12KJ马力(功率单位)1米制马力=735W 1英制马力=746W参数介绍冷凝温度与冷凝压力冷凝器内制冷剂蒸汽在一定压力下凝结时的饱和温度。
冷凝温度不等于冷却介质的温度,两者之间也存在着传热温差。
冷凝温度的高低,主要取决于冷却介质的温度及流量、冷凝面积及冷凝器的形式等。
降低冷凝温度,可以提高压缩机的制冷量,减少功率消耗,从而提高制冷系数,提高运行的经济性。
但冷凝温度也不应该过低(尤其在冬天需特别予以注意),否则将会影响到制冷剂的循环量,反而使制冷量下降。
冷凝温度过高不仅制冷量下降,功率消耗增加,而且会使压缩机的排气温度增高,润滑油温度升高,粘度降低,影响润滑效果,甚至结碳,使气阀密封性能下降,直接影响到压缩机运行的可靠性和寿命。
因此,在实际运行过程中,必须密切注意冷凝温度,必要时也应给予调整。
冷凝温度与冷凝压力之间也有一定的对应关系。
因此冷凝温度的调节,同样可以通过调节冷凝压力来达到。
在冷却介质(水或空气)的温度一定时,冷凝压力的调整,可通过改变冷却介质的流量和冷凝面积来达到。
冷却介质流量增加,流速相应提高,可减少传热温差,从而降低冷凝温度;增大传热面积(可通过增加并联冷凝器的台数来实现)也可达到降低冷凝压力的目的。
降低冷却介质的温度,冷凝压力可明显下降。
冷凝压力的高低,可通过装在压缩机排气端得压力表上的指示值反映出来。
蒸发温度与蒸发压力蒸发温度是所要求的室内温度,而制冷剂自身的性质牵扯到的温度是在对应压力下的沸腾温度。
制冷系数是指单位功耗所能获得的冷量。
保证功耗的情况下增加制冷量就是提高制冷系数。
降低冷凝温度就是为了得到温度相对低的制冷剂液体,即提高制冷剂的质量制冷量。
在允许的范围内降低冷凝温度、提高蒸发温度可以提高制冷量。
蒸发压力由多种因素决定,包括:(1)压缩机的吸气能力(2)蒸发器传热能力(3)节流阀供液能力吸收式制冷通俗解释(载自大连三洋使用说明书)在注射时,如果涂酒精,该部分变凉爽,酒精蒸发时,从皮肤处带走潜热。
在夏天如果往院中洒水,因为水分被蒸发,带走蒸发潜热,就会变凉快。
使1KG水从0℃上升到100℃,需要100千卡的热量,这可以用温度计测量,该热量称为显热,另一方面,使100℃的1公斤水全部蒸发,大约需要540千卡的热量,但是该水的温度不变化,仅仅是状态由液体变为气体,在温度计中温度部被显示该热量叫潜热。